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Continuum model of confined magnon polaritons in superlattices of antiferromagnets

T. Dumelow and M. C. Oliveros
Departamento de Fı´sica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal RN, Brazil

~Received 28 May 1996!

We present a theory of polariton modes in superlattices of antiferromagnetic materials. We apply a con-
tinuum approach which models magnon confinement using only the bulk properties of the materials. We
assume the modes to be completely pinned at the interfaces, so that the pure modes would take the form of
simple sine waves. The expression for the superlattice permeability tensor thus obtained is simple to use and
requires only the substitution of the appropriate parameters. We expect the approach to model the effects of
confinement accurately at low temperatures provided the superlattice layers are not too thin~a few lattice
periods! and the resonances in the constituent layer materials are not very close together. We apply the model
to an FeF2/MnF2 superlattice, and calculate oblique incidence reflectivity and attenuated total reflection spectra
for the anisotropy axis along three different directions. We find that such spectra show a wealth of detail, and
are radically affected by the anisotropy direction and by the polarization of the incident light.
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I. INTRODUCTION

In recent years high-quality superlattices of antiferrom
net materials have been successfully grown,1–3 generating
considerable interest in the magnon polariton spectra
pected from such structures. A number of theoretical stud
now exist on this subject.4–8 In general, the approach ha
been to use a bulk slab model~in which each constituen
layer is considered to retain its bulk properties! usually in the
long-wavelength limit in which effective-medium theor
may be applied.

Superlattice effective-medium theory,9–11 initially devel-
oped to study electrodynamics of semiconductor supe
tices, has proved to be very useful in interpreting far-infra
reflectivity and attenuated total reflection~ATR! measure-
ments on semiconductor superlattices specimens.12–14 The
effective-medium results for bulk slab superlattices can
derived by a simple field-continuity argument9 or from the
transfer-matrix theory10,15 taking the adequate limitqL!1,
whereL is the superlattice period andq is the magnitude of
the superlattice wave vector. The superlattice can then
considered as a single anisotropic medium.

Considering its success in modeling phonon polaritons
semiconductor superlattices, the application of the effect
medium limit16,17 of the bulk slab model18 to magnetic su-
perlattices seemed logical. This approach has been use
model bulk and surface magnetostatic modes and polari
in antiferromagnet/antiferromagnet and antiferromagn
nonmagnetic superlattices both without4,6 and with an exter-
nal applied static magnetic field.7,8 In the latter case the su
perlattice permeability is not only anisotropic but al
gyrotropic.

The problem with bulk slab theories is that they ignore
effects of the interfaces. In superlattices of antiferromagn
the most prominent of these effects is likely to be that
magnon confinement. If the resonance frequencies in the
constituent antiferromagnet layers are appreciably differ
magnon modes will be effectively pinned at the interfaces
that a bulk description of the constituent layers is not stric
550163-1829/97/55~2!/994~12!/$10.00
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accurate. The resulting ‘‘standing spin waves’’ have be
observed experimentally in single films19 of MnF2 as thick as
1 mm. It appears unlikely that such effects can therefore
ignored in superlattices, even when the layers are relativ
thick ~hundreds of angstroms!. This contrasts with the cas
for semiconductor superlattices for which the analogous p
nomenon of phonon confinement is only important for lay
a few lattice units thick.11

Although magnon confinement or other microscopica
based effects place restrictions on the use of bulk slab m
els, effective-medium theory, which requires only th
qL!1, is still relevant. The result is that, in the long
wavelength limit, the superlattice behaves as a single an
tropic medium, as in the bulk slab case. However, a som
what more sophisticated form of the permeability tensor th
that supplied by the bulk slab model is now required. O
can take a microscopic approach to this problem by solv
all the equations of motion, with a long-range dipolar fie
included, and applying periodic boundary conditions ov
the superlattice period. This methodology has been succ
fully used in the past to model phonon polaritons in sh
period semiconductor superlattices.20 Recently Stamps and
Camley21 have taken the same approach in modeling sh
period ~four lattice units in each monolayer! superlattices of
easy-plane antiferromagnets. In this case they found the
fects of interlayer exchange to be important.

For a superlattice period containing many lattice un
considerable computing power would be needed in apply
a microscopic approach to the calculation of superlattice s
ceptibilities. However, a full microscopic approach may n
be necessary in structures of this sort. The present pap
concerned with such cases. It uses a continuum approach
requires only substitution into simple equations while s
retaining the effects of confinement. A similar approach h
already been applied to phonons in semiconduc
superlattices.22,23 However, we expect the continuum ap
proach to be more applicable to the present case since m
non confinement effects should be observed at longer su
lattice periods than should phonon confinement effects.
994 © 1997 The American Physical Society
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55 995CONTINUUM MODEL OF CONFINED MAGNON . . .
We consider superlattices containing uniaxial antifer
magnet layers of sufficient thickness that the microsco
details at the interfaces are unimportant, and we assume
pinning. This should be reasonable provided the reson
frequencies for the two constituent layers are sufficiently
apart. We take the magnon modes to be totally confi
within the individual superlattice monolayers such that
magnetization associated with each mode varies across
layer as a sine wave. At a given frequency, all the confin
modes contribute to a local susceptibility to a lesser
greater extent. We calculate the local susceptibility ass
ated with each mode, and sum over all modes. The ove
superlattice response is then obtained by averaging the
susceptibility across the superlattice period in a manner c
sistent with Maxwell’s equations, thus leading to
effective-medium permeability tensor.

Most antiferromagnetic resonance frequencies lie in
far-infrared region of 3 to 500 cm21. Far-infrared Fourier-
transform spectroscopy has recently been employed to s
magnon polaritons in antiferromagnets24–26using essentially
the same techniques as previously used on semicondu
superlattices.22 We therefore expect this spectroscopy
prove very useful in characterizing antiferromagnet super
tice structures in terms of the permeability tensor. In view
this, we have calculated theoretical spectra based on
above superlattice model.

The plan of the paper is as follows. In Sec. II we deri
the response of a bulk uniaxial antiferromagnet to a hy
thetical driving field varying as exp[i (kzz2vt)]. Later in
the paperkz will be used to represent an effective confin
ment wave vector within a superlattice layer. In Sec. III w
present a study of superlattice fields in the long-wavelen
limit qL!1. In particular we show that the in-planeH com-
ponent and the out-of-planeB component are constant irre
spective of any local fluctuations in the permeability acro
the superlattice period. The superlattice permeabilities
derived in Sec. IV, making use of the bulk susceptibiliti
from Sec. II and the constant field results from Sec. III.
Sec. V we calculate the permeability tensor for the spec
FeF2/MnF2 superlattice structure and use it to model fa
infrared spectra. Conclusions are presented in Sec. VI.

II. BULK SUSCEPTIBILITIES

When we discuss the superlattice response in Sec. V
shall consider magnon modes confined within individual
perlattice layers. We shall assume that the magnetization
sociated with each confined mode varies across the l
width as a sine wave, and hence we can assign such a m
an effective confinement wave vector which we shall callkz .

In this section, we consider the response of a bulk ma
rial to a hypothetical driving field varying a
exp[i (kzz2vt)], with the magnetization varying in the sam
way, as a function ofv andkz . When we later discuss su
perlattices,kz will be used to represent the effective confin
ment wave vector described above. The magnetization du
individual confined modes within a superlattice layer var
along z as sin(kzz), in the same way as the magnetizati
described in this section. The driving field in a superlatti
however, does not vary in this way~we shall actually be
considering responses to constant fields!. We show how to
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correct for this in Sec. IV. We emphasize that we never
kz as a polariton wave vector; that quantity will have t
symbolq, and will be introduced in Sec. III.

We derive the response in a uniaxial bulk antiferroma
netic material, having a rutile structure with lattice consta
a andc. There is no static external field. The derivation
the susceptibilities is a simple modification of that com
monly used to describe the long-wavelength response in
antiferromagnet.27 Wave-vector dependence is incorporat
in a similar manner to the way in which, for instance, Lo
don and Pincus28 describe the dispersion of the magno
themselves.

Consider first the case when the anisotropy axisc is along
the wave-vector directionz. We use the torque equation fo
ions in sublatticei , which has a magnetizationM i :

1/gdM i /dt5M i3H i ,eff , ~1!

where g is the gyromagnetic ratio and the effective fie
H i , eff is given by

H i ,eff5H i ,E1H i ,A1H. ~2!

The quantities on the right-hand side of Eq.~2! represent the
exchange, anisotropy, and the driving fields respectively.
is usual practice for antiferromagnets, we ignore the Broo
Harris field.

In the present case,H i ,A is directed alongz, so thez
components may be represented as1HA on sublattice 1 and
2HA on sublattice 2. We consider small oscillations of t
magnetization in thexy plane, associated with precessio
around thez axis, so that thez components of the magnet
zations and the exchange fields may similarly be represe
as the static values1M and1HE , respectively, on sublat
tice 1 and2M and2HE , respectively, on sublattice 2.

We assume that the exchange field acting on ions in s
lattice 1 is due only to nearest neighbors, and that the m
netizations vary as exp[i (kzz2vt)]. The x component of
this exchange field is then given by

Hix,E521/2@exp~ ikzc/2!1exp~2 ikzc/2!#HE~M2x /M !

52HE~M2x /M !cos~kzc/2!, ~3!

wherec is the lattice parameter along the anisotropy ax
Equivalent equations apply for they component and the
other sublattice.

We now substitute for the appropriate components of
H fields used in Eq.~2!, and write thex andy components of
Eq. ~1! as

2 i ~v/g!M1x5~HA1HE1Hz!M1y

2@2HEM2y cos~kzc/2!1HyM #, ~4!

2 i ~v/g!M1y52~HA1HE1Hz!M1x

1@2HEM2x cos~kzc/2!1HxM #, ~5!

2 i ~v/g!M2x5~2HA2HE1Hz!M2y

2@HEM1y cos~kzc/2!2HyM #, ~6!



lk

d

s
-

p

fo

ar

.

en

de
m
w

t b

re-
er
ve-
-
ss,
el
re-

lied
e

i-
nd
in-

sus-
e

e-

it

.
lds

-

s

996 55T. DUMELOW AND M. C. OLIVEROS
2 i ~v/g!M2y52~2HA2HE1Hz!M2x

1@HEM1x cos~kzc/2!2HxM #. ~7!

Equations~4!–~7! may be solved to get the various bu
susceptibilities as a function ofkz . xx

bulk is given by
(M1x1M2x)/Hx and so on. The results are

xx
bulk~kz!5xy

bulk~kz!5
Sc~kz!

vTc
2 ~kz!2v2 , ~8!

xz
bulk~kz!50, ~9!

wherevTc(kz) is the transverse resonance frequency an
given by

vTc
2 ~kz!5g2HA~HA12HE!1HE

2g2 sin2~kzc/2! ~10!

andSc(kz) is the associated oscillator strength, given by

Sc~kz!52Mg2@HA1HE2HE cos~kzc/2!#. ~11!

xx
bulk(kz) should, of course, strictly be written a

xx
bulk(kz ,v), with similar modifications for the other compo

nents, but we keep the shorter notation for simplicity.
An equivalent approach may be applied for the anisotro

axis alongx. In this case the results are

xx
bulk~kz!50, ~12!

xy
bulk~kz!5xz

bulk~kz!5
Sa~kz!

vTa
2 ~kz!2v2 . ~13!

vTa(kz) andSa(kz) are given by the same expressions as
vTc(kz) in Eq. ~10! andSc(kz) in Eq. ~11! respectively, ex-
cept that in each case the lattice parameterc is replaced by
the lattice parametera. For the anisotropy axis alongy, one
need simply swap the susceptibilitiesxx

bulk(kz) and
xy
bulk(kz) in Eqs.~12! and ~13!.
Equations~9!–~11! give responses toH fields. In the

analysis that follows, we shall use the results forxx
bulk(kz)

and xy
bulk(kz). However, for reasons that will become cle

later, it is useful to transformxz
bulk(kz) into a response to aB

field. For the anisotropy axis alongz, of course, this re-
sponse, which we shall callcz

bulk(kz), will be zero. For the
anisotropy axis alongx or y, however, we can transform Eq
~13! as

cz
bulk~kz!5

M1z1M2z

Hz14p~M1z1M2z!
5

Sa~kz!

vLa
2 ~kz!2v2 , ~14!

wherevLa(kz) is a longitudinal resonance frequency giv
by

vLa
2 ~kz!5vTa

2 ~kz!14pSa~kz! ~15!

in agreement with Loudon and Pincus.28

The above susceptibilities will be used as a basis for
termining superlattice responses. Note that we do not im
diately apply Maxwell’s equations to these results, as
would to model polaritons in the bulk antiferromagnet,29 be-
cause the superlattice fields used later in the paper will no
of the same form as described above.
is

y
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e
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III. SUPERLATTICE FIELDS IN THE
LONG-WAVELENGTH LIMIT

We are interested in the superlattice response in the
gime for which the polariton wavelengths are much larg
than the superlattice period. Typically the free space wa
lengths are greater than 100mm, and since we consider su
perlattices with periods of a few hundred angstroms or le
this criterion is easily satisfied. The effective-medium mod
used here relies on the fact that in the long-wavelength
gime the in-plane component of theH field and the out-of-
plane (z) component of theB field are constant over the
superlattice period. This assumption has been widely app
to bulk slab superlattices4,6–8 and to structures which can b
considered in terms of discrete planes.21,30In both such cases
the result is fairly obvious from the field boundary cond
tions. In this section we consider the fields involved a
present a simple proof that the required components are
deed constant regardless of any local variations in the
ceptibility, along the growth direction, within the superlattic
period. An analogous proof, in terms ofE andD fields, is
presented elsewhere.23

In a superlattice structure in which the lattice is homog
neous in thexy plane but periodic in thez direction, the
microscopic fieldsF~r ,t! follow a Bloch form

F~r ,t !5F~z!exp@ i ~q•r2vt !#, ~16!

whereq is a macroscopic wave vector and

F~z1L !5F~z! ~17!

with L the superlattice period. In the long-wavelength limit
is also appropriate to consider macroscopic fieldsF̄~r ,t!
which also follow the Bloch form

F̄~r ,t !5F̄ exp@ i ~q•r2vt !#, ~18!

whereF̄ is the average ofF(z) over the superlattice period
This definition ensures that so long as the microscopic fie
obey Maxwell’s equations, so do the macroscopic fields.

We now apply Maxwell’s Equation“•B50 to Eq.~16!:

iq•B1]Bz /]z50. ~19!

The first term in this equation is of orderqB. In the long-
wavelength limit we haveqL!1, so that]Bz/]z!B/L, i.e.,
Bz is effectively constant over the superlattice period.

In order to show thatHx andHy are constant we apply
“3H5~1/c!]D/]t to Eq. ~16!:

iq3H2ex]Hy /]z1ey]Hx /]z52 i ~v/c!D, ~20!

whereex andey are unit vectors. We now compare Eq.~20!
with the result of applying“3H5~1/c!]D̄/]t to the mac-
roscopic field equation~18!:

iq3H̄52 i ~v/c!D̄. ~21!

Now the macroscopic fieldsH̄ and D̄ will be of the same
order as the microscopic fieldsH andD. Comparison of the
two equations~20! and ~21! therefore shows that all the
terms in Eq.~20! should, for arbitrary polarization and wave
vector directions, be of the same order~with the exception
that if the anisotropy is alongx or y then either]Hx/]z or
]Hy/]z will be identically zero, leaving the remaining term
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55 997CONTINUUM MODEL OF CONFINED MAGNON . . .
of the same order as one another!. Hence, in the long-
wavelength limitqL!1, using the same argument as for t
Bz fields, we have both]Hx/]z and]Hy/]z much less than
H/L, i.e., bothHx andHy are effectively constant over th
superlattice period. In determining the superlattice susc
tibilities, it will prove convenient to consider responses
the constant fieldsHx , Hy , andBz .

IV. SUPERLATTICE PERMEABILITIES

We consider first superlattice responses along thex direc-
tion. As explained in the previous section,Hx will be con-
stant in the long-wavelength limit, so we simply consid
responses to this constant field. The magnetization, in c
trast, will vary alongz, so it is useful to consider a loca
susceptibilityxx(z):

Mx~z!5Hxxx~z!. ~22!

We initially consider the susceptibility within layer 1 of th
superlattice period, occupying the space 0<z<d1, the layer
thicknessd1 corresponding ton1 lattice units. Of course, if
the anisotropy is alongx, xx(z) is always zero, and the prob
lem is trivial. For anisotropy alongy or z, we assume tota
pinning at the interfaces, so that there is a series ofn1 con-
fined magnon modes, each making a contribution, varying
sin~mpz/d1!, to the magnetization.m is the order of the
mode and corresponds to the number of half-waveleng
confined within the layer. Each confined mode makes a s
lar contribution to the local susceptibility since, from E
~22!, this varies in the same way as the magnetization:

xx~z!5(
m

n1

w1xm sin~mpz/d1!, ~23!

wherew1xm is a susceptibility associated with themth con-
fined mode in layer 1. We can consider each confined m
as having an associated confinement wave vectorkz
~5mp/d1! which determines the resonance frequency
cording to, for instance, Eq.~10!. The associated susceptibi
ity should have a pole at this frequency, and in general t
the same form as the bulk susceptibilityx1x

bulk(kz) derived in
Sec. II. We thus have

w1xm5cmx1x
bulk~kz5mp/d1!. ~24!

The coefficientcm , which depends only on mode orderm,
determines the relationship between the response to a
stantHx field, as used here, and the response to one aloz
varying as exp(ikzz), as used to definex1x

bulk(kz). Formally,
Hxcm is the Fourier coefficient of the component ofHx that
varies in the same way as themth mode magnetization.cm
can therefore be determined by resolvingHx into Fourier
components over the layer width. Here we derive an exp
sion for cm in a somewhat more physical~but slightly less
rigorous! way by considering the susceptibility in the lim
whend1 is very large. Both methods lead to the same res

When layer 1 is sufficiently wide, the layer material r
tains its bulk properties, andxx(z) is a constant equal to
x1x
bulk(kz50) over the layer width. However, over the ran

0<z<d1, we can use the identity
p-

r
n-

s

hs
i-

e

-

e

n-

s-

t.

4

p (
m odd

`
1

m
sin~mpz/d1!51 ~25!

to expressxx(z) as

xx~z!5x1x
bulk~kz50!

4

p (
m odd

`
1

m
sin~mpz/d1!, ~26!

i.e., we are expressing the constant susceptibility as a Fou
summation of confined modes. Equation~26! can be seen to
be equivalent to the wide layer limit~in which kz→0 for the
dominant modes! of Eqs.~23! and ~24! if we make the sub-
stitutions

cm54/pm, m odd,

cm50, m even, ~27!

thus giving us the necessary expressions for the coeffici
cm . Note that the even order modes do not contribute to
susceptibility—this is physically reasonable because s
modes have no overall dipole moment. We also note that
local susceptibility obtained upon substituting Eqs.~24! and
~27! into Eq.~23!, and using the bulk susceptibility given b
Eq. ~8!, is exactly the same as obtained for a single th
antiferromagnetic film with anisotropy alongz by Orbach
and Pincus31 without using the bulk susceptibility.

In order to get the overall response in the superlattice,
must make the appropriate averages across the superla
period. Over layer 1 we substitute Eqs.~24! and~27! into Eq.
~23!, and perform the averaging operation

x̄1x5
1

d1
E
0

d1
xx~z!dz5 (

m odd

n1 8x1x
bulk~kz5mp/d1!

p2m2 .

~28!

If we do the same over layer 2 we can then get an ove
permeability componentmxx for the superlattice by averagin
over the two layer types, in a similar manner to the pro
dure used in bulk slab models:4

mxx5114p
d1x̄1x1d2x̄2x

d11d2
. ~29!

myy can be obtained in the same way asmxx . In order to
obtainmzz, however, we consider the response to a cons
Bz field. We can then consider a local response to this fi
cz(z). A similar analysis to the above then gives an avera
response over layer 1 of

c̄1z5 (
m odd

n1 8c1z
bulk~kz5mp/d1!

p2m2 ~30!

with a similar result for layer 2. The responses can be av
aged over the two layers, leading to a superlattice permea
ity of the form

1

mzz
5124p

d1c̄1z1d2c̄2z

d11d2
. ~31!

Thus it can be seen that the expressions needed to deter
the superlattice permeability components are very sim
ones, requiring only substitution into Eqs.~28!–~31!. In this
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998 55T. DUMELOW AND M. C. OLIVEROS
paper we make use of the bulk susceptibilitiesxx
bulk(kz),

xy
bulk(kz), and cz

bulk(kz) derived in Sec. II. However, the
analysis presented in the present section does not depen
any particular model for the bulk susceptibilities, and mo
sophisticated models~e.g., including next-nearest-neighb
terms! or models for different structures could equally we
be used.

V. CALCULATED RESULTS

We now calculate the permeability tensor for a spec
superlattice structure and use it to model far-infrared spec
All results shown in this paper are for~FeF2!30/~MnF2!15 su-
perlattices, where the subscript on each bracketed compo
represents the number of lattice units of that compon
within a superlattice layer~each superlattice period is ther
fore equivalent to a chain of 60 Fe21 spins followed by a
chain of 30 Mn21 spins!. We use the same FeF2 parameters
as used in recent far-infrared spectrosco
investigations24–26 at 4.2 K: M50.056 T, HA519.745 T,
HE553.313 T, andg51.05 cm21/T, corresponding to a bulk
resonance frequency ofvr552.45 cm21. For MnF2 we use
the values32–34M50.06 T,HA50.787 T,HE553.0 T, and
g50.975 cm21/T, corresponding to a bulk resonance fr
quency ofvr58.94 cm21.

Before examining the results of the calculations,
briefly discuss the applicability of the continuum model, w
particular regard to the assumption of strong pinning at
interfaces, to the present case. We are not aware of any
croscopic calculations for this type of system for compa
son. However, we may usefully consider the calculations
Stamps and Camley21 for a bilayer of two easy-plane antifer
romagnets and those of Hinchey and Mills35 for a superlat-
tice of a ferromagnet with an antiferromagnet similar
MnF2. Both these examples show well separated resonan
as in the FeF2/MnF2 case considered here. We would expe
pinning in our example to be similar to that reported in t
two microscopic calculations. In fact, it may well be great
due to the high FeF2 anisotropy.

The Stamps and Camley paper shows mode amplitu
for a bilayer of two easy-plane antiferromagnets~with some
in-plane uniaxial anisotropy included!, each of width four
spins. For an exchange field across the interface compar
to that in the individual layers, the pinning is seen to be v
strong. Even though, for each magnon mode, a small tail
be seen to extend into the nonresonant layer, it does
appear to continue beyond the first spin of that layer. T
Hinchey and Mills paper does not show mode amplitud
explicitly, so the degree of pinning cannot be observed
rectly. However, it does show the dispersion curve cor
sponding to the lowest antiferromagnet magnon mode in
antiferromagnet/ferromagnet superlattice. For a superla
period consisting of only four spins of antiferromagnet a
four spins of ferromagnet, the magnon mode is alm
dispersionless—a classic indication of mode confinemen~a
similar result is also seen for the ferromagnet modes!. Fur-
thermore, the affiliated confinement shift agrees, within 20
with that of the resonance associated with Eq.~24!.

The two examples quoted above suggest that, in
FeF2/MnF2 system, penetration into the nonresonant laye
unlikely to extend beyond about one spin. Although this m
on
e

c
a.

ent
nt

c

e
i-
-
f

es,
t

,

es

ble
y
n
ot
e
s
i-
-
n
ce

t

,

ur
is
y

have a significant effect on the thin layer results discusse
the two microscopic examples, it should have a negligi
effect on the wide layers considered here. The use of
continuum model in this case therefore seems well justifi

As an example of the type of spectrum we should exp
to see in an~FeF2!30/~MnF2!15 superlattice, Fig. 1 shows ou
calculateds-polarization spectrum for 5mm of superlattice,
with the anisotropy axis within each layer alongy, deposited
on a semi-infinite ZnF2 substrate. The angle of incidence
60°, and the plane of incidence isxz, with z normal to the
layers. We have included a damping term into the perm
abilities using the standard substitutionv2→v21ivG, where
G is the magnon damping term. Here we use the experim
tally observed values24–26,33of G50.05 cm21 for FeF2 and
G50.0007 cm21 for MnF2. We also need to include the d
electric response of the substrate and superlattice. We u
value of«58.0 for the ZnF2 substrate.

7 For the superlattice
components we take dielectric constants24–26,33,36of 5.5 for
both FeF2 and MnF2. Bulk slab effective-medium theory9,10

may be used to work out the superlattice dielectric ten
components, but since, in this case, the dielectric const
of the two materials are equal we simply end up with co
ponents«xx5«yy5«zz55.5. Note that we retain these qua
tities as explicit tensor components for the rest of pap
since the isotropy of the superlattice dielectric tensor is s
ply a consequence of the parameters of the chosen mate
and is not general. Strictly speaking, the dielectric tenso
MnF2 is itself uniaxial,

7 but this makes a very small differ
ence to the final spectra and it is a trivial matter to incorp
rate this change into the bulk slab effective-mediu
expressions.7 Using the calculated permeability and diele
tric tensors, we have worked out the reflectivity utilizin
standard transfer-matrix techniques.22,37

Figure 1~a! shows the reflectivity spectrum over the enti
magnon range. Immediately one can see that there is a l
amount of structure due to mode confinement. MnF2 con-
fined modes occur in the range 10–55 cm21, and FeF2 modes
occur in the range 50–80 cm21. In each case the low-orde
modes are at the low-frequency end of the range. In Fig. 1~b!
we show an expansion of the range 51–57 cm21, which is
dominated by features due the lower order FeF2 modes. The
FeF2 damping is 0.05 cm21 and the width of the resulting
features is of this order. The spectrum also shows featu
due to high-order MnF2 modes. We have used a muc
smaller damping~0.0007 cm21! for MnF2 and the features
appear as ‘‘spikes’’ on the spectrum. However, there ar
number of reasons why we do not expect to see such M2
features in practice. Firstly, the associated modes are
weak compared to the FeF2 modes; they are about two orde
of magnitude weaker than that of the first FeF2 mode. Sec-
ondly, the model is not designed to describe accurately
behavior of these high-order modes, which may in pract
be subsumed into the much stronger FeF2 modes at around
the same frequency. Thirdly, the use of bulk damping para
eters for such modes is likely to be unrealistic. It is a feat
of confined phonon modes that higher-order modes ten
get damped out,20 and we expect the same effect here.
addition we note the comments of Lui and co-workers19,38

that antiferromagnetic resonance in MnF2 films one to two
orders of magnitude thicker than those considered here
only be observed on ultrahigh-quality samples. Due to
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much lower anisotropy of MnF2, the MnF2 modes are in
general much weaker, and hence narrower, than the F2
modes. Thus a small amount of inhomogeneity within
MnF2 layers is likely to damp out the modes, and difficul
may be encountered in observing any superlattice MnF2 fea-
tures, even those associated with low-order modes.

For the rest of the paper we concentrate on features a
ciated with FeF2 magnons in the range 52.4–53.6 cm

21, i.e.,
in the region of the lowest order modes. For the reas
outlined above, and to simplify our discussion of the spec
features, we have removed the contributions of the hi
order MnF2 modes which fall in this region. We present th
three principal components of the undamped permeab
tensor in Fig. 2. The case illustrated is for the anisotro
axes alongy, as in the example given in Fig. 1. To model th
case for anisotropy alongx one would simply exchange thex
andy components. For anisotropy alongz, bothmxx andmyy
would have the same form asmxx in the case illustrated, with
mzz equal to 1.

We have labeled the frequencies of the odd-index c
fined transverse and longitudinal confined magnons~for
propagation alongz! asvTm andvLm , respectively. Here the
indexm is the mode order for the FeF2 layer, and represent
the number of half wavelengths confined within that lay
Thus, for the case illustrated, using the terminology in S
II, vTm is equal tovTa(kz5mp/d1) and vLm is equal to

FIG. 1. Calculated 60° oblique incidences-polarized reflectivity
spectrum of 5mm of ~FeF2!30/~MnF2!15 superlattice deposited on
semi-infinite ZnF2 substrate. The anisotropy axis is alongy.
F
e
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ty
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c.

vLa(kz5mp/d1) whered1 is the thickness of the FeF2 layer.
We see that, ignoring the absence of any response along
anisotropy direction~corresponding to a permeability com
ponent equal to 1!, mxx andmyy have poles at the odd-inde
confined transverse mode frequencies whereasmzzhas zeroes
at the odd-index confined longitudinal mode frequenci
This is analogous to the dielectric tensor results for super
tice confined phonons.39

Figure 3 shows the calculateds- and p-polarized reflec-
tivity spectra, in the restricted frequency range discus
above, for superlattices with the anisotropy axis direc
along each of the three axesx, y, andz. In all these spectra

FIG. 2. Undamped permeability tensor components for a su
lattice with the anisotropy axis alongy. ~a! mxx , ~b! myy , ~c! mzz.
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FIG. 3. Calculated 60° oblique incidence reflectivity spectra of~—! a semi-infinite superlattice and~––––! 0.5 mm of superlattice
deposited on a semi-infinite substrate.~a! s polarization, anisotropy alongx, ~b! s polarization, anisotropy alongy, ~c! s polarization,
anisotropy alongz, ~d! p polarization, anisotropy alongx or z, ~e! p polarization, anisotropy alongy.
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the plane of incidence isxz, with z normal to the surface an
the angle of incidence is 60°, as in Fig. 1. Note that
superlattice used for anisotropy alongx and alongy would
be the same—one would simply have to rotate the sam
To get anisotropy alongz, however, one would have to grow
a different superlattice using a different substrate orientat
Results are shown for both semi-infinite superlattices~al-
though such samples are not likely to be encountered in p
tice! and superlattices deposited on ZnF2 substrates.

We concentrate first on thes-polarization results. We im-
mediately see that the anisotropy direction fundamentally
e

le.

n.

c-

f-

fects the form of the observed spectra. Ins polarization the
magnetic component of the electromagnetic~EM! field has
components alongx andz, and therefore interacts with bot
these components of the permeability;myy never enters the
calculation. In addition, however, it should be noted th
there is no response along the anisotropy direction. For
isotropy alongx, therefore, onlymzz contributes to the inter-
action, and features show up around the zeroes in this c
ponent. Similarly, for anisotropy alongz, there are features
associated with poles inmxx , but none associated withmzz.
For anisotropy alongy, there is interaction with bothmxx and
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FIG. 4. Brewster mode dispersion curves~—!, surface polariton dispersion curves~––––!, and bulk continua~shaded area! for a
semi-infinite superlattice in contact with vacuum.~a! s polarization, anisotropy alongx, ~b! s polarization, anisotropy alongy, ~c! s
polarization, anisotropy alongz, ~d! p polarization, anisotropy alongx or z, ~e! p polarization, anisotropy alongy. The near-vertical scan
lines are~---------! 60° scan line for reflectivity from vacuum,~———! vacuum light line, and~—•—•—! 20° scan line for silicon ATR.
o
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mzz, and the spectra show features associated with both c
ponents.

The above shows which component we expect to be
portant in which spectrum. In order to understand the spe
in terms of dips and peaks we consider the results for se
infinite superlattices in more detail. Here thes-polarization
reflectivity is given byrr * where the complex reflection co
efficient r is, for a nonmagnetic, isotropic medium of inc
dence, equal to

r5
q1zmxx2q2z
q1zmxx1q2z

. ~32!
m-

-
ra
i-

Layer 1 is the incident medium and layer 2 is the super
tice. The wave-vector componentsq1z and q2z in the two
media are given by

q1z
2 5~v/c!2«12qx

2, ~33!

q2z
2 5~v/c!2«yymxx2qx

2mxx /mzz, ~34!

where«1 is the dielectric constant in the incident layer~51
for vacuum!, and «yy is the appropriate component of th
dielectric tensor in the superlattice. The wave-vector com
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nentqx is continuous throughout the structure, and is de
mined by the angle of incidenceu:

qx5~v/c!«1
1/2 sinu. ~35!

If we ignore damping contributions,q2z is either pure real or
pure imaginary. If it is real some radiation will propaga
into the sample, and the reflectivity will be less than 1. If,
the other hand, it is imaginary, the reflectivity will be 1. Th
can be seen in the plots in Fig. 4. Here the shaded reg
~the bulk continua! correspond toq2z real and the unshade
regions~the forbidden gaps! to q2z imaginary. Reflectivity
experiments can be performed in the region to the left of
grazing incidence vacuum light lineqx5v/c @setting «1
equal to 1 andu equal to 90° in Eq.~35!#, and an incident
angle of 60° corresponds to scan lineqx5(v/c)sin 60°.
Thus, in the absence of damping, the reflectivity should b
at frequencies at which the scan line falls in a forbidden g
~generally just above eithervTm or vLm!, and less than 1
elsewhere. If damping is included, the features are somew
smoothed out, but nevertheless the calculated spectra s
peaks in the reflectivity in the region of the forbidden ga
shown in Fig. 4.

Note that in the present example the high reflectivity
gions are always just above eithervTm or vLm frequencies.
This is not always the case. If, for instance,vT3 were to fall
belowvL1, as would happen if the FeF2 layers were wider,
the appearance of the spectrum would be somewhat di
ent. A similar effect associated with phonons in semicond
tor superlattices is described in some detail elsewhere.40

The above analysis explains the peaks in the reflecti
spectra. In order to discuss the dips we assume zero dam
and look for the condition for zero reflectivity. We therefo
set the top line of Eq.~32! equal to zero. This results in th
equation

qx
25

v2

c2
«yy2«1mxx

1/mzz2mxx
. ~36!

This is thes-polarization Brewster mode condition, and th
corresponding dispersion curves are plotted as solid line
Figs. 4~a!–4~c!. Thus dips in the reflectivity should be see
where these dispersion curves intersect with the scan
~just belowvTm frequencies or just abovevLm frequencies!.
The frequencies of these intersections are markedB in the
spectra in Fig. 3, and dips are indeed observed around t
frequencies. However, due to the effects of damping,
reflectivity does not drop to zero and the calculated mini
do not exactly coincide with the marked frequencies. T
fact that the Brewster mode frequencies are generally ne
bulk continuum edges means that, in the undamped c
there should be adjacent high and low reflectivity regions
this effect is somewhat smoothed out by damping and
resulting appearance is that the high and low reflectivity
gions have been pushed apart. Nevertheless, the presen
Brewster modes does produce distinctive features that sh
help in interpreting experimental spectra.

In the case of the superlattice film on a substrate, mos
the basic features are retained. However, some of the B
ster modes effectively disappear. This is not surprising,
cause the whole basis of calculating the Brewster mode c
dition is that all the energy is transmitted into th
r-
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superlattice. If this superlattice is deposited onto a substr
then reflection off the substrate will occur, and the Brews
condition no longer strictly applies. Even so, one can see
the Brewster modes associated with thevTm modes are
largely unaffected.

We now turn to thep-polarization results. The analysis
similar to thes-polarization analysis, requiring only som
straightforward modifications to Eqs.~32! and ~34!. The
Brewster condition~36! is now replaced by

qx
25

v2

c2
«xx2«1myy

«xx /«12«1 /«zz
. ~37!

Figure 3~d! shows the reflectivity spectra for the anisotro
along eitherx or z. In p polarization, the magnetic compo
nent of the EM field interacts with themyy only, and this is
the same for both these anisotropy directions, resulting
identical spectra. As with thes-polarization results, the spec
trum can be understood by reference to the bulk continua
the Brewster mode dispersion shown in Fig. 4~d!.

Figure 3~e! shows the reflectivity spectra for the aniso
ropy alongy. Heremyy is a constant equal to 1, so the s
perlattice behaves as a dielectric and the spectra are fea
less. Figure 4~e! shows the bulk continua and Brewst
dispersion curves, which are similarly featureless. In t
case the Brewster curve does not represent a ‘‘mode’’ in
normal sense since it is not associated with any disper
effects. It merely represents the conventional ‘‘Brews
angle’’ associated with reflection off a dielectric.41 The angle
of incidence~60°! is close to the Brewster angle~66.9°! in
this case, which is why the reflectivity is very low.

The appearance of Brewster modes in boths andp polar-
ization contrasts with the case of reflectivity off a nonma
netic material. In the latter case Brewster modes associ
with, for instance, phonon dispersion, appear only inp po-
larization, so, by analogy, we might expect Brewster mod
to appear only ins polarization for the present case, sin
here we are dealing only with magnon dispersion. In fa
however, Brewster modes also appear inp polarization be-
cause, although the dielectric tensor of the superlattice is
dispersive in the region of interest, the material respond
the electric component of an EM field, i.e., the princip
components of the superlattice dielectric tensor are not e
to 1.

The above analysis shows that a great deal of informa
on the superlattice permeability tensor may be obtained fr
oblique incidence reflection spectroscopy. A possi
complementary technique is attenuated total reflect
~ATR! spectroscopy. The significance of this technique
that one may get coupling to surface polariton modes wh
have frequencies dependent on oscillator strengths.42 For a
semi-infinite dielectric in contact with a semi-infinite ma
netic superlattice, thes-polarization surface polariton dispe
sion is given by Eq.~36!, although there is now an additiona
constraint thatmxx must be negative.4

The surface polariton dispersion curves following E
~36! are shown in Figs. 4~b! and 4~c! as dashed lines. For th
system considered, there are no surface polaritons for an
ropy alongx or in p polarization.43 We can thus see tha



a

55 1003CONTINUUM MODEL OF CONFINED MAGNON . . .
FIG. 5. Calculated 20° silicon ATR spectra of~—! a semi-infinite superlattice and~––––! 0.5 mm of superlattice deposited on
semi-infinite substrate.~a! s polarization, anisotropy alongx, ~b! s polarization, anisotropy alongy, ~c! s polarization, anisotropy alongz, ~d!
p polarization, anisotropy alongx or z, ~e! p polarization, anisotropy alongy.
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there are considerably fewer surface modes than there
Brewster modes. Where they exist, the surface polariton
persion curves are extensions of the Brewster mode dis
sion curves.

The ATR technique44 uses a prism separated from th
sample by a controlled vacuum gap. The incident beam
ters the prism in such a way that it hits the base of the pr
at an internal angle greater than the critical angle for to
internal reflection. There is then an evanescent field deca
away from the base in the vacuum gap. This field can in
act both with the bulk modes in the sample and with
re
s-
r-

n-
m
l
ng
r-
e

surface polariton field. Dips in the spectra are therefore
served in both of these cases, although the surface pola
dips should be sharper because these modes occur at dis
frequencies, whereas the bulk modes fall in a continuum

The value ofqx in the ATR experiment is determined b
Eq. ~35! with «1 representing the dielectric constant of th
prism material. Figure 4 includes the associated light l
when the prism material is silicon~«511.6! and the angle of
incidence is 20°. As before, the shaded areas correspon
bulk continua, and the unshaded areas to forbidden gap
which no propagation can occur in the absence of damp
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Thus the ATR experiment for a semi-infinite sample w
show higher reflectivities in the forbidden gaps. However
the presence of damping, this behavior will be modified
the presence of sharp surface mode dips in the reflect
where the surface polariton dispersion curves intersect
scan line.

The calculated ATR spectra for a semi-infinite superl
tice separated from the prism base by 30mm are shown as
solid lines in Fig. 5. The principles summarized above
essentially followed, but we see that the frequencies of
surface mode dips are slightly different from those det
mined using Eq.~36!, markedS in the spectra. One particu
larly noticeable discrepancy observed in Figs. 5~b! and 5~c!
is that the calculated dip aroundvT3 is actually within the
bulk continuum. It therefore appears that this minimum h
more the character of a Brewster mode between Si and
superlattice than that of a surface mode between vacuum
the superlattice. The exact frequency of the minima are
fected by the damping and the vacuum gap. The latter sh
strictly be infinite for Eq.~36! to be satisfied. If exact infor-
mation is required from such ATR spectra, it is therefo
necessary that either the gap is accurately known or that
sufficiently large that the effect of the prism on the dip fr
quency is small.42

Figure 5 shows the ATR results for 5mm of a superlattice
deposited on a semi-infinite ZnF2 substrate as dashed line
In this case, the surface polariton modes are leaky; they
moved to slightly higher frequency and become broader.

The ATR spectra presented here suggest that the t
nique may help in investigating the permeability tens
However one cannot simply rely on dispersion curves
model the frequency of the dips in the spectra; in additi
care must be taken with the vacuum gap. This is in agr
ment with results found for semiconductor superlattices.42
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VI. CONCLUSIONS

We have demonstrated a simple way of modeling c
fined magnon polaritons in superlattices containing antifer
magnets. The permeability tensor may be obtained
straightforward substitution into simple expressions. The c
culated spectra also suggest that experimental verificatio
the form of the permeability tensor should be obtainable
ing standard techniques.

We expect the analysis to be fairly accurate at low te
peratures provided that the superlattice layers are not too
and that the antiferromagnetic resonances of the two com
nents are not too close in frequency. For our numerical
amples, we have considered a superlattice structure
should easily satisfy these criteria. Nevertheless, it would
useful to compare the results of this model with those from
microscopic one, such as that of Stamps and Camley,21 for
structures with shorter periods, in order to investigate
limits at which the present model becomes inapplicable.

In this paper we have only considered a superlattice
two antiferromagnets. In principle, the same method co
also be used for other superlattice structures incorpora
antiferromagnets, e.g., antiferromagnet/ferromagn
antiferromagnet/ferrimagnet, or certain antiferromagn
nonmagnet superlattices. In the last case the applicabilit
the model depends on the strength of the antiferromag
anisotropy. The work of Orbach and Pincus31 suggests that,
for layer widths of the order described in this paper,
FeF2/ZnF2 superlattice could be reasonably modeled in t
way whereas an MnF2/ZnF2 superlattice could not.
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