PHYSICAL REVIEW B VOLUME 55, NUMBER 15 15 APRIL 1997-|

Chemical ordering during surface growth
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We study the effects of phase separation on the growth of thin solid films by molecular beam epitaxy. We
propose a continuum theory that takes into account the fluctuations of the free surface and the phase separation,
and explain how bulk lamellar patterns develop from a competition between the surface phase separation and
the constant burial of surface domains by the incoming beam. The dependence of the wavelength on the
deposition rate is in excellent agreement with previous Monte Carlo results. We demonstrate that the free
surface is modulated, with a period that is half the bulk modulation wavelef§f1.63-182807)03715-4

I. INTRODUCTION identified, and expressions for the ordering field and the sur-
face height are obtained. We also present a numerical inte-
The growth of thin solid films is of prime importance gration of the dynamical equations in Sec. IV. In Sec. V, we
technologically. Indeed, much effort is devoted to creatediscuss the connection between our results and some typical
films with specific electronic, optical, and mechanical prop-€xperiments, and finally, Sec. VI gives a summary of our
erties. To this end, molecular beam epita®§BE) has be-  findings.
come a prominent tool to grow thin layers. In this process,
particles are slowly deposited on a surface through a directed Il. MODEL
beam. The particles diffuse on the surface until they reach an i i
energetically favorable location or become covered by in- N this section, we propose and study a long wavelength
coming particles. MBE is a useful method when more tharfi€!d theory for MBE with phase separation, by extending the
one type of particle has to be deposited. For example, thgee energy of Ginzburg and Lar)dau to include the.ﬂuctua-
patterning of epitaxial layers to use as Bragg reflectors caHons of the free surface. The height of the surface is repre-
be done by alternately depositing AlAs and,Sia, ,As!in  Sented by a single-valued continuous varidi(e) obtained
this paper we concentrate on a different method where corlY coarse-graining the microscopic discrete height. The Io_cal
centration modulations are induced by phase separatiofPcentration of the two species is represented by a continu-
while the film is growing. Experimentally, this is seen in a OUS order paramete#(r,z) which is proportional to the local
variety of systems during homogeneous growth, i.e., wheflifference in the concentrations. $(r,z) = ¢max, the con-
the different particle types are deposited simultaneotily. Ceéntration of atoms of typd is zero and the concentration of
Our theory is formulated for a general dimension of the subfyPe B atoms is maximal. Similarlyg(r,z) = — ¢may repre-
strate @+1 dimensions while our numerical simulations S€Nts & pureA mixture. For compounds of the form
concentrate on the case where the elastic work function at tf8B1-xCx, ¢=0 corresponds ta=1/2, while ¢= ¢4 COr-
surface favors strongly one direction, leading to phase sepd€SPonds tx=0 and$= — ¢, corresponds ta=1.
ration in one preferred vertical plane with the modulation The free energy functional for our problem consists of

parallel to the growth planél+1 dimensions two contributions:
In recent work, we reported results of Monte Carlo simu- .
lations of MBE with phase separation in+1 dimensions. Fh. ¢} =Fs(h}+ Fa{h. 4}, @

There, it was found that for relatively low depOSition rates, awheref's and fB are the surface and bulk free energy func-
lamellar pattern emerges in the bulk, with a modulation partjonals, respectively. We assume that the surface fluctuations
allel to the growth plane, and with the temperature and theyre limited by the surface tension, and we write

deposition rate two important control parameters for the

wavelength of the modulation. Also, the surface morphology

was affected by the concentration modulation, as stiews fs{h}zﬂf drvg(h), @
temperaturesor grooves(high temperaturgsformed at the

interface between surface domains. Two growth regimedhereg(h)=1+(Vh)?ando is the surface tension. In writ-
were identified: for very low deposition rates the wavelengthing this expression, we did not include a pinning term that
of the concentration modulation~F Y3 (F is the deposi- describes the equilibrium roughening transitio the crys-
tion rate, while for moderateF, A~F Y4 The present tal surface, and in what follows, it can be considered that the

work deals with these findings on a mesoscopic scale, an@duilibrium roughening transition is &t=0. The bulk free

we explain how these features occur. energy is given by the modified Ginzburg-Landau functional
In the next section, we introduce the model; in Sec. I, .

we deriye the dynamical equations that describe the growth fB{h,¢}=J er <r)dz _ §¢2+ E¢4+ E(V¢>)2 ,

of the film and show that lamellar patterns appear below a 0 2 4 2

certain critical deposition rate. Two lamellar regimes are 3
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where the conserved order parametg(r,z) is zero for s the Laplace-Beltrami operatéwith the Einstein summa-

z<0 and forz>h(r), and the constard is proportional to  tion convention that ensures that the surface diffusion is

T.—T, whereT, is the critical temperature of the binary parallel to the free surface. In this equatiagy is a con-

alloy. AboveT,, the equilibrium state is the homogeneousserved thermal noise current.

one with =0, while for T<T,, the local free energy has When a beam of particle&leposition rateb with non-

two stable minima, corresponding t= =+ \/a/u. conserved fluctuationgg) impinges on the surface, E()
The lower limit in the integral focFg represents the sub- has to be modified to

strate on which the particles are being deposited. Here, we

assume that the substrate remains flat, and we do not con- —A\/_V

sider surface interactions and contact potentials between the

order parameter and the substrate. The upper limit in(&q.

provides information on the way material is distributed

around the free surface, and compared with the usual

Ginzburg-Landau free energy functional, gives a different

mechanism for the system to reduce its energy. The upper

limit also provides a coupling between the two variables

h(r) and ¢(r,z).

55h+Afv it ®+ne, (1D

where the beam fluctuations are not conserved and satisfy
(ne(r, 1) ne(r’,1))=2DS8(r—r")8(t—t'). (12

The functional derivatives in Eqg6) and (9) can be
shown to be

IIl. DYNAMICAL EQUATIONS oF_ v vh =22 g vl a3
The dynamics of the model are governed by two local
conservation laws, since we are considering the case whegd
the concentration of atoms deposited by the beam remains
constant. Because of this, we require %: —ad+udd—cV2h+cs(z)(—2- V)
f drdze(r,z,t)=const, (4) +c8(z—h)(R-V &), (14)
which amounts to where the subscripg represents a function evaluated at the
5 surface[i.e., at the vertical coordinate(r)], and the unit
_d’: -V-J,, (5) vector n=1/\/g(— Vh,1) is normal to the free surface. We
at can remove thes function divergences by making the as-

whereJ, is the order parameter current driven by inhomo- sumption that the surface is in eqU|I|br|um with the adjacent
geneities in the local chemical potential and can be obtamebulk layer, and this implies thatz-V#=0 at z=0 and
from the free energy functional: cn-V¢=0 atz=h. Additional boundary conditions can be
derived by requiring that no current flows through the sur-

oF i ) - -
Jp=—MVu,=—MV (6)  faces, implying thatz-V u,=0 atz=0 andcn-V u ,=0 at
8¢ z=h. These boundary conditions represent surfaces that do
Hence, we can write not favor either of the two components, and as shown by the

simulations of Marko, this corresponds to the case where
d¢ 2 droplets of both phases are in contact with the surfices.
ot ot T MViugt ., (@) The relaxation of the surface we have discussed so far
_ - . . occurs through the diffusion of material along the surface,
with M the mobility andz,(r,z,t) a conserved noise with 554 e have taken the drumhead model to represent the en-
second moment ergy cost of the surface deformations. However, it has been
' o shown by Villairf that a purely kinetic effect can lead to a
(n4(r,2.0)74(r",2,) contribution that de -
pends on the local curvature of the sur
= —2MKgTV28(r—r1')8(z—2') 8(t—t"). 8) face (nqte that such a contribution also. arises' when desorp-
tion is important, but we do not consider this case here
The second conservation law demands that material bilonte Carlo simulatiorfshave shown that such a current
conserved. Because the diffusion coefficient is much largegXists for a variety of growth models. Furthermore, the added
at the surface, we assume that the surface diffusion proceetm vV-Vh/+/g (with »>0) in the equation foh predicts
along the surface only. Then, the exponents of our Monte Carlo simulations when only one
type of particle is deposited. With this, the coupled equations
describing the time evolution df and ¢ are obtained as

—AIVS 5h+Afv M 9
dh Vh Vh a
where —=vV.-—=—Ac\gVY V.- —=|+A\gV? — 5 ¢2
at \/a S \/a s 2 Ps
1 9 \/_5 1 oh oh| 9 (10
T T 29 v u Cc
g V9% g o o + 75 (VOL +ANGY -+ @+ 70, (15)
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J
ﬁ—(szVZ[—a¢+u¢3—cV2¢]+ Mg (16) X= % r, (19
and Ma?
=|—It, (20)
O MV~ ad,ugi - o(V74),) i
é,t sS's S S S and
T (po— b))ty t 74 (17 u\ 2
(X, 7)= 5) é(r,t). (21)

We have explicitly written out the dynamical equation for
o, because it is assumed to evolve through diffusion a|0nd—0 be consistent with the length rescaling we also make the
the surface only. The mobility at the surfadd,, is larger ~transformation §/c)'%z—z. The boundary conditions be-
than the bulk mobilityM, and the noisey,_in Eq. (17) is come

nonconserved because it represents the fluctuations of the

concentration in the beam. The linear termdinin Eq. (17) 2Vy=0, z:Vu,=0 for z=0, (22
coupled to the beam concentration deposition rhte has - PR _ _
been proposed befoPeThis contribution can be obtained as n-v¢=0, n-Vu,=0 for z=h. (23

follows: we can write ¢5(t+At) = ¢4(t) + RAt, whereR  The equations of motion in terms of the dimensionless pa-
represents the amount and concentration of material fallingameters are
on the surfaceR can be expanded around the average value

of the order parameteR(¢)=R(¢dp) +1'(do— ¢s), Which Y
simply states that the order parameter has a tendency to flow 9r VA= gt P = V2] ey, (24)
towardse¢,. The coefficient” is proportional to the velocity
at which the solid-vacuum interface is growing. Ips Ms_, 3 )
These three equations must be augmented by the appro- a9 VVS[— st hs—(Voh)s]
priate boundary conditions discussed earlier, implying, in _
particular, that the contribution&V(¢)2 and (V2¢), in Egs. + (o= ) T ey My (25)

(15) and(17) can be taken asW ¢.)? andV2¢,. The set of
Egs.(15—( 17) represents a system of coupled partial differ- and

ential equations, with Eqg15) and (17) directly coupled, h 2ot (V)2

becausep, appears explicitly in the equation for, and the _ = aV2h+ﬁ\/§V§[ _ IS4y 5y Sl \/s—h,?h,

h dependence enters through the Laplace-Beltrami operator 97 2 4 2

in (17). In Eq. (16) the bulk order parameter is not explicitly (26)

coupled toh, but the coupling comes through the boundarywhere we have defined
conditions and the spatial derivatives.

The coefficientr describes the sign of barriers at step v Aa[a|? c
edges. Forw<0, there is an instability that has to be con- =y P wulel o P ivaz/l
trolled by the nonlinearities. However, if>0, the nonlinear
term in Eq. (15) proportional too is irrelevant on large kgTu(a|%? D [a)|d-Dre Aufa\%?
length scales, and can be neglect®dy this we mean that &y=32 |\ frTmalc Ay

the asymptotic behavior of the solution at small wave num-
ber is unaffected by the presence of the nonlinearities. Fur- 27

thermore, the conserved noisg, appearing in Eq(15) is  The rescaled noises have the correlations in the new system,
irrelevant compared with the nonconserved beam noise

7o, and can also be neglected. After transformation to the (X, t) Pr(X' 1)) =28(x—x") 8(7—7"),
comoving reference frame— h+ ®t, we arrive at the equa-
tion for h valid on long length scales, (%2, 9y (X', 2,0))= —2V25(x—x') 8(z—2') 8(7—7').
&h_VVh A\/_Vz—azuzlcV2 and
TV g TNV At g bty (Vs [H e (74 (%) 7y (X' 1)) =28(x—X) (7= 1').
(18)
In principle, the coefficientsy and A depend on¢ and IV. ANALYTICAL RESULTS

Vh, but we do not consider such complications. Equation

(18) without the contribution from the order parameter is _ - )

referred to as the Edwards-Wilkinson equation, and leads to At early times of the deposition, the system is homoge-

a scaling behavior of the correlation length and the correlaneously mixed and we can expang as is= o+ dis,

tion function. where ¢, is the average value ofy; in the beam. The
The equations of motion and the boundary conditions maglispersion  relation  for o5 is then Q(q)=

be rescaled, using the transformations (MS/M)q2(1—3¢r§—q2)—<D, which is positive in the band

A. Linear stability analysis
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0.4 —_— — nificant. We stress that such an effect is geometrical in na-
ture, representing the extra length on the surface that diffus-
ing atoms have to cover in order to create domains of a given
02 N projected size on the plane.

Equation (26) can be considered in the case when the
beam fluctuations and the nonlinearities are negligible, and

= 00 we can look for steady-state solutions, i.e.h=0. This
= gives
2 4 2
-0.2 ﬂ l//s lv[/s (V'r//)s
h—; ?—Z— > +C, (30)
04— 0‘2 : 0'4 : o‘e : 0'8 _— whereC is a constant that ensures that the average value of
' ' ’ q ) ’ ’ h, h =0. In the steady-state, the surface order parameter has

to satisfy[ @ has been rescaled as compared to(Ef) by a

factor of M /M]
FIG. 1. The dispersion relatiof2(q) in the case of equal vol-

ume fractions of the two components. The curves from top to bot- 2 3, .2 =
~ 0=—-9 — it — Dy, 31
tom correspond to NI/Mg)®=0.01, 0.2, and 03. For X(Ys= s+ e = Dol (31)

(M/Mg)®=0.25, the system is marginally stable. which is equivalent to the steady state of a dynamical Lange-

vin equation for block copolymers. In particular, for

2 2 2 2 _
of ~wave _vectors g-<qg’<qi, where 2= $o=0, the dispersion relation is always positive for

(1-3y3) = (1 - 3y5)2— 4D(M/My), if ®<1/4, and the formation of domains occurs. We show be-
1/M low that two regimes can be identified) the weak segrega-

d< EISCZZ(VS) (1-343)2. (2g)  tion regime, where the system has lamellas with wavelength
N 4=d+0(e*) with £2=1/4—®; (ii) strong segregation

Hence, for values o below®,, there is an instability that regime, where \~(®) *+0(1). Note also that

causes fluctuations it to be amplified. The expression for £2=Q(dp). S _

the critical deposition raterT)c, shows that the morphology In their pape.|9,. Atzmonet alcorrectly |dent|f|¢d the insta-

of the thin film is controlled by three parameters: the depoility and the critical growth rate. However, using an analogy

sition rate&), the concentrationy,, and the temperatur@n vv_lth eutectic solidification from the I|qU|d_phase, they pre-

My). These results are in agreement with our Monte Carl |ct_ed that_the waveleng_th of the m(_)dulatlon decreases alge-

sir?lulations wherg), =0. The maximally unstable wave ralcally with the deposm_on ra.te with an e_xpone_nt 2/5. As

number g2 ;(1_3(//2)/2 is where the dispersion relation they pointed out, the flaw in their argument is that in the case
im =70 ~ =~ of MBE, the system is not free to select the growth velocity.

reaches its maximum, arfd(q,,) = ®.—P. Figure 1 shows

\ _ . Dimensional analysis was also used to predict another expo-
the g dependence of the dispersion relation wiygy¥-0. nent of 1/2. The treatment below rigorously calculates the

The stability of the surface to fluctuations around its Meang|ationship between the wavelength of the modulation and
position can be considered by keeping the lowest order termg,q deposition rate, which can be extended to any order of
in h and &y iE Eq. (26). With the Fourier expansion accuracy in our expansion parameters.
h(x)=Zhi(7)e"™ we get, We start by showing how the steady-state equatRi)

can be obtained from the relaxational dynamics of a free-
ho(7)=hg(0)e™ aq?r 4 ,BEK‘J f(k,q)gwé(()) 5,/,g*k(0) energy-like function. We write

X

with f(k,gq) a polynomial function ink andq. To find the
maximally unstable wave number fbr, we first maximize
Q (k) +Q(g—k) with respect tdk keepingq fixed, giving us . ) . B 3
KM (q) = /2. With this value fork(q), the effective disper- SO"a) Laplaciands.. The functionC(x)= = yrst s — oy
sion relation that amplifies the order parameter fluctuations (L5) Pifs is the' solution of the Laplace gquatltsiBZ),
in hy is 20(q/2), with a maximally unstable mode at and can be written asoLiysl/oys(x) with Liysg)
q=2q,,. Hence, the surface is most unstable at half the or= £si¥si T Lil¥st. Here, Lsiy} is a short-range interac-
der parameter wave number, and as we shall see below, QN f_ree_ energy functional, whilet,{ s} is a long-range
produces grooves at the surface domain boundaries. contribution. We have

The effects of the non-Euclidian nature of the surface on 5 4
the dispersion relatiolf)(q) can be naively considered by Ys U5 (deihs)?
assuming thaWh=const>1, leading to a critical growth CS’{%}ZJ dX-5 7+t
rate that is decreased by a factor 8f()2, and implying that
the surface diffusion is slower in regions whé¥é is sig- and

where the operator 4] is the inverse of the one-dimen-

(33
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5£Ir{¢s} = ' ' ‘ ]
—-P X 34
50000 ws< ) (34) |
To obtain£,{ s}, we proceed as follows: \/
5£Ir{¢s} ~f 1 -
=—® [ dx x")8(x—x"), 35 c
5¢S(X) 3)2;¢S( ) ( ) ( ) .9)
0]
and after two integrations by parts, we get —
5£Ir{¢s} "'j 1
————=—@® | dx' (X' )=S(x—X"). 36
61,03()() Ws( )(93 ( ) ( ) | | | I | { \ | |
. _2 i 0 20 40 60 80 100
Now we defineG(x—x")=4,,” 6(x—x") and integrate over X

s to obtain

EI; FIG. 2. Steady-state deterministic height profiles far from onset
r _ _f j dxdxX ¢ (x)G(Xx—xX' x'). (3 (top) and near onsgbottom). The top curve corresponds to a con-
st 2 Y0 G( J9sx). (37 centration wavelength >50, and the bottom curve is far=5. The
vertical scale in the figure is arbitrary.
B. Weak segregation regime _
instabili i L &’A e?DPA;  3s'Af
Near the onset of instability, the amplitude of the order I W b S 6
- : , (ke*=1)+ >+ +0(e°). (42
parameter is small, and we expect that the first few modes in N4 4k 32
a Fourier expansion will give reliable results. In this region
we will expand in terms of a small parameterdefined by
(IJ D, whereCID is the value of® at the critical point
and equals 1/4. Foqb(x) d(—x), we write

"Minimizing this expression with respect kowe find that the
steady-state wavelength is

2w ~
Ne=7— =270 Y4+ 0(e?). (43)

kSS

[’

B(x)= >, e"A,(k)cognkx), (39)
n=1 With the first harmonic for the order parameteiis given
with k=kg+ ek, + O~(82) and solve Eq(31) order by order by

in &. The constantb must also be expanded=d,— 2. 2 4
¢ B[ Agcos(ax) choé‘(qx) qq

To first order we find,= 1/y/2, while the second order equa- h=— - Si?(gx)
tion givesA,=0. The third order equation provides solutions a 2 4
for A, andA; : BAé , ,
9 +@(8q —8-3A9). (44
3
(1 2k2); A= 128A , (39

Figure 2 shows the surface morphology according to Eg.

while the next order correction vanishes so that the ordef#4 With g=0.6 (this corresponds to a lamellar thickness of
parameter is accurate @(s5). about 10. Notice that at the location of the order parameter

To find the wave number in the steady state we minimlzénterfaces the surface has grooves of size proportional to
L{wg) , since Eq.(31) can be obtained in full from the dy- (Bla)e?. The physical principle behind the formation of

namics, these dips is simply the decrease of interfacial energy when
atoms move from the point of contact between the two
Sciy} phasfes to the top of the lamellas. Expressidd) can be
dp=—-Ve—0— (40 rewritten as
oy
In a one-dimensional formulation, we can write the free en- B A2 4

h="| 5" (2= Al+20°)coq2qx) — oocos4qx) |,

ergy density a$
(45)

L4 p(x)? ¢(X)“ 2|4
XZXJO 2 + |<9x¢( )|%|d and therefore, the Fourier coefficients in the expansion
~ h=3,h,coskx) are

d (M2 (N2

- —x' "ydxdx', 41 209 _p2 2 4
2o Jo P [x=x"[$(x")dx (41 ; :E AZ(2—A%+20%) _E ﬁ 5 o
K 8 k2g o | 32) Tk

and substituting the expression for the order parameter, we
find implying that the surface structure factor is
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Ss(k)=(h(k)h(—k))

B2 [ AL(2—AS+297)\? B2 AG\?
= - a | %2 5k,4q .

a? 8 a2\ 32

hinner(x) — g tanf?(x/ \/E) — %tanH‘(X/ \/E) (56)

+C+0(&?), (57)

@7 where C ensures that the average valuelpis zero. The
This expression for the structure factor shows peaks gerofile for h consists of the inner solution matched to the
k=2q and atk=4q . At k=2q, the height of the peak outer solution, and this is repeated every period of the modu-
~[(Bla)&?]. The broadening of the peaks will come from lation. This is shown in Fig. 2 in the case when the lamellar
the average over the noise. thickness is large> 50). Note that far form onsey h is of
O(B/a), and this quantity controls the importance of the

C. Strong segregation regime nonlinearities inVh that we have neglected.

When the deposition rate is small, the interfaces between
the order parameter domains are sharp, the lamellar thickness
is large, and the system can be divided in two regidrghe In this section, we give order of magnitude estimates for
inner region is of thickness unity around the interface, andhe quantities we have calculated and compare with typical
the order parameter varies rapidly in this region. The outeexperiments. Let us start by considering the critical growth
region is characterized by nearly constant valueggfand rate: in dimensional form, we haysee Eqs(27) and(28)]
the direction normal to the interface is rescaledXasex,
with e~X~1. We have 1 Mga?

s

V. CONNECTION WITH EXPERIMENTS

2
; (58)

u
1-3_ 4
—.242 3 292 T

0= = st ths = e%0xsl = s, “9 which is equal to the velocity of the moving surface) (
and since far from the interfacg,= +1 and 32¢s=0, ¢ divided by a microscopic diffusion lengttb). The constants
must beO(&3). With the rescaling3=g‘3§>, the equation a andu have units of energy/volume while has units of
in the outer region becomes length? X energy/volume. Because the energy scales are of
the same order, the ratiwa is of order¢3, with &, a micro-

0=2[ — thot 3 — £292 )] — eBipe, 49 scop?c length describi_ng the thickngss of interfaces vyhile
XL =Yt s e0xis]— eBYs 49 u/a is of order 1; this gives a critical growth velocity
which can be solved to first order into give vc~MSa5I§(2). For examplée? the diffusion coefficient for Si

on Si has an Arrhenius fori @a=Dye Em’*sT with D, in

the range 10° m?/s andE,=0.6 eV. With § and &, a few
+0(e?).  (50)  angstroms, the critical growth rate is abouti/s, which is

3—4 orders of magnitude larger than typical MBE growth

P ==

1 sBX X_l
+§ +§

In the interfacial region, the equation is rates. _
The selected wavelength depends on the distance from the
0= — ht 3 — P2ih]— 3B, 51 onset of instability. Near onset, the dimensional forifEgs.
x[ S/ x¢s] e°Bis (51 (27) and (43)]
yielding a solution M.c| 14
inner 2 )\:( > ) , (59
P x) =tanh( x/\2) + O(&?). (52) r

The steady-state wavelength is calculated by minimizing th@vhich is of order,, independently of our estimate for.
free energy density’{ ginner $2U /) with respect tox. To This makes physical sense, because near onset, the pattern
O(s?), the free energysdehs?ty is ' amplitude and wavelength are very small, the later corre-

sponding to a few angstroms in a real system.
~ Far from onset, we have
L 42 . \2D

= , 53
A 3\ 96 (53 (64\/§M s\/&) 1/3
F 1

(60)
giving to leading order
~ s which is of order 10 Y3 Typical experiments with
d v~1 A/s would then yield\ in the range of 400 A.
Nss 642 : (54) The grooves in the surface associated with the phase sepa-
ration can also be considered for order of magnitude esti-
With the relations for the order parameter in the inner andnates. Far from onset, the grooves have a scaled size
outer regions, we can calculate the profile of the free surfac&h=pB/a, giving in dimensional form
using Eq.(30). We find that

Aa?
houte{ X) = const+ O(&2), (55) Ah=—0 (61)
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far from onset near onset

y(x,h(x))

%
i

substrate : ; g ; Ax/2t :

~—

FIG. 3. The figure represents the discretized system used for the

numerical integration. l l
The energy scales ia, u, and A are the same and cancel. S

We can say that\ ~M 8, while v~ (v/8)1? implying that
Ah~(M4a?) 5%/v12u, wherel represents the typical distance - _
between steps on the surface, which depends on the surfaceFIG. 4. Configurations as well &s and ¢ in the steady state

roughness and has to be evaluated in the groovel #£a0  obtained from numerical integration. The top portion of lateral size
A. we find thatAh is a few lattice constants. 100 and vertical size 50 of the full system is shown. The average

value ofh is 400.

VI. NUMERICAL RESULTS

1
The equations of motior{24), (25), and (26) are dis- sz(xlvt):(A—X)z[f(XJFAX'th)JFf(X_Alet)
cretized both in space and time using an Euler method.
Growth occurs in the positive direction and we consider +f(X,z+ Ax,t) + f(x,z— Ax,t) —4f(x,z,1)].
only one lateral dimensiox. The substrate is located at (68)
z=0, while the order parameter is defined at the points of a
lattice (with spacing Ax), from z=AX/2 t0 Z{X!)

—in{{h(x,1)/Ax]. The boundary conditions are satisfied byIn order to implement the boundary conditions at the sub-

strate, we generate an order parameter and chemical potential

taking atz=—Ax/2. This is then used to integrate the equations for
the order parameter at= Ax/2. At the free surface, we use a
Bo(X, — AXI2,) = (X, AXI2,1), (62  backwards version of the spatial derivative, which gives us
P(X,Zmay @nd w(X,Zna0 a@s a function ofisg(x) and wg(X)
according to Egs(63) and (65). The nonconserved noise is
(X, 1) dyths( X, 1) = ,hs(X, 1), (63) generated with a Gaussian random number generator, while
the conserved noise is obtained from
m(X, = AXI2,t) = (X, Ax/2,t), (64)
and Ws(x,z,t)=r1(x+ Ax/2,z,t)—r1(x—Ax/2,z,t)
+r2(X,z+AxI2,t) —r2(x,z— Ax/2,t),
Ah(X,t) dys(X, 1) = d (X ). (65) (69
The time derivative is where the noise currept=(r1,r2) can be thought of as lying

on the bonds between the order parameter sites. Because
1 nj=0 at the boundaries, r2(x,Ax/2,t)=0, and
af(x,z,t)= —[f(x,zt+At)—f(x,z,t)],  (66)  IxN(X I 1[X Znad¥) +AX2,t] =1 2(X,ZpyadX).1). Figure 3 il-
At lustrates our scheme.
Figure 4 shows configurations far and near the onset of
instability in the case wherél/Ms=0.01@=1, 8=0.1,
&y.= 0.001,s¢3= 0.01, andey=0.01. The constan® was

set as 0.25, wherev is the velocity at which the free surface
is growing. The time and space mesh where chosen to be
Ax=1.1 andAt=0.2, such that artificial bifurcations in the
while the Laplacian in the,z coordinate system is set of equations were avoiddthe systems were of lateral

and the spatial derivatives are discretized to

1
axf(x,z,t)=m[f(erAx,z,t)—f(x—Ax,z,t)], (67)
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) e s s A concentration fluctuations in the incoming bemsb. The

early time evolution of the surface shape is characterized by
100 | . the (deterministi¢ linear dynamics with the instability com-

i ] ing from the same dispersion relation as for the order param-
eter. As time proceeds, the surface shape follows the same
dynamical evolution as the order parameter at half the wave
number: formation of the grooves, saturation of the groove
depth, and crossover t&Z. There are also other time scales
that corresponds to the time evolution of the surface rough-
ness(the q=0 peak in the surface structure fagtofhe so-
lution of Eq. (26) for =0 and including the fluctuations
gives for the surface structure factor,

10 |

-\u\ el Lol oo rend
1E-3 0.01 0.1 1

Deposition rate (@)

Sukt)= 5 (1-e "), (71)

FIG. 5. The steady-state wavelength of the concentration modu ;
lation as a function of the deposition rate. The sdtidshed line At early times, Sy(k, 1)
represents the expansions néfr from) onset. The points corre-
spond to numerical integration results. In the inset, the surfac
structure factor in the near onset regime is shown.

=¢n7, Which represents an uncorre-
lated process, while for all times, the correlation length is
g(r) = Jar until it reaches the system size. Three dynamical
regimes can be identified from the behavior of the surface
width, W: (i) early times corresponding/~ 7%, (ii) inter-

. . — 1/4 e . .
sizeL=220). Soon after the deposition starts, the linear dy-medl'_alsg times wherd/~ 7™, and(iii) saturated regime with

namics hold, and the system is characterized by the amplifiW i
cation of the fluctuations by the instability, leading to phase e calculated the bulk modulation wavelength from the

segregation into two phases. This early time regime is govfi'St moment of the structure fact@,(k) =((k) $(—k)),

erned by the maximally unstable mode,=1/y2, which

corresponds to the location of the maximum in the dispersion

relationQ (k). The end of the linear regime is characterized f kSy(k)dk

by the saturation of the order parameter to its steady-state ki=—4——— (72
value due to the nonlinearities, accompanied by the forma- f S,(k)dk

tion of well defined domain boundaries. The time scale to

reach the end of the linear regimesg~Q(k,,) . Once in

the nonlinear regime, the dynamical evolution proceeds tdn order to judge if the steady state is reached, two quantities
decrease the selected wave number flgmto k. This  have to be monitored: the width of the surface determines if
occurs through the collision and merging of lamellas. In thethe surface is saturated, and the selected length scale for the
case of block copolymers,the time dependence of the wave bulk morphology must also be stationary. The time scale for
number follows the relation the selected wavenumber to reach its steady-state value de-
pends on the deposition rate s~ 1004b,*! which means

that the number of layers deposited has to be equal to
h* =400, independently of the growth velocity. Results were
averaged over four independent runs near onset, and one run
was performed far from onset. As Fig. 5 illustrates, the nu-
dnerical results fork, are in excellent agreement with the
near and far from onset expansions.

K(t,®) =k D)g(tD), (70)

where the scaling functiog(x)~x~*? for small x relative

to the end of the linear regime, amx)~const for large
X. This relation is expected to hold in our case, not too clos
to onset.

Of particular interest in Fig. 4 is the one-to-one corre-
spondence between surface domain bounddties y,=0)
and grooves in the surface. Fluctuationshadround the pe-
riodic profile have two origins: noise in the beam strength In this paper, we introduced an order parameter describ-
and in the beam concentration. This can be demonstrated lbiig the extent of the phase separation, and proposed a free
computing the surface structure fac&(k), which is shown energy functional that includes the fluctuations of the free
in the inset to Fig. 5, where two peaks3y k) can be iden- surface. The time evolution of our model was dictated by
tified. Neark=0, there is a peak that decayskag’, signal-  two conservation laws, one for material and one for the order
ing the presence of the Villain contribution in the growth parameter. We showed that the constant bombardment of the
equation. The width of this peak is controlled by the strengthsurface by the beam tends to burry the phase separated do-
of the beam fluctuationsef) and the step-edge barriers mains in the bulk, where they are almost frozen. This permits
(a). The second peak at nonzero wave vector is representaentrol of the morphology of the bulk, since above a critical
tive of the surface modulation. We find that the location ofdeposition rate, the film is homogeneously mixed. We calcu-
the peak is at twice the bulk order parameter wave numbetated the order parameter profile near and far from the critical
The broadening of this peak is due to the strength of thegyrowth rate, and obtained expressions for the thickness of the

VIl. CONCLUSION
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