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Phonon-associated conductance through a quantum point contact
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By using an independent-boson model we study the electronic conductance through a quantum point contact
in the presence of the electron-phonon interaction. We find that the phonon energy plays a crucial role in the
quantum behavior of the conductance.@S0163-1829~97!06315-7#
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Along with experimental improvements a better theore
cal understanding of the fundamental characteristic of qu
tum transport has been developed.1 Since Weeset al.2 and
Wharamet al.3 discovered the phenomenon of conductan
quantization of an electron moving through a short and n
row constriction between two wide electron-gas reservo
which is called a quantum point contact, there have b
many theoretical investigations in this issue. Avishai a
Band4 presented the exact quantum-mechanical treatmen
ballistic electron propagation through a quantum point c
tact. The calculated basic quantity is the transmission am
tude matrixt, from which the conductance is evaluated usi
the linear conductance formula. It shows that the cond
tance of a quantum constriction with widtha and lengthL
indeed approaches quantized valuesn(2e2/h) asL→`. For
finite L, the conductance transition from then to the
(n11) plateau is not abrupt but oscillatory. These oscil
tions are longitudinal wave resonances.

The quantum transport with dissipation and its corr
theoretical treatment is an important issue. The unitarity c
dition ~or the current conservation! leads to a feedback
mechanism by which inelastic scattering processes cha
the probability of elastic scattering. This feedback mec
nism is beyond the scope of simple perturbation theory.5 In
Ref. 6 Caiet al. presented an approach to calculate the o
dimensional~1D! electron tunneling with dissipation in a
arbitrary barrier by using a solvable model for electro
phonon interaction. They indicated how the boundary con
tions uniquely determine the transmitted current and the
flected current of an electron.

Until now to our knowledge the theoretical research o
gave examples of phonon-resisted conductance7,8 through a
quantum wire or a quantum point contact. Meanwhile ma
examples of photon-assisted tunneling in semicondu
superlattices,9,10 quantum dots,11–14 and resonant tunneling
diode15 and phonon-assisted resonant tunneling6,16,17through
double-barrier devices are given. In this phenomenon p
tons or phonons open an additional transport channe
single-electron tunneling through the device.
550163-1829/97/55~15!/9935~6!/$10.00
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In this paper we extend the approach of Caiet al. to study
the effect of the electron-phonon interaction on conducta
through a quantum constriction. Our results give a consid
able modification to the quantized conductance of the dev
due to the electron-phonon interaction. We find that the hi
energy LO phonon resists the motion of the electron, yet
low-energy phonon assists it and presents several anoma
behaviors.

Consider a noninteracting electron gas confined in a qu
tum point contact. We consider the quantum-mechanical m
tion of a single electron with effectivem* and the Fermi
energyE. The quantum point contact is composed of tw
semi-infinite strips defined by (2`,x<0,0<y<b) and
(L<x,1`,0<y<b) and a finite narrower strip in be
tween, defined by (0,x,L,0<y<a) with a,b.

When an incident electron from the left strip~in region I,
x,0) enters the narrow constriction~region II! and is scat-
tered by the phonon field, it then arrives at the right strip~in
region III, x.L). Since we are interested in the phonon e
fect inside the narrow constriction, the Hamiltonian of t
electron-phonon interaction has the form

H int5(
q

@M ~q!eiq•R2 ivtaq1H.c.#Q~x!Q~L2x!, ~1!

whereaq and aq
1 are the phonon annihilation and creatio

operators, respectively,M (q) the electron-phonon scatterin
matrix, andR the electron position. The electron-phonon i
teraction occurs only in the finite narrow constriction. In t
following, we use a model that replaceseiq•R by 1 in H int .
The model is similar to the independent-boson model18 used
to describe some relaxation phenomena. Thus the Sc¨-
dinger equation for the electron moving in the narrow co
stiction is given by (\51)

i
]

]t
C II5H 2

1

2m* S ]2

]x2
1

]2

]y2D1Vc~y!1Be2 ivt

1B†e1 ivtJ C II , ~2!
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where B5(qM (q)aq and B†5(qM* (q)aq
† ,Vc(y) is an

infinite-square-well confining potential with widtha. By ne-
glecting the effect of the electron-phonon interaction on
phonon system, we assume the phonons are the indepe
bosons and in equilibrium with a heat bath, so that Eq.~2!
can be separable in space and time. For an incident elec
at energyE in the modem, the general solution of Eq.~2!
can be read as

Cm
II ~x,y,t !5expH Bv e2 ivt2

B†

v
eivtJ E (

i
$uim~E8!

3f i ,E8
~1 !

~x,y!1v im~E8!f i ,E8
~2 !

~x,y!%e2 iE8tdE8,

~3!

in which f i ,E8
(1) (x,y) andf i ,E8

(2) (x,y) are independent eigen
functions at eigenvaluesE8 without phonons. For the stead
state of an injecting electron at energyE in the modem,
only components of Cm

II (x,y,t) with energy
E1nv(n50,61,62, . . . ) exist. The wave function in re
gion II is written as

Cm
II ~x,y,t !5(

n
Cm,E1nv

II ~x,y!exp@2 i ~E1nv!t#, ~4!

with

Cm,E1nv
II ~x,y!5(

j
(
k

~B/v!k

k!

~2B†/v! j2n1k

~ j2n1k!!

3(
i51

J

$uim~ j !f i , j
~1 !~x,y!

1v im~ j !f i , j
~2 !~x,y!%, ~5!

where the index j corresponds to energyE1 jv
( j50,61,62, . . . ), k>0, j2n1k>0. Two independent
eigenfunctions,f i , j

(1)(x,y) andf i , j
(2)(x,y), are given by

f i , j
~6 !~x,y!5A2

a
sin
ipy

a
e6 iqi ~ j !x, ~6!

where the wave numbersqi( j ) are

qi~ j !5F2m* SE1 jv1
D

2 D2S ipa D 2G1/2. ~7!

In Eq. ~7!, ip/2 is a constant energy shift due to the polar
effect. The magnitudes ofuim(n) and v im(n) have of the
order of uBu unu. With the condition that the electron-phono
interaction is weak, a cutoff ofunu up toN will assure that
the transmitted and reflected currents is accurate up
uBu2N. For thenth branch, the terms of Eq.~5! should be
maintained to the order ofuBu2N2unu. The wave function in
region II can be obtained at channelsE andE6v with ac-
curacy up touBu2.

For computing the current~or conductance! with an accu-
racy up touBu2, we should keep the following terms:

Cm,E1v
II ~x,y!'(

i51

J FBv f im~0!1 f im~1!GA2

a
sinS ipya D ,

~8!
e
ent

on

to

Cm,E
II ~x,y!'(

i51

J F S 12
BB†

v2 D f im~0!1
B

v
f im~1!

2
B†

v
f im~21!GA2

a
sinS ipya D ,

Cm,E2v
II ~x,y!'(

i51

J F2
B†

v
f im~0!1 f im~21!G

3A2

a
sinS ipya D ,

with

f im~n!5uim~n!eiqi ~n!x1v im~n!e2 iqi ~n!x.

In region I and region III, the electrons are free to move
the x direction, but are confined in they direction.

As an incoming initial electron in modem enters the sys-
tem from the left, the wave function in region I is read as

Cm
I ~x,y,t !5A2

b
sinSmpy

b Deikm~0!x2 iEt

1 (
m851

M A2

b
sinSm8py

b D
3(

n
Rm8m~n!e2 ikm8~n!x2 i ~E1nv!t. ~9!

The transmitted wave exists in region III only and its wa
function is read as

Cm
III ~x,y,t !5 (

m851

M A2

b
sinSm8py

b D
3(

n
Tm8m~n!eikm8~n!x2 i ~E1nv!t, ~10!

where the wave numberskm(n) are given by

km~n!5F2m* ~E1nv!2Smp

b D 2G1/2. ~11!

Here Rm8m(n) and Tm8m(n) (m8,m51,2, . . . ,M ) are the
reflection and transmission amplitudes due to a process
emission ~or absorption! of n phonons, and are
M -dimensional matrices. For thenth branch of the wave
function corresponding to an electron with energyE1nv,
the numberM contains all conducting modes for which th
wave numberkm(n) are real~i.e., m,Mc) and evanescen
modes for which the wave numberskm(n) are imaginary
~i.e.,Mc,m,M ). The number of evanescent modes is s
ficient to guarantee convergence with desired accuracy.
role of evanescent modes in the narrow constrict
is even more important. Therefore, we s
J.a/pA2m* (E1v1D/2) in Eq. ~8! and fixJ so that con-
vergence is assured.

In order to calculate the transmission and reflection m
tricesT(M3M ) andR(M3M ) and the unknown matrice
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U(J3M ) andV(J3M ), we should match the wave functio
and its derivative with respect tox at x50 andL. It is useful
to define the matrices

I [M3M ]5$dmm8%, K~n! [M3M ]5$km~n!dmm8%,

Q~ j ! [J3J]5$qi~ j !d i i 8%, ~12!

and the matrixA[M3J] of overlap integrals

Ami5
2

Aab
E
0

a

sinSmpy

b D sinS ipya Ddy. ~13!

We obtain the following equations for thenth branch with
energyE1nv:

Idn01R~n!5(
j
f ~ j2n!A@U~ j !1V~ j !#, ~14!

K~n!@dn02R~n!#5(
j
f ~ j2n!AQ~ j !@U~ j !1V~ j !#,

T~n!5(
j
f ~ j2n!A@eiQ~ j !LU~ j !1e2 iQ~ j !LV~ j !#,

K~n!T~n!5(
j
f ~ j2n!AQ~ j !@eiQ~ j !LU~ j !

2e2 iQ~ j !LV~ j !#,
with
an

ns
f ~ j2n!5(
k

~B/v!k

k!

~2B†/v! j2n1k

~ j2n1k!!
. ~15!

These equations consist of four coupled matrix equati
through which components of the wave function in differe
energy branches couple with each other due to phonon e
sion and absorption. To express the current conservation
the Landauer conductance formula of an incident electron
propagating modem, the flux normalized transmission an
reflection amplitudes are defined as

rm8m~n!5@km8~n!/km~0!#1/2Rm8m~n!,

~16!

tm8m~n!5@km8~n!/km~0!#1/2Tm8m~n!.

We can solve Eq.~14! to determine firstU(n) and V(n),
then T(n) and R(n) (n50,61,62, . . . ) by using serial
substitutions. As the zero-order approximation of the phon
operator, i.e., by neglecting the electron-phonon interact
the following matrix equation for the unknownU(0) and
V(0) can be derived from Eq.~14!:
S ATK~0!A1Q~0!, ATK~0!A2Q~0!

@ATK~0!A2Q~0!#eiQ~0!L, @ATK~0!A1Q~0!#e2 iQ~0!LD SU~0!

V~0!
D 5S 2ATK~0!

0 D , ~17!
in-
we
nci-
-
q.

n-
whereAT is the transpose ofA. The matricesT[0] (0) and
R[0] (0) are given in terms ofU(0) andV(0),

T[0]~0!5A@eiQ~0!LU~0!1e2 iQ~0!LV~0!#,

R[0]~0!5A@U~0!1V~0!#2I . ~18!

Then, electronic conductanceG0 in the absence of the
electron-phonon interaction is obtained from the multich
nel Landauer formula

G05
2e2

h
Tr@^t

[0]~0!t [0]†~0!&#. ~19!

In this case, unitarity relations for the reflection and tra
mission amplitudes are maintained within high accuracy,

(
m851

M

~^utm8m
[0]

~0!u2&1^urm8m
[0]

~0!u2&!51, ~20!
-

-

with

m51,2, . . . ,M ,

where^ & means the average over the phonon assemble.
In order to consider the effect of the electron-phonon

teraction on the conductance of a quantum constriction
study the phonon-associated transmission in which the i
dent electron absorbs~or emits! one phonon due to electron
phonon inelastic scattering. Substituting the solution of E
~17!, U(0) andV(0), into Eq. ~14! for the branch with en-
ergy E1v, we can obtain the matrix equation for the u
known matricesU(1) andV(1):

MT~1,1!SU~1!

V~1!
D 52

B

v
MT~1,0!SU~0!

V~0!
D , ~21!

where a supermatrixMT(a,b) has been defined:
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MT~a,b![S ATK~a!A1Q~b! ATK~a!A2Q~b!

@ATK~a!A2Q~b!#eiQ~b!L @ATK~a!A1Q~b!#e2 iQ~b!LD . ~22!
,
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Because theU(11) andV(11) are of the order ofuBu, they
can be written as

U~1!52
B

v
U8~1!,

V~1!52
B

v
V8~1!. ~23!

Here U8(11) and V8(11) are the numerical matrices
which obey the matrix equation

MT~1,1!SU8~1!

V8~1!
D 5MT~1,0!SU~0!

V~0!
D . ~24!

The transmission and the reflection matrices that the incid
electron absorbs one-phonon by inelastic scattering,T[1] (1)
andR[1] (1), aregiven by

T[1]~1!5
B

v
A@eiQ~0!LU~0!1e2 iQ~0!LV~0!2eiQ~1!LU8~1!

2e2 iQ~1!LV8~1!#,

~25!

R[1]~1!5
B

v
A@U~0!1V~0!2U8~1!2V8~1!#.

For the incident electron atE emitted one phonon, we ca
obtain the matrix equation in a similar way,

MT~21,21!SU8~21!

V8~21!
D 5MT~21,0!SU~0!

V~0!
D , ~26!

where bothU8(21) andV8(21) are the unknown numeri
cal matrices, and they are related to the unknown coefficie
matrices,U(21) andV(21)

U~21!5
B†

v
U8~21!,

~27!

V~21!5
B†

v
V8~21!.

The corresponding transmission and reflection matric
T[1] (21) andR[1] (21), are given as

T[1]~21!52
B†

v
A@eiQ~0!LU~0!1e2 iQ~0!LV~0!

2eiQ~21!LU8~21!2e2 iQ~21!LV8~21!#,

~28!

R[1]~21!52
B†

v
A@U~0!1V~0!2U8~21!2V8~21!#.
nt

ts

s,

The electronic conductance due to one-phonon abso
or emitted,Gp(61), is given in terms of the flux normalize
transmission matrices

Gp~61!5
2e2

h
Tr@^t~61!t†~61!&#, ~29!

in which t(61)5t [1] (61) with accuracy up touBu. In the
calculation we assume that phonons are in equilibri
at temperature T, so ^B†B&5(quM (q)u2nq and
^BB†&5(quM (q)u2(11nq), with the phonon number
nq5@exp(v/kbT)21#21. In order to ensure current conserv
tion, which leads to a feedback effect of inelastic scatter
processes on the probability of elastic scattering, we s
calculateT(0) with accuracy up touBu2 ~one-phonon pro-
cess!. Substituting backU(6n) and V(6n) (n50,61),
into Eq. ~14! we get the expression ofT[2] (0)

T[2]~0!5
BB†

v2 A@eiQ~21!LU8~21!1e2 iQ~21!LV8~21!#

2
BB†

v2 A@eiQ~0!LU~0!1e2 iQ~0!LV~0!#

1
B†B

v2 A@eiQ~1!LU8~1!1e2 iQ~1!LV8~1!#, ~30!

and

T~0!5T[0]~0!1T[2]~0!. ~31!

The transmission and reflection currents of a incident e
tron in propagating modem atE are obtained from the trans
mission and the reflection matrices of branches with ene
E andE6v.

The conductance of the elastic channel related to the fe
back effect,Gp(0), is given by

Gp~0!5
2e2

h (
m51

Mc

(
m851

Mc

^tm8m~0!tm8m
†

~0!&, ~32!

where the sum in Eq.~32! runs over only the propagatin
modes of the wire. The total conductance in the presenc
the electron-phonon interaction is

GT5Gp~0!1Gp~1!1Gp~21!. ~33!

In the presence of the electron-phonon interaction the un
ity relations for the reflection and transmission amplitud
have much more complicated forms than Eq.~20! due to the
mixture between components of the wave function in diff
ent energy channels.

Figure 1 presents the influence of the electron-phonon
teraction on conductance quantization. The conductancG
~in units of 2e2/h) is plotted as functions of the Fermi en
ergy EF ~in units of meV! of the incident electron in the
quantum point contact at temperatureT530 K with structure
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FIG. 1. ConductanceG ~in
units of 2e2/h) as functions of the
Fermi energy EF ~in units of
meV! of the incident electron at
temperature 30 K with
b51000 Å, a5300 Å, L52000
Å. The solid~dotted! curves is for
g[(q@ uM (q)u/v#250.1(0.05).
The upper two curves are fo
v55 meV, the low two curves
are for 36 meV.
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parametersb51000 Å, a5300 Å, and L52000 Å. In
the figure there are five curves. The solid~dotted! curves are
for the electron-phonon coupling consta
g[(q@ uM (q)u/v#250.1(0.05). We can find the top tw
curves are for low-energy phonon,v55 meV. The bottom
two curves are for high-energy LO phonon, 36 meV, wh
is the LO phonon in AsGa. The middle thin curve is for t
case without the electron-phonon interaction. It is obvio
that the interaction between the electron and LO phonon
sists the conductance in AsGa, but the low-energy pho
may assist the conductance.

Figure 2 displays the conductance as functions of wi
a ~in units of Å! of the quantum constriction at temperatu
T530 K, Fermi energyEF565 meV, and the electron
phonon coupling constantgc50.1 with b51000 Å. The
solid ~dotted! curves are forL52000 Å ~500 Å!. We can
also find the high-energy LO phonon, 36 meV, causes
lowest step of conductance, which is degenerate for diffe
lengthsL52000 and 500 Å. Contrarily, a long sample m
have large conductance steps for the low-energy phon
v55 meV.
s
e-
n

h

e
nt

n,

Figure 3 shows the temperature behavior of the cond
tance. The quantum steps of the conductance are plotte
functions of the Fermi energy for different temperatures, a
phonons in different energies. Similar to Fig. 2 the LO ph
non, 36 meV, causes the lowest step of conductance, w
is degenerate for different temperaturesT540 and 10 K. As
to the case of the low-energy phonon,v55 meV, the high
temperature~40 K! causes large conductance steps~the solid
thick curve!.

This is similar to the situation in barrier-well quantu
structures,6,9–17where the additional transport channels ass
the electron motion through the structures, in which t
transverse confinement in the quantum point structures
open transverse channels in the electron transport that a
the conductance. Our calculation results show that the cru
point here is the suitable phonon energy~for example, in our
modelv55 meV! for the enhancement in the conductanc
Meanwhile several quantum behaviors also can be seen
der the low-energy phonon condition. On the contrary if t
condition is not met, the phonon-electron interaction will r
sist the conductance through a quantum region.7,8
-

e
-
o
r

FIG. 2. Conductance as func
tions of the widtha ~in units of Å!
at temperatureT530 K, Fermi
energyEF565 meV, the electron-
phonon interactiongc50.1, and
b51000 Å. The solid ~dotted!
curve is forL52000 Å ~500 Å!.
The thin solid curve is for the cas
without the electron-phonon inter
action. The sample length has n
effect on the conductance fo
high-energy LO phonon.
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FIG. 3. The temperature behav
ior of the conductance with
b51000 Å, a51000 Å, L52000
Å, andgc50.10. The solid~dotted!
curve is forT540 K ~10 K!. The
temperature has no effect on th
conductance for high-energy LO
phonon.
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In summary, an independent-boson model is used to
culate the electronic conductance through a quantum p
contact in the presence of the electron-phonon interac
We have found that the effect of the electron-phonon in
action on the conductance depends crucially on the energ
the phonon. The high-energy LO phonon resists the mo
of the electron; the sample length and the temperature
almost no effect on the ballistic transmission. On the c
trary, the low-energy phonon, for example,v55 meV, as-
sists the motion of the electron; the big electron-phonon
s
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teraction, long sample, and high temperature~40 K! may
cause large conductance steps.

The authors would like to express sincere thanks to
Information Science Group of the Institute for Materials R
search, Tohoku University for their continuous support of t
supercomputer facilities. Two of us~H.C. and J.Z.! are grate-
ful to all the members of the research group for their ki
hospitality during their visit to the Institute. H.C. would lik
to acknowledge partial support from the National Natu
Science Foundation of China.
i

i

.

.

an,
ys.

o,

, Y.

,

C.

. B
*Permanent address: Department of Physics, Tsinghua Univer
Beijing 100084, People’s Republic of China.

1B. Ricco and M. Ya. Azbel, Phys. Rev. B29, 1970~1984!.
2B. J. van Wees, H. Van Houten, C. W. J. Beenakker, J. G. W
liamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Fu
ton, Phys. Rev. Lett.60, 848 ~1988!.

3D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, J. E.
Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C
Jones, J. Phys. C21, L209 ~1988!; 21, L887 ~1988!.

4Y. Avishai and Y. B. Band, Phys. Rev. B40, 12 535~1989!.
5B. Y. Gelfand, S. Schmitt-Rink, and A. F. J. Levi, Phys. Re
Lett. 62, 1683~1989!.

6W. Cai, T. F. Zheng, P. Hu, B. Yudanin, and M. Lax, Phys. Re
Lett. 63, 418 ~1989!.

7V. L. Gurevich, V. B. Pevzner, and K. Hess, Phys. Rev. B51,
5219 ~1995!.

8J. Wrobel, T. Brandes, F. Kuchar, B. Kramer, K. Ismail, K. Y
Lee, H. Hillmer, W. Schlapp, and T. Dietl, Europhys Lett.29,
481 ~1995!.

9P. S. S. Guimaraes, B. J. Keay, J. P. Kaminski, S. J. Allen, P.
Hopkins, A. C. Gossard, L. T. Florez, and J. P. Harbison, Ph
ty,

l-
-

.

.

.

F.
s.

Rev. Lett.70, 3792~1993!.
10B. J. Keay, S. J. Allen, J. Galan, J. P. Kaminski, K. L. Campm

A. C. Gossard, U. Bhattacharya, and M. J. W. Rodwell, Ph
Rev. Lett.75, 4098~1995!.

11W. Cai, T. F. Zheng, P. Hu, M. Lax, K. Shum, and R. R. Alfan
Phys. Rev. Lett.65, 104 ~1990!.

12L. P. Kouwenhoven, S. Jauhar, J. Orenstein, P. L. McEuen
Nagamune, J. Motohisa, and H. Sakaki, Phys. Rev. Lett.73,
3443 ~1994!.

13R. H. Blick, R. J. Haug, D. W. van der Weide, K. von Klitzing
and K. Eberl, Appl. Phys. Lett.67, 3924~1995!.

14C. A. Stafford and N. S. Wingreen, Phys. Rev. Lett.76, 1916
~1996!.

15H. Drexler, J. S. Scott, S. J. Allen, K. L. Campman, and A.
Gossard, Appl. Phys. Lett.67, 2616~1995!.

16V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev
36, 7635~1987!.

17H. Chen and X. Q. Li, Phys. Rev. B48, 8790~1993!.
18G. D. Mahan,Many-Particle Physics~Plenum, New York, 1981!,

pp. 269–310.


