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Inelastic scattering of electrons at real metal surfaces

Z.-J. Ding
CCAST (World Laboratory), P.O. Box 8730, Beijing, 100080, People’s Republic of China

and Fundamental Physics Center, University of Science and Technology of China, Hefei 230026, Anhui, People’s Republic of
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A theory is presented to calculate the electron inelastic scattering cross section for a moving electron near
the surface region at an arbitrary takeoff angle. The theory is based on using a bulk plasmon-pole approxima-
tion to derive the numerically computable expression of the electron self-energy in the random-phase approxi-
mation for a surface system, through the use of experimental optical constants. It is shown that the wave-
vector-dependent surface dielectric function satisfies the surface sum rules in this scheme. The theory provides
a detailed knowledge of electron self-energy depending on the kinetic energy, distance from surface, and
velocity vector of an electron moving in any metal of a known dielectric constant, accommodating the formu-
lation to practical situation in surface electron spectroscopies. Numerical computations of the energy-loss cross
section have been made for Si and Au. The contribution to the total differential scattering cross section from
each component is analyzed. The depth dependence informs us in detail how the bulk excitation mode changes
to a surface excitation mode with an electron approaching the surface from the interior of a medium.
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I. INTRODUCTION

In the characterization of metal surfaces with electr
spectroscopies, such as reflection electron energy-loss s
troscopy, Auger electron spectroscopy, and x-ray photoe
tron spectroscopy, the surface electron excitation is acc
panied by bulk excitation as experienced by a sig
electron. The relative contribution to the total energy-lo
spectrum from each channel depends strongly on an ex
mental configuration. It is thus important to know quanti
tively how the surface excitation varies with experimen
conditions and modifies the signal spectrum measured. S
a theory will be essential to extract the signal or backgrou
due to surface excitation from the overall spectrum.1,2 Fur-
thermore, an accurate Monte Carlo simulation of elect
scattering under a surface relies critically on the scatte
cross section available. Any simulation using empirical cr
sections or semiempirical ones3 loses the physical processe
happening in a real case and may cause self-inconsisten

However, the current theories of electron inelastic scat
ing can hardly accommodate the practical situation and p
vide a general description of the energy-loss processe
electrons near the surface region of materials with which
are experimentally interested. The difficulty arises from
simplification and limitation assumed by the theories.4–18

Emphasis has been put on the surface plasmon excitatio
a free-electron metal, such as Al, assuming simple elec
trajectory geometry, e.g., normal or parallel movement of
charge to a surface. The present work thus aims to overc
these shortcomings within the available theoretical fram
work.

To simulate the response of a real metal to a charge,
may use experimental dielectric constant«~v! instead of the
dielectric function for free-electron gas.19 Such a useful
550163-1829/97/55~15!/9999~15!/$10.00
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method has been devised by Penn20 to obtain the bulk
dielectric function «~q,v! in a bulk plasmon-pole
approximation.21,22 This model dielectric function yields a
quite reasonable scattering differential cross section, me
free path, and stopping power of electrons in a bu
material.23–27 The surface dielectric function in a surfac
plasmon-pole approximation12,28 was, however, formulated
to represent a surface plasmon peak solely and it is thus
suitable to describe other metals presenting a complex st
ture in optical energy-loss function Im$21/«~v!%. Therefore,
in order to make a theory general in form and applicable
real metal surfaces, it is quite natural to derive an opti
data-based surface dielectric function in the plasmon-p
approximation. To avoid a divergence problem at the surf
it is necessary to consider the spatial dispersion.12,14,17

The best approach to the problem of interaction of
charge with a medium is given by the self-energy calcu
tion. For a surface system, Flores and Garcia-Moliner h
developed a very useful method29 to obtain complex self-
energy in quantum-mechanical formulation by using t
specular surface reflection model.30,31An obvious advantage
of the method is that it recovers other semiclassical res
and provides a unified treatment. This theory forms the ba
of the present study.

II. THEORY

A. General formula

We require that the metal be contained in a semi-infin
space ofz,0. In the specular surface reflection model t
induced potential is determined by the external charge,
image charge about the surface, and the fictitious surf
charges fixed by the boundary conditions. Then one obta
the induced potentials for an external charge inside or o
side the metal described by a dielectric function«~q,v!, as29
9999 © 1997 The American Physical Society
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whereq5~qi ,q'! and

A~zuq,v!52e2 iq'zS 1

«~q,v!
21D 1

q2
12eiq'z

1

q2«~q,v!

24«s~qi ,v!
qi

p

1

q2«~q,v!
E

2`

`

eiq'z
dq'

q2«~q,v!
.

~5!

z and z8 represent, respectively, the position of the cha
and field point. Atomic units (e5\5m51) are used
throughout. In Eq.~5! three terms explicitly display the ori
gin of the bulk mode and the surface mode in scattering c
section, which were established by an external charge:
first term describes the screening response of infinite
dium to the external charge and the second term to the im
charge. Because the image charge is not realistic, there
a bare Coulomb potentialq22 to be subtracted. The third on
is due to the fictitious surface charges. For convenience
surface dielectric function«s~qi ,v! in the above equations i
defined, in a form differing from the others,4,17 in terms of
the bulk dielectric function by

«s
21~qi ,v!511

qi

p E
2`

` dq'

q2«~q,v!
. ~6!
e
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The self-energy operator in the random-phase approxi
tion is given by the multiplication of the Green’s functio
and the induced potential.21 For a system without transla
tional invariance in thez direction this self energy reads a

S~zz8uqi ,v!5 i ~2p!23E F~zz8uqi8 ,v8!

3Gs~zz8uqi2qi8 ,v2v8!dqi8dv8, ~7!

whereGs is the time-ordering surface Green’s function th
can be constructed from a bulk free-electron Gree
function.31 A rather considerable simplification is to consid
limiting cases of surface potentialU. For U5` andU50,
Gs can be written explicitly and local self-energyS(z) may
be obtained by an integration overz8.

Flores and Garcia-Moliner have obtained the express
of S(z) for an electron impacting the surface from th
vacuum side, in a fast-electron approximation. Similarly,
our present purpose, we have derived the expression ofS(z)
for an electron moving towards the surface from the inter
of the medium.32 In approaching and before arriving at th
surface (z,0,v'.0), it is given by
is due
face,
S in~z,0!52
i

~2p!3
E dqi E

2`

`

dq'dv eiq'z
A~zuq,v!

v2q•v2 ih
5S in

b1S in
b-s~z!1S in

s ~z!, ~8!

for bothU50 andU5`. The first term, which is independent ofz, is due to bulk excitation:

S in
b5

2

~2p!2
E dq

q2 E0
`

dvS 1

«~q,v!
21D d~v2q•v!, ~9!

wherev5~vi ,v'! is the electron velocity vector. All the other terms give a net surface effect. The second term, which
to the image charge as we stated above, is the boundary correction to the bulk term due to the presence of the sur

S in
b-s~z!52

2i

~2p!3
E dqi E

0

`

dvE
2`

` dq'

q2«~q,v! S e22iq'z

v2q•v2 ih
2

e2iq'z

v2q•v1 ih D , ~10!

and the third term represents the surface excitation contributed by surface charges,

S in
s ~z!5

i

2p4 E dqi E
0

`

dv qi«s~qi ,v!E
2`

` dq'

q2«~q,v! S e2 iq'z

v2q•v2 ih
2

eiq'z

v2q•v1 ih D E
2`

`

eiq'z
dq'

q2«~q,v!
. ~11!
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When the electron is ejected into vacuum (z.0,v'.0), we have

Sout~z.0!52
1

2p2 E dqi

e22qiz

qi
E
0

`

dv@122«s~qi ,v!#
qiv'

~v2qi•vi!
21~qiv'!2

1
i

~2p!2
E dqi

e2qiz

qi
E
0

`

dvH F e2 i ~v2qi•vi !z/v'

v2qi•vi2 iq iv'

2c.c.G1@122«s~qi ,v!#F ei ~v2qi•vi !z/v'

v2qi•vi1 iq iv'

2c.c.G
22«s~qi ,v!

qi

p E
2`

` dq'

q2«~q,v! Fe2 i ~v2qi•vi !z/v'

v2q•v2 ih
2c.c.G J , ~12!
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for U50. Of course, forU5`, we would not have the elec
tron trajectory penetrating the surface and the theory yie
insteadSout~z,0! for a reflected electron trajectory leavin
the surface.

The first integral term in Eq.~12! is the same as the sel
energy for an electron incident into the surface from
vacuum side,Sin~z.0!, and also agrees with a semiclassic
result. The second term has a known oscillatory behavio
th
n
ie
s

e
l
in

z,12 indicating a wake surface excitation trailing the partic
by the wake potential. The phenomenon is similar to that
the bulk side when a particle penetrates into the metal fro
vacuum;23 however, its intensity is weaker because it lac
dense free electrons in the vacuum side. For a parallel e
tron trajectory to the surface,v'50, this term vanishes and
we cannot expect an oscillatory scattering cross section.

The continuity of Eqs.~8! and ~12! at z50 holds,
S in~0
2!5Sout~0

1!52
1

2p2 E dq

q2 E0
`

dv d~v2q•v!1
1

p2 E dqi E
0

`

dv «s~qi ,v!E
2`

` dq'

q2«~q,v!
d~v2q•v!. ~13!
d
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In the following discussion, we shall concentrate only on
imaginary part of Eq.~8!. But the formulation presented i
the following section can also be applied to other theor
dealing with surface problems.

B. Plasmon-pole approximation

The dielectric function for a single plasmon of energyvp
may be approximated as

«~q,v;vp!511
vp
2

vq
22vp

22v~v1 igq!
, ~14!

wherevq satisfies a dispersion relationvq5vq(q,vp) and
equalsvp at q50. For the infinitesimal damping constantgq
we then have

lim
gq→01

ReH 1

«~q,v;vp!
21J 5P

vp
2

v22vp
2 ~15!

lim
gq→01

ImH 21

«~q,v;vp!
J 5pvp

2d~v22vq
2!

5
p

2

vp
2

vq
d~v2vq!

~v.0!, ~16!

whereP denotes Cauchy principal value.
e

s

In the spirit of a statistical approach,34 Penn has propose
a general model of dielectric function. The extended ener
loss function is written as

ImH 21

«~q,v! J 5E
0

`

dvpG~vp!ImH 21

«~q,v;vp!
J , ~17!

where the expansion coefficientG~v! relates to optical
energy-loss function by

G~v!5
2

pv
ImH 21

«~v! J . ~18!

Using Kramers-Kronig relation it is trivial to obtain the co
responding relation for the real part of the inverse of diel
tric function,

ReH 1

«~q,v!
21J 5E

0

`

dvpG~vp!ReH 1

«~q,v;vp!
21J .

~19!

Equations~17! and ~19! may be combined to a singl
equation written as

1

«~q,v!
215E

0

`

dvpG~vp!F 1

«~q,v;vp!
21G

5E
0

`

dvpH~vp!F 1

vq1v1 ih
2

1

vq2v2 ihG ,
~20!
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whereh is an infinitesimal quantity and

H~vp!5
vp
2

2v
G~vp!5

1

p

vp

v
ImH 21

«~vp!
J ~21!

is real forv.0.
Using of Eq.~20! in Eq. ~8! one can obtain the values o

complex self-energy for a metal of known dielectric co
v
th

d
ly

g
g
t

stant. To be more explicit, we consider a simple dispers
relation19,26

vq5vp1
1
2q

2, ~22!

with which the integration overq' can be analytically given.
By substituting Eq.~A1! into Eq. ~6! we derive the expres
sion of « s

21(qi ,v) given by
q.
ReH 1

«s~qi ,v!
21J 5ReH 1

«~v! J 2
1

pv E
0

`

dvpImH 21

«~vp!
J

3F vp

~v1vp!A2~v1vp!/qi
211

1P
vpu~vp2v1qi

2/2!

~v2vp!A2~vp2v!/qi
211

G ~23!

and

ImH 21

«s~qi ,v! J 5
1

pv E
0

`

dvpImH 21

«~vp!
J vpu~v2vp2qi

2/2!

~v2vp!A2~v2vp!/qi
221

, ~24!

whereu(x) is the step function~51 if x.0; 0 otherwise!. Making use of the Kramers-Kronig relation, the first term in E
~A1! yields the first term in Eq.~23!.

Finally we find the expression for imaginary part of the self-energy term written as~see Appendix A!

ImS in
b-s~z!52

1

~2p!2
E dqi E

0

` dv

v E
0

`

dvpvpImH 21

«~vp!
J u~v2vp2qi

2/2!

~v2vp!A2~v2vp!2qi
2 Fd„v2qi•vi2A2~v2vp!2qi

2v'…

1d„v2qi•vi1A2~v2vp!2qi
2v'…Gcos@2A2~v2vp!2qi

2z#. ~25!
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The imaginary part ofS in
s (z) can also be written, though

tediously, with Eqs.~23!, ~24!, ~A2!, ~A7!, and~A8!.
Performing further angular integration~see Appendix B!

we can obtain the double differential cross section in wa
vector and frequency for electron inelastic scattering near
surface,p(zuqi ,v), defined by

22 Im S~z!5vE
0

`

dqi E
0

`

dv p~zuqi ,v!, ~26!

and the differential cross section in frequency:

p~zuv!5E
0

`

dqip~zuqi ,v!, ~27!

where the dependence on the kinetic energy and moving
rection is implied. For the bulk scattering term it is simp
given by25

pb~v!5
1

pv2v E
0

`

dvp

vp

v2vp
ImH 21

«~vp!
J

3u~vq̄2 1
2 q̄

22v!, ~28!

wherev5vq(q̄,vp) and the step function represents ener
and momentum conservation. This equation involves a sin
integration, while for surface scattering terms we have
perform numerical multiple integration.
e
e
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C. Numerical method

For calculation of double differential cross section w
must perform numerical integration involving the optica
dielectric constant«~vp! over the photon energyvp . Differ-
ing from Eq.~28!, the integration should be carried out ov
the entire energy range from 1021 eV up to the energy region
of inner-shell electrons. Some terms, such as the first te
in Eqs. ~23! and ~A2!, may avoid doing so by direct use o
Re$1/«~vp!%. We empirically found that the integration re
quires very thin grid spacing in order to get a reasona
smooth curve. It may mainly be due to the difficulty of co
vergence problems for the Cauchy principal integral. Thou
some numerical techniques35 may be modified to speed u
the computation, we have used the conventional numer
integration procedure incorporating some analytical expr
sions.

We first divide the whole energy range by a grid of fixe
numbers with unequal steps. The width of the steps beg
with 1023 eV from vp50.1 eV and is 0.01 eV for
1,vp,100 eV. It increases by order withvp.100 eV. In
between two grid points the Romberg integration routine
applied. It may be noted that the variation of the optic
energy-loss function Im$21/«~vp!% with vp is not dramatic.
In the energy region 10–102 eV, the most steep change o
currs within the zoneDvp;0.1 eV~e.g., for Ag!, and;1 eV
at an inner-shell edge in regionvp;1 keV. Hence, for a grid
spacing chosen much less thanDvp we can regard
Im$21/«~vp!% linear in the grid interval and derive an an
lytical expression for this integration section. This enab
the calculation to be made faster and maintains accurac
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also avoids the divergence problem in evaluating the Cau
principal integral. Furthermore, the analytical formula m
be used to show that Eq.~30! is valid in every small interval
and, hence, in the whole energy range. However, the ana
cal expression can only be given for integrals in Eqs.~23!
and ~24!; other integrals still require Romberg integratio
For the angular integration of Eq.~25! we may use Eq.~B3!
to shorten the integration steps.

When the values ofp(zuqi ,v) are calculated, a simila
Romberg procedure is used to findp(zuv) in Eq. ~27!. The
range ofqi from 0 to 1 Å21 is divided by a mesh of 40
points. The convergence is tested to an absolute error of 124

~keV Å!21. When an electron moves nearly parallel to t
surface, the finerqi segment is necessary. This will be u
derstood from the plot of double differential cross sectio
shown later.

III. RESULTS AND DISCUSSION

A. Surface energy-loss function and sum rules

We consider now Si and Au as examples of application
the present theory. Si presents a typical nearly-free-elect
like behavior in bulk energy-loss function by showing a bu
plasmon peak of finite width. Au demonstrates a comp
structure in energy-loss function due to interband transitio
which is common to most real metals.

Figure 1 shows the surface energy-loss funct
Im$«s(qi ,v)% for several representative values ofqi and the
comparison with the optical bulk energy-loss functi
Im$21/«~v!% and with the optical surface energy-loss fun
tion Im$21/@11«~v!#%. It can be seen that Im$«s(qi ,v)%
agrees with the optical surface energy-loss function atqi50.
This may be understood if we replace the nonlocal dielec
function«~q,v! by the local one«~v! in the definition equa-
tion of the surface dielectric function, Eq.~6!. The exact
verification can be done if we take the limit

lim
qi→0

u~v2vp2qi
2/2!

~v2vp!A2~v2vp!/qi
221

5pd~v2vp! ~29!

in Eq. ~24!. Taking also the limit in Eq.~23!, the integral
terms vanish. Hence, we have

«s
21~0,v!511«21~v!. ~30!

so that Im$«s~0,v!%5Im$21/@11«~v!#%.
Figure 2 demonstrates the perspective plot of the sur

energy-loss function that resembles in appearance the
energy-loss function, Im$21/«~q,v!%, obtained in the
plasmon-pole approximation~Fig. 1 in Ref. 25!. The surface
plasmon energy starts from 1/& of the bulk plasmon energy
atqi50 and increases withqi nearly in a parabolic curve. To
see this we put in Eqs.~23! and~24! the single plasmon-pole
terms,
y
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n-
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ic

ce
lk

ReH 1

«~v! J 511P
vb
2

v22vb
2 ,

ImH 21

«~v! J 5
p

2
vbd~v2vb!, ~31!

wherevb is the bulk plasmon energy. The dispersion of s
face plasmon is found from Re$1/«s(qi ,vs)%50 or

2x~2x221!5
x21

A112~11x!vb /qi
2

1
11x

A112~12x!vb /qi
2
,

~32!
wherex5vs/vb andvs is the surface plasmon energy. O
viously,vs5vb/& at qi50. The dispersion curve fitted to
quadratic is similar to that shown in Fig. 1 of Ref. 30, havi
a positive coefficient in linearqi . Though experimental mea
surements show that the surface plasmon dispersion is n
tive at smallqi ,

36,37 the present simple theory does not allo
us to describe such a negative dispersion as shown
density-function theories.38,39However, a slight negative dis
persion should not have a strong effect on the values of s
tering cross sections.

FIG. 1. Plots of the energy-loss functions calculated from op
cal data. Thin solid lines represent surface energy-loss func
Im$«s(qi ,v)% for several representative values ofqi . Arrow indi-
cates ghost peak caused by discontinuity of optical constants.
dashed line and solid line are, respectively, the optical surf
energy-loss function Im$21/~11«~v!!% and optical bulk energy-
loss function Im$21/«~v!%. ~a! Si and~b! Au.
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In Figs. 1 and 2 some ghost peak or shoulder are see
surface energy-loss function. The peak position does
change withqi . We found that it is caused by the discon
nuity of optical constants40 that are compiled from the
measurements done by different investigators. The disco
nuity can hardly be observed in bulk energy-loss function
it is sensitive to the wave-vector-dependent surface ene
loss function. To remove the peak a Kramers-Kronig ana
sis of optical data should be done. However, in this calcu
tion we have not attempted to do so and raw data are u
directly.

Now let us consider the sum rules satisfied by the surf
energy-loss function. From Eqs.~16!–~18! it is trivial to
verify that the perfect screening sum rule41

m21
b 5 lim

q→0
E
0

` 1

v
ImH 21

«~q,v! J dv5
p

2
~33!

and f -sum rule

FIG. 2. Perspective view of the energy-lossv-dependent and
horizontal momentum transferqi-dependent surface energy-lo
function. ~a! Si and~b! Au.
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m1
b~q!5E

0

`

v ImH 21

«~q,v! J dv5
p

2
Vb

2, ~34!

whereVb5A4pNe2/m, are valid for plasmon-pole approxi
mated bulk energy-loss function. Correspondingly, one
prove the sum rule

m21
s 5 lim

qi→0
E
0

` 1

v
ImH 21

«s~qi ,v! J dv5
p

2
~35!

by using the equation

qi

p E
2`

` dq'

q2vq
2 5

qi

p E
2`

` dq'

~qi
21q'

2 !@vp1
1
2 ~qi

21q'
2 !#

5
1

vp
2 F12

qi

Aqi
212vp

2
qivp

qi
212vp

G . ~36!

It is also easy to verify directly from Eq.~33! the equation

m1
s~qi!5E

0

`

v ImH 21

«s~qi ,v! J dv5
p

2
Vb

2. ~37!

However, what we are interested in here is the sum ru
applied to surface energy-loss function Im$«s(qi ,v)%. Defin-
ing the surface response function28 R~qi ,v! and spectral
function42 S~qi ,v! as

R~qi ,v!5122«s~qi ,v!5E
0

`

dv8S~qi ,v8!

3F 1

v2v81 ih
2

1

v1v81 ih G , ~38!

the imaginary part of the above equation is

S~qi ,v!52
1

p
Im$R~qi ,v!%5

2

p
Im$«s~qi ,v!% ~39!

and the real part is hence just the Kramers-Kronig relat
for the surface response function. It is interesting to note t
the formal identity

1

«~q,v!
2152

1

p E
0

`

dv8 ImH 1

«~q,v8!
21J

3F 1

v2v81 ih
2

1

v1v81 ih G ~40!

is the counterpart of Eq.~38! for the bulk response function
When Eq. ~17! is substituted into the above equation w
certainly derive Eq.~20!.

From the sum rules42,43 required forS~qi ,v! we should
have the surface perfect-screening sum rule

n21
s 5 lim

qi→0
E
0

` 1

v
Im$«s~qi ,v!%dv5

p

4
~41!

and the surfacef -sum rule
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TABLE I. Comparison of the theoretical surface perfect screening sum rules,m21
s andn21

s , and surface
f -sum rules,m 1

s(qi) andn 1
s(qi), with the computed values.

m21
s n21

s m 21
s /n 21

s

Theory Calc. Error~%! Theory Calc. Error~%! Theory Calc. Error~%!

Si 1.5708 1.3782 212.26 0.7854 0.6585 216.15 2 2.093 4.64
Au 1.5708 1.7125 9.02 0.7854 0.8265 5.23 2 2.072 3.61

qi ~Å21!

m 1
s(qi) ~eV2! n 1

s(qi) ~eV2! m 1
s(qi)/n 1

s(qi)

Theory Calc. Error~%! Theory Calc. Error~%! Theory Calc. Error~%!

0.0 1 514.9 1418.1 26.39 378.73 359.45 25.09 4 3.95 21.37
0.5 1 514.9 1399.3 27.63 378.73 355.55 26.12 4 3.94 21.61
1.0 1 514.9 1380.0 28.90 378.73 350.74 27.39 4 3.93 21.63
0.0 10 086.2 9203.6 28.75 2521.6 2283.0 29.46 4 4.03 0.78
0.5 10 086.2 9153.8 29.24 2521.6 2274.9 29.78 4 4.02 0.60
1.0 10 086.2 9097.2 29.80 2521.6 2262.1 210.29 4 4.02 0.54
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n1
s~qi!5E

0

`

v Im$«s~qi ,v!%dv5
p

4
Vs

2, ~42!

whereVs5Vb/&.
Because the present theory gives the analytical expres

only for the inverse of the surface dielectric function, t
surface energy-loss function cannot be written in a sim
expression. Therefore, Eqs.~41! and ~42! are hardly to be
proved analytically and a numerical verification is necessa
It has been shown44 that they are valid atqi50 for optical
surface energy-loss function. For arbitraryqi values, we may
take the ratio

m1
s~qi!

n1
s~qi!

54,
m21
s

n21
s 52. ~43!

Table I verifies the tests of the surface perfect screen
sum rule and the surfacef -sum rule. The absolute value o
the calculation deviates slightly from theoretical value to
same extent as for the bulk sum rules.24 This is reasonable
considering the uncertainties involved in the experimen
data of the dielectric constant. However, the uncertainty m
be largely canceled out by taking the ratio so that Eq.~43! is
satisfied quite well for the present wave-vector-depend
surface energy-loss function.

B. Double differential cross section

The total cross section differential inqi andv has two
components, i.e.,pb-s(zuqi ,v) and ps(zuqi ,v). The bulk
term pb(q,v) is essentially differential inq andv and we
have not tried to integrate it over theq' component. Figure 3
shows the cross section for a small value ofqi . One can see
that the image charge contributes to an increase of the s
tering cross section at bulk plasmon energy in the c
shown; the surface charges set up an energy-loss mecha
by surface plasmon excitation and reduce the probability
bulk plasmon excitation. The net surface effect,pb-s1ps, has
a peak at the surface plasmon energy and a valley at the
plasmon energy. For large2z values, both the height of th
peak and valley would be smaller so that the bulk excitat
mechanism dominates the overall scattering probability.
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Figures 4 and 5 illustrate, respectively, the perspec
view of double differential cross sections,pb-s and ps, for
different values of takeoff angleq defined as the angle be
tween velocity vector and surface normal. The position

FIG. 3. Plots of the double differential cross section as a fu
tion of v at a given value of the horizontal wave vectorqi , depthz,
takeoff angleq, and kinetic energyE. The dotted and dashed line
represent, respectively, the componentpb-s(qi ,v) due to image
charge andps(qi ,v) to surface charges. The solid line is their su
~a! Si and~b! Au.
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10 006 55Z.-J. DING
both the surface plasmon peak and bulk plasmon va
shifts to the higher-energy side with the increasing ofqi due
to dispersion. The surface dispersion starts from the sur
plasmon energy and bulk dispersion from the bulk plasm
energy as shown by Figs. 4~b! and 5~b!. The Bethe ridge may
be more clearly seen from the bulk scattering ter
pb(q,v)} Im$21/«~q,v!%.

It is interesting to note that, in the case of glancing ej
tion, the ridge ofpb-s and ps shrinks to a sharp plane. A
small values ofqi there is only ad-function-like surface
plasmon peak inps(qi ,v) and a bulk plasmon peak i
pb-s(qi ,v). For large qi’s both these peaks reduce to
broadened hump and a negatived-function-like bulk plas-
mon peak appears inps(qi ,v).

However, in Figs. 4~a! and 5~a! the d-like peaks do not
converge to the surface plasmon and bulk plasmon ener
asqi approaches zero. This is because in Eq.~25!, in addition
to the restriction due to the dispersion relationv>vp1q i

2/2,
there is ad~v2qi•vi! term imposed on the excitation prob
ability at grazing condition,v''0. Its angular integration
Eq. ~B1!, then restrictsqi>v/v. Furthermore, similar to Eq
~29!, it becomes ad-function requiringqi5v/v for v'→0.

FIG. 4. Perspective view of the energy-lossv-dependent and
horizontal momentum transferqi-dependent double differentia
cross-section termpb-s(qi ,v) due to image charge for takeo
angles~a! 89.5° and~b! 45°. Note that the scales are different.
y

ce
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Physically, this means the resonant interaction of electr
with plasmon waves whose phase velocity isv/qi , when an
electron can spend a long time in its movement paralle
the surface.45,46 In Fig. 4~a! the bulk plasmon peak at th
sharp plane is thus located at the intersection of disper
with the resonant condition in the~qi ,v! plane. Therefore, in
the case shown by Figs. 4~a! and 5~a!, the surface charge
enables the resonant surface plasmon excitation and the
nant bulk plasmon deexcitation, and the image charge ma
the resonant bulk plasmon excitation.

C. Differential cross section

In Fig. 6 the contributions to the total differential cros
section in energy from each component, bulk termpb~v!,
image charge termpb-s(zuv), and surface charge term
ps(zuv), are shown. For Si, we found again that the n
surface effectpb-s1ps builds a surface plasmon mode an
diminishes a bulk plasmon mode. However, forz;0, there
still remain some probabilities of energy loss around the b
plasmon energy. Part of this can be attributed to the surf
plasmon dispersion. Furthermore, the bulk plasmon exc

FIG. 5. Perspective view of the energy-lossv-dependent and
horizontal momentum transferqi-dependent double differentia
cross-section termps(qi ,v) due to surface charges for takeo
angles~a! 89.5° and~b! 45°. Note that the scales are different.
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55 10 007INELASTIC SCATTERING OF ELECTRONS AT REAL . . .
tion peak and hence, the surface plasmon excitation p
have a large width so that the tail of the surface plasm
peak enters the energy region of the bulk plasmon peak

An interesting case is Au. It is hard to identify the uniq
characteristic energy for the bulk mode and surface mo
Both modes have displayed a broadened distribution.
difference is mainly that the distribution of the surface mo
has a stronger intensity in a low-energy region when co
pared with that of the bulk mode. The surface charge te
has a contrary variation of intensity to the image charge te
and bulk term. But, there is an exception for the sharp p
at 2.6 eV that is clearly presented as a surface effect. Tho
the peak is also observable in the bulk energy-loss functio
is only shown as a shoulder inpb~v!. Hence, the peak at 2.
eV may be largely associated with a surface mode. The s
conclusion has been made from a discussion of the op
energy-loss function,47 although a band-structure calculatio
has indicated that it may also be assigned to an interb
transition.48 The present theory is successful in providing
more intimate insight into this seemingly controversial s
face mode: The surface plasmon whose energy is mod
by an interband transition has a dominant contribution
excitation from the surface effect. The energy-loss peak

FIG. 6. Plots of the differential cross section as a function ov
at a given value of depthz, takeoff angleq, and kinetic energyE.
The dashed, dotted, and chain lines represent, respectively, the
term pb~v!, image charge termpb-s~v!, and surface charge term
ps~v!. The solid line is their sum, which is the total differenti
cross section.~a! Si and~b! Au.
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been experimentally observed by electron energy-loss s
troscopy both in the transmission mode47,49and in the reflec-
tion mode.50,51 Figure 8 of Ref. 51 provides a detailed los
structure with a good energy resolution; all the loss pe
correspond well in position with those shown byp(zuv) in
Fig. 6~b! except that a ghost peak at 27 eV in Fig. 6~b! is
caused by the discontinuity of optical data, as mention
above. For small2z and largeq the overall shape ofp(zuv)
is quite similar to that of the optical surface energy-loss fu
tion shown in Fig. 1.

We may now compare qualitatively the result with oth
models that were used to obtain energy-loss cross sec
from experimental energy-loss spectra. It can be seen f
Fig. 13 of Ref. 2 that a total trajectory energy-loss mod
yields two broad peaks at 3 and 5 eV. Figure 7 of Ref.
which shows an energy-loss function compromising surf
and bulk effects, presents strong peaks at 7, 14, and 24
Both their experimental cross sections display strong int
sities at lower energies. Because of the approximation u
and limitation inherent in extracting experimental cros
section data from experimental loss spectra, a lot of inform
tion is lost. Furthermore, some fine structures cannot be
served. A feature of these models2,3,52 for reflection electron
energy-loss spectroscopy is that they give an energy-
probability effectively integrated over the depthz.

An improvement calculation53 to Ref. 3 shows a compro
mising energy-loss function being close to the surfa
energy-loss function in shape. Hence, the differential cr
section obtained with this energy-loss function would
closer to the present calculation if the depth depende
could be ignored. In Fig. 4 of Ref. 45 the peaks at 3.1, 5
and 16.1 eV correspond to those at 2.6, 6.2, and 15.8 e
Fig. 6. It can also be seen from Fig. 5 of Ref. 45 that th
experimental compromising energy-loss function is larg
than the bulk energy-loss function and the surface ene
loss function by about three times. With the present the
this can be understood qualitatively. One may note that
present total differential cross sectionp(zuv) is comparable
in intensity to the bulk scattering cross sectionpb(v). Also,
one should consider the fact that outside the metal, elect
can still excite the surface mode according to Eq.~12!. For a
reflection electron energy-loss spectra the surface contr
tion is enhanced because a backscattering electron pene
a surface twice, and there is a net energy loss along
trajectory outside the metal.29

Figures 7 and 8 show thez dependence of the total dif
ferential cross section for several values ofq. For Si, the
transition from bulk plasmon excitation to surface plasm
excitation as an electron approaches the surface from
deep interior of the medium can be clearly seen. At a gla
ing conditionq589.5°, the most probable excitation of th
surface plasmon is not on the geometrical surface~z50!, but
at some distance underneath. This result should agree q
titatively with that obtained by Zabala and Echenique17 be-
cause it has been shown32 that the present theory reproduc
their cross section for parallel electron trajectory. The res
also agrees qualitatively with other recent calculations54,55 in
which the average over the electron trajectory has b
taken. For Au, it is interesting to see how each peak
p(zuv) varies withz. The intensity for some peaks chang
quickly while others change slowly. Again, the most pro

ulk
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FIG. 7. Plots of the depth dependence of the total differential cross section at a constant kinetic energyE51 keV for Si and for takeoff
angles~a! 89.5°, ~b! 45°, ~c! 15°, and~d! 0.5°. Note that the scales in~d! are different from those in~a!–~c!. The cross-section values a
z52103 Å in ~d! are nearly the same as the bulk values shown by the curves atz52` in ~a!–~c!.
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able excitations near the surface region are nearly at;1 Å
under the surface even forq as small as 45°.

The z dependence modifies the measured spectra in
experiment through the factors of the experimental confi
ration. Changing the incident electron beam to the surf
normal direction and increasing the primary beam ener
the interaction volume goes down into the deep interior
the target and bulk excitation dominates the inelastic sca
ing mechanism. Varying the detection angle to a glanc
condition, only those signal electrons localized in the surf
region can contribute to a spectrum and the surface ex
tion is a major effect in this case.

It should be noted that Eq.~25! tells us in theory that the
image charge term vanishes forz→2` through a cosine
factor oscillating both inz andv. The surface charge term
has similar oscillating behavior but with a different phas
Equation~B1! states that after angular integration the amp
tude of the oscillatory factor strongly depends on the val
of v i , i.e., the amplitude and direction of the velocity vecto
This turns on the angular dependence. If the takeoff ang
very large the oscillation behavior inz can only be observed
an
-
e
y,
f
r-
g
e
a-

.
-
s
.
is

for very small 2z, as displayed in Fig. 7 and discusse
above. For large2z values, the phase of the oscillatory fa
tor varies rapidly withv as well asvp so that the energy
integration of these factors overvp smears out to zero. The
total differential cross section quickly approaches the va
of bulk cross section with increasing depth.

However, in the case of near normal ejection,q;0, the
oscillation is clearly seen in Figs. 7~d! and 8~d!. As can be
seen from Eq.~B1!, for v i→0, the second term tends to ze
and the first term becomes ad function that may be ex-
pressed asd„vp2(v2/2v21q i

2/22v)…. Hence, the integra-
tion overvp is performed mainly for a single-phase facto
The shape ofpb2s~v! is simply the bulk energy-loss functio
modulated by the oscillating factor. For sufficiently larg
2z, the bulk term still dominates the total differential cro
section because of the phase difference inqi . This oscillation
comes from the dispersion of the dielectric function in t
plasmon-pole approximation, as indicated by comparing
~A4! with Eq. ~A6!. The modulated peak position inv and
peak intensity changes withz continuously, as shown by Fig
8~d!. An ejected electron from the surface carries little info
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FIG. 8. Plots of the depth dependence of the total differential cross section at a constant kinetic energyE51 keV for Au and for takeoff
angles~a! 89.5°, ~b! 45°, ~c! 15°, and~d! 0.5°. Note that the scales in~d! are different from those in~a!–~c!. The cross-section values a
z52103 Å in ~d! are nearly the same as the bulk values shown by the curves atz52` in ~a!–~c!.
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mation of such modulation. In addition, signal electrons f
quently change their moving direction by elastic scatter
during their travel to the surface. Hence, the energy-loss
tribution for ejected electrons from a sample is qualitativ
described by the surface energy-loss function for surf
mode excitation and the bulk energy-loss function for b
mode excitation.

A direct application of the present theory is for a Mon
Carlo simulation of electron scattering processes near
surface region. It is obvious that the experimentally m
sured spectra include much information about electron e
tic and inelastic scattering events, such as angular distr
tion and energy-loss distribution with energy dependen
depth dependence, and angular dependence. Some in
mental factors such as detector solid angles also compli
the analysis. To verify an electron scattering theory, it
essential to use the means of simulation and compare
results with experimental measurement. We have show56

that the bulk scattering cross section alone successfully
scribes the overall shape of backscattering spectrum for h
energy ~about several keV! incident electrons into metals
-
g
s-

e

e
-
s-
u-
e,
tru-
te
s
he

e-
h-

But the bulk model fails in experimental conditions that su
face effect dominates the measured spectra, e.g., at lo
primary energy and large incident and takeoff angles. So
Monte Carlo models57,58 have been used to study electro
surface interaction. However, some information, such as
knowledge of the depth dependence particularly, has
been included in these models. Therefore, the present th
is more informative in this respect.

IV. CONCLUSION

We have presented a theoretical model for the calcula
of electron inelastic scattering cross sections for a mov
electron near the surface region at an arbitrary takeoff an
By using a bulk plasmon-pole approximation, we have d
rived an expression of the imaginary part of the electr
self-energy. The numerical values of the double differen
cross section in energy loss and horizontal momentum tra
fer, and the differential cross section in energy loss w
dependence on kinetic energy, takeoff angle, and depth,
be obtained by numerical integration. Input to the calculat
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10 010 55Z.-J. DING
is simply the dielectric constants«~v!. The theory provides
detailed information of the electron energy-loss process n
the surface region of a real metal, and, should find very u
ful applications to surface electron spectroscopy as well a
a Monte Carlo simulation of electron scattering processe
a metal.

Examples of calculations have been demonstrated fo
and Au. We have shown that for electrons located deep
side the metal, bulk mode excitation is the only inelas
scattering channel. In the surface region, the surface m
excitation is turned on. The relative importance of the s
face effect depends on the energy and takeoff angle. For
the surface mode has also displayed a broadened distrib
in frequency. The peak at 2.6 eV in an experimental ener
ar
e-
to
in

Si
n-
c
de
-
u,
ion
y-

loss spectrum should largely be attributed to the surf
mode.
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APPENDIX A

Assuming the dispersion relation given by Eq.~22!, we have

E
2`

` dq'

q2~v22vq
21 ih!

5
p

qi
P

1

v22vp
22

p

2v F 1

~v1vp!A2~v1vp!1qi
2

1P
u~vp2v1qi

2/2!

~v2vp!A2~vp2v!1qi
2

1 i
u~v2vp2qi

2/2!

~v2vp!A2~v2vp!2qi
2G . ~A1!

Similarly, another integration term involved in Eq.~11! is obtained as

qi

p E
2`

`

eiq'z
dq'

q2«~q,v!
5eqiz ReH 1

«~v! J 2
1

pv E
0

`

dvpvp ImH 21

«~vp!
J F 1

~v1vp!A2~v1vp!/qi
211

eA2~v1vp!1qi
2z

1P
u~vp2v1qi

2/2!

~v2vp!A2~vp2v!/qi
211

eA2~vp2v!1qi
2z

1 i
u~v2vp2qi

2/2!

~v2vp!A2~v2vp!/qi
221

e2 iA2~v2vp!2qi
2zG . ~A2!

Now we need to solve the integration in Eqs.~10! and ~11! involving the velocity vector:

Fn
6[E

2`

` dq'

q2«~q,v!

e6 inq'z

v2q•v6 ih
5E

2`

` dq'

q2
e6 inq'z

v2q•v6 ih
1E

0

`

dvpH~vp!

3F E
2`

` dq'

q2
e6 inq'z

~vq1v1 ih!~v2q•v6 ih!
2E

2`

` dq'

q2
e6 inq'z

~vq2v2 ih!~v2q•v6 ih!G , ~A3!

whose result obviously depends on the sign ofv' . In the present case we are interested in electrons moving toward the su
from the interior of the bulk. Hence, forz,0, the integration contour must be closed in the lower-half plane ofq' for F n

1 and
in the upper-half plane forF n

2. Becausev'.0, the term~v2q•v6ih! in the denominator of the integrand is not a po
enclosed in the respective contour and would not contribute a residue.

The first integral term in Eq.~A3! has a simple pole due toq2, therefore,
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E
2`

` dq'

q2
e6 inq'z

v2q•v6 ih
5

p

qi

enqiz

v2qi•vi6 iq iv'

. ~A4!

The first integral in square brackets in Eq.~A3! contains an additional pole by thevq factor. The evaluation of the residue
leads to

E
2`

` dq'

q2
e6 inq'z

~vq1v1 ih!~v2q•v6 ih!
5

p

v1vp
F 1qi

enqiz

v2qi•vi6 iq iv'

2
1

A2~v1vp!1qi
2

enA2~v1vp!1qi
2z

v2qi•vi6 iA2~v1vp!1qi
2v'

G . ~A5!

To evaluate the second integral in square brackets in Eq.~A3! we need to consider two cases: Whenv>vp1q i
2/2, thevq

factor contributes two poles atq'56@A2(v2vp)2qi
21 ih#. For the casev,vp1q i

2/2, two poles are atq'

56 iA2(vp2v)1qi
2. Hence, we have

E
2`

` dq'

q2
e6 inq'z

~vq2v2 ih!~v2q•v6 ih!
5P

p

vp2v F 1qi

enqiz

v2qi•vi6 iq iv'

2
u~vp2v1qi

2/2!

A2~vp2v!1qi
2

enA2~vp2v!1qi
2z

v2qi•vi6 iA2~vp2v!1qi
2v'

G
1 i

p

v2vp

u~v2vp2qi
2/2!

A2~v2vp!2qi
2

e2 inA2~v2vp!2qi
2z

v2qi•vi6@A2~v2vp!2qi
2v'1 ih#

. ~A6!

Substituting Eqs.~A4!–~A6! into Eq. ~A3! gives

Fn
22Fn

15E
2`

` dq'

q2«~q,v!
S e2 inq'z

v2q•v2 ih
2

einq'z

v2q•v1 ih
D

52p i
v'e

nqiz

~v2qi•vi!
21~qiv'!2

ReH 1

«~v!
J 22p i

1

pv E
0

`

dvpvp ImH 21

«~vp!
J

3H v'e
nA2~v1vp!1qi

2z

~v1vp!$~v2qi•vi!
21@2~v1vp!1qi

2#v'
2 %

1P
v'u~vp2v1qi

2/2!enA2~vp2v!1qi
2z

~v2vp!$~v2qi•vi!
21@2~vp2v!1qi

2#v'
2 %

1
v'u~v2vp2qi

2/2!e2 inA2~v2vp!2qi
2z

~v2vp!$~v2qi•vi!
22@2~v2vp!2qi

2#v'
22 ih%

J . ~A7!

In Eqs. ~10! and ~11!, a further integration overqi is applied. Due to an infinitesimal quantity the last term in the la
bracket of the above equation can be split into a principle value, the real part, and ad-function, the imaginary part. Then
performing an angular integration overw5(qi ,vi

ˆ ) and deforming the integration contour into a unit circle, the integration
the principle value part equals zero because there is no pole inside the circle. Hence, the term only remains ad-function part
being

i
p

2

u~v2vp2qi
2/2!

~v2vp!A2~v2vp!2qi
2
e2 inA2~v2vp!2qi

2zFd„v2qi•vi2A2~v2vp!2qi
2v'…1d„v2qi•vi1A2~v2vp!2qi

2v'…G .
~A8!
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APPENDIX B

In Eq. ~25!, the integration over polar angles ofqi may be
calculated first to find a simple expression,

E
0

2p

dw@d~v2qiv i cosw2a!1d~v2qiv i cosw1a!#

52H u@qiv i2uv2au#

A~qiv i!
22~v2a!2

1
u@qiv i2~v1a!#

A~qiv i!
22~v1a!2

J , ~B1!

wherea5A2(v2vp)2qi
2v' , by using the relation

d@ f ~x!#5(
i

d~x2xi !/u f 8~xi !u, ~B2!

where f (xi)50. The integration over photon energyvp can
then be performed numerically afterwards. However, t
procedure needs longer computer time since a large num

of sampling points invp are necessary. Instead, the integ
tion overvp may be done analytically by preceding the n
merical integration overw with a smaller number of data
grids but without losing accuracy. Hence, we used

E
0

`

dvpf ~vp!a
21@d~v2qi•vi2a!1d~v2qi•vi1a!#

52 f ~v̄p!, ~B3!

where
te

y

ci
s
er

-

v̄p5v2 1
2 @qi

21~v2qi•vi!
2/v'

2 #. ~B4!

To calculate ImSin
s (z) we have to derive the expressio

of angular integration for the other terms in Eq.~A7!. Denot-
ing

I5E
0

2p dw

~v2qiv i cosw!21b2
, ~B5!

whereb equalsA2(v1vp)1qi
2v' or A2(vp2v)1qi

2v' ,
the integration value is found from residues of two poles
the unit circle ofeiw, as

I5
p i

b

1

qiv i
S 1

A~a1 ib!221
2

1

A~a2 ib!221
D , ~B6!

wherea5v/(qiv i) andb5b/(qiv i). In the above equation
the principle value of the roots should be taken. This may
easily seen by considering the case of parallel electron mo
ment to the surface. In the limitb→0 the integrand ofbI
becomespd~v2qiv i cosw! and, hence, can be integrate
and compared with Eq.~B6!.
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