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Inelastic scattering of electrons at real metal surfaces
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A theory is presented to calculate the electron inelastic scattering cross section for a moving electron near
the surface region at an arbitrary takeoff angle. The theory is based on using a bulk plasmon-pole approxima-
tion to derive the numerically computable expression of the electron self-energy in the random-phase approxi-
mation for a surface system, through the use of experimental optical constants. It is shown that the wave-
vector-dependent surface dielectric function satisfies the surface sum rules in this scheme. The theory provides
a detailed knowledge of electron self-energy depending on the kinetic energy, distance from surface, and
velocity vector of an electron moving in any metal of a known dielectric constant, accommodating the formu-
lation to practical situation in surface electron spectroscopies. Numerical computations of the energy-loss cross
section have been made for Si and Au. The contribution to the total differential scattering cross section from
each component is analyzed. The depth dependence informs us in detail how the bulk excitation mode changes
to a surface excitation mode with an electron approaching the surface from the interior of a medium.
[S0163-18207)00815-1

I. INTRODUCTION method has been devised by P#hmo obtain the bulk
dielectric function &(q,w) in a bulk plasmon-pole

In the characterization of metal surfaces with electronapproximatior’.?? This model dielectric function yields a
spectroscopies, such as reflection electron energy-loss spetiite reasonable scattering differential cross section, mean-
troscopy, Auger electron spectroscopy, and x-ray photoeledree path, and stopping power of electrons in a bulk
tron spectroscopy, the surface electron excitation is acconinaterial’>~*’ The surface dielectric function in a surface
panied by bulk excitation as experienced by a signaPlasmon-pole approximatiéh®® was, however, formulated
electron. The relative contribution to the total energy-lossC epresent a surface plasmon peak solely and it is thus not
spectrum from each channel depends strongly on an expeﬁylta_ble to.descnbe other metal_s presenting a complex struc-
mental configuration. It is thus important to know quantita-f[ure in optical energy-loss functlon_[mlle(w)}. Therefore,
tively how the surface excitation varies with experimentalIn order to make a theory general in form and applicable to

conditions and modifies the signal spectrum measured. Sucﬂ:rf"’lI metal surfaces, it is quite natural to derive an optical

a theory will be essential to extract the signal or backgroun ata-based surface dielectric function in the plasmon-pole
due to surface excitation from the overall spectrifrFur- pproximation. To avoid a divergence problem at the surface

h M Carlo simulat f ol it is necessary to consider the spatial dispersfoff:*’
thermore, an accurate Monte Carlo simulation of electron "tpe ™ot approach to the problem of interaction of a

scattering .under a surface re_Iies critically on thel ;catteringharge with a medium is given by the self-energy calcula-
cross section available. Any simulation using empirical crossjon For a surface system, Flores and Garcia-Moliner have
sections or semiempirical onelpses the physical processes developed a very useful metiddto obtain complex self-
happening in a real case and may cause self-inconsistenCyenergy in quantum-mechanical formulation by using the
However, the current theories of electron inelastic scatterspecular surface reflection mod&f! An obvious advantage
ing can hardly accommodate the practical situation and proof the method is that it recovers other semiclassical results
vide a general description of the energy-loss processes @inhd provides a unified treatment. This theory forms the basis
electrons near the surface region of materials with which wef the present study.
are experimentally interested. The difficulty arises from the
simplification and limitation assumed by the theofte¥ Il. THEORY
Emphasis has been put on the surface plasmon excitation in
a free-electron metal, such as Al, assuming simple electron
trajectory geometry, e.g., normal or parallel movement of the We require that the metal be contained in a semi-infinite
charge to a surface. The present work thus aims to overconspace 0fz<0. In the specular surface reflection model the
these shortcomings within the available theoretical frameinduced potential is determined by the external charge, its
work. image charge about the surface, and the fictitious surface
To simulate the response of a real metal to a charge, oneharges fixed by the boundary conditions. Then one obtains
may use experimental dielectric constafb) instead of the the induced potentials for an external charge inside or out-
dielectric function for free-electron gad%.Such a useful side the metal described by a dielectric functigg,w), as®

A. General formula
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whereq=(q,,q,) and The self-energy operator in the random-phase approxima-
tion is given by the multiplication of the Green’s function
A(Z|q’w):28ifhz< _1) i2+2eiqu , 1 a_md the induced_potenti%_t’l. qu a s_ystem without transla-
e(q,0) q q°e(q, ) tional invariance in the direction this self energy reads as
qy 1 o da,
—4 0) ———— [ et
SS(qH (1)) - q28(q’w) C q28(q,a)) - i ,
5 3(22]a,.0)=i(2m) 2 @(22]] o)
z and z’' represent, respectively, the position of the charge XGg(zZ|qy—q; ,0—')dq;dw’, (7)

and field point. Atomic units =A=m=1) are used

throughout. In Eq(5) three terms explicitly display the ori-

gin of the bulk mode and the surface mode in scattering croswhere G, is the time-ordering surface Green'’s function that
section, which were established by an external charge: Thean be constructed from a bulk free-electron Green’s
first term describes the screening response of infinite mefunction3! A rather considerable simplification is to consider
dium to the external charge and the second term to the imaggniting cases of surface potentiél. For U=« and U =0,
charge. Because the image charge is not realistic, there is @, can be written explicitly and local self-enerdyz) may

a bare Coulomb potential 2 to be subtracted. The third one be obtained by an integration ovef.

is due to the fictitious surface charges. For convenience the Flores and Garcia-Moliner have obtained the expression
surface dielectric functioag(q,,w) in the above equations is of 3(z) for an electron impacting the surface from the
defined, in a form differing from the othets,in terms of  vacuum side, in a fast-electron approximation. Similarly, for

the bulk dielectric function by our present purpose, we have derived the expressi@if)f
for an electron moving towards the surface from the interior
(g w) =1+ q fw da, ' 6 Of the mediunt? In approaching and before arriving at the
s 7T )« 9%e(0,0) surface g<0up, >0), it is given by

A(z|q,w)

_xb b-s s
w_q,v_in_zin+2in (2)+35(2), (8)

[ o .
Ein(2<0):_ W f dQ||J'7wdqldw g'dL?
for both U=0 andU =~. The first term, which is independent bfis due to bulk excitation:

2 dgq (=
b__ ~— _1
2"“(2w>2J @ Jo do

wherev=(v,,v,) is the electron velocity vector. All the other terms give a net surface effect. The second term, which is due
to the image charge as we stated above, is the boundary correction to the bulk term due to the presence of the surface,

1

s

(w—Qq-v), (€)

bes 2i o o0 qu e_ZiqLZ eZIqLZ
i (D)=~ (2m)3 f dq”,fo dwfﬁm q°s(q,) (w—q~v—i 7 ©—Qq-V+i 7])’ (10
and the third term represents the surface excitation contributed by surface charges,
oo i f foo F da, e iz gld.? fw g2 da
(@)= g | da ] deqedane) ] qa) \omqvig e-aviin) ) .S e M
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When the electron is ejected into vacuue®™0.u , >0), we have

quL
(0—q- v+ (qu,)?

1 e 22 (=
S0~ =57 | da T [ dol1-20q.0)]

i e 4z (o
+(2w)2fdch\ a fo dw[

q da,
~2e4(0,0) — f,x 0°e(0, )

e*i(wfq"-vn)zlvl

o=q-Vy—iqu,

e—i(m—q”~vu)z/vl

ei(‘”’qH‘VH)Z/UL

—C.C.

+[1-2e4(0),w)] gV, Figu,

— —C.C.
w—Qq-v—iy

} : (12

for U=0. Of course, fold =, we would not have the elec- z,'? indicating a wake surface excitation trailing the particle
tron trajectory penetrating the surface and the theory yieldby the wake potential. The phenomenon is similar to that on
insteads,,,(z<0) for a reflected electron trajectory leaving the bulk side when a particle penetrates into the metal from a
the surface. vacuum?® however, its intensity is weaker because it lacks

The first integral term in Eq(12) is the same as the self- dense free electrons in the vacuum side. For a parallel elec-
energy for an electron incident into the surface from thetron trajectory to the surface, =0, this term vanishes and
vacuum side},;,(z>0), and also agrees with a semiclassicalwe cannot expect an oscillatory scattering cross section.
result. The second term has a known oscillatory behavior in The continuity of Eqs(8) and(12) at z=0 holds,

Sin(07)=3q,(07) = 5 zf f do d(w—q-v)+ fd%f do ey, @ f qj(%b‘(w q-v). (13

In the following discussion, we shall concentrate only on the In the spirit of a statistical approacfiPenn has proposed
imaginary part of Eq(8). But the formulation presented in a general model of dielectric function. The extended energy-
the following section can also be applied to other theoriesoss function is written as

dealing with surface problems.

Im| ——— = f “do.Glo)im] ————— 1 @
B. Plasmon-pole approximation ( s(q,w)] 0 “p (wp) [ S(CI,wiwp)] an
The dielectric function for a single plasmon of enexgy ~ where the expansion coefficier®(w) relates to optical
may be approximated as energy-loss function by
Jwg) =1+ % (14 G(w)= —— Im| — 18
&(q,0;0p)= T w(ativy’ (0)=251m 2o |- (18)

where w, satisfies a dispersion relatian,= w,(d,»,) and Using Kramers-Kronig relation it is trivial to obtain the cor-
equalsw, atg=0. For the infinitesimal damping constap responding relation for the real part of the inverse of dielec-

we then have tric function,
1 wp o —de G(w)Rd — 1
LG Errr s e SR e PO §
'yqﬂ0+ p p (19)
. -1 ) , 2 Equations(17) and (19 may be combined to a single
lim |m{m}zﬂwp5(w —wg) equation written as
‘yq~>0+ q’ ! p
2 o fwd G(wy) 1}
m W —1= -
=§w—z S(w—wg) £(q,) o PP £(q,w;wp)
B PRI W
(w>0), (16) ~Jo @pH(wp) wgtotin wg—o—in|

whereP denotes Cauchy principal value. (20
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where 7 is an infinitesimal quantity and stant. To be more explicit, we consider a simple dispersion
) relationt®2°
H(wg)= 22 Glwg) == 2 im| 21) L 2
(wp 2w P ow g(wp) wq=wpt 307, (22)
is real for 0>0. with which the integration oven, can be analytically given.

Using of Eq.(20) in Eq. (8) one can obtain the values of By substituting Eq(A1) into Eq. (6) we derive the expres-
complex self-energy for a metal of known dielectric con-sion ofe S_l(qH ,w) given by

o O P e
es(q, ) a g(w)| 7o Jo @plMm g(wp)

« wp o wpﬁ(wp—w-i-qf/Z) 23
(0+0p)V2(0+w)/qi+1 (00— wp)V2(w,—w)/qi+1
and
-1 1 (= -1 wpb(w—wy—q2/2)
Im{ ————=— | do,l P P 2
m[ 8s(q|,w)] T fo “p m[ s(wp)] (0—wp)V2(0—wp)/qi-1 9

where §(x) is the step functiorf=1 if x>0; 0 otherwis¢ Making use of the Kramers-Kronig relation, the first term in Eqg.
(A1) yields the first term in Eq(23).
Finally we find the expression for imaginary part of the self-energy term writtgisegs Appendix A

S | 800y~ 20— wp) ~qT0,)

SRR S Y PP S R o
Im325(2) Wqulljo p fo dwpwplm £(@p) | (0= wp) V2(0—wp)

+8(w—0;- V) + V2(w—w,) —qfv, ) |cog§ 2y2(w— w,) — g Z]. (25)
The imaginary part o} (z) can also be written, though C. Numerical method

tediously, with Eqs(23), (24), (A2), (A7), and(A8). For calculation of double differential cross section we
Performing further angular integratidsee Appendix B st perform numerical integration involving the optical-
we can obtain the double differential cross section in wavejig|ectric constant(w,) over the photon energy, . Differ-
vector and frequency for electron inelastic scattering near th?ng from Eq.(28), thepintegration should be carrﬁed out over
surface,p(z|q; @), defined by the entire energy range from 1DeV up to the energy region
of inner-shell electrons. Some terms, such as the first terms
w0 % in Egs.(23) and (A2), may avoid doing so by direct use of
—2Im E(Z):Ufo do fo do p(zlaj.@),  (26)  Re{1/s(w,)}. We empirically found that the integration re-
quires very thin grid spacing in order to get a reasonably
smooth curve. It may mainly be due to the difficulty of con-
vergence problems for the Cauchy principal integral. Though
some numerical techniqu&smay be modified to speed up
[~ the computation, we have used the conventional numerical
p(zw)= fo dap(zay,e), (27) integration procedure incorporating some analytical expres-
sions.

where the dependence on the kinetic energy and moving di- WS first Qir\]/ide the V|Vh°|e en_(l?lr]gy r%nﬁe ?yha grid of gxe.d
rection is implied. For the bulk scattering term it is simply NUMPErs with unequal steps. The width of the steps begins

and the differential cross section in frequency:

given by?® with 10°° eV from w,=0.1 eV and is 0.01 eV for
1<w,<100 eV. It increases by order witi,>100 eV. In
between two grid points the Romberg integration routine is
b, * Wp -1 applied. It may be noted that the variation of the optical
p(w)= mlw fo dap w—w, Im[ s(a)p)] energy-loss function Ift-1/e(w,)} with , is not dramatic.

o In the energy region 10—f@V, the most steep change oc-
X 0(vg— 30"~ w), (28 currs within the zoné\w,~0.1 eV (e.g., for Ag, and~1 eV
at an inner-shell edge in regian,~1 keV. Hence, for a grid
wherew=wy(q,,) and the step function represents energyspacing chosen much less thakw, we can regard
and momentum conservation. This equation involves a singlén{—1/s(w,)} linear in the grid interval and derive an ana-
integration, while for surface scattering terms we have tdytical expression for this integration section. This enables
perform numerical multiple integration. the calculation to be made faster and maintains accuracy. It
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also avoids the divergence problem in evaluating the Cauchy 4

principal integral. Furthermore, the analytical formula may I )
be used to show that E(O) is valid in every small interval I ﬁiﬁ‘;}i‘i}i@» Si
and, hence, in the whole energy range. However, the analyti- 3 — Imll/e@r

cal expression can only be given for integrals in E@S)

and (24); other integrals still require Romberg integration. Q=001 A"

For the angular integration of ER5) we may use Eq(B3)
to shorten the integration steps.

When the values of(z|q,,w) are calculated, a similar
Romberg procedure is used to fipdz|w) in Eq. (27). The
range ofg, from O to 1 A lis divided by a mesh of 40 [
points. The convergence is tested to an absolute error éf 10 0
(keV A)"1. When an electron moves nearly parallel to the

energy loss function
[\
T

30

surface, the finer), segment is necessary. This will be un- @)
derstood from the plot of double differential cross sections
shown later. 12
Au
=]
lll. RESULTS AND DISCUSSION u§ 08 I
=]
A. Surface energy-loss function and sum rules “E - iﬁ?ig%ll(’?%(w))}
4 — 1Mi-1/€(@
We consider now Si and Au as examples of application of ; - =001 &
the present theory. Si presents a typical nearly-free-electron- g 04
like behavior in bulk energy-loss function by showing a bulk © [
plasmon peak of finite width. Au demonstrates a complex
structure in energy-loss function due to interband transitions,
which is common to most real metals. 00 0 20 40 60 80 100
Figure 1 shows the surface energy-loss function () T (eV)

Im{e¢(q,,w)} for several representative valuesapfand the
comparison with the optical bulk energy-loss function FIG. 1. Plots of the energy-loss functions calculated from opti-
Im{—1/e(w)} and with the optical surface energy-loss func-cal data. Thin solid lines represent surface energy-loss function
tion Im{—1[1+&(w)]}. It can be seen that ifny(q,,w)}  IM{es(q, @)} for several representative valuesaf. Arrow indi-
agrees with the optical surface energy-loss functiog,&0. cates ghc_Jst peak caiisegl by discontinuity of optical constants. The
This may be understood if we replace the nonlocal dielectridashed line and _solid line are, respectively,_ the optical surface
function e(q,w) by the local ones(w) in the definition equa- energy-logs function In{_ll(lfs(“’))} and optical bulk energy-
tion of the surface dielectric function, E@6). The exact loss function Ini—1/e(w)}. (3) Si and(b) Au.

verification can be done if we take the limit

1 w%
Re{m P g
00— w,—q2/2
lim (&= wp— i )2 =m8(w—w,) (29 -1 T
-0 (0= wp)V2(w—wy)/q?—1 Im) oy [ 2 @pdle= @), (32)

. . o . wherewy, is the bulk plasmon energy. The dispersion of sur-
in Eq. (24). Taking also the limit in Eq(23), the integral  face plasmon is found from Rbe(q,,ws)}=0 or
terms vanish. Hence, we have

x—1 1+X
2X(2X2_1):J1 2(1 2 Jita 192’
8571(0,(0):14'871((0). (30) + ( +X)wb qii + ( _X)wb qii
(32)
wherex= o wy, and wg is the surface plasmon energy. Ob-
so that Infe(0,w)}=Im{—111+¢e(w)]}- viously, ws= wp/v2 atq,=0. The dispersion curve fitted to a

Figure 2 demonstrates the perspective plot of the surfacquadratic is similar to that shown in Fig. 1 of Ref. 30, having
energy-loss function that resembles in appearance the bukkpositive coefficient in lineas,. Though experimental mea-
energy-loss function, Ifa-1/e(q,w)}, obtained in the surements show that the surface plasmon dispersion is nega-
plasmon-pole approximatioffrig. 1 in Ref. 25. The surface tive at smallg,,3**"the present simple theory does not allow
plasmon energy starts fromv®/ of the bulk plasmon energy us to describe such a negative dispersion as shown by
atg,=0 and increases with, nearly in a parabolic curve. To density-function theorie¥**However, a slight negative dis-
see this we put in Eq$23) and(24) the single plasmon-pole persion should not have a strong effect on the values of scat-
terms, tering cross sections.
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= Im{ ———dw= = Qj, 34
20 w1(a) 0 ¢ M sgw (9972 (39
Ls whereQ, = J47Ne?/m, are valid for plasmon-pole approxi-
mated bulk energy-loss function. Correspondingly, one can

prove the sum rule

o = 1 -1 I
= lim f() Zlm m dw—E (35)

by using the equation

g q f‘” dg, g f“ da,
_ 2 27
- 7)o QPog T Jow (24 0% [wp+ 292+ qP)]
) o
S0
1 off Qwp
= 1- (36)
Zg{ Vo720, Oft20;

Im{e(q),0)}

0. . T :
4 It is also easy to verify directly from Eq33) the equation

>
e

©

03 s _J [ -1 ] T,
= olmi ——tdow== Q. 3
Ml(qH) 0 ss(qH ,(1)) 2 b ( 7)
However, what we are interested in here is the sum rules

applied to surface energy-loss function{tg(q, ,w)}. Defin-
ing the surface response funcﬁBrR(q”,w) and spectral

functior”” S(q;,w) as
R(Q),w)=1-2e4q,w)= fo dw’S(q),w")

1 1
X | ——— —
wo—w Tty woto +I

=~

e

SRR

Xy

R

¥
|
i

N

(38)

(b)
the imaginary part of the above equation is

FIG. 2. Perspective view of the energy-lossdependent and
horizontal momentum transfeq,-dependent surface energy-loss

function. (a) Si and(b) Au.
In Figs. 1 and 2 some ghost peak or shoulder are seen ing the real part is hence just the Kramers-Kronig relation
surface energy-loss function. The peak position does Nqpyr the surface response function. It is interesting to note that
change withg,. We found that it is caused by the disconti- tne formal identity
nuity of optical constanf§ that are compiled from the
measurements done by different investigators. The disconti- 1 1 (= 1
nuity can hardly be observed in bulk energy-loss function but s(q—w)_ 1=- p Jo do' Im[ m— 1]
it is sensitive to the wave-vector-dependent surface energy- ' ’
loss function. To remove the peak a Kramers-Kronig analy-
sis of optical data should be done. However, in this calcula-
tion we have not attempted to do so and raw data are used
is the counterpart of Eq38) for the bulk response function.
Now let us consider the sum rules satisfied by the surfac&/hen Eq.(17) is substituted into the above equation we

1 2
S(qy,w)=— p IM{R(q;,w)}= p Im{eg(qy,w)} (39

1

X —— - 4
w—w'tinp oto' +igp (40

directly.
energy-loss function. From Eq$16)—(18) it is trivial to certainly derive Eq(20).
From the sum ruléé*® required forS(q,,w) we should

verify that the perfect screening sum rthe
have the surface perfect-screening sum rule

w1 T
f ~Imfey(ay.0)}do=7 @D
0 W

'™ 20w 2
q,—0

b — i
—.=1Im
M1 0 W

» 1 -1 dore T
qHOJ 0=y 3 v .= lim

and the surfacé-sum rule

and f-sum rule
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TABLE |. Comparison of the theoretical surface perfect screening sum pfesand»® ;, and surface
f-sum rulesu3(q,) andv3(q,), with the computed values.

,U/s, 1 Vs, 1 M i 1/ Vi 1

Theory Calc. Erro%) Theory Calc. Errof%) Theory Calc. Erro%)
Si 15708 1.3782 —-12.26 0.7854 0.6585 —16.15 2 2.093 4.64
Au 15708 1.7125 9.02 0.7854 0.8265 5.23 2 2.072 3.61

©i(q) (eVd) vi(q)) (eV?) ri(a)/vi(ay)

qy A™Y Theory Calc. Errof%) Theory Calc. Erro(%) Theory Calc. Erro(%)
0.0 15149 14181 —-6.39 378.73 359.45 -5.09 4 3.95 —-1.37
0.5 15149 13993 -—-7.63 378.73 35555 —6.12 4 394 -1.61
1.0 15149 1380.0 —-8.90 378.73 350.74 —7.39 4 393 -1.63
0.0 10086.2 92036 —8.75 2521.6 2283.0 —9.46 4 4.03 0.78
0.5 10086.2 9153.8 —9.24 2521.6 22749 —9.78 4 4.02 0.60
1.0 10086.2 9097.2 —-9.80 2521.6 2262.1 -10.29 4 4.02 0.54

Figures 4 and 5 illustrate, respectively, the perspective
view of double differential cross sectiong” and ps, for
different values of takeoff anglé defined as the angle be-
whereQ = Q,/v2. tween velocity vector and surface normal. The position of

Because the present theory gives the analytical expression

vi(qy) = fxw Im{es(q),w)}do= ; QZ, (42

0

only for the inverse of the surface dielectric function, the
surface energy-loss function cannot be written in a simple
expression. Therefore, Eq&tl) and (42) are hardly to be
proved analytically and a numerical verification is necessary.
It has been showfi that they are valid at),=0 for optical
surface energy-loss function. For arbitrapyvalues, we may
take the ratio

i

4, =2.
Vil

wi(ay) _
vi(ay)

(43

Table | verifies the tests of the surface perfect screening
sum rule and the surfadesum rule. The absolute value of
the calculation deviates slightly from theoretical value to the
same extent as for the bulk sum rufésThis is reasonable
considering the uncertainties involved in the experimental
data of the dielectric constant. However, the uncertainty may
be largely canceled out by taking the ratio so that @§) is
satisfied quite well for the present wave-vector-dependent
surface energy-loss function.

B. Double differential cross section

The total cross section differential i, and » has two
components, i.e.p”%(z|q,,w) and p%(z|q,,®). The bulk

term p°(q, ) is essentially differential irg and » and we L .
have not tried to integrate it over tlgg component. Figure 3 — P+
shows the cross section for a small valuegpf One can see ol . ' .

that the image charge contributes to an increase of the scat-

tering cross section at bulk plasmon energy in the case

(b)

10

-10

[ o o l“'«.‘ _,.-'/
S oz=-1A g=01A" A .
[ 8=45° el

E=1keV

Si

25
v (eV)

1.0

plg,w) (keV)™

0.0 P

o 0
z=-1A q=0.1A"
9=45° E=1keV

80
tw (eV)

shown; the surface charges set up an energy-loss mechanism

by surface plasmon excitation and reduce the probability of g 3. piots of the double differential cross section as a func-
bulk plasmon excitation. The net surface eff@°+p® has  tion of wata given value of the horizontal wave vectgt depthz,

a peak at the surface plasmon energy and a valley at the bukkeoff angled, and kinetic energy. The dotted and dashed lines
plasmon energy. For Iargez values, both the height of the represent, respectively, the (;omponqg]’i‘ts(qH ,w) due to image
peak and valley would be smaller so that the bulk excitatiorcharge ang®(q, , ) to surface charges. The solid line is their sum.
mechanism dominates the overall scattering probability.  (a) Si and(b) Au.
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o
z=-1A .
9=895° B=1keV Si

z=-1 ng :
9=89.5° E=1keV Si

o
z=-1A .
9=45° E=1keV Si

T
e

==

i

FIG. 5. Perspective view of the energy-lossdependent and
horizontal momentum transfeq;-dependent double differential
cross-section ternp(q,,w) due to surface charges for takeoff
angles(a) 89.5° and(b) 45°. Note that the scales are different.

FIG. 4. Perspective view of the energy-lossdependent and
horizontal momentum transfeq;-dependent double differential
cross-section tempb's(qu,w) due to image charge for takeoff
angles(a) 89.5° and(b) 45°. Note that the scales are different.

both the surface plasmon peak and bulk plasmon valley’hysically, this means the resonant interaction of electrons
shifts to the higher-energy side with the increasingjpofiue ~ With plasmon waves whose phase velocityis|;, when an
to dispersion. The surface dispersion starts from the surfac@lectron can spend a long time in its movement parallel to
plasmon energy and bulk dispersion from the bulk plasmorthe surfacé>* In Fig. 4(a) the bulk plasmon peak at the
energy as shown by Figs(B) and 5b). The Bethe ridge may sharp plane is thus located at the intersection of dispersion
be more clearly seen from the bulk scattering termWith the resonant condition in the| ) plane. Therefore, in
p°(q, w) > Im{—1/s(q,w)}. the case shown by Figs(a} and Fa), the surface charges

It is interesting to note that, in the case of glancing ejec€nables the resonant surface plasmon excitation and the reso-
tion, the ridge ofp”S and p® shrinks to a sharp plane. At nant bulk plasmon deexcitation, and the image charge makes
small values ofq, there is only a&function-like surface the resonant bulk plasmon excitation.
plasmon peak inp°(q,,w) and a bulk plasmon peak in
pb's(q”,w). For large g;'s both these peaks reduce to a

broadened hump and a negatigdunction-like bulk plas- C. Differential cross section

mon peak appears ip*(q, , ).
However, in Figs. 4 and 3a) the &like peaks do not

In Fig. 6 the contributions to the total differential cross
section in energy from each component, bulk tephtw),

converge to the surface plasmon and bulk plasmon energiésiage charge termp®S(z|w), and surface charge term

asq, approaches zero. This is because in §), in addition
to the restriction due to the dispersion relatior w,+ qf/2,

p%(z|w), are shown. For Si, we found again that the net
surface effectp” S+ p® builds a surface plasmon mode and

there is ad(w—q,-v,) term imposed on the excitation prob- diminishes a bulk plasmon mode. However, o+0, there

ability at grazing conditionp, ~0. Its angular integration,
Eqg. (B1), then restricts},= w/v. Furthermore, similar to Eq.
(29), it becomes a>-function requiringg,= w/v for v, —0.

still remain some probabilities of energy loss around the bulk
plasmon energy. Part of this can be attributed to the surface
plasmon dispersion. Furthermore, the bulk plasmon excita-
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10 been experimentally observed by electron energy-loss spec-
[ troscopy both in the transmission m84&°and in the reflec-
[ =R Si tion mode®*°! Figure 8 of Ref. 51 provides a detailed loss
5[ 9=45 B=lkeV structure with a good energy resolution; all the loss peaks
correspond well in position with those shown pgz|w) in
Fig. 6(b) except that a ghost peak at 27 eV in Figb)is
\ P caused by the discontinuity of optical data, as mentioned
above. For smalt-z and larged the overall shape qi(z| )
— P N is quite similar to that of the optical surface energy-loss func-
+p”+pt tion shown in Fig. 1.
i We may now compare qualitatively the result with other
-10 ' - . models that were used to obtain energy-loss cross section
3 10 B 20 = from experimental energy-loss spectra. It can be seen from
Fig. 13 of Ref. 2 that a total trajectory energy-loss model
yields two broad peaks at 3 and 5 eV. Figure 7 of Ref. 3,
257 which shows an energy-loss function compromising surface
- and bulk effects, presents strong peaks at 7, 14, and 24 eV.
Both their experimental cross sections display strong inten-
sities at lower energies. Because of the approximation used
and limitation inherent in extracting experimental cross-
section data from experimental loss spectra, a lot of informa-
tion is lost. Furthermore, some fine structures cannot be ob-
served. A feature of these modeis?for reflection electron
energy-loss spectroscopy is that they give an energy-loss
probability effectively integrated over the depth
An improvement calculatiofi to Ref. 3 shows a compro-
as L - : . ! mising energy-loss function being close to the surface
0 20 40 60 80 100 energy-loss function in shape. Hence, the differential cross
(&) fw (eV) section obtained with this energy-loss function would be
closer to the present calculation if the depth dependence
FIG. 6. Plots of the differential cross section as a functiomof cguld be ignored. In Fig. 4 of Ref. 45 the peaks at 3.1, 5.6,
at a given value of depth, takeoff angled, and kinetic energ¥.  and 16.1 eV correspond to those at 2.6, 6.2, and 15.8 eV in
The de})shed{ dotted, and chain Iik?es represent, respectively, the bqﬂﬁg_ 6. It can also be seen from Fig. 5 of Ref. 45 that their
term p (w), image charge terp”*(w), and surface charge term gyharimental compromising energy-loss function is larger
p3(w). The solid line is their sum, which is the total differential than the bulk energy-loss function and the surface energy-
cross sectiona Si and(b) Au. loss function by about three times. With the present theory
this can be understood qualitatively. One may note that the
present total differential cross sectipiiz| ) is comparable
tion peak and hence, the surface plasmon excitation peak intensity to the bulk scattering cross sectigt{w). Also,
have a large width so that the tail of the surface plasmorone should consider the fact that outside the metal, electrons
peak enters the energy region of the bulk plasmon peak. can still excite the surface mode according to 8@). For a
An interesting case is Au. It is hard to identify the uniquereflection electron energy-loss spectra the surface contribu-
characteristic energy for the bulk mode and surface modéion is enhanced because a backscattering electron penetrates
Both modes have displayed a broadened distribution. Tha surface twice, and there is a net energy loss along the
difference is mainly that the distribution of the surface modetrajectory outside the metal.
has a stronger intensity in a low-energy region when com- Figures 7 and 8 show the dependence of the total dif-
pared with that of the bulk mode. The surface charge ternferential cross section for several valuesfFor Si, the
has a contrary variation of intensity to the image charge terntransition from bulk plasmon excitation to surface plasmon
and bulk term. But, there is an exception for the sharp peakxcitation as an electron approaches the surface from the
at 2.6 eV that is clearly presented as a surface effect. Thougteep interior of the medium can be clearly seen. At a glanc-
the peak is also observable in the bulk energy-loss function iing condition9=89.5°, the most probable excitation of the
is only shown as a shoulder pP(w). Hence, the peak at 2.6 surface plasmon is not on the geometrical surfaee0), but
eV may be largely associated with a surface mode. The sanma some distance underneath. This result should agree quan-
conclusion has been made from a discussion of the opticaitatively with that obtained by Zabala and Echenitfuee-
energy-loss functiofi’ although a band-structure calculation cause it has been shotrthat the present theory reproduces
has indicated that it may also be assigned to an interbantheir cross section for parallel electron trajectory. The result
transition*® The present theory is successful in providing aalso agrees qualitatively with other recent calculatiérsin
more intimate insight into this seemingly controversial sur-which the average over the electron trajectory has been
face mode: The surface plasmon whose energy is modifiethken. For Au, it is interesting to see how each peak in
by an interband transition has a dominant contribution inp(z|w) varies withz. The intensity for some peaks changes
excitation from the surface effect. The energy-loss peak haguickly while others change slowly. Again, the most prob-

o
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- p(w) (keVA)!

Au S #=45° E=500 eV
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FIG. 7. Plots of the depth dependence of the total differential cross section at a constant kinetideengngsV for Si and for takeoff
angles(a) 89.5°, (b) 45°, (c) 15°, and(d) 0.5°. Note that the scales i) are different from those ita)—(c). The cross-section values at
z=—10° A in (d) are nearly the same as the bulk values shown by the curves ate in (a)—(c).

able excitations near the surface region are nearlyatA  for very small —z, as displayed in Fig. 7 and discussed
under the surface even fdr as small as 45°. above. For large-z values, the phase of the oscillatory fac-
The z dependence modifies the measured spectra in ator varies rapidly withw as well asw, so that the energy
experiment through the factors of the experimental configuintegration of these factors over, smears out to zero. The
ration. Changing the incident electron beam to the surfacéotal differential cross section quickly approaches the value
normal direction and increasing the primary beam energyof bulk cross section with increasing depth.
the interaction volume goes down into the deep interior of However, in the case of near normal ejectid@n; 0, the
the target and bulk excitation dominates the inelastic scattewscillation is clearly seen in Figs(d) and &d). As can be
ing mechanism. Varying the detection angle to a glancingseen from Eq(B1), for v,—0, the second term tends to zero
condition, only those signal electrons localized in the surfacand the first term becomes & function that may be ex-
region can contribute to a spectrum and the surface excitgpressed a§(wp—(w2/2v2+qf/2— )). Hence, the integra-
tion is a major effect in this case. tion over w, is performed mainly for a single-phase factor.
It should be noted that E25) tells us in theory that the The shape 0p®~ S(w) is simply the bulk energy-loss function
image charge term vanishes far»—o through a cosine modulated by the oscillating factor. For sufficiently large
factor oscillating both irz and w. The surface charge term -z, the bulk term still dominates the total differential cross
has similar oscillating behavior but with a different phase.section because of the phase difference,inThis oscillation
Equation(B1) states that after angular integration the ampli-comes from the dispersion of the dielectric function in the
tude of the oscillatory factor strongly depends on the valueplasmon-pole approximation, as indicated by comparing Eq.
of v, i.e., the amplitude and direction of the velocity vector. (A4) with Eq. (A6). The modulated peak position in and
This turns on the angular dependence. If the takeoff angle ipeak intensity changes withcontinuously, as shown by Fig.
very large the oscillation behavior mcan only be observed 8(d). An ejected electron from the surface carries little infor-
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#=89.5° E=500 eV Au #=15° E=500 eV
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FIG. 8. Plots of the depth dependence of the total differential cross section at a constant kinetidcengiiggV for Au and for takeoff
angles(a) 89.5°, (b) 45°, (c) 15°, and(d) 0.5°. Note that the scales i) are different from those it@)—(c). The cross-section values at
z=—10 A in (d) are nearly the same as the bulk values shown by the curves ate in (a)—(c).

mation of such modulation. In addition, signal electrons fre-But the bulk model fails in experimental conditions that sur-
guently change their moving direction by elastic scatteringface effect dominates the measured spectra, e.g., at lower
during their travel to the surface. Hence, the energy-loss digarimary energy and large incident and takeoff angles. Some
tribution for ejected electrons from a sample is qualitativelyMonte Carlo modef§*® have been used to study electron-
described by the surface energy-loss function for surfacsurface interaction. However, some information, such as the
mode excitation and the bulk energy-loss function for bulkknowledge of the depth dependence particularly, has not
mode excitation. been included in these models. Therefore, the present theory
A direct application of the present theory is for a Monte is more informative in this respect.
Carlo simulation of electron scattering processes near the
surface region_. It is obvioug that th_e experimentally mea- IV. CONCLUSION
sured spectra include much information about electron elas-
tic and inelastic scattering events, such as angular distribu- We have presented a theoretical model for the calculation
tion and energy-loss distribution with energy dependenceof electron inelastic scattering cross sections for a moving
depth dependence, and angular dependence. Some instalectron near the surface region at an arbitrary takeoff angle.
mental factors such as detector solid angles also complicaiy using a bulk plasmon-pole approximation, we have de-
the analysis. To verify an electron scattering theory, it isrived an expression of the imaginary part of the electron
essential to use the means of simulation and compare theelf-energy. The numerical values of the double differential
results with experimental measurement. We have sAbwn cross section in energy loss and horizontal momentum trans-
that the bulk scattering cross section alone successfully dder, and the differential cross section in energy loss with
scribes the overall shape of backscattering spectrum for higldependence on kinetic energy, takeoff angle, and depth, can
energy (about several keVincident electrons into metals. be obtained by numerical integration. Input to the calculation
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is simply the dielectric constantfw). The theory provides loss spectrum should largely be attributed to the surface
detailed information of the electron energy-loss process neanode.

the surface region of a real metal, and, should find very use-

ful applications to surface electron spectroscopy as well as to

a Monte Carlo simulation of electron scattering processes in ACKNOWLEDGMENTS

a metal.
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APPENDIX A

Assuming the dispersion relation given by E§2), we have

fw dq, o 1 T 1 ip O w,— w+q7/2)
2 2 2 N n T2 2 5
—o qz(‘l’z_wq"'”?) qy wz_wp 20 (a)+wp)\/2(w+wp)+qﬁ (w—wp)\/Z(wp—w)-l-qﬁ

0(w— w,—q2/2
+i (@ o~ 4i/2) 21. (A1)
(0= wp)V2(w—wp) 0]
Similarly, another integration term involved in E@.1) is obtained as
kIl fw gid.z #:eq”z R ot dewpwp Im —1 ! eV2wtwptafz
T ) o a°e(q,w) g(w)| 7o Jo e(wp) || (w+wp) V2(w+w,)/g2+1
p p)/Qy
_ 2
P G(wp w+qH/2) emz
(w—wp)\/Z(wp—w)/qf-l-l
_ N2
+i B~ wp Gil2) 5 e‘ivz(w“"p)‘qul. (A2)
(0—wp)\2(w—wp)/qf—1
Now we need to solve the integration in E$0) and (11) involving the velocity vector:
. . dql etinqlz o qu etinqiz .
Fr =J—oo 9°e(q,w) w—q-vEin Jfoc ? o—q-vEi 77+ J’o dwpH(wp)
0 dq eiinqu s dq eiinqlz
xf—; : — | > —— ——|, (A3)
—» Q° (0gtotin)(w—q-vxin) |-« ¢° (0g—o—ing)(e0—q-vEin)

whose result obviously depends on the sigm pf In the present case we are interested in electrons moving toward the surface
from the interior of the bulk. Hence, f@<0, the integration contour must be closed in the lower-half plareg dor F  and
in the upper-half plane foF . Becausev, >0, the term(w—q-v=i ) in the denominator of the integrand is not a pole
enclosed in the respective contour and would not contribute a residue.

The first integral term in Eq(A3) has a simple pole due &, therefore,
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o qu etinqu T ehaz

e @ ©0—Q:VEig g o—q -V Eiqu,

(A4)

The first integral in square brackets in E43) contains an additional pole by the, factor. The evaluation of the residues
leads to

1 enaiz
qy =gV Eiqu,

1 en\/Z(w+wp)+qu

V2(w+ wp)+qf =0V =iV2(w+ wp)+0ﬁvl .

© dqi eiinqu -
f—oo ? (wgto+in)(w—q-vtin) B otw,

(A5)

To evaluate the second integral in square brackets ir(AR).we need to consider two cases: Wher w,+ qflz, the w,
factor contributes two poles at], = t[\/Z(w—wp)—qf +in]. For the casew<w,+ qf/Z, two poles are atq;

=*iy2(wp— »)+qZ. Hence, we have

foc qu etinqiz T 1 enq”z
— - " :P — T
e O (wg—w—in)(w—q-vEin) wp— o | o= VEIquu,

B(wp— w+q2/2) eMV2(ep=0) a2
\/Z(wp—w)“ﬁ w_QH'Vuii\/z(wp_w)ﬂLQﬁUL

7 Ow—w,—2l2) e inV2(w-wp)—ajz

+i —.  (A6)
W= Wy \/Z(w_wp)_qf w_qH'VHi[\/Z(w_wp)_qﬁUL+l 7]
Substituting Eqs(A4)—(A6) into Eq. (A3) gives
o d efinqlz einqu
F;—F,T=f 5 L ( —— .
—» 0%(0,0) \w—Qq-Vv—in w—Qq-Vvtig
L vew R{ 1] S .{‘1]
=2i € — 27 — my ——
T (o= v)Z+(qu.)? e(w) T e Jo PP g(wp)
[ Uien\ 2(w+wp)+qﬁz » v, a(wp_w+qﬁ/2)en\/2(wp7w)+q“z
+
(0Fwp{(0—0-v)*+[2(0+ o) +a o} " (0—wp{(e—a-v)?+[2(w,— ) +ailvT}
+ 0. 00wy~ gf/2e ey ] (A7)
(w_wp){(w_QH'VH)Z_[Z(w_wp)_qﬂvi_i77} '

In Egs. (10) and (11), a further integration ovegq, is applied. Due to an infinitesimal quantity the last term in the large
bracket of the above equation can be split into a principle value, the real part, a&fidnation, the imaginary part. Then

performing an angular integration ovelt(q’ﬁlu) and deforming the integration contour into a unit circle, the integration of

the principle value part equals zero because there is no pole inside the circle. Hence, the term only révfictian part
being

(w—w,— qf/2)

—inv2(0—wy) - g’z P — — 2 A _ — 2
(w—wp)\/me p q\l{é(m q-Vi—V2(0—wp)—qjv )+ d(@—0q;- v+ V2(w—wp) —qjv,)

(A8)

NI
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APPENDIX B

In Eq. (25), the integration over polar angles gfmay be
calculated first to find a simple expression,

27
de[d(w—qv, cose—a)+ d(w—qv, cose+a)]

ol —|o—al] olqu,—(wt+a)]
=2 , (B1
{ Vqu)?—(w—a)®  J(qu)?—(w+a)? (B
wherea= \/Z(a)—wp)—qfvl , by using the relation
ALF(01=2 S0x=x)I[F ()], (B2)

wheref(x;) =0. The integration over photon energy can
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wp=w—3[q2+ (0—q;-v)Ho?]. (B4)

To calculate InE} (z) we have to derive the expression
of angular integration for the other terms in E47). Denot-

ing

2w dQD
|:f — 2. n2
o (0—qu;cose)°+b

(B5)

whereb equals\/Z(anL(u,J)qufz;L or \/Z(wp—w)+q|2|vL,
the integration value is found from residues of two poles in
the unit circle ofe'¢, as

then be performed numerically afterwards. However, this
procedure needs longer computer time since a large number

. (B6)

of sampling points inw, are necessary. Instead, the integra- | i 1 1
tion over w, may be done analytically by preceding the nu- b —— —

p v — — —
merical integration ovekp with a smaller number of data i\ V(a+ip)*~1 V(a=ip)*-1

grids but without losing accuracy. Hence, we used
fo dwpf(wp)afl[ S(w—qp-vy—a)+ S(w—q;-v,ta)]

(B3)

where a=w/(q,v,) and g=b/(qv,). In the above equation
the principle value of the roots should be taken. This may be
easily seen by considering the case of parallel electron move-
ment to the surface. In the limh—O0 the integrand obl
becomeswdw—q,v; cos¢) and, hence, can be integrated
and compared with EqB6).
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