PHYSICAL REVIEW B VOLUME 55, NUMBER 15 15 APRIL 1997-|

Bound states in waveguides and bent quantum wires. |. Applications to waveguide systems

John P. Carini
Department of Physics, Indiana University, Bloomington, Indiana 47405

J. T. Londergan
Department of Physics, Indiana University, Bloomington, Indiana 47405
and Nuclear Theory Center, Indiana University, 2401 Milo Sampson Lane,
Bloomington, Indiana 47408-0768

D. P. Murdock
Nuclear Theory Center, Indiana University, 2401 Milo Sampson Lane, Bloomington, Indiana 47408-0768
and Department of Physics, Tennessee Technological University, Cookeville, Tennessee 38505

Dallas Trinkle
Department of Physics, Xavier University, Cincinnati, Ohio 45207

C. S. Yung
Department of Physics, Texas A&M University, College Station, Texas 77843
(Received 5 August 1996

It has been shown that in quantum wires which contain bends there will be one or more bound states for
electrons placed in such systems. Bound states have been observed in quantum wires, but detailed mapping of
such states is difficult. However, there is a one-to-one correspondence between wave functions of free electrons
in two-dimensional2D) systems, and electric fields of TE modes in rectangular waveguides with the same
cross section as the 2D system. We therefore construct bent waveguides, find the frequencies at which confined
EM fields occur, and map out the electromagnetic energy density there. We compare the experimental results
with theoretical predictions of bound state energies and eigenfunctions. The geometry has been chosen to
correspond to two-dimensional systems for which quantum wire experiments have been carried out. In such
systems, we can predict the number and location of the bound states in the system; in addition, we can predict
the electric and magnetic fields for the confined TE modes in this system. We show very good agreement
between our predictions and experiment for bent waveguides in this geofi#263-18207)04416-0

I. INTRODUCTION However, it was surprising to find that a bend produces an
effective attraction similar to a bulge.

It is possible to produce very narrow two-dimensional The existence of these bound states can be understood
conducting surfaces, or “quantum wires,” which allow elec- qualitatively. Consider a quantum wire containing a bend. In
trons to propagate in the channels formed by these surfacefevious papefs'?we examined the properties of systems
but require the electron wave function to vanish on thecontaining a single bend. In this paper we will examine the
boundary of the surface. As the width of these quantunfase of a system with two right-angle bends as shown in Fig.
wires is roughly equal to the de Broglie wavelength of a coldl- The width of the straight sections V¥ and the height of
electron, wave effects will dominate the physics of thesgh® bend isH. For the moment consider the case where the
systems. Quantum wires have been used extensively to stu y a|ght sections of the wire are infinitely .Iong. The wave
quantum interference effects® The simplest model is a sur- Tunction for the electron satisfies the equation
face of infinite extent with a bend in the center and open 2412 - -
straight ends. Such surfaces have no ‘“classically forbidden” (VK 9(xy) =0, ¢|5=0. (.3
region (a classical particle could roll freely through such aln Eq.(1.1), the wave numbek is related to the enerdgy by
system, so the discovery by Schult, Ravenhall, and Wyld k?=2m*E/#2. In either straight section the requirement that
(and earlier by Lenzet al’) that such systems possess athe wave function vanish on the boundary, and the separa-
bound state was rather surprising. Goldstone and%)&gfel  bility of the Hamiltonian, forces thegy dependence of the
Exner'19 then proved the remarkable result that at least ongvave function to be of the form sinfry/W) for integern.
bound state exists faall two-dimensional surfaces of con- This transverse quantization condition produces an energy
stant width (except surfaces of constant curvature, whichthreshold; the lowest energy allowed for free propagation is
have no bound stateAs is well known, a “bulge” in a  Eu,=(f7)%(2m*W?). Both the extra space in the bésd
two-dimensional surface can be mapped into one dimensioraf the wire, and the bending itself, produce an effective at-
the transverse bulge then appears as an effective local attracaction which supports electron bound sgtén the region
tion, which in one dimension always produces a bound statenf the bends). The wire of Fig. 1 will have one or two bound
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***** - (a) Therefore if there exist bound states of the Sdimger equa-
I R tion for particles moving in the two-dimensional curee
; (i.e., solutions of the wave equation below the minimum en-
1 ergy for free propagation of waves in the wirthere will be
A 1 ! i 1 analogous confined TE modésolutions ofE and B fields
y ! : .
} with frequencies below the cutoff frequency for the wave-
X ) guide, and the confineé field of Eq.(1.2) will be described
by the same scalar functioi which constitutes the bound
* state wave function of the electron in the quantum wire, in
A (b) Eq. (1.1). ' _
R In our previous work, rectangular waveguides were con-
1 structed and both bound states amdM fields were
—¢—‘ y 3 . measured!'? Microwaves were pumped into the center of
Li bent waveguides, and the ratio of reflected to incident power
- was measured there. At the frequency corresponding to the
X confined state, a sharp minimum was observed in the re-
flected power, representing resonant absorption of micro-
wave power. At other frequencies below cutoff almost 100%
1 and the aspect ratitheight/width ratig R. (a) The aspect ratio of the power was reflectgd back to the generator. .Th‘? fields
were measured by moving a small metal sphere inside the

R>2 is the “quantum bend discontinuity” case of Ref. 17. For the id d ob ina the shift | 0 f
purpose of calculations the wire is divided into three sections |p VAVEGUIOES, and oDbSErving the Shilt In resonant irequency as

beledl,Il, andIll, respectively(b) The aspect ratio €R<?2 is a function of the posi'gi(_)n of the ;phere in the waveguide.
the “quantum bend continuity” case. The wire is divided into sec- Both bound state positions and fields were found to agree

tions labeled and|l, respectively. very well with theoretical predictions.
Although one can demonstrate experimentally the pres-

states, which appear as isolated states with energy belo@Ce of electron bound states in bent quantum wires, it is not
Ewr. The bound state wave functions will be largest in the®aSy to measure the details of electron wave functions in
vicinity of the bend, and fall off exponentially with the dis- Such small systems. In this paper, we investigate an alterna-
tance from the bend region. tive method for studying the detailed properties of bound
Bent quantum wires are thus examples of quantum sysStates in b_ent systems. Theor(_etlcall_y, we derive the transmis-
tems whose bound states do not arise from the “traditional”Sion coefficients for free particles in bent two-dimensional
picture, where a binding potential creates classically allowe@YStéms. Experimentally, we measure the properties of con-
and forbidden regions. Here the boundary conditioren- fined E fields in benF rectangular waveguides. We construct
ishing of the wave function on the boundaries of the yire reéctangular waveguides with two bends, and we locate and
give rise to transverse quantization conditions which producg€asure confined TE modes in such waveguides. Having
a minimum threshold energy for continuum solutions. Local-found the confined modes, we map out the resulting electro-
ized bends or bulges in these wires then produce effectivE'agnetic energy density in the waveguide. .
local attractive forces which give rise to bound states. As the Because of the one-to-one correspondence between eigen-
effective attraction in a bent wire {$0 lowest order propor- functions for waves in two-dimensional surfaces and TE
tional to the square of the curvature of the wWirthe magni- modes in waveguides of the same shape, the observation of

tude of the binding energy increases as the curvature jrconfined TE modes in waveguides below the cutoff fre-
creases. quency predicts the existence of bound electron states in bent

In previous papefd!2 we have considered bent two- duantum wires. Furthermore, the electric field we measure is
dimensional systems and their analogy to rectangulaidentical to the wave function for the electron bound states in

waveguides. If one constructs some two-dimensional curv@ quantum wire of the same geometry as the waveguide. We
o in thexy plane, which possesses a scalar figlgatisfying show that the mapped fields, and location of confined modes
the Helmholtz (or Schralingey equation [V2+k2]y=0 in the waveguides, agree quite well with our theoretical pre-

with ¢/|s=0 on the boundans of the curve, then one can dictions.

produce a rectangular waveguide by translating the curve W€ focus our attention on the case of a quantum wire
normally in thez direction.E andB fields can be constructed With two right-angle bends, as shown schematically in Fig. 1.
from ¢ as follows: In this paper, we show how the number of bound states,

binding energies, and properties of the eigenfunctions de-
—ilS __5 pend on the geometry of systems with two bends.
Ey)=ikzg(xy), Bay)==-2xVy. (1.2 Quantum wires with this geometry have been the subject
The E andB fields of Eq.(1.2) will satisfy Maxwell's equa- of both experimental and theoretical investigations. Wu
tions and boundary conditions for TE modes in theet al!* constructed quantum wires with double right-angle
waveguidet® where the electron wave numbleis related to  bends, with a shape essentially that of Fig. 1. They measured
the frequencyf = w/27 by conductance vs gate voltage in such structures, and observed

FIG. 1. Simplified model for bent quantum wire. Infinitely long
wire with two right-angle bends, the width arbitrarily normalized to
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at least one peak in conductance below the threshold for free 0. Here the dimensionless quantR= H/W, the length of
electron conduction. They interpreted these peaks as elethe straight section between the two bends, is the aspect ratio
trons tunneling through impurity sites in the constriction, asof the wire.
was discussed by McEueet al,*®> who measured conduc-  From the theorems of Exrief’ and Goldstone and Jaffe,
tance vs gate voltage for electrons in a straight quantunsuch a system is guaranteed to have at least one bound state.
wire. The wave functions for an electron in a quantum wire can be

This conclusion was challenged by Wang andobtained by many different techniques; series expan-
collaborators®’ They carried out theoretical calculations of sions*!*®?°relaxation method¥ transfer matrix method<,
conductance in quantum wires with two berflsnd with  or the quantum transmitting boundary mettfddVe use a
2N bends!’ These authors claim that the subthresholdseries expansion method to calculate the bound state wave
peaks) observed by Wu and collaborators are due to elecfunctions. Note that the right half of the wire can be mapped
trons tunneling through bound states in the wire. onto the left-half side by reflection about the lines 1/2 and

In this paper, we concentrate on the location and propery=R/2. Since the Hamiltonian is symmetric under these re-
ties of the bound states in a waveguide or quantum wire wittilections, the eigenfunctions for this system are either sym-
two right-angle bends. Our paper is organized as follows. Irmetric or antisymmetric under this transformation. Therefore
Sec. Il we calculate bound state energies and transmissiome need solve for the wave function on half the wire, and
coefficients for this geometry. At this stage we make theimpose the correct symmetry on the eigenstates.
simplifying assumption that the legs of the wire are infinitely ~ For infinitely long wires, the properties of the bound
long. In this case, we show that all properties of the boundstates are a function only of the aspect ralRo,Wang and
states are determined by the aspect riiof the wire (the  collaborator$®’ divide these bent wires into two categories.
ratio of the height of the wire to its width, shown schemati-When R<2, as shown in Fig. (b), it is possible for an
cally in Fig. 1. In Sec. Il we discuss the experimental mea-electron to travel in a straight line path through the wire.
surement of states in a rectangular waveguide with tworhey call this a “double bend continuity.” FoOR=2, no
bends, and we compare the experimental results with oustraight line path is possible. They call this geometry a
theoretical predictions. In Sec. IV we draw conclusions and‘double bend discontinuity.”
discuss possible future experiments. We will first examine the case when the aspect ratio

In the following paper® we apply the theoretical tech- R=2, the “double bend discontinuity” case of Wang and
niques outlined in this paper to the calculation of conduc-collaborators; this is shown schematically in Figa)l We
tance for electrons in bent quantum wires. The situation isill outline the solution here; the solution in the case
more complicated than the simple model used in this papel<R<2 is given in the Appendix. We solve for the bound
We must take into account the finite length of the wires,states in the wire by dividing it into three sections as shown
consider the effect of the applied gate voltage on the condudn Fig. 1(a). Region| is defined by[x=1, 0<y<1]; we
tance, and consider the many physical effects which occur iexpand the wave functiog, in Cartesian coordinates, where
scattering above the conductance threshold. The signature fife wave function boundary conditions are
bound states in such systems is transmission below the mini-

mum energy for free propagation, due to electron tunneling ¢|(X.Y)|y:o= zp,(x,y)|y:1:O; #(x,y) — 0. (2.2
through the bound states. In this second paper, we compare X—00

our results with both the data of Wai al. and the theoretical

calculations of Wang and collaborators. Separation of variables in Cartesian coordinates then gives

the series solution

Il. BOUND STATES FOR ELECTRONS -

IN BENT TWO-DIMENSIONAL SYSTEMS . _
h(xy)= 2 Agsin(nmy)e 2.3

We consider the case of a quantum wire with two right- n=1
angle bends. A useful first approximation is to examine the B —
case of an infinitely long two-dimensional system with two Whge%_l IVn. 7Td f.k 4 by 0=x=1 O< <11 1 .
bends, as shown in Fig. 1. We define the horizontal an(liI thegt')on dls N 'ng_t_ y[0=x=1, O<y=1]. In region
vertical directions ag’ andy’, respectively, and the width € boundary conditions are
and height of the wire ar& and H. The electron wave _ _ _
function in the quantum wire satisfies the Safirger Y1 ¥)ly=0= ¥ (XY)lx=0= 11 (X,¥)lx=y-1=0. 2.4
equation — (R212m*)[ (921 9x"2) + (6% ay"?) (X" ,y")
=Ey(x’,y'), wherem* is the electron effective mass. With
no loss of generality, we can transform to the dimensionles
coordinates,

The following wave function satisfies the boundary condi-
gions of Eq.(2.4) in this region:

x=x"IW; y=y'/W; R=H/W, lﬂn(X,Y):nZl [Bnsin(nary)sinh(anx)
2m* EW? + Cpsin(narx)sinh apy) ]. (2.5
kZZT. (21) " "

Regionlll is defined by 0=x<1, 1<sy<R-—1]. In region
In the coordinates X,y), the electron wave function Il the boundary conditions for the symmetrig)(and anti-
Y(x,y) satisfies the Helmholtz equatiorV{+k?) y(x,y) symmetric @) wave functions are
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i (%) |x=0= i (X,Y)[,=1=0, F(t)=costit) (n odd = sinht) (n even,
P (=X, R—y)= i (X,y), FA(t)=sinh(t) (n odd) = cosht) (n even.
(2.8
Ui (L=X,R=y) ==y} (X,y). (26 The coefficients are determined from the conditions that
The following wave function satisfies the boundary condi-8nd its normal derivatives be continuous at the boundaries
tions of Eq.(2.6) in this region, between regions, I1, andlll.

To solve, we truncate thénfinite dimensiongl expan-
-~ sions atN basis functions. The resulting equations can be
Y (x,y)= >, Dpsinnax)Folan(y—R/2)], (2.7  expressed as aNx N matrix equation: it is straightforward
n=t to show that the condition for a bound state is @8t 0,
where whereZ=TS-1, and

_ kW(_l)kdnk
Tric™ ap{sinh(an)Fn1(an[1-RI2])/Fn(an[1-R/2])—coslay)}

_ (— 1)k+lk7TeXF( —ap)dyk

an

k

(=" ! 2nmsinh(ay)

dnk_ a&-i—(nw)z (29)

The bound states occur at those valuescoffor which The number of bound states, and their locations, are com-
DefZ(k?)|=0. Once we have found the relevant values ofpletely determined by the geometry of the bent quantum
k?, we can determine the expansion coefficients and recorwire. We are studying the case of a long wire with two
struct the wave functiongs for each bound state. In our fight-angle bends. Provided that the length of the quantum
calculations we have truncated our expansiohlatl0. We ~ Wire with two bends is much longer than the other dimen-
find that both the bound state energies and wave functiondons, the bound state properties are completely determined
are stable and relatively accurate with this small number oPY the widthW of the wire and the aspect rafio=H/W. For
expansion coefficients. R<2.5, there is on_Iy a single bound state; Rr 7, the_two

In Fig. 2 we show the bound state energies as a functionound state energies coalesce so that the symmetric and an-
of the aspect ratiR. The continuum begins &2= 2 [see tisymmetric states appearljgt essentlall)7/ the same energy.
Eq. (2.3)]; therefore we plot the parameter=k?/72. As Wang, Berggren, and i and Wang’ studied electron

R—1, e—~1. ForR<2.5, only the symmetric state is bound;
the antisymmetric state is unbound for smaller value®.of
The bound state wave function has a single peak centered in
the middle of the double bend; in Fig(e3 we plot the den- 10 ¢
sity contours for the symmetric bound state corresponding to
R=2. AsR increases from 1, the binding energy increases,
reaching a maximum fodR~1.7. AsR increases further, the
binding energy then decreases. Ror 2.5, both symmetric
and antisymmetric bound states appear. Both the symmetric
and antisymmetric bound state wave functions have a peak at
each bend of the quantum wire. In FiggbBand 3c), we
plot the wave function contours for the symmetric and anti-
symmetric bound states, respectively, wha 3.

For very large values oR we see from Fig. 2 that both
symmetric and antisymmetric bound states approach the os . : . )
same energye~0.930 (this value ofe corresponds to the 00 20 e 80 100
bound state energy for an infinitely long wire of unit width
with a single right-angle berid). In this case, the bound state  FiG. 2. Bound state eigenvalues in bent quantum wire of Fig. 1,
wave function is very small except for one peak in eachas a function of the aspect rafo= H/W. The bound state energy is
right-angle bend; in Figs.(4) and 4b) we show density defined aE=(f m)2e/(2m* W?). Plot of e vs R for bound states in
plots for the symmetric and antisymmetric bound states, rewire. Solid curve: symmetric bound states; dashed curve: antisym-
spectively, wherR=6. metric bound states.
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-2 -1 0 1 2 3

FIG. 3. Calculated contour plots for amplitudes of bound state
wave functions in a long wire with two bends) Symmetric bound
state with the aspect ratR=2; (b) symmetric bound state for wire 1}
with the aspect ratidR=3; (c) antisymmetric bound state for wire
with R=3. The positive values of the wave function have the light-
est shading; shading becomes progressively darker as the value of [
the wave function decreases.

-3 -2 -1 0 1 2 3 4

conductance in quantum wires with two bends. They exam- FIG. 4. Contour plots for amplitudes of bound state wave func-
ined electron tunneling through bound states in these quarions in long wire with two bendsa) Symmetric bound state with
tum wires. Many of our results agree with the conclusions ofthe aspect ratik=6; (b) antisymmetric bound state for wire with

) y 9 - R=6. The notation is that of Fig. 3.
Wang and collaborators. We agree that for sufficiently large

values of aspect ratiR, both the symmetric and the antisym-

metric bound state wave functions are peaked in the corners IIl. EXPERIMENTAL MEASUREMENTS

of the wire. We also find that with increasify the distance OF CONFINED MODES IN BENT WAVEGUIDES
in energy between the symmetric and antisymmetric states A. Experimental techniques
decreases.

However, we disagree with Wang and collaborators in As we discussed in the Introduction, we can construct a
one respect. They state that all “double bend discontinuity”’rectangular waveguide with two bends, whose cross sec-
geometries, i.e., all wires with aspect rati>2, should tional area is given by Fig. 1. Maxwell's equations for TE
have both a symmetric and an antisymmetric bound state. Agodes in this waveguide are satisfied Byand B fields
can be seen from Fig. 2, no true antisymmetric bound statahich have the formE:ikiw(x,y), B=—2zX Vi(x,y). B2
exists forR<2.5; for these geometries, the antisymmetricThe scalar fieldy(x,y) satisfies the Helmholtz equation
state is in the continuum. [V2+Kk2]y(x,y)=0, with /| =0 on the boundans of the
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electric and magnetic fields vanish at such a corner. How-
ever, since microwave surface currents flow elsewhere be-
tween the two plates, the waveguide structure must be
clamped together to ensure good electrical contact.

In such a structure, propagating waves with frequencies
below c/2D (= 23.6 GHz hergmust only have a nonzero
component of the electric field perpendicular to the large
plates in order to satisfy the boundary conditions on the sur-
rounding conducting surfaces. The magnetic field must be in
the xy plane.

We measured the resonant frequencies using the same
method as we have previously descridé@&mall holes(the
black dots in Fig. 5, just outside the bengsovide clearance
for 0.141" semirigid coaxial lines. We place a coaxial line
(with its center conductor extending about 0.5 cm to form an
antennathrough one of the holes. We can vary the degree to
which the line radiates into the waveguide structure by the
amount of protrusion of the antenna. A Hewlett-Packard
8510B network analyzer connected to the coax sends the
microwave power to the antenna and measures the reflected
power as a function of frequency. Sharp drops in the re-
flected power occur for the bound state frequenties.

FIG. 5. Schematic view of the waveguide structure used in the The cutoff frequency for the lowest propagating mode in
experiments. The structure was made from two half-inch aluminunthe waveguides, Tk, is nominally c/2W=7.87 GHz. We
plates. Top: one of the machined aluminum plates; the other is itsletermine the actual cutoff frequency experimentally by ad-
mirror image. The shaded area is 0.635 cm higher than the lightgusting our structure so th&=1 to form a long, straight
area. The black dot is a clearance hole for a coaxial cable. Bottontavity with the same widthy, and a lengthL. = 27.30 cm.

schematic view of the assembled structure. The space between thi¢e then measure the frequencies of the first fewyJE
two plates, shown in white, forms the double bend structure. Thenodes, f(p). A linear fit to the data [f(p)]ZZfCO
waveguide width isV=1.905 cm. The distance between the bends  n2(c/2 )2 gives f,,=(7.850:0.003) GHz and

is (_:ontinuously variable by sliding the two plates along the axisLeﬁ: 27.05 cm(the ends of the cavity are rounded with radii
indicated by the double arrow. = 0.953 cm, which make§ .+ somewhat shorter than the
physical length
waveguide. The relation between the wave numbeand Once we can measure the resonant frequency, we can map
frequency is given in Eql1.3. out the field distribution for the bound states for a few rep-
The scalar fieldy for the waveguide is exactly the solu- resentative values dR. The simple two-dimensional map-
tion ¢ of the Schrdinger equation for an electron in a quan- ping procedure is a technique which has been known for
tum wire, as given in Eq(1.2). Therefore, since there exist some timeé”® and which has been beautifully refined by
bound states of the Schdimger equation in the bent quantum Sridhar?® In this method the resonance is perturbed with a
wire, there will be analogous confined TE modes below thesmall steel bal(1/8"” diamete) located at a known position
cutoff frequency for the waveguide, and the confilefield  within the waveguide bend and then the change in the reso-
will be completely described by the quantum wire boundnant frequency of the mode as a function of position,
state wave functiony. Af(x,y) is measured. We locate the steel kallth a preci-
To observe the confined electric fields in an electromagsion of about 1 mmon the vertices of a 0.3175 cm two-
netic waveguide with two right-angle bends, we constructedlimensional grid with a small magnet.
a finite version of the waveguide structure schematically In a previous papéf we derived a formula for the pertur-
shown in Fig. 1. With this system, we could continuously bation in the resonant frequency produced by the presence of
vary the aspect ratioR=H/W over the range ¥R<6, a metal ball of radius:
measure the frequencies for the bound states, and map the

electromagnetic energy density for the bound states. Af(x,y) 413 )
The structure was made of two pieces of machined alu- fo  2DW? Cly(xy)l
minum. Figure 5(top) shows one of the pieces; the other is
its mirror image. The darkly shaded area is 0.635 cm higher 1] ag(x.y) |, |dp(xy)|,
than the lighter areas. When the second piece is inverted, the T 2K2 IX + 9 - (3D

empty space between the plates forms a waveguide double

bend, as shown in the bottom part of the figure. The wavein Eq. (3.1), ¢ is the normalized wave function associated
guide width isw =1.905 cm, and its depth B= 0.635 cm. with the bound state being measured. The dimensionless
Relative motion of the two plates in the direction of the constantC, depends on the relative size of the ball and the
double arrow produces a continuous variationtbfwhile  depth of the waveguidd), but is greater than 2.4 in general.
keepingW fixed. The joints at the outside corners of the Moving the steel ball allows us to map out the electric and
waveguide bends do not affect the modes because both timagnetic fields in the structure, as the positions of the ball



9848 CARINI, LONDERGAN, MURDOCK, TRINKLE, AND YUNG 55

Frequency [GHz]
7.9

7.8

7.7

7.6
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state frequencies
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1 2 3 4 5 &6
Aspect Ratio [R=H/W]

7.3

7.2 ®)

FIG. 6. Bound state frequencies as a function of the aspect rati
R=H/W in the double bend waveguide structure of Fig. 5. The
symbols represent the experimental results for the symmiéthax
circles and antisymmetric statéspen circles The lines represent
the theoretically determined resonant frequencies calculated fror..

the ratio of the bound state energy and the threshold energy for free FIG. 7. (a) Experimentally measured contour plot of the reso-

i _ 12
Propagation{ uound=feo Enound/ Eim)” ~. The TEy cutoff frequency, Jrant frequency shift for the double bend waveguide structure with

feo, Was determined to be 7.85 GHz and is shown by the soli o o "
horizontal line. The theoretical value for the bound state frequenc;}he aspecr:.f;atltht—_Z.IO. lThe shadlngt_ls ]!'glhdt for the ;()josm_ve ;re-
of an isolated 90° bend of the same width~0.966 ;) is indi-  duency shift(relatively large magnetic field energy denign

cated by the dashed horizontal line. dark for the r_1egative fr_equen_cy sh(ﬁela_tively I_alrge electric_ fie_ld
energy density There is a single maximum in the electric field

energy density centered between the two berls.Theoretical

that produce local minima in the resonant frequency of gyrediction for the contour plot of the resonant frequency shift for

mode correspond to antinodes of the electric field for thathe bound state foR=2 as predicted from Eq3.1).

mode, and positions that produce local maxima in the reso-

nant frequency correspond to antinodes of the transver

magnetic field strength.

Srawn through the data points are nearly identical. A shift in
the value of the cutoff frequency of 0.013 GHz puts the
theoretical line on top of the data points. We do not under-
B. Bound state frequencies as a function oR stand the source of this shift, but it amounts to less than

In Fig. 6 we plot the experimental values for the symmet—ll500 Offo.
ric and antisymmetric bound state eigenvalues as a function
of the aspect ratidR of the bent waveguide. We observe a
symmetric bound state below the cutoff frequenéy, ( in-

dicated by the solid horizontal lindor all values ofR>1. In Fig. 7(a), we show the results of field mapping in a

We observe an antisymmetric bound state ez 3. As we - . :
; : ~ waveguide with two bends where the aspect rati4s2. In
had predictedsee Fig. 2, for large values oR the symmet ?his case, there is only a single confined mode. Ehiteld

ric and antisymmetric frequencies approach each othe hi de i e ab h f th
closely. ForR<2, the symmetric bound state frequency has'©" this mode is symmetric about the center of the wave-
a minimum and then rapidly increases to the cutoff fre-guide, with a single peak in the center and an exponential

quency asR—1. For R<4, the antisymmetric frequency decrease along t.he Iggs of the WaveglﬁmB cqrresponds to
rapidly approaches,, and we cannot follow the state below the case shown in Fig(8]. The underlying grid of data had
R=3. However, it certainly follows our theoretical results, @ Spacing of 1/6 of the waveguide width. The graph is shaded
which predict that no antisymmetric bound state will existSO that darker(lighter) regions are those with a negative
for R<2.5. (positive frequency shift(e.g., regions of relatively large

The theoretical values are plotted as dashed lines in thelectric field energy density appear darkest and those of large
figure. These are calculated &g,y feoEnound R)/E),  Magnetic field energy density appear lightedthe largest
whereE,n{R) are the calculated bound state energies, anglectric energy density occurs centered between the two
Eun=(Am)2/(2m*W?) (these are the curves shown in Fig. bends. The largest magnetic energy density occurs where the
2). For large values oR, both frequencies approach the surface current densities are greatest near the adjacent side
bound state frequency for an isolated 90° befabout walls of the waveguide, and also near the location of the
0.966 ). The shapes of the theoretical curves and a lineantenna, on the right waveguide section.

C. Mapping the bound states
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(b)

(b)

FIG. 9. (a) Experimentally measured contour plot of the reso-

. nant frequency shift for the antisymmetric confined state in the
. double bend waveguide structure with the aspect Rt3.0. Note

FIG. 8. (8) Experimentally measured contour plot of the reso- the node in the electric energy density centered between the two

nant frequency shift for the lower frequency confined state in &4 1) Theoretical prediction for the contour plot of the resonant
double bend waveguide structure with the aspect R#®3.0. This frequency shift for the antisymmetric bound state R#3. The
state is symmetric about the center of the waveguioleTheoreti- notation is that of Fig. 7

cal prediction for the contour plot of the resonant frequency shift o

f70r the symmetric bound state f&= 3. The notation is that of Fig. the antisymmetric state extends much farther down the
: straight sections. The antisymmetric frequency is much
closer than the symmetric frequency to the cutoff frequency
In Fig. 7(b) we show the theoretical calculations for the for the TE,; propagating mode, and therefore has a much
resonant frequency shift using Eq.(3.1) with  |onger decay length in the waveguide.
r3/(DW?)=1/576 andC=2.4612 Comparing the two halves
of the figure, we find excellent quantipative and qualitative IV. CONCLUSIONS
agreement between theory and experiment. The only place
where there appears to be a systematic difference between In the past few years it has been realized that quantum
theory and experiment is down the straight legs of the waveparticles moving in bent two-dimensional systems should
guide, where the experimental measurements fall off somegenerally exhibit bound states, which arise from the bends in
what less rapidly than theory. The theory predicts a maxithe system. Thus, electrons moving in narrow ‘“quantum
mum electric energy density approximately 10% greater thamire” structures should possess bound states. Recently, it
found in our experiment, so that the theoretical plot has ondéas been possible to demonstrate experimentally the exis-
more dark contour than the experimental result. tence of these states. However, the size of these systems
In Fig. 8@) we show the field mapping for the symmetric makes it difficult to obtain detailed measurements of the
bound state wave function corresponding to aspect ratiproperties of electrons in such bound states. In this paper, we
R=3. For this case we predict a peak of the electric field ammake model calculations of such bent structures, and we
each of the corners of the wif¢his corresponds to the situ- compare our predictions with experimental data for a certain
ation shown in Fig. @)]. These peaks are seen clearly in thegeometry.
data. Again, there is excellent quantitative agreement be- We first derived formulas for wave functions in quantum
tween the theory, as shown in Figb8 and experiment. wires with two right-angle bends. From these formulas one
In Fig. 9@ we show experimental results for the field can determine the number and location of bound states. The
mapping for the antisymmetric bound states in a wire withbound states have the following properties, which can be
R=3 [this is the case shown in Fig(8]. The bound state seen from Fig. 2: for ¥ R<2.5, only the symmetric bound
wave function for this configuration has a single node neastate exists. For £R< 1.7, the binding energy increases as
the center of the waveguide. Once again, the experimentdhe aspect ratio increases; for larger value®pthe binding
measurements are very close to the theoretical predictioranergy of the symmetri@ntisymmetri¢ state decreasesn-
shown in Fig. 9b). Comparing the shapes of the symmetric creaseswith increasingR. For large values oR, the anti-
(Fig. 8 and the antisymmetric states wilt=3, we see that symmetric and symmetric binding energies asymptotically
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approach the identical value~0.930; this is the binding
energy for a wire with a single right-angle bend.

Because of the limited data for these quantum wires, we
used the one-to-one correspondence between wave functior
for electrons moving freely in a quantum wire, and the elec-
tric field for TE modes in a rectangular waveguide, whose
cross-sectional area has the same shape as the quantum wil
Electron bound states are characterized by wave functions
which are localized in the vicinity of the bend, and which fall FIG. 10. Contour plot of the calculated wave function for the
off exponentially with distance along the wire. The corre- e!ectron bolund stgte in wire with the aspect ra.'re 1.5, showing a
sponding electric fields produce electromagnetic field mode§ingle maximum in the center of the bend region.

below the cutoff frequency for the waveguide; the electric ) . .
fields are also localized around the bend region and shouly@veguide. We also showed that the electric and magnetic
fall off exponentially away from the bend region. fields in such confined modes could be accurately predicted

Having shown this correspondence, we constructedrom theory. This gives us confidence in applying the same

waveguides with this shape, and we demonstrated the |océh_eoretical techniques to electron conductance in quantum
tion of the confined states by measuring the ratio of reflectedd/ires of the same geometry.

to incident powerR(f) as a function of frequencf for mi-

crowaves. The bound state appeared at that frequency where ACKNOWLEDGMENTS

a sharp minimum irR(f) was observed. The field distribu- The work in this paper was supported in part by the NSF
tions inside these waveguides were measured by moving & qar Contract Nos. NSE-PHY-9408843 and NSE-DMR-
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th(’?‘ E, andH; fields, the .maximum and minimum ffeq“ency properties of these systems, and about results that he and J.
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nant frequency shift to the electric and magnetic field dens'fality while this paper was being written. Two of the authors

ties in the waveguide. Qualitatively we obtained gpoq agreerp 1. and C.N.Y) thank the Indiana University Cyclotron
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ever, theoretical predictions of the minimum frequency shifts
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Perhaps the most interesting thing about such states in
bent waveguides is that they do not seem to have been pre-

dicted or measured until the past few yetrS’ despite de- To find bound states and wave functions in a bent quan-
cades of research on the properties of waveguides. In mogim wire when the aspect ratR is in the range ¥ R<2,
waveguides the practical interest is in the transmission anghe boundary matching conditions outlined in Sec. Il must be
reflection well above the cutoff frequency, and the presencenodified. In Fig. 1b) we show a picture of such a wire,
of confined states below the cutoff frequency will have anwhich we have divided into three regions. The wave function
influence on transmission properties of states above the cufust be either symmetric or antisymmetric under reflection
off. about the linex=0 andy=R/2. The bound state wave func-
Experimental studies have been carried out for quantunions will be symmetric under these reflections, consequently
wires with two bends by Wu and collaboratdfsivang and e need only solve for the wave functions in regionand
CO||ab0I'at0I’§6’17 Carried out theoretical Ca|Cu|ati0nS Of the 1. Wave functions Satisfying the appropriate boundary and
conductance for electrons in this geometry, and compared §ymmetry conditions have the form
to these experimental results. The geometry of our
waveguides was chosen to correspond to that studied by Wu *
et al.and Wang. In the following papéf we will extend our d(x,y)=>, Asinnmy)e * (x=1/2, 0<y=<R),
discussion to treat the conductance in quantum wires of this n=1
geometry. By comparing our results to those of éal. and
Wang, and using our understanding of such systems obtained
from our work with waveguides, we will assess the role
played by the electron bound states of those quantum wires

APPENDIX: BOUND STATES IN A BENT WIRE
WHEN 1<R<2

)= 2 anin( %) cost(Bx) (n odd)

on the observed conductance near threshold. ~ S (nmy\
In conclusion, we have shown that theoretical calculations :nzl Bysin —g~|sinh(Byx) (n even
give very good agreement with experiments of confined elec-
tromagnetic fields in bent waveguides. We showed that the (—1/2<x=<1/2, O<y=<R). (A1)

number of confined electric field modése., bound statgs
and their locations, are determined by the geometry of thén Eq. (A1), we havea,= 7/n’— € and 8,= m/n?/R?>—e.
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The condition for bound states is obtained by matching
the wave functions and normal derivatives at the boundaries
between regions. We match the wave functions from regions
I andll at the boundary, i.e.xE1/2, 0<y<R). The wave By
function in regionl has the form == a—nexﬂan/z)ukncosﬁﬂk/z) (k even,

Tok=— %exﬂan/Z)Uaninﬁﬁk/Z) (k odd

Y(x=112)y)=y(x=1/12)y) (y<1)=0 (R=y>1).
(A2)

We also equate the normal derivatives at the boundary, i.e.,
(9l 9x)|y=1/2. Here the wave functions in the two regions
are matched only over the intervad&y<1. The matching is
carried out by expanding the wave functions in both regions
in a complete orthogonal basis which vanishes on the bound-

B Unk qu - ak/2)

PR coshipyz) "W
B Unk eXF(_ ak/Z)
TR snipgz (MO
2k sin(nw/R
unk=(—l)k“?—k2n(_nz/Rg. (A3)

ary; for the wave function we expand both sides in terms of

sin(hmy/R), and for the normal derivatives we expand both In this region the only bound states occur for wave func-

sides in singmy). tions symmetric under reflection. The bound state wave func-
The bound states are obtained by truncating the resultinion has a single peak in the bend region. In Fig. 10, we plot

expansions and solving the matrix equation. The conditiorthe density contours for the bound state wave function for

for a bound state is Def()=0, whereZ=TS-1, and the caseR=1.5.
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