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Continuum model of confined magnon polaritons in superlattices of antiferromagnets
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We present a theory of polariton modes in superlattices of antiferromagnetic materials. We apply a con-
tinuum approach which models magnon confinement using only the bulk properties of the materials. We
assume the modes to be completely pinned at the interfaces, so that the pure modes would take the form of
simple sine waves. The expression for the superlattice permeability tensor thus obtained is simple to use and
requires only the substitution of the appropriate parameters. We expect the approach to model the effects of
confinement accurately at low temperatures provided the superlattice layers are not té@ fihin lattice
periods and the resonances in the constituent layer materials are not very close together. We apply the model
to an Fek/MnF, superlattice, and calculate oblique incidence reflectivity and attenuated total reflection spectra
for the anisotropy axis along three different directions. We find that such spectra show a wealth of detail, and
are radically affected by the anisotropy direction and by the polarization of the incident light.
[S0163-18297)00601-3

[. INTRODUCTION accurate. The resulting “standing spin waves” have been
observed experimentally in single fililof MnF, as thick as
In recent years high-quality superlattices of antiferromag-1 um. It appears unlikely that such effects can therefore be
net materials have been successfully grdwhgenerating ignored in superlattices, even when the layers are relatively
considerable interest in the magnon polariton spectra exhick (hundreds of angstromsThis contrasts with the case
pected from such structures. A number of theoretical studiefor semiconductor superlattices for which the analogous phe-
now exist on this subjedt® In general, the approach has nomenon of phonon confinement is only important for layers
been to use a bulk slab modéh which each constituent a few lattice units thick!

layer is considered to retain its bulk properjiasually in the Although magnon confinement or other microscopically

long-wavelength limit in which effective-medium theory based effects place restrictions on the use of bulk slab mod-

may be applied. els, effective-medium theory, which requires only that
Superlattice effective-medium theoty!! initially devel-  qL<1, is still relevant. The result is that, in the long-

oped to study electrodynamics of semiconductor superlatwavelength limit, the superlattice behaves as a single aniso-
tices, has proved to be very useful in interpreting far-infraredropic medium, as in the bulk slab case. However, a some-
reflectivity and attenuated total reflectidATR) measure- what more sophisticated form of the permeability tensor than
ments on semiconductor superlattices specim&f8.The  that supplied by the bulk slab model is now required. One
effective-medium results for bulk slab superlattices can bean take a microscopic approach to this problem by solving
derived by a simple field-continuity argumé@rnir from the  all the equations of motion, with a long-range dipolar field
transfer-matrix theory'!® taking the adequate limigL<1, included, and applying periodic boundary conditions over
wherelL is the superlattice period amglis the magnitude of the superlattice period. This methodology has been success-
the superlattice wave vector. The superlattice can then billy used in the past to model phonon polaritons in short
considered as a single anisotropic medium. period semiconductor superlattic¥sRecently Stamps and
Considering its success in modeling phonon polaritons irCamley?* have taken the same approach in modeling short
semiconductor superlattices, the application of the effectiveperiod (four lattice units in each monolayesuperlattices of
medium limit®17 of the bulk slab modéf to magnetic su- easy-plane antiferromagnets. In this case they found the ef-
perlattices seemed logical. This approach has been used fects of interlayer exchange to be important.
model bulk and surface magnetostatic modes and polaritons For a superlattice period containing many lattice units,
in antiferromagnet/antiferromagnet and antiferromagnettonsiderable computing power would be needed in applying
nonmagnetic superlattices both withb¥iand with an exter- a microscopic approach to the calculation of superlattice sus-
nal applied static magnetic fielf In the latter case the su- ceptibilities. However, a full microscopic approach may not
perlattice permeability is not only anisotropic but alsobe necessary in structures of this sort. The present paper is
gyrotropic. concerned with such cases. It uses a continuum approach that
The problem with bulk slab theories is that they ignore therequires only substitution into simple equations while still
effects of the interfaces. In superlattices of antiferromagnetsetaining the effects of confinement. A similar approach has
the most prominent of these effects is likely to be that ofalready been applied to phonons in semiconductor
magnon confinement. If the resonance frequencies in the twsuperlattice$>?® However, we expect the continuum ap-
constituent antiferromagnet layers are appreciably differenfproach to be more applicable to the present case since mag-
magnon modes will be effectively pinned at the interfaces, smon confinement effects should be observed at longer super-
that a bulk description of the constituent layers is not strictlylattice periods than should phonon confinement effects.
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We consider superlattices containing uniaxial antiferro-correct for this in Sec. IV. We emphasize that we never use
magnet layers of sufficient thickness that the microscopid, as a polariton wave vector; that quantity will have the
details at the interfaces are unimportant, and we assume totaymbolq, and will be introduced in Sec. Il
pinning. This should be reasonable provided the resonant We derive the response in a uniaxial bulk antiferromag-
frequencies for the two constituent layers are sufficiently fametic material, having a rutile structure with lattice constants
apart. We take the magnon modes to be totally confine@ andc. There is no static external field. The derivation of
within the individual superlattice monolayers such that thethe susceptibilities is a simple modification of that com-
magnetization associated with each mode varies across tmeonly used to describe the long-wavelength response in an
layer as a sine wave. At a given frequency, all the confinedntiferromagnet’ Wave-vector dependence is incorporated
modes contribute to a local susceptibility to a lesser oiin a similar manner to the way in which, for instance, Lou-
greater extent. We calculate the local susceptibility associdon and Pincu§ describe the dispersion of the magnons
ated with each mode, and sum over all modes. The overathemselves.
superlattice response is then obtained by averaging the local Consider first the case when the anisotropy axsalong
susceptibility across the superlattice period in a manner corthe wave-vector directiom. We use the torque equation for
sistent with Maxwell's equations, thus leading to anions in sublatticé, which has a magnetizatiav; :
effective-medium permeability tensor.

Most antiferromagnetic resonance frequencies lie in the 1UydM; /dt=M; X H; o, (1)
far-infrared region of 3 to 500 cnt. Far-infrared Fourier-
transform spectroscopy has recently been employed to studyhere y is the gyromagnetic ratio and the effective field
magnon polaritons in antiferromagrmés® using essentially H;, ¢ is given by
the same techniques as previously used on semiconductor
superlattice$? We therefore expect this spectroscopy to Hi o=H; g+H; o+ H. )
prove very useful in characterizing antiferromagnet superlat- ’ ' ’
tice structures in terms of the permeability tensor. In view ofThe quantities on the right-hand side of EB). represent the
this, we have calculated theoretical spectra based on thexchange, anisotropy, and the driving fields respectively. As
above superlattice model. is usual practice for antiferromagnets, we ignore the Brooks-

The plan of the paper is as follows. In Sec. Il we deriveHarris field.
the response of a bulk uniaxial antiferromagnet to a hypo- In the present casei; 5 is directed alongz, so thez
thetical driving field varying as exp(k,z— wt)]. Later in  components may be representedtas, on sublattice 1 and
the paperk, will be used to represent an effective confine- —H, on sublattice 2. We consider small oscillations of the
ment wave vector within a superlattice layer. In Sec. lll wemagnetization in thexy plane, associated with precessions
present a study of superlattice fields in the long-wavelengtlaround thez axis, so that the components of the magneti-
limit qL<<1. In particular we show that the in-plafecom-  zations and the exchange fields may similarly be represented
ponent and the out-of-plar®® component are constant irre- as the static valuesM and +Hg, respectively, on sublat-
spective of any local fluctuations in the permeability acrosdice 1 and—M and —Hg, respectively, on sublattice 2.
the superlattice period. The superlattice permeabilities are We assume that the exchange field acting on ions in sub-
derived in Sec. IV, making use of the bulk susceptibilitieslattice 1 is due only to nearest neighbors, and that the mag-
from Sec. Il and the constant field results from Sec. lll. Innetizations vary as explk,z— wt)]. The x component of
Sec. V we calculate the permeability tensor for the specifichis exchange field is then given by
FeR/MnF, superlattice structure and use it to model far-
infrared spectra. Conclusions are presented in Sec. VI. Hixe= — U exp(ik,c/2) + exp( —iK,c/2) [HE(M o /M)

=—Hg(My /M)cogk,c/2), €)
Il. BULK SUSCEPTIBILITIES
wherec is the lattice parameter along the anisotropy axis.

shall consider magnon modes confined within individual suyther sublattice.
perlattice layers. We shall assume that the magnetization as- \ye now substitute for the appropriate components of the

sociated with each confined mode varies across the laygy fields used in Eq(2), and write thex andy components of
width as a sine wave, and hence we can assign such a mogg, (1) as

an effective confinement wave vector which we shall kall

In this section, we consider the response of a bulk mate- i _

rial to a hypothetical driving F13ield varying as (@M y=(HatHet H) M,y
expli (k,z— wt)], with the magnetization varying in the same —[—HgM,, cogk,c/2)+H/M], (4
way, as a function ofv andk,. When we later discuss su-

erlatticesk, will be used to represent the effective confine- i __
&ent wave vector described at?ove. The magnetization due to H(0lY)Myy=—=(HatHe+ H)M,,
individual confined modes within a superlattice layer varies +[—HgM,, cogk,c/2)+H,M], (5)
along z as sink,z), in the same way as the magnetization
described in this section. The driving field in a superlattice, ~i(@/y)Ma=(—Ha—Heg+H)My,

however, does not vary in this waye shall actually be
considering responses to constant figld&¥e show how to —[HgM,y cogk,c/2)—H/M],  (6)
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~i(@/y)May=—(—Ha—Heg+H,)M lll. SUPERLATTICE FIELDS IN THE
LONG-WAVELENGTH LIMIT
+[HeMy, cogk,c/2)—HM].  (7) : . : .
We are interested in the superlattice response in the re-
Equations(4)—(7) may be solved to get the various bulk gime for which the polariton wavelengths are much larger

susceptibilities as a function ok,. ij”'k is given by than the superlattice period. Typically the free space wave-
(M, +My)/H, and so on. The results are lengths are greater than 1Q@0n, and since we consider su-

perlattices with periods of a few hundred angstroms or less,

bulk Sc(ky) this criterion is easily satisfied. The effective-medium model

X2 (k) = x5 (k) = (8)

used here relies on the fact that in the long-wavelength re-
gime the in-plane component of th field and the out-of-
)(tz’“'k(kz)=0, 9) plane (z)_ component (_)f theB fiel_d are constant over the_
superlattice period. This assumption has been widely applied
wherewr(k;) is the transverse resonance frequency and iso bulk slab superlatticé§=8and to structures which can be
given by considered in terms of discrete plarfés®In both such cases
) ) 2 o . the result is fairly obvious from the field boundary condi-
wT(K) =" Ha(Ha+2Hg) T Hey sir’(k,c/2)  (10) tions. In this section we consider the fields involved and
present a simple proof that the required components are in-
deed constant regardless of any local variations in the sus-
Se(ky) =2M ¥y [Ha+Hg—Hg cogk,c/2)]. (11  ceptibility, along the growth direction, within the superlattice
bulk _ . period. An analogous proof, in terms &f and D fields, is
Xy (k) should, of course, strictly be written as presented elsewhef@.
X2k, , ), with similar modifications for the other compo-  In a superlattice structure in which the lattice is homoge-
nents, but we keep the shorter notation for simplicity. neous in thexy plane but periodic in the direction, the
An equivalent approach may be applied for the anisotropymicroscopic fieldsF(r t) follow a Bloch form
axis alongx. In this case the results are

ok — P’

and S;(k,) is the associated oscillator strength, given by

" F(r,t)=F(2)exdi(g-r—wt)], (16
u —
X (k2) =0, (12 whereq is a macroscopic wave vector and
Sa(kyz) F(z+L)=F(z 17)
X?ulk( kZ):Xlzlulk( kz): 5 T( Z_ 5. (13) - - ( - ) ( ) ( v
0Ta(ky) —w with L the superlattice period. In the long-wavelength limit it

wro(k,) andS,(k,) are given by the same expressions as forlS also appropriate to consider macroscopic fiel§ ,t)
wr(k,) in Eq. (10) andS,(k,) in Eq. (11) respectively, ex- Which also follow the Bloch form

cept that in each case the lattice parametés replaced by o =i _
the lattice parametea. For the anisotropy axis along one FlrH=Fexgi(q-r-ot)], (18

need simply swap the susceptibilities(gu'k(kz) and  whereF is the average ofF(z) over the superlattice period.

x2""(k,) in Egs.(12) and(13). This definition ensures that so long as the microscopic fields
Equations(9)—(11) give responses tdd fields. In the obey Maxwell's equations, so do t_he macroscopic fields.
analysis that follows, we shall use the results fg'(k,) We now apply Maxwell's EquatioiV-B8=0 to Eq.(16):
bulk ;
and x, " (k,). However, for rsgksons that will become clear iq-B+dB,/dz=0. (19

later, it is useful to transforny;, " (k,) into a response to B _ _ _ o
field. For the anisotropy axis along of course, this re- The first term in this equation is of ordefB. In the long-
sponse, which we shall ca#>"(k,), will be zero. For the ~Wavelength limit we haveL<1, so that/B,/dz<BIL, i.e.,

anisotropy axis along or y, however, we can transform Eq. B; is effectively constant over the superlattice period.
(13) as In order to show thati, andH, are constant we apply

VXH=(1lc)oDlét to Eq.(16):
M 1z+ M 2z Sa( kz)

bUlk(k): —
2T H A AT(Myt M) wfa(k)— o

5, (14) igQXH—-edH,/dz+edH,/dz=—i(w/c)D,  (20)

. o _ whereg ande, are unit vectors. We now compare Eg0)
wherew 4(k,) is a longitudinal resonance frequency givenwith the result of applying? X H=(1/c)#D/4t to the mac-

by roscopic field equatiori18):
wta(ky) = wF(k) +4mwSy(k,) (15 igxH=—i(w/c)D. (22)
in agreement with Loudon and Pincifs. Now the macroscopic fieldst and D will be of the same

The above susceptibilities will be used as a basis for deerder as the microscopic field$ andD. Comparison of the
termining superlattice responses. Note that we do not immewo equations(20) and (21) therefore shows that all the
diately apply Maxwell's equations to these results, as wderms in Eq.(20) should, for arbitrary polarization and wave-
would to model polaritons in the bulk antiferromagf&he-  vector directions, be of the same ordeith the exception
cause the superlattice fields used later in the paper will not bthat if the anisotropy is along or y then eitherdH,/dz or
of the same form as described above. dH,/az will be identically zero, leaving the remaining terms
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of the same order as one anotheHence, in the long-
wavelength limitgL<1, using the same argument as for the
B, fields, we have botl#H,/dz and 9H,/dz much less than
H/L, i.e., bothH, andH, are effectively constant over the
superlattice period.
tibilities, it will prove convenient to consider responses to
the constant fieldsi,, H,, andB, .

IV. SUPERLATTICE PERMEABILITIES

We consider first superlattice responses alongctbeec-
tion. As explained in the previous sectidf, will be con-
stant in the long-wavelength limit, so we simply consider

In determining the superlattice suscep-

ONFINED MAGNON . . . 997
‘sl in( /dy)=1 (25
— — sinilmmz/d,) =
T m odd M Tt
to expressy,(z) as
(2)= x"""(k =0)i i 1sin(mqrz/d) (26)
Xx Xix \Kz T sy m 1)

i.e., we are expressing the constant susceptibility as a Fourier
summation of confined modes. Equati®@®) can be seen to

be equivalent to the wide layer limiin which k,—0 for the
dominant modegsof Eqgs.(23) and(24) if we make the sub-
stitutions

responses to this constant field. The magnetization, in con-

trast, will vary alongz, so it is useful to consider a local
susceptibility x,(2):

M(2)=Hyxxx(2).

We initially consider the susceptibility within layer 1 of the
superlattice period, occupying the spacez&=d,, the layer
thicknessd; corresponding ta, lattice units. Of course, if
the anisotropy is along, x,(z) is always zero, and the prob-
lem is trivial. For anisotropy along or z, we assume total
pinning at the interfaces, so that there is a series,;afon-

(22

fined magnon modes, each making a contribution, varying a8

sin(mwz/d,), to the magnetizationm is the order of the

mode and corresponds to the number of half-wavelengths

confined within the layer. Each confined mode makes a simi
lar contribution to the local susceptibility since, from Eg.
(22), this varies in the same way as the magnetization:

ng

xx<z>=§ @1xm SINM7Z/dy), (23)

where ¢, IS a susceptibility associated with tieth con-
fined mode in layer 1. We can consider each confined mod
as having an associated confinement wave vedtpr
(=mm/d,) which determines the resonance frequency ac
cording to, for instance, Eq10). The associated susceptibil-

ity should have a pole at this frequency, and in general take

the same form as the bulk susceptibiligf2(k,) derived in
Sec. Il. We thus have

@1xm=CmX 3y (k,=mr/dy). (24)
The coefficientc,,,, which depends only on mode orde,
determines the relationship between the response to a co
stantH, field, as used here, and the response to one atong
varying as expik,z), as used to defing?“(k,). Formally,
H,c., is the Fourier coefficient of the componentlgf that
varies in the same way as timeth mode magnetizatiorc,,
can therefore be determined by resolvidg into Fourier

(27)

thus giving us the necessary expressions for the coefficients
Cn,- Note that the even order modes do not contribute to the
susceptibility—this is physically reasonable because such
modes have no overall dipole moment. We also note that the
local susceptibility obtained upon substituting E¢34) and

(27) into Eqg.(23), and using the bulk susceptibility given by
Eqg. (8), is exactly the same as obtained for a single thin
ntiferromagnetic film with anisotropy alormg by Orbach

nd Pincud! without using the bulk susceptibility.

In order to get the overall response in the superlattice, we
must make the appropriate averages across the superlattice
period. Over layer 1 we substitute Eq84) and(27) into Eq.
(23), and perform the averaging operation

cn=0, m even,

al

ny

w(2dz= >,

m odd

bulk(k,=mar/d,)

m?

1

fd
1J0

8x

X_lx:d

(28)

If we do the same over layer 2 we can then get an overall
permeability componeni,, for the superlattice by averaging
over the two layer types, in a similar manner to the proce-
dure used in bulk slab modéfs:

dlﬁx'f_ dZEx
d,+d,

Myy Can be obtained in the same way ag,. In order to
obtain u,,, however, we consider the response to a constant
B, field. We can then consider a local response to this field
¥,(2). A similar analysis to the above then gives an average
response over layer 1 of

Myx=1+4m (29)

— & 8y (k,=mmld,)
Y= 2 e (30)
m odd mm

with a similar result for layer 2. The responses can be aver-
aged over the two layers, leading to a superlattice permeabil-

components over the layer width. Here we derive an eXpresiy of the form

sion for c,, in a somewhat more physicébut slightly less
rigorous way by considering the susceptibility in the limit
whend, is very large. Both methods lead to the same result

When layer 1 is sufficiently wide, the layer material re-
tains its bulk properties, ang,(z) is a constant equal to
X?Q'k(kz=0) over the layer width. However, over the range
0<z=d,, we can use the identity

i:l_ dyif1,+doi,

Mzz dy+d;
Thus it can be seen that the expressions needed to determine

the superlattice permeability components are very simple
ones, requiring only substitution into Eq28)—(31). In this

T (31)
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paper we make use of the bulk susceptibiliti,e%‘"k(kz), have a significant effect on the thin layer results discussed in
lewlk(kz), and w‘;”'k(kz) derived in Sec. Il. However, the the two microscopic examples,_|t should have a negligible
analysis presented in the present section does not depend 8ffect on the wide layers considered here. The use of the
any particular model for the bulk susceptibilities, and morecontinuum model in this case therefore seems well justified.
sophisticated modelg¢e.g., including next-nearest-neighbor ~ As an example of the type of spectrum we should expect
terms or models for different structures could equally well to see in anFeFR,);¢/(MnF,);5 superlattice, Fig. 1 shows our
be used. calculateds-polarization spectrum for xm of superlattice,
with the anisotropy axis within each layer alopgdeposited
on a semi-infinite Zng substrate. The angle of incidence is
60°, and the plane of incidence xz, with z normal to the

We now calculate the permeability tensor for a specificlayers. We have included a damping term into the perme-
superlattice structure and use it to model far-infrared spectrabilities using the standard substitutiof— w’+i wI", where
All results shown in this paper are fFeR,);/(MnF,);5 su-  I'is the magnon damping term. Here we use the experimen-
perlattices, where the subscript on each bracketed componetally observed valugd24*of '=0.05 cm* for FeF, and
represents the number of lattice units of that component'=0.0007 cm* for MnF,. We also need to include the di-
within a superlattice layefeach superlattice period is there- electric response of the substrate and superlattice. We use a
fore equivalent to a chain of 60 £e spins followed by a value ofe=8.0 for the Znk substraté. For the superlattice
chain of 30 Mri™ sping. We use the same Feparameters components we take dielectric constafité®333¢of 5.5 for
as used in recent far-infrared  spectroscopicboth Fek and Mnk. Bulk slab effective-medium theoty®
investigation&*~2® at 4.2 K: M=0.056 T,H,=19.745 T, may be used to work out the superlattice dielectric tensor
Hg=53.313 T, andy=1.05 cm YT, corresponding to a bulk components, but since, in this case, the dielectric constants
resonance frequency @,=52.45 cml. For MnF, we use  of the two materials are equal we simply end up with com-
the value¥>*M=0.06 T,H,=0.787 T,Hc=53.0 T, and  ponentse,,=&,,=¢,,=5.5. Note that we retain these quan-
y=0.975 cm YT, corresponding to a bulk resonance fre-tities as explicit tensor components for the rest of paper,
quency ofw,=8.94 cm L, since the isotropy of the superlattice dielectric tensor is sim-

Before examining the results of the calculations, weply a consequence of the parameters of the chosen materials,
briefly discuss the applicability of the continuum model, with and is not general. Strictly speaking, the dielectric tensor of
particular regard to the assumption of strong pinning at thVinF, is itself uniaxial! but this makes a very small differ-
interfaces, to the present case. We are not aware of any ménce to the final spectra and it is a trivial matter to incorpo-
croscopic calculations for this type of system for compari-rate this change into the bulk slab effective-medium
son. However, we may usefully consider the calculations okxpressiond.Using the calculated permeability and dielec-
Stamps and CamléYfor a bilayer of two easy-plane antifer- tric tensors, we have worked out the reflectivity utilizing
romagnets and those of Hinchey and Millsor a superlat- standard transfer-matrix techniqués’
tice of a ferromagnet with an antiferromagnet similar to  Figure Xa) shows the reflectivity spectrum over the entire
MnF,. Both these examples show well separated resonancemiagnon range. Immediately one can see that there is a large
as in the FeFMnF, case considered here. We would expectamount of structure due to mode confinement. Miebn-
pinning in our example to be similar to that reported in thefined modes occur in the range 10-55 ¢irand Feg modes
two microscopic calculations. In fact, it may well be greater,occur in the range 50—80 ¢m In each case the low-order
due to the high Fefanisotropy. modes are at the low-frequency end of the range. In Rig. 1

The Stamps and Camley paper shows mode amplitudese show an expansion of the range 51-57 &nwhich is
for a bilayer of two easy-plane antiferromagnétsth some  dominated by features due the lower order Fetodes. The
in-plane uniaxial anisotropy includgdeach of width four ~FeF, damping is 0.05 cmt and the width of the resulting
spins. For an exchange field across the interface comparableatures is of this order. The spectrum also shows features
to that in the individual layers, the pinning is seen to be verydue to high-order Mnf modes. We have used a much
strong. Even though, for each magnon mode, a small tail casmaller damping0.0007 cm?) for MnF, and the features
be seen to extend into the nonresonant layer, it does netppear as ‘“spikes” on the spectrum. However, there are a
appear to continue beyond the first spin of that layer. Thewumber of reasons why we do not expect to see such,MnF
Hinchey and Mills paper does not show mode amplitudedeatures in practice. Firstly, the associated modes are very
explicitly, so the degree of pinning cannot be observed diweak compared to the FeRodes; they are about two orders
rectly. However, it does show the dispersion curve correof magnitude weaker than that of the first Fefode. Sec-
sponding to the lowest antiferromagnet magnon mode in aondly, the model is not designed to describe accurately the
antiferromagnet/ferromagnet superlattice. For a superlatticbkehavior of these high-order modes, which may in practice
period consisting of only four spins of antiferromagnet andbe subsumed into the much stronger fetodes at around
four spins of ferromagnet, the magnon mode is almosthe same frequency. Thirdly, the use of bulk damping param-
dispersionless—a classic indication of mode confinent@nt eters for such modes is likely to be unrealistic. It is a feature
similar result is also seen for the ferromagnet modesr-  of confined phonon modes that higher-order modes tend to
thermore, the affiliated confinement shift agrees, within 20%get damped out? and we expect the same effect here. In
with that of the resonance associated with E4). addition we note the comments of Lui and co-work&r8

The two examples quoted above suggest that, in outhat antiferromagnetic resonance in Mnfifms one to two
FeR/MnF, system, penetration into the nonresonant layer i®rders of magnitude thicker than those considered here can
unlikely to extend beyond about one spin. Although this mayonly be observed on ultrahigh-quality samples. Due to the

V. CALCULATED RESULTS
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FIG. 1. Calculated 60° oblique incidensepolarized reflectivity
spectrum of 5um of (FeF,);¢/(MnF,),5 superlattice deposited on a
semi-infinite Znk substrate. The anisotropy axis is alopg

much lower anisotropy of Mnf the MnF, modes are in
general much weaker, and hence narrower, than the FeF
modes. Thus a small amount of inhomogeneity within the
MnF, layers is likely to damp out the modes, and difficulty
may be encountered in observing any superlattice Ma&-
tures, even those associated with low-order modes.

For the rest of the paper we concentrate on features asso-
ciated with Fe magnons in the range 52.4-53.6 chni.e., ° 55 530 535
in the region of the lowest order modes. For the reasons
outlined above, and to simplify our discussion of the spectral Wave number (cm™)
features, we have removed the contributions of the high-
order Mnk, modes which fall in this region. We present the  FIG. 2. Undamped permeability tensor components for a super-
three principal components of the undamped permeabilityattice with the anisotropy axis along (&) uxx, () tyy, (©) ;.
tensor in Fig. 2. The case illustrated is for the anisotropy
axes alongy, as in the example given in Fig. 1. To model the o ,(k,=m/d;) whered, is the thickness of the Fglayer.
case for anisotropy alongone would simply exchange the  We see that, ignoring the absence of any response along the
andy components. For anisotropy alomgboth u,, andu,,  anisotropy directioncorresponding to a permeability com-
would have the same form ag, in the case illustrated, with ponent equal to )1 u,, and u,, have poles at the odd-index
My, equal to 1. confined transverse mode frequencies whergabas zeroes

We have labeled the frequencies of the odd-index conat the odd-index confined longitudinal mode frequencies.
fined transverse and longitudinal confined magndfis  This is analogous to the dielectric tensor results for superlat-
propagation along) as wr, andw,_,,, respectively. Here the tice confined phonor.
indexm is the mode order for the Fekayer, and represents Figure 3 shows the calculated and p-polarized reflec-
the number of half wavelengths confined within that layer.tivity spectra, in the restricted frequency range discussed
Thus, for the case illustrated, using the terminology in Secabove, for superlattices with the anisotropy axis directed
Il, wry, is equal towr,(k,=ma/d;) and w , is equal to  along each of the three axgsy, andz. In all these spectra

M2z
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FIG. 3. Calculated 60° oblique incidence reflectivity spectra-ef a semi-infinite superlattice an@d-——- 0.5 um of superlattice
deposited on a semi-infinite substrata) s polarization, anisotropy along, (b) s polarization, anisotropy along, (c) s polarization,
anisotropy along, (d) p polarization, anisotropy along or z, (e) p polarization, anisotropy along.

the plane of incidence sz, with z normal to the surface and fects the form of the observed spectra.slpolarization the
the angle of incidence is 60°, as in Fig. 1. Note that themagnetic component of the electromagndtd) field has
superlattice used for anisotropy alorgand alongy would  components along andz, and therefore interacts with both
be the same—one would simply have to rotate the sampleéhese components of the permeabilipy, never enters the
To get anisotropy along, however, one would have to grow calculation. In addition, however, it should be noted that
a different superlattice using a different substrate orientationthere is no response along the anisotropy direction. For an-
Results are shown for both semi-infinite superlattiéas  isotropy alongx, therefore, onlyu,, contributes to the inter-
though such samples are not likely to be encountered in pra@ction, and features show up around the zeroes in this com-
tice) and superlattices deposited on Zrdubstrates. ponent. Similarly, for anisotropy along there are features
We concentrate first on thepolarization results. We im- associated with poles ip,,, but none associated with, ,.
mediately see that the anisotropy direction fundamentally afFor anisotropy along, there is interaction with both,, and
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lines are(--------- ) 60° scan line for reflectivity from vacuunts———) vacuum light line, and—-—-— ) 20° scan line for silicon ATR.

M55, and the spectra show features associated with both conbayer 1 is the incident medium and layer 2 is the superlat-
ponents. tice. The wave-vector componentls, and d,, in the two
The above shows which component we expect to be immedia are given by
portant in which spectrum. In order to understand the spectra
in terms of dips and peaks we consider the results for semi-
infinite superlattices in more detail. Here thgolarization
reflectivity is given byrr * where the complex reflection co-
efficientr is, for a nonmagnetic, isotropic medium of inci- q§Z=(w/c)Zsyy,uxx— 02 !tz (39
dence, equal to

9Z,=(wlc)?e;— 02, (33)

_ whereeg, is the dielectric constant in the incident layerl
= M' (32) for vacuum, and e, is the appropriate component of the
O1ztxxt U2z dielectric tensor in the superlattice. The wave-vector compo-
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nentq, is continuous throughout the structure, and is detersuperlattice. If this superlattice is deposited onto a substrate,

mined by the angle of incidenag@ then reflection off the substrate will occur, and the Brewster
v condition no longer strictly applies. Even so, one can see that
Ox=(w/c)e1” sing. (39  the Brewster modes associated with the, modes are

largely unaffected.

We now turn to thep-polarization results. The analysis is
similar to thes-polarization analysis, requiring only some
straightforward modifications to Eq$32) and (34). The
Rrewster condition(36) is now replaced by

If we ignore damping contributionsy,, is either pure real or
pure imaginary. If it is real some radiation will propagate
into the sample, and the reflectivity will be less than 1. If, on
the other hand, it is imaginary, the reflectivity will be 1. This
can be seen in the plots in Fig. 4. Here the shaded regio
(the bulk continuacorrespond tay,, real and the unshaded
regions (the forbidden gapsto q,, imaginary. Reflectivity )
experiments can be performed in the region to the left of the @=2 Exx” E1kyy 37)
grazing incidence vacuum light ling,=w/c [setting &, X% gyler—erley,
equal to 1 and equal to 90° in Eq(35)], and an incident
angle of 60° corresponds to scan limg=(w/c)sin 60°. . o )
Thus, in the absence of damping, the reflectivity should be figure 3d) shows the reflectivity spectra for the anisotropy
at frequencies at which the scan line falls in a forbidden ga@/ong eitherx or z. In p polarization, the magnetic compo-
(generally just above eithep,, or ), and less than 1 nent of the EM field interacts with thg,, only, and this is
elsewhere. If damping is included, the features are somewh#i€ same for both these anisotropy directions, resulting in
smoothed out, but nevertheless the calculated spectra shd@entical spectra. As with the-polarization results, the spec-
peaks in the reflectivity in the region of the forbidden gapstrum can be understood by reference to the bulk continua and
shown in Fig. 4. the Brewster mode dispersion shown in Figd)4
Note that in the present example the high reflectivity re- Figure 3e) shows the reflectivity spectra for the anisot-
gions are always just above eithef,, or w_, frequencies. opy alongy. Here s, is a constant equal to 1, so the su-
This is not always the case. If, for instance,; were to fall  Perlattice behaves as a dielectric and the spectra are feature-
below w,;, as would happen if the Fefayers were wider, l€ss. Figure ¢) shows the bulk continua and Brewster
the appearance of the spectrum would be somewhat diffedispersion curves, which are similarly featureless. In this
ent. A similar effect associated with phonons in semiconduct@se the Brewster curve does not represent a “mode” in the
tor superlattices is described in some detail elsewffere. ~ normal sense since it is not associated with any dispersive
The above analysis explains the peaks in the reflectivitygffects. It merely represents the conventional “Brewster
spectra. In order to discuss the dips we assume zero dampiﬁ??l'e'f associated with reflection off a dielectffcThe angle
and look for the condition for zero reflectivity. We therefore Of incidence(60°) is close to the Brewster angl€6.99 in

set the top line of Eq(32) equal to zero. This results in the this case, which is why the reflectivity is very low.
equation The appearance of Brewster modes in b®#ndp polar-

ization contrasts with the case of reflectivity off a nonmag-

) w? Eyy— €1 Mxx netic material. In the latter case Brewster modes associated
Y P (36)  with, for instance, phonon dispersion, appear onlyipo-

2z o larization, so, by analogy, we might expect Brewster modes
This is thes-polarization Brewster mode condition, and the to appear only ins polarization for the present case, since
corresponding dispersion curves are plotted as solid lines ihere we are dealing only with magnon dispersion. In fact,
Figs. 4a)—4(c). Thus dips in the reflectivity should be seen however, Brewster modes also appeapimpolarization be-
where these dispersion curves intersect with the scan lineause, although the dielectric tensor of the superlattice is not
(just belowwr,, frequencies or just abowve, , frequencies  dispersive in the region of interest, the material responds to
The frequencies of these intersections are maikdd the  the electric component of an EM field, i.e., the principal
spectra in Fig. 3, and dips are indeed observed around thesemponents of the superlattice dielectric tensor are not equal
frequencies. However, due to the effects of damping, thé¢o 1.
reflectivity does not drop to zero and the calculated minima The above analysis shows that a great deal of information
do not exactly coincide with the marked frequencies. Theon the superlattice permeability tensor may be obtained from
fact that the Brewster mode frequencies are generally near tablique incidence reflection spectroscopy. A possible
bulk continuum edges means that, in the undamped casepmplementary technique is attenuated total reflection
there should be adjacent high and low reflectivity regions—ATR) spectroscopy. The significance of this technique is
this effect is somewhat smoothed out by damping and théhat one may get coupling to surface polariton modes which
resulting appearance is that the high and low reflectivity rehave frequencies dependent on oscillator strerffti@r a
gions have been pushed apart. Nevertheless, the presencesefmi-infinite dielectric in contact with a semi-infinite mag-
Brewster modes does produce distinctive features that shoultktic superlattice, the-polarization surface polariton disper-
help in interpreting experimental spectra. sion is given by Eq(36), although there is now an additional

In the case of the superlattice film on a substrate, most ofonstraint thafu,, must be negativé.

the basic features are retained. However, some of the Brew- The surface polariton dispersion curves following Eq.
ster modes effectively disappear. This is not surprising, bet36) are shown in Figs. @) and 4c) as dashed lines. For the
cause the whole basis of calculating the Brewster mode corsystem considered, there are no surface polaritons for anisot-
dition is that all the energy is transmitted into the ropy alongx or in p polarization** We can thus see that



55 CONTINUUM MODEL OF CONFINED MAGNON . . . 1003

10 T , -
2 6 2
= =
g 8
g &
21 a
0 : 0 : :
525 530 535 525 530 535
Wave number (cm™) Wave number (cm™)
10
) >
s =
8 8
& &
0 L " 0 N N N
525 53.0 535 525 530 535
Wave number (cm™) Wave number (cm™)
10
8t €
Z 6t
=
3
2 A
27t
O n "
525 530 5356

Wave number (cm™)
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p polarization, anisotropy along or z, (e) p polarization, anisotropy along.

there are considerably fewer surface modes than there aseirface polariton field. Dips in the spectra are therefore ob-
Brewster modes. Where they exist, the surface polariton disserved in both of these cases, although the surface polariton
persion curves are extensions of the Brewster mode dispedips should be sharper because these modes occur at discrete
sion curves. frequencies, whereas the bulk modes fall in a continuum.
The ATR techniqu® uses a prism separated from the  The value ofq, in the ATR experiment is determined by
sample by a controlled vacuum gap. The incident beam erkq. (35 with &; representing the dielectric constant of the
ters the prism in such a way that it hits the base of the prisnprism material. Figure 4 includes the associated light line
at an internal angle greater than the critical angle for totalvhen the prism material is silicoz=11.6 and the angle of
internal reflection. There is then an evanescent field decayinigcidence is 20°. As before, the shaded areas correspond to
away from the base in the vacuum gap. This field can interbulk continua, and the unshaded areas to forbidden gaps in
act both with the bulk modes in the sample and with thewhich no propagation can occur in the absence of damping.
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Thus the ATR experiment for a semi-infinite sample will VI. CONCLUSIONS
show higher reflectivities in the forbidden gaps. However, in

the presence of damping, this behavior will be modified byfin
the presence of sharp surface mode dips in the reflectivit

where the surface polariton dispersion curves intersect thgaightforward substitution into simple expressions. The cal-

scan line. N culated spectra also suggest that experimental verification of
_ The calculated ATR spectra for a semi-infinite superlat-he form of the permeability tensor should be obtainable us-
tice separated from the prism base by @ are shown as jng standard techniques.
solid lines in Fig. 5. The principles summarized above are We expect the analysis to be fairly accurate at low tem-
essentially followed, but we see that the frequencies of th@eratures provided that the superlattice layers are not too thin
surface mode dips are slightly different from those deter-and that the antiferromagnetic resonances of the two compo-
mined using Eq(36), markedS in the spectra. One particu- nents are not too close in frequency. For our numerical ex-
larly noticeable discrepancy observed in Fig&)and 5c) amples, we have considered a superlattice structure that
is that the calculated dip arouna; is actually within the should easily satisfy these criteria. Nevertheless, it would be
bulk continuum. It therefore appears that this minimum hagsiseful to compare the results of this model with those from a
more the character of a Brewster mode between Si and th@icroscopic one, such as that of Stamps and Carilldyy
superlattice than that of a surface mode between vacuum arfdructures with shorter periods, in order to investigate the
the superlattice. The exact frequency of the minima are aflimits at which the present model becomes inapplicable.
fected by the damping and the vacuum gap. The latter should " this paper we have only considered a superlattice of
strictly be infinite for Eq.(36) to be satisfied. If exact infor- WO antiferromagnets. In principle, the same method could
mation is required from such ATR spectra, it is therefore@lso be used for other superlattice structures incorporating
necessary that either the gap is accurately known or that it ignt!ferromagnets, . &9, antlferromagnet_/ferromagnet,
sufficiently large that the effect of the prism on the dip fre- antlferromagnet/fernr_nagnet, or certain anUferr_oma_gnet/
quency is smalf2 nonmagnet superlattices. In the last case the appllcabmty of
Figure 5 shows the ATR results forgm of a superlattice thg model depends on the strength O.f ér{]]e antiferromagnet
deposited on a semi-infinite ZplSubstrate as dashed lines. anisotropy. .The work of Orbach and'Pm usuggests that,
In this case, the surface polariton modes are leaky; they ar{é’r layer widths Of. the order described in this paper, an
moved to slightly higher frequency and become broader. eFR,/ZnF, superlattice could be rea_sonably modeled in this
The ATR spectra presented here suggest that the tec@Y whereas an MnfZnF;, superlattice could not.
nigue may help in investigating the permeability tensor.
However one cannot simply rely on dispersion curves to
model the frequency of the dips in the spectra; in addition, The authors have benefited from useful discussions with
care must be taken with the vacuum gap. This is in agreeR. L. Stamps, who also provided us with a preprint of Ref.
ment with results found for semiconductor superlattites.  21. T.D. is supported by the Brazilian agency CAPES.

We have demonstrated a simple way of modeling con-
ed magnon polaritons in superlattices containing antiferro-
agnets. The permeability tensor may be obtained by
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