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Chemical ordering during surface growth

François Léonard and Rashmi C. Desai
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 4 November 1996!

We study the effects of phase separation on the growth of thin solid films by molecular beam epitaxy. We
propose a continuum theory that takes into account the fluctuations of the free surface and the phase separation,
and explain how bulk lamellar patterns develop from a competition between the surface phase separation and
the constant burial of surface domains by the incoming beam. The dependence of the wavelength on the
deposition rate is in excellent agreement with previous Monte Carlo results. We demonstrate that the free
surface is modulated, with a period that is half the bulk modulation wavelength.@S0163-1829~97!03715-6#
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I. INTRODUCTION

The growth of thin solid films is of prime importanc
technologically. Indeed, much effort is devoted to cre
films with specific electronic, optical, and mechanical pro
erties. To this end, molecular beam epitaxy~MBE! has be-
come a prominent tool to grow thin layers. In this proce
particles are slowly deposited on a surface through a dire
beam. The particles diffuse on the surface until they reach
energetically favorable location or become covered by
coming particles. MBE is a useful method when more th
one type of particle has to be deposited. For example,
patterning of epitaxial layers to use as Bragg reflectors
be done by alternately depositing AlAs and AlxGa12xAs.

1 In
this paper we concentrate on a different method where c
centration modulations are induced by phase separa
while the film is growing. Experimentally, this is seen in
variety of systems during homogeneous growth, i.e., w
the different particle types are deposited simultaneousl2,3

Our theory is formulated for a general dimension of the s
strate (d11 dimensions!, while our numerical simulations
concentrate on the case where the elastic work function a
surface favors strongly one direction, leading to phase se
ration in one preferred vertical plane with the modulati
parallel to the growth plane~111 dimensions!.

In recent work,4 we reported results of Monte Carlo simu
lations of MBE with phase separation in 111 dimensions.
There, it was found that for relatively low deposition rates
lamellar pattern emerges in the bulk, with a modulation p
allel to the growth plane, and with the temperature and
deposition rate two important control parameters for
wavelength of the modulation. Also, the surface morpholo
was affected by the concentration modulation, as steps~low
temperatures! or grooves~high temperatures! formed at the
interface between surface domains. Two growth regim
were identified: for very low deposition rates the wavelen
of the concentration modulationl;F21/3 (F is the deposi-
tion rate!, while for moderateF, l;F21/4. The present
work deals with these findings on a mesoscopic scale,
we explain how these features occur.

In the next section, we introduce the model; in Sec.
we derive the dynamical equations that describe the gro
of the film and show that lamellar patterns appear below
certain critical deposition rate. Two lamellar regimes a
550163-1829/97/55~15!/9990~9!/$10.00
e
-

,
ed
n
-
n
e
n

n-
on

n

-

he
a-

r-
e
e
y

s
h

nd

,
th
a
e

identified, and expressions for the ordering field and the s
face height are obtained. We also present a numerical i
gration of the dynamical equations in Sec. IV. In Sec. V,
discuss the connection between our results and some ty
experiments, and finally, Sec. VI gives a summary of o
findings.

II. MODEL

In this section, we propose and study a long wavelen
field theory for MBE with phase separation, by extending t
free energy of Ginzburg and Landau to include the fluct
tions of the free surface. The height of the surface is rep
sented by a single-valued continuous variableh(r ) obtained
by coarse-graining the microscopic discrete height. The lo
concentration of the two species is represented by a cont
ous order parameterf(r ,z) which is proportional to the loca
difference in the concentrations. Iff(r ,z)5fmax, the con-
centration of atoms of typeA is zero and the concentration o
typeB atoms is maximal. Similarly,f(r ,z)52fmax repre-
sents a pureA mixture. For compounds of the form
AB12xCx , f50 corresponds tox51/2, whilef5fmax cor-
responds tox50 andf5 2fmax corresponds tox51.

The free energy functional for our problem consists
two contributions:

F$h,f%5FS$h%1FB$h,f%, ~1!

whereFS andFB are the surface and bulk free energy fun
tionals, respectively. We assume that the surface fluctuat
are limited by the surface tension, and we write

FS$h%5sE drAg~h!, ~2!

whereg(h)511(“h)2 ands is the surface tension. In writ
ing this expression, we did not include a pinning term th
describes the equilibrium roughening transition5 of the crys-
tal surface, and in what follows, it can be considered that
equilibrium roughening transition is atT50. The bulk free
energy is given by the modified Ginzburg-Landau function

FB$h,f%5E drE
0

h~r !
dzF2

a

2
f21

u

4
f41

c

2
~“f!2G ,

~3!
9990 © 1997 The American Physical Society
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55 9991CHEMICAL ORDERING DURING SURFACE GROWTH
where the conserved order parameterf(r ,z) is zero for
z,0 and forz.h(r ), and the constanta is proportional to
Tc2T, whereTc is the critical temperature of the binar
alloy. AboveTc , the equilibrium state is the homogeneo
one withf50, while for T,Tc , the local free energy ha
two stable minima, corresponding tof56Aa/u.

The lower limit in the integral forFB represents the sub
strate on which the particles are being deposited. Here,
assume that the substrate remains flat, and we do not
sider surface interactions and contact potentials between
order parameter and the substrate. The upper limit in Eq.~3!
provides information on the way material is distribut
around the free surface, and compared with the us
Ginzburg-Landau free energy functional, gives a differe
mechanism for the system to reduce its energy. The up
limit also provides a coupling between the two variab
h(r ) andf(r ,z).

III. DYNAMICAL EQUATIONS

The dynamics of the model are governed by two lo
conservation laws, since we are considering the case w
the concentration of atoms deposited by the beam rem
constant. Because of this, we require

E drdzf~r ,z,t !5const, ~4!

which amounts to

]f

]t
52“•Jf , ~5!

whereJf is the order parameter current driven by inhom
geneities in the local chemical potential and can be obtai
from the free energy functional:

Jf52M“mf52M“

dF
df

. ~6!

Hence, we can write

]f

]t
5M¹2mf1hf , ~7!

with M the mobility andhf(r ,z,t) a conserved noise with
second moment

^hf~r ,z,t !hf~r 8,z8,t !&

522MkBT¹2d~r2r 8!d~z2z8!d~ t2t8!. ~8!

The second conservation law demands that materia
conserved. Because the diffusion coefficient is much lar
at the surface, we assume that the surface diffusion proc
along the surface only. Then,

]h

]t
5LAg¹s

2 dF
dh

1LAg“–hM , ~9!

where

¹s
25

1

Ag
]

]xi
FAgd i , j2

1

Ag
]h

]xi

]h

]xj
G ]

]xj
, ~10!
e
n-
he

al
t
er

l
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ns

-
d

e
r
ds

is the Laplace-Beltrami operator~with the Einstein summa-
tion convention! that ensures that the surface diffusion
parallel to the free surface. In this equationhM is a con-
served thermal noise current.

When a beam of particles~deposition rateF with non-
conserved fluctuationshF) impinges on the surface, Eq.~9!
has to be modified to

]h

]t
5LAg¹s

2 dF
dh

1LAg“•hM1F1hF , ~11!

where the beam fluctuations are not conserved and satis

^hF~r ,t !hF~r 8,t !&52Dd~r2r 8!d~ t2t8!. ~12!

The functional derivatives in Eqs.~6! and ~9! can be
shown to be

dF
dh

52s“•
“h

Ag
1F2

a

2
fs
21

u

4
fs
41

c

2
~“f!s

2G ~13!

and

dF
df

52af1uf32c¹2f1cd~z!~2 ẑ•“f!

1cd~z2h!~ n̂•“f!, ~14!

where the subscripts represents a function evaluated at t
surface@i.e., at the vertical coordinateh(r )], and the unit
vector n̂51/Ag(2“h,1) is normal to the free surface. W
can remove thed function divergences by making the a
sumption that the surface is in equilibrium with the adjace
bulk layer, and this implies thatcẑ•“f50 at z50 and
cn̂•“f50 at z5h. Additional boundary conditions can b
derived by requiring that no current flows through the s
faces, implying thatcẑ•“mf50 atz50 andcn̂•“mf50 at
z5h. These boundary conditions represent surfaces tha
not favor either of the two components, and as shown by
simulations of Marko, this corresponds to the case wh
droplets of both phases are in contact with the surfaces.6

The relaxation of the surface we have discussed so
occurs through the diffusion of material along the surfa
and we have taken the drumhead model to represent the
ergy cost of the surface deformations. However, it has b
shown by Villain7 that a purely kinetic effect can lead to
contribution that depends on the local curvature of the s
face ~note that such a contribution also arises when deso
tion is important, but we do not consider this case he!.
Monte Carlo simulations8 have shown that such a curre
exists for a variety of growth models. Furthermore, the add
term n¹•¹h/Ag ~with n.0) in the equation forh predicts
the exponents of our Monte Carlo simulations when only o
type of particle is deposited. With this, the coupled equatio
describing the time evolution ofh andf are obtained as

]h

]t
5n“•

“h

Ag
2LsAg¹s

2F“• “hAg G1LAg¹s
2F2

a

2
fs
2

1
u

4
fs
41

c

2
~“f!s

2G1LAg“•hM1F1hF , ~15!
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]f

]t
5M¹2@2af1uf32c¹2f#1hf , ~16!

and

]fs

]t
5Ms¹s

2@2afs1ufs
32c~¹2f!s#

1G~f02fs!1hfs
1hf . ~17!

We have explicitly written out the dynamical equation f
fs , because it is assumed to evolve through diffusion alo
the surface only. The mobility at the surface,Ms , is larger
than the bulk mobility,M , and the noisehfs

in Eq. ~17! is
nonconserved because it represents the fluctuations o
concentration in the beam. The linear term infs in Eq. ~17!
coupled to the beam concentration deposition rate,G, has
been proposed before.9 This contribution can be obtained a
follows: we can writefs(t1Dt)5fs(t)1RDt, whereR
represents the amount and concentration of material fal
on the surface.R can be expanded around the average va
of the order parameter:R(f)5R(f0)1G(f02fs), which
simply states that the order parameter has a tendency to
towardsf0 . The coefficientG is proportional to the velocity
at which the solid-vacuum interface is growing.

These three equations must be augmented by the ap
priate boundary conditions discussed earlier, implying,
particular, that the contributions (“f)s

2 and (¹2f)s in Eqs.
~15! and~17! can be taken as (“fs)

2 and¹2fs . The set of
Eqs.~15!–~ 17! represents a system of coupled partial diffe
ential equations, with Eqs.~15! and ~17! directly coupled,
becausefs appears explicitly in the equation forh, and the
h dependence enters through the Laplace-Beltrami oper
in ~17!. In Eq. ~16! the bulk order parameter is not explicitl
coupled toh, but the coupling comes through the bounda
conditions and the spatial derivatives.

The coefficientn describes the sign of barriers at st
edges. Forn,0, there is an instability that has to be co
trolled by the nonlinearities. However, ifn.0, the nonlinear
term in Eq. ~15! proportional tos is irrelevant on large
length scales, and can be neglected.10 By this we mean that
the asymptotic behavior of the solution at small wave nu
ber is unaffected by the presence of the nonlinearities. F
thermore, the conserved noisehM appearing in Eq.~15! is
irrelevant compared with the nonconserved beam no
hF , and can also be neglected. After transformation to
comoving reference frameh→h1Ft, we arrive at the equa
tion for h valid on long length scales,

]h

]t
5n“•

“h

Ag
1LAg¹s

2F2a

2
fs
21

u

4
fs
41

c

2
~¹f!s

2G1hF .

~18!

In principle, the coefficientsn and L depend onf and
“h, but we do not consider such complications. Equat
~18! without the contribution from the order parameter
referred to as the Edwards-Wilkinson equation, and lead
a scaling behavior of the correlation length and the corre
tion function.

The equations of motion and the boundary conditions m
be rescaled, using the transformations
g

the

g
e

w

ro-
n

-

tor

-
r-

e
e

n

to
-

y

x5S acD
1/2

r, ~19!

t5SMa2

c D t, ~20!

and

c~x,t!5S uaD
1/2

f~r ,t !. ~21!

To be consistent with the length rescaling we also make
transformation (a/c)1/2z→z. The boundary conditions be
come

ẑ•“c50, ẑ•“mc50 for z50, ~22!

n̂•“c50, n̂•“mc50 for z5h. ~23!

The equations of motion in terms of the dimensionless
rameters are

]c

]t
5¹2@2c1c32¹2c#1A«chc , ~24!

]cs

]t
5
Ms

M
¹s
2@2cs1cs

32~¹2c!s#

1F̃~c02cs!1A«cs
hcs , ~25!

and

]h

]t
5a¹2h1bAg¹s

2F2
cs
2

2
1

cs
4

4
1

~¹c!s
2

2 G1A«hhh ,

~26!

where we have defined

a5
n

Ma
, b5

La

Mu S acD
1/2

, F̃5S c

Ma2DG,

«c5
kBTu

a2 S acD
d/2

, «h5
D

Ma S acD ~d21!/2

, «cs
5
Au

a2 S acD
d/2

.

~27!

The rescaled noises have the correlations in the new sys

^hh~x,t !hh~x8,t !&52d~x2x8!d~t2t8!,

^hc~x,z,t !hc~x8,z,t !&522¹2d~x2x8!d~z2z8!d~t2t8!.

and

^hcs
~x,t !hcs

~x8,t !&52d~x2x8!d~t2t8!.

IV. ANALYTICAL RESULTS

A. Linear stability analysis

At early times of the deposition, the system is homog
neously mixed and we can expandcs as cs5c01dcs ,
where c0 is the average value ofcs in the beam. The
dispersion relation for dcs is then V(q)5
(Ms /M )q2(123c0

22q2)2F̃, which is positive in the band
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of wave vectors q2
2 ,q2,q1

2 , where 2q6
2 5

(123c0
2)6A(123c0

2)224F̃(M /Ms), if

F̃,F̃c5
1

4 SMs

M D ~123c0
2!2. ~28!

Hence, for values ofF̃ below F̃c , there is an instability tha
causes fluctuations incs to be amplified. The expression fo
the critical deposition rate,F̃c , shows that the morpholog
of the thin film is controlled by three parameters: the de
sition rateF̃, the concentrationc0, and the temperature~in
Ms). These results are in agreement with our Monte Ca
simulations, wherec0 50. The maximally unstable wav
number qm

2 5(123c0
2)/2 is where the dispersion relatio

reaches its maximum, andV(qm)5 F̃c2F̃. Figure 1 shows
theq dependence of the dispersion relation whenc050.

The stability of the surface to fluctuations around its me
position can be considered by keeping the lowest order te
in h and dcs in Eq. ~26!. With the Fourier expansion
h(x)5(khk(t)e

ik–x we get,

hq~t!5hq~0!e2aq2t1b(
k

f ~k,q!dcs
k~0!dcs

q2k~0!

3~e[V~k!1V~q2k!] t21!, ~29!

with f (k,q) a polynomial function ink andq. To find the
maximally unstable wave number forh, we first maximize
V(k)1V(q2k) with respect tok keepingq fixed, giving us
km
h (q)5q/2. With this value forkm

h (q), the effective disper-
sion relation that amplifies the order parameter fluctuati
in hq is 2V(q/2), with a maximally unstable mode a
q52qm . Hence, the surface is most unstable at half the
der parameter wave number, and as we shall see below
produces grooves at the surface domain boundaries.

The effects of the non-Euclidian nature of the surface
the dispersion relationV(q) can be naively considered b
assuming that“h5const@1, leading to a critical growth
rate that is decreased by a factor of (“h)2, and implying that
the surface diffusion is slower in regions where“h is sig-

FIG. 1. The dispersion relationV(q) in the case of equal vol-
ume fractions of the two components. The curves from top to b
tom correspond to (M /Ms)F̃50.01, 0.2, and 0.3. Fo
(M /Ms)F̃50.25, the system is marginally stable.
-

o

n
s

s

r-
his

n

nificant. We stress that such an effect is geometrical in
ture, representing the extra length on the surface that dif
ing atoms have to cover in order to create domains of a gi
projected size on theẑ plane.

Equation ~26! can be considered in the case when t
beam fluctuations and the nonlinearities are negligible,
we can look for steady-state solutions, i.e.,]th50. This
gives

h5
b

a Fcs
2

2
2

cs
4

4
2

~“c!s
2

2 G1C, ~30!

whereC is a constant that ensures that the average valu
h, h̄ 50. In the steady-state, the surface order parameter
to satisfy@F̃ has been rescaled as compared to Eq.~25! by a
factor ofMs /M #

052]x
2~cs2cs

31]x
2cs!2F̃cs , ~31!

which is equivalent to the steady state of a dynamical Lan
vin equation for block copolymers.11 In particular, for
c050, the dispersion relation is always positive f
F̃,1/4, and the formation of domains occurs. We show
low that two regimes can be identified:~i! the weak segrega
tion regime, where the system has lamellas with wavelen
l245F̃1O(«4) with «251/42F̃; ~ii ! strong segregation
regime, where l;(F̃)21/31O(1). Note also that
«25V(qm).

In their paper,9 Atzmonet al.correctly identified the insta-
bility and the critical growth rate. However, using an analo
with eutectic solidification from the liquid phase, they pr
dicted that the wavelength of the modulation decreases a
braically with the deposition rate with an exponent 2/5.
they pointed out, the flaw in their argument is that in the ca
of MBE, the system is not free to select the growth veloci
Dimensional analysis was also used to predict another ex
nent of 1/2. The treatment below rigorously calculates
relationship between the wavelength of the modulation a
the deposition rate, which can be extended to any orde
accuracy in our expansion parameters.

We start by showing how the steady-state equation~31!
can be obtained from the relaxational dynamics of a fr
energy-like function. We write

05]x
2F2cs1cs

32]x
2cs2

1

]x
2 F̃csG , ~32!

where the operator 1/]x
2 is the inverse of the one-dimen

sional Laplacian]x
2 . The functionC(x)[2cs1cs

32]x
2cs

2(1/]x
2)F̃cs is the solution of the Laplace equation~32!,

and can be written asdL$cs%/dcs(x) with L$cs%
5Lsr$cs%1Llr$cs%. Here,Lsr$cs% is a short-range interac
tion free energy functional, whileLlr$cs% is a long-range
contribution. We have

Lsr$cs%5E dxF2
cs
2

2
1

cs
4

4
1

~]xcs!
2

2 G ~33!

and

t-
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dLlr$cs%

dcs~x!
52F̃

1

]x
2cs~x!. ~34!

To obtainLlr$cs%, we proceed as follows:

dLlr$cs%

dcs~x!
52F̃E dx8

1

]x8
2 cs~x8!d~x2x8!, ~35!

and after two integrations by parts, we get

dLlr$cs%

dcs~x!
52F̃E dx8cs~x8!

1

]x8
2 d~x2x8!. ~36!

Now we defineG(x2x8)5]x8
22 d(x2x8) and integrate over

cs to obtain

Llr$cs%52
F̃

2 E E dxdx8cs~x!G~x2x8!cs~x8!. ~37!

B. Weak segregation regime

Near the onset of instability, the amplitude of the ord
parameter is small, and we expect that the first few mode
a Fourier expansion will give reliable results. In this regio
we will expand in terms of a small parameter« defined by
«25F̃c2F̃, whereF̃c is the value ofF at the critical point
and equals 1/4. Forf(x)5f(2x), we write

f~x!5 (
n51

`

«nAn~k!cos~nkx!, ~38!

with k5k01«k11O(«2) and solve Eq.~31! order by order
in «. The constantF̃ must also be expanded:F̃5F̃c2«2.
To first order we findk051/A2, while the second order equa
tion givesA250. The third order equation provides solution
for A1 andA3 :

A1
25

8

3
~122k1

2!; A35
9

128
A1
3 , ~39!

while the next order correction vanishes so that the or
parameter is accurate toO(«5).

To find the wave number in the steady state we minim
L$cs% , since Eq.~31! can be obtained in full from the dy
namics,

]tc52¹2
dL$c%

dc
. ~40!

In a one-dimensional formulation, we can write the free e
ergy density as12

L
l

5
4

lE0
l/4F2

f~x!2

2
1

f~x!4

4
1
1

2
u]xf~x!u2Gdx

2
F̃

2lE0
l/2E

0

l/2

f~x!ux2x8uf~x8!dxdx8, ~41!

and substituting the expression for the order parameter,
find
r
in
,

r

e

-

e

L
l

5
«2A1

2

4
~k221!1

«2F̃A1
2

4k2
1
3«4A1

4

32
1O~«6!. ~42!

Minimizing this expression with respect tok we find that the
steady-state wavelength is

lss5
2p

kss
52pF̃21/41O~«4!. ~43!

With the first harmonic for the order parameter,h is given
by

h5
b

a FAq
2cos2~qx!

2
2
Aq
4cos4~qx!

4
2
Aq
2q2

2
sin2~qx!G

1
bAq

2

32a
~8q22823Aq

2!. ~44!

Figure 2 shows the surface morphology according to
~44! with q50.6 ~this corresponds to a lamellar thickness
about 10!. Notice that at the location of the order parame
interfaces, the surface has grooves of size proportiona
(b/a)«2. The physical principle behind the formation o
these dips is simply the decrease of interfacial energy w
atoms move from the point of contact between the t
phases to the top of the lamellas. Expression~44! can be
rewritten as

h5
b

a FAq
2

8
~22Aq

212q2!cos~2qx!2
Aq
4

32
cos~4qx!G ,

~45!

and therefore, the Fourier coefficients in the expans
h5(kĥkcos(kx) are

ĥk5
b

a SAq
2~22Aq

212q2!

8 D dk,2q2
b

a SAq
4

32D dk,4q , ~46!

implying that the surface structure factor is

FIG. 2. Steady-state deterministic height profiles far from on
~top! and near onset~bottom!. The top curve corresponds to a co
centration wavelengthl.50, and the bottom curve is forl55. The
vertical scale in the figure is arbitrary.
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Ss~k!5^h~k!h~2k!&

5K b2

a2 SAq
2~22Aq

212q2!

8 D 2dk,2q1 b2

a2 SAq
4

32D
2

dk,4qL .
~47!

This expression for the structure factor shows peaks
k52q and at k54q . At k52q, the height of the peak
;@(b/a)«2#. The broadening of the peaks will come fro
the average over the noise.

C. Strong segregation regime

When the deposition rate is small, the interfaces betw
the order parameter domains are sharp, the lamellar thick
is large, and the system can be divided in two regions.11 The
inner region is of thickness unity around the interface, a
the order parameter varies rapidly in this region. The ou
region is characterized by nearly constant values ofcs , and
the direction normal to the interface is rescaled asX5«x,
with «;l21. We have

05«2]X
2@2cs1cs

32«2]X
2cs#2F̃cs , ~48!

and since far from the interfacecs561 and ]x
2cs50, F̃

must beO(«3). With the rescalingB5«23F̃, the equation
in the outer region becomes

05]X
2@2cs1cs

32«2]X
2cs#2«Bcs , ~49!

which can be solved to first order in« to give

cs
outer~X!56F11

«

2
BXSX7

1

2D G1O~«2!. ~50!

In the interfacial region, the equation is

05]x
2@2cs1cs

32]x
2cs#2«3Bcs , ~51!

yielding a solution

cs
inner~x!5tanh~x/A2!1O~«2!. ~52!

The steady-state wavelength is calculated by minimizing
free energy densityL$cs

inner,cs
outer%/l with respect tol. To

O(«2), the free energy density is

L
l

5
4A2
3l

1
l2F̃

96
, ~53!

giving to leading order

lss5S F̃

64A2D
21/3

. ~54!

With the relations for the order parameter in the inner a
outer regions, we can calculate the profile of the free surf
using Eq.~30!. We find that

houter~X!5const1O~«2!, ~55!
at

n
ss

d
r

e

d
e

hinner~x!5
b

a F tanh2~x/A2!2
1

2
tanh4~x/A2!G ~56!

1C1O~«2!, ~57!

whereC ensures that the average value ofh is zero. The
profile for h consists of the inner solution matched to t
outer solution, and this is repeated every period of the mo
lation. This is shown in Fig. 2 in the case when the lame
thickness is large (. 50). Note that far form onset,“h is of
O(b/a), and this quantity controls the importance of th
nonlinearities in“h that we have neglected.

V. CONNECTION WITH EXPERIMENTS

In this section, we give order of magnitude estimates
the quantities we have calculated and compare with typ
experiments. Let us start by considering the critical grow
rate: in dimensional form, we have@see Eqs.~27! and ~28!#

Gc5
1

4

Msa
2

c S 123
u

a
f0
2D 2, ~58!

which is equal to the velocity of the moving surface (v)
divided by a microscopic diffusion length (d). The constants
a and u have units of energy/volume whilec has units of
length23energy/volume. Because the energy scales are
the same order, the ratioc/a is of orderj0

2, with j0 a micro-
scopic length describing the thickness of interfaces wh
u/a is of order 1; this gives a critical growth velocit
vc;Msad/j0

2 . For example,13 the diffusion coefficient for Si
on Si has an Arrhenius formMsa5D0e

2Em /kBT with D0 in
the range 1029 m2/s andEm50.6 eV. Withd andj0 a few
angstroms, the critical growth rate is about 1mm/s, which is
3–4 orders of magnitude larger than typical MBE grow
rates.

The selected wavelength depends on the distance from
onset of instability. Near onset, the dimensional form is@Eqs.
~27! and ~43!#

l5SMsc

G D 1/4, ~59!

which is of orderj0 , independently of our estimate forvc .
This makes physical sense, because near onset, the pa
amplitude and wavelength are very small, the later cor
sponding to a few angstroms in a real system.

Far from onset, we have

l5S 64A2MsAac
G D 1/3, ~60!

which is of order 10211v21/3. Typical experiments with
v'1 Å/s would then yieldl in the range of 400 Å.

The grooves in the surface associated with the phase s
ration can also be considered for order of magnitude e
mates. Far from onset, the grooves have a scaled
Dh5b/a, giving in dimensional form

Dh5
La2

nu
. ~61!
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The energy scales ina, u, andL are the same and cancel
We can say thatL;Msd, while n;(v/d) l 2 implying that
Dh;(Msa

2)d2/v l 2u, wherel represents the typical distance
between steps on the surface, which depends on the sur
roughness and has to be evaluated in the groove. Forl'10
Å, we find thatDh is a few lattice constants.

VI. NUMERICAL RESULTS

The equations of motion~24!, ~25!, and ~26! are dis-
cretized both in space and time using an Euler metho
Growth occurs in the positivez direction and we consider
only one lateral dimensionx. The substrate is located a
z50, while the order parameter is defined at the points o
lattice ~with spacing Dx), from z5Dx/2 to zmax(x,t)
5int@h(x,t)/Dx#. The boundary conditions are satisfied b
taking

cs~x,2Dx/2,t !5cs~x,Dx/2,t !, ~62!

]xh~x,t !]xcs~x,t !5]zcs~x,t !, ~63!

m~x,2Dx/2,t !5m~x,Dx/2,t !, ~64!

and

]xh~x,t !]xms~x,t !5]zms~x,t !. ~65!

The time derivative is

] t f ~x,z,t !5
1

Dt
@ f ~x,z,t1Dt !2 f ~x,z,t !#, ~66!

and the spatial derivatives are discretized to

]xf ~x,z,t !5
1

2Dx
@ f ~x1Dx,z,t !2 f ~x2Dx,z,t !#, ~67!

while the Laplacian in thex,z coordinate system is

FIG. 3. The figure represents the discretized system used for
numerical integration.
ce

d.

a

¹2f ~x,z,t !5
1

~Dx!2
@ f ~x1Dx,z,t !1 f ~x2Dx,z,t !

1 f ~x,z1Dx,t !1 f ~x,z2Dx,t !24 f ~x,z,t !#.

~68!

In order to implement the boundary conditions at the s
strate, we generate an order parameter and chemical pote
at z52Dx/2. This is then used to integrate the equations
the order parameter atz5Dx/2. At the free surface, we use
backwards version of the spatial derivative, which gives
c(x,zmax) andm(x,zmax) as a function ofcs(x) andms(x)
according to Eqs.~63! and ~65!. The nonconserved noise i
generated with a Gaussian random number generator, w
the conserved noise is obtained from

hcs
~x,z,t !5r1~x1Dx/2,z,t !2r1~x2Dx/2,z,t !

1r2~x,z1Dx/2,t !2r2~x,z2Dx/2,t !,

~69!

where the noise currentj5(r1,r2) can be thought of as lying
on the bonds between the order parameter sites. Bec
n̂–j50 at the boundaries, r2(x,Dx/2,t)50, and
]xh(x,t)r1@x,zmax(x)1Dx/2,t#5r2„x,zmax(x),t…. Figure 3 il-
lustrates our scheme.

Figure 4 shows configurations far and near the onse
instability in the case whereM /Ms50.01,a51, b50.1,
«cs

50.001,«cs
50.01, and«h50.01. The constantF̃ was

set as 0.25v, wherev is the velocity at which the free surfac
is growing. The time and space mesh where chosen to
Dx51.1 andDt50.2, such that artificial bifurcations in th
set of equations were avoided~the systems were of latera

he

FIG. 4. Configurations as well ash andcs in the steady state
obtained from numerical integration. The top portion of lateral s
100 and vertical size 50 of the full system is shown. The aver
value ofh is 400.
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sizeL5220). Soon after the deposition starts, the linear
namics hold, and the system is characterized by the amp
cation of the fluctuations by the instability, leading to pha
segregation into two phases. This early time regime is g
erned by the maximally unstable mode,km51/A2, which
corresponds to the location of the maximum in the dispers
relationV(k). The end of the linear regime is characteriz
by the saturation of the order parameter to its steady-s
value due to the nonlinearities, accompanied by the form
tion of well defined domain boundaries. The time scale
reach the end of the linear regime istm;V(km)

21. Once in
the nonlinear regime, the dynamical evolution proceeds
decrease the selected wave number fromkm to kss. This
occurs through the collision and merging of lamellas. In
case of block copolymers,11 the time dependence of the wav
number follows the relation

k~ t,F̃!5kss~F̃!g~ tF̃!, ~70!

where the scaling functiong(x);x21/3 for small x relative
to the end of the linear regime, andg(x);const for large
x. This relation is expected to hold in our case, not too cl
to onset.

Of particular interest in Fig. 4 is the one-to-one corr
spondence between surface domain boundaries~i.e., cs50)
and grooves in the surface. Fluctuations ofh around the pe-
riodic profile have two origins: noise in the beam streng
and in the beam concentration. This can be demonstrate
computing the surface structure factorSs(k), which is shown
in the inset to Fig. 5, where two peaks inSs(k) can be iden-
tified. Neark50, there is a peak that decays ask22, signal-
ing the presence of the Villain contribution in the grow
equation. The width of this peak is controlled by the stren
of the beam fluctuations («h) and the step-edge barrie
(a). The second peak at nonzero wave vector is represe
tive of the surface modulation. We find that the location
the peak is at twice the bulk order parameter wave num
The broadening of this peak is due to the strength of

FIG. 5. The steady-state wavelength of the concentration mo
lation as a function of the deposition rate. The solid~dashed! line
represents the expansions near~far from! onset. The points corre
spond to numerical integration results. In the inset, the surf
structure factor in the near onset regime is shown.
-
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concentration fluctuations in the incoming beam («cs
). The

early time evolution of the surface shape is characterized
the ~deterministic! linear dynamics with the instability com
ing from the same dispersion relation as for the order par
eter. As time proceeds, the surface shape follows the s
dynamical evolution as the order parameter at half the w
number: formation of the grooves, saturation of the groo
depth, and crossover to 2kss. There are also other time scale
that corresponds to the time evolution of the surface rou
ness~theq50 peak in the surface structure factor!. The so-
lution of Eq. ~26! for b50 and including the fluctuations
gives for the surface structure factor,

Ss~k,t !5
«h

ak2
~12e2ak2t!. ~71!

At early times,Ss(k,t)5«ht, which represents an uncorre
lated process, while for all times, the correlation length
j(t)5Aat until it reaches the system size. Three dynami
regimes can be identified from the behavior of the surfa
width, W: ~i! early times correspondingW;t1/2, ~ii ! inter-
mediate times whereW;t1/4, and~iii ! saturated regime with
W;L1/2.

We calculated the bulk modulation wavelength from t
first moment of the structure factorSc(k)5^c(k)c(2k)&,

k15
E kSc~k!dk

E Sc~k!dk

. ~72!

In order to judge if the steady state is reached, two quanti
have to be monitored: the width of the surface determine
the surface is saturated, and the selected length scale fo
bulk morphology must also be stationary. The time scale
the selected wavenumber to reach its steady-state value
pends on the deposition rate ast*'100/F,11 which means
that the number of layers deposited has to be equa
h*5400, independently of the growth velocity. Results we
averaged over four independent runs near onset, and one
was performed far from onset. As Fig. 5 illustrates, the n
merical results fork1 are in excellent agreement with th
near and far from onset expansions.

VII. CONCLUSION

In this paper, we introduced an order parameter desc
ing the extent of the phase separation, and proposed a
energy functional that includes the fluctuations of the fr
surface. The time evolution of our model was dictated
two conservation laws, one for material and one for the or
parameter. We showed that the constant bombardment o
surface by the beam tends to burry the phase separated
mains in the bulk, where they are almost frozen. This perm
control of the morphology of the bulk, since above a critic
deposition rate, the film is homogeneously mixed. We cal
lated the order parameter profile near and far from the crit
growth rate, and obtained expressions for the thickness o

u-
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lamellas in excellent agreement with our Monte Carlo
sults. In this theoretical framework, the modulation of t
surface emerges, with grooves at the interface between
mains.

To accurately represent real systems, the effects of st
between the components and between the substrate an
growing film would have to be included. Such effects can
included in our model and this project is currently und
way.
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