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Quantum paramagnetic fluctuations in RbFeCl3 in a magnetic field
applied perpendicular to the anisotropy axis
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The results for experimental and theoretical studies of the spin dynamics in the crystal of RbFeCl3 in a
magnetic field up to 5.5 T applied perpendicular to the anisotropy axis are reported. The data for the excitation
spectrum collected in the inelastic neutron-scattering experiment at 5.5 K, i.e., well above the phase-transition
temperature, are treated in accordance with the theory developed for the quantum paramagnetic fluctuations in
spin-1 systems with strong easy-plane-type anisotropy. In order to check the theory, the parameters extracted
from the spectrum evaluation are used to calculate the expected dependencies of the ratios between intensities
of two measured excitation branches on momentum transfer and magnetic field. No additional fitting param-
eters are needed to obtain a satisfactory agreement with the experimental ratios.@S0163-1829~97!06701-5#
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I. INTRODUCTION

The Fe21 ion in the family of ternary compound
AFeX3 ~with A5Rb or Cs andX5Cl or Br! has an effective
spinS51. A single-site anisotropy caused by the interact
with the crystal field leads locally to a splitting of the tripl
state into a singlet (m50) ground state and a doublet o
excited states withm561. These compounds have at roo
temperature the same hexagonal structure with space g
P63 /mmc.

1 Chains of phase sharing FeX6 octahedra along
the c axis are separated by theA ions. The exchange inter
action between the chains is antiferromagnetic in all fo
compounds, while in the Cl compounds the Fe ions
coupled ferromagnetically along the chains and antifer
magnetically in the Br compounds. The magnetic interact
along the chains is about ten times stronger than betw
them. This leads to quasi-one-dimensional features of
excitation spectrum. In all compounds the uniaxial ea
plane anisotropy is rather strong and, for example, in the
compounds it is so strong that the whole crystal remains
singlet ground state~SGS! for T→0. SGS’s are also of in-
terest in context with the study of the Haldane gap
S51 one-dimensional Heisenberg antiferromagnets.2

The Rb compounds exhibit long-range order at low te
perature. In RbFeCl3,

3,4 two incommensurate magnet
structures appearing at 2.50 and 2.35 K are followed be
1.95 K by a commensurate phase found with ferromagn
order along the chains and the frustrated 120° structure in
hexagonal plane. The excitations and the soft mode beha
in this phase were studied by neutron scattering in Refs. 5
550163-1829/97/55~2!/983~11!/$10.00
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A magnetic fieldH uu applied parallel to the hexagonal ax
(c axis! in CsFeCl3 ~Refs. 8–10! and CsFeBr3 ~Ref. 11!
leads at low temperature to a linear Zeeman splitting of
excited doublet. Long-range order appears in CsFeCl3 at
T50.7 K, H uu53.8 T ~incommensurate! and T50.7 K,
H uu54.5 T ~commensurate!, while in CsFeBr3 the order be-
comes directly commensurate atT51.6 K, H uu54.1 T. The
influence of the magnetic field applied perpendicular to
anisotropy axis on the magnetic excitations depends on
character of the exchange interaction along the chains
CsFeBr3, with antiferromagnetic coupling along the chain
the frequencies and intensities of the excitations were fo
to be independent of the applied field up to 6 T.12 In
CsFeCl3, however, both the frequencies and intensities w
dramatically influenced by the field.13 The frequencies were
interpreted following a theoretical approach by Lindga˚rd and
Schmid.14 The agreement was reasonable, with discrepan
between experiment and theory at the higher frequencie
the spectrum at high fields. There was no satisfactory th
retical prediction available on the wave vector and field d
pendence of intensities.

In the following we present an investigation o
RbFeCl3, in which the exchange interaction along the cha
is also ferromagnetic, in an external field applied perpendi
lar to the anisotropy axis. Section II presents a theoret
derivation of explicit expressions, which are used for a d
scription of both frequencies and intensities in depende
on the field, and results of other theoretical approaches
briefly commented upon. In Sec. III we describe the expe
ment, and present the experimental results. A discussion
comparison with theory follows in Sec. IV.
983 © 1997 The American Physical Society
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II. THEORY

A. General

The problems related to spin dynamics in strongly ani
tropic spin-1 systems have been under extensive theore
discussion for a long time, and a number of rather interes
results have been obtained in this field using different th
retical methods including the random-phase approximatio10

the correlated-effective-field15 and dynamical correlated
effective-field approximations,16,17 the 1/n and strong-
coupling limit expansion,18 the correlation theory approac
based on the Mori formalism~see Ref. 14, and reference
therein!, etc.

However, most of the theoretical results were formula
in a such way that the approximations used in the deriva
are hardly to be controlled, while the final equations are r
resented in a form which makes it difficult to apply the
immediately for the description of our experiment. The
fore, aiming at practical use, here we present a simple d
vation of the explicit equations for the components of t
nonuniform dynamic susceptibilities directly related to t
intensities of magnetic inelastic neutron scattering.

We shall use the quantum field theory formulation of t
perturbation theory developed for spin operators by Va
Lakin, and Pikin~VLP! a long time ago.19,20 In Ref. 20 this
theory was applied for calculations of the fluctuational ren
malization of the spin wave~SW! parameters in Heisenber
ferromagnets, while in Ref. 21 to those in anisotropic an
ferromagnets. Recently it was used to treat the problem
dipolar dynamics22 in ferromagnets.

For us it is important that VLP theory predicts a gene
structure of the response function in the case of develo
fluctuations, and that even in this case the propagating mo
of the excitations may still survive in a certain range of wa
vectors. In the present experiment the data were mostly
lected in a range of parameters, i.e., wave vectors and
quencies of the excitations, and temperatures and mag
fields in which no appreciable line broadening of the inel
tic scattering signal could be detected. This experimental
dence is actually used as an argument in favor of the
proach employed below.

The standard parametrically defined perturbation V
diagrammatic expansion formulates as a first step a reg
procedure to develop propagating modes starting fr
single-site excitations. This is especially convenient in o
case because of the strong single-site anisotropy, which
vokes to use these excitations as reference ones.14–17

B. Hamiltonian

The effective-spin Hamiltonian of the system derived
Eibschütz, Lines, and Sherwood15 may be represented as
sum of two terms,

H5H01Hint . ~1!

The reference HamiltonianH0 corresponds to the noninte
acting spinsSi situated at sitesi affected by the strong
single-ion anisotropy and the effective magnetic fieldH,

H05(
i
H0i5(

i
$D~Si

z!22mH iSi%, ~2!
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whereD is the anisotropy constant~or, in accordance with
Ref. 15, the zero-field splitting parameter!, m5gmB is the
magnetic moment of the Fe21 ion, andmB is the Bohr mag-
neton. For simplicity here we have written ag factor, while
in anisotropic systems one should, strictly speaking, us
tensorĝ, which, in accordance with Ref. 15, has two ind
pendent componentsguu and g' ~see also Ref. 23!. In our
field configuration we denoteg5g' in Eq. ~2!, and small
orthorombic distortions15 are neglected.

The effective on-site fieldH i is a sum of two terms:
H i5He1( j Ji jm/m, and for an homogeneous system it
independent of the site, i.e.,H i5H. In this sumHe is the
external magnetic field, and the second term correspond
the molecular field created by the average on-site magn
zationmm, where

m5mi5^Si&5Tr$e2H/TSi%/Tr$e
2H/T%, ~3!

via exchange interaction.
Since we have introduced the effective field, then the s

ond term in Eq.~1! describes the exchange interaction b
tween the spin fluctuations,

Hint52 1
2(
iÞ j

Ji j ~Si2m!~Sj2m!. ~4!

The Fourier transformJq of the exchange integralJi j may be
approximated as follows:11

Jq54$@J1cosqz1J2cos2qz#1J8g~qx ,qy!%, ~5!

where g(qx ,qy)52 cosqy$cosqy1cosqx%21, and qz is the
wave-vector component along thec axis, whileqx andqy are
displayed in the basal plane. The constant of the ferrom
netic exchangeJ1.0 between the nearest neighbors alo
the chains is about one order of magnitude larger than
antiferromagnetic exchange integralJ2,0 between the next-
nearest neighbors within the chains, as well as the cons
J8,0 of the antiferromagnetic coupling between the cha
~see Refs. 1 and 15!.

On the other hand, the anisotropy constantD is about one
order of magnitude greater thanJ1—the largest of the ex-
change constants.1,5,15Thus within a broad range of the wav
vectors 2Jq!D, and only in the vicinity of points with co-
ordinates in the reciprocal space,qz

max50, qx
max50, and

qy
max52p/3, 4p/3 ~or qx

max5p andqy
max5p/3,5p/3), is the

energy of the exchange interaction comparable with the
isotropy, i.e., 2Jqmax;D.

Therefore we shall consider the exchange coupling a
perturbation with respect to the anisotropy—the leading
teraction in the system. As we shall see, this idea appea
be quite fruitful in a description of the collective excitation
aroundq;qmax. In this range of wave vectors the spectru
varies strongly with the temperature ifT<$D22Jqmax%. Its
softening may finally lead to the phase transition instabi
at T5TN .

C. Single site excitations

Apart from the range ofq;qmax the spectrum is mostly
defined by the single-site spin excitations given by the ze
order HamiltonianH0. For He50 the spectrum of this
Hamiltonian has two stationary states: a nondegener
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55 985QUANTUM PARAMAGNETIC FLUCTUATIONS IN . . .
ground state (E050) and a degenerated doublet wi
E1,25D. Correspondingly, the spectrum of the single-site
citation is characterized by only one energy,E1,22E05D.
An applied magnetic fieldHe lifts the degeneracy of the
doublet. If the field is directed along the anisotropy axis, i
He5Hz , then the operatorS

z has a set of the eigenvectors
common with the HamiltonianH0, and the stationary state
may be characterized by the set of the eigenval
mz521, 0, and 1 of theSz operator. In each of these stat
the expectation values ^Sx(y)&5mx(y)50, while
^S2&5S(S11)52. This means that in any stationary sta
each of the projectionsma of the vectorm experiences rathe
extensive quantum fluctuations characterized by the me
square deviationsd(ma)25^(Sa)2&2^Sa&2, and by the cor-
relation tensor̂SaSb&.

If the magnetic fieldHe5Hx is applied along thex axis,
i.e., perpendicular to the anisotropy axis, the spectrum of
Hamiltonian contains three nondegenerated energy lev
the ground-state term withE051/2(D2D) and two excited
states withE15D andE251/2(D1D), respectively, where
D5@D214m2He

2#1/2. None of the single-site spin projec
tions commute with the HamiltonianH0 and, thus, they are
no longer conserved quantities in any of the stationary st
of the HamiltonianH0. This means that all projections of th
local magnetization experience rather developed quan
fluctuations in each of the stationary states.

On the basis of the Hamiltonian eigenfunctions the sy
metrical 333 matrix of theSz operator contains only fou
nonzero elements:S01

z 5S10
z 52(«21/D)

1/2 and S21
z 5S12

z

5(«10/D)
1/2, which describe the transitions between the c

responding stationary states with the energies of single
excitations: «205E22E05D, «215E22E152E0, and
«105E12E05E2. The nonzero elements of the antisym
metrical matrix of the operatorSy are related to the elemen
of Sz in the following way: S01

y 52S10
y 52 iS21

z and
S21
y 52S12

y 5 iS01
z . Only the matrix of the operatorSx has two

diagonal elementsS00
x 52S22

x 52mH/D, which corresponds
to the nonzero expectation values for the magnetization
jections onto the magnetic-field direction. However, this m
trix is nondiagonal and also contains two elemen
S02
x 5S20

x 52D/D.
Having these explicit equations for the spin projecti

matrix elements one can easily analyze the correlations
tween the fluctuations of different projections of the loc
magnetization. They are generally characterized by the
tarded Green function, which is defined as a mean valu
the commutatorGi j

ab(t)52 i ^$Sa(t)2mi ,S
b(0)2mj%& at

t.0, andGab(t)50 at t,0. Its Fourier transform

Gq
ab~v!5

1

N(
i j

eiq~r i2r j !E dte2 ivtGi j
ab~ t ! ~6!

is, as is well known~see Refs. 24–26!, proportional to the
tensor of the nonuniform dynamic magnetic susceptibi
describing the reaction of the system on the alternating m
netic field:

xq
ab~v!5

v0

4p
Gq

ab~v!, ~7!
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wherev054pm2/v0, andv0 is the volume per one atomi
spin.

On the other hand, atvÞ0 the imaginary part of the
Green function is expressed via the Fourier transform of
pair spin-correlation function,

^Sq,v
a S2q,2v

b &52@N~v!11#ImGq
ab~v!, ~8!

whereN(v)5@exp(v/T)21#21. This function is related to
the inelastic neutron-scattering cross section~see below!
measured in the experiment.

The invariant form of the perturbation theory is form
lated not for the retarded, but for the temperature Gre
function.24 Therefore, following the standard procedure~see,
for example, Refs. 24 and 19–22!, we first calculate the latte
function and then the retarded Green function, as an ana
continuation of the temperature Green functionGq

ab( ivn)
from the discrete sequence of the imaginary Matzubara
quenciesivn52pnT ~with n.0 an integer number! onto
the real axis ofv. Following this procedure and using th
matrix elements of the spin operators given above, one
mediately obtains the following set of equations for t
single-site Green functionsGi j

ab(v)5S0
ab(v)d i j :

S0
xx~v!5

2

D
r20

D2

v22D2 , ~9!

S0
yy~v!5

2

D H r10
«10
2

v22«10
2 1r21

«12
2

v22«12
2 J , ~10!

S0
zz~v!5

2

D H r10
«10«12

v22«10
2 2r12

«10«12
v22«12

2 J , ~11!

S0
yz52S0

zy52
2i

D H r10
mHv

v22«10
2 1r12

mHv

v22«12
2 J , ~12!

where rll85rl2rl8 and rl5exp(2El /T)/(lexp(2El /T)
are the statistical weights of the corresponding eigenst
l50, 1, and 2 of the HamiltonianH0, andH5H(mx) is
defined by the mean-field equationmx5(2mH/D)$r02%.

We see that the tensor of the single-site spin correlati
S0

ab(v) has only four different nontrivial components corr
sponding to the different polarizations of the spin projecti
fluctuations. One of these modes of fluctuations is linea
polarized along the field, and has the characteristic freque
«205E22E05D which corresponds to the virtual transitio
between the ground and the highest-energy level. Three o
components describe a kind of superposition of the two
quency elliptic precession of the spin projections in the pla
perpendicular to the field. The ellipticity is apparently a co
sequence of the uniaxial anisotropy in this plane. One
these two frequencies«105E12E051/2(D1D) corre-
sponds to the virtual transition from the ground to the fi
excited state, while another one reflects the contribution
the precession coming from the virtual transition betwe
two excited states, i.e.,«125E12E251/2(D2D). As long
as the interspin interaction is switched off, the phases
precession~or relevant events of the virtual transitions! ran-
domly change from site to site, but the exchange interac
brings them into coherence.
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Equations~9!–~12!, which are just intermediate results,
appear quite similar to those obtained in Ref. 16 for th
ordered phase in the field equal to zero. This is simply due
the fact that the single-site Hamiltonian has the same stru
ture, containing two terms: linear and quadratic ones wit
respect to the spin projection operators. However, the para
eters of the Hamiltonian are different, as well as an exa
form of corresponding equations for the single-site Gree
functions. In particular, in Ref. 16 the anisotropy constant
partly renormalized by use of a correlation parameter intro
duced into the single-site Hamiltonian. This parameter an
the single-site staggered magnetization are then defined b
pair of equations: one follows from the condition of self-
consistency@similar to that in the mean-field approximation
~MFA!#, and the other one from the fluctuation dissipatio
theorem. In our case, we have the field-induced magnetiz
tion directed perpendicular to the anisotropy axis. Due t
symmetry reasons we cannot describe this case by only h
mogeneous renormalization, characterized by a unique c
relation parameter.16 Therefore here we discuss an alterna
tive way of renormalization.

D. Interspins interaction as a perturbation. Larkin equation

The physical picture behind the perturbation theory ap
proach is as follows. Each event of the virtual change of
spin state at a given site distorts the local molecular field o
the neighboring spins. This may provoke changes in the
states, which creates the fluctuational molecular field on th
next neighbors, and so on, providing a mechanism for th
collectivization of single-site excitations and, in particular
spin-wave propagation. This is illustrated in Fig. 1~a!, where
cross-hatched circles denote the total irreducible block
S i j

ab( iv) linked into the chain via dashed lines correspond
ing to the interspin interactionJi j , and the double solid line
describes the collective-mode propagation between sitesi
and j .

The diagrammatic expansion in Fig. 1~a! directly follows
from the definition of the temperature Green function
Gi j

ab( ivn) if one expands the evolution operators(1/T)
~Refs. 19–22! into a power series with respect to the inter

FIG. 1. Sketch of the diagrammatic representation of the VL
perturbation theory series expansion.
e
to
c-
h
-

ct
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e
e
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s
-

action HamiltonianHint and, averaging the products of th
spin projection operators, takes into account the fact t
Ji j50 at i5 j .

Thus in Fig. 1 crossed-hatched circles with two points
a circle correspond to the average of the products of cou
of spin projection operators, which may belong to the sa
site, while dashed lines connect the sites withlÞ l 1, l 2Þ l 3,
etc. These products can be decomposed into a sum of te
as shown in Fig. 1~b!, where the hatched circle denotes t
total single-site blockSab( ivn), which corresponds to the
average of a pair of spin projection operators at the same
The diagrams for this block are given in Fig. 1~c!. Other
terms in Fig. 1~b! correspond to the case when spins belo
to different sites. These terms contain irreducible blocks
higher orders~three-spin, four-spin, etc. Green function!
shown as hatched circles with more then two points on ea
They are connected by the dashed double lines, which
respond to the effective dynamical interspin interacti
Vi j

ab( ivn). This may be represented via exchange interact
and the total irreducible blocks, as shown in Fig. 1~d! and, in
accordance with Fig. 1~a!, via the Green function
Gi j

ab( ivn).
The first diagram in Fig. 1~c! shown by an open circle

with two points on it corresponds to the mean-field sing
site susceptibilityS0

ab( iv) given in Eqs.~9!–~12!. The other
diagrams shown in Fig. 1~c! describe the single-site susce
tibility renormalization due to the creation of the virtual co
lective excitations in the spin medium.

Similar renormalization should also be applied to the lo
spin averagê Sx&. The process of such a renormalizatio
may be illustrated in the same way as in Fig. 1~c!, in which
the hatched circle with two points should be substituted
by a circle with one point on it, and the number of points
each circle in Fig. 1~c! should be reduced by one. Thus a
open circle with one point on it will correspond to^Si

x& in the
MFA, while the second diagram shows the same quan
renormalized due to the creation and absorption of a fluc
tion. Also, one may consider the processes of creation
more than one collective mode by the local excitation a
the exchange between spins by several~virtual! modes, as
shown in Fig. 1~c!. The circles containing more than tw
points correspond to the amplitudes of a decay of the s
fluctuations into several ones, or to their scattering by e
other. Of course, they may be ‘‘dressed’’ by the fluctuati
fields and ‘‘delocalized,’’ as shown in Fig. 1~b!.

Resolving the series of diagrams given in Fig. 1~a!, one
immediately obtains the set of Larkin equations,

Gq
ab~ ivn!5Sq

ab~ ivn!1 (
g5xyz

Sq
ag~ ivn!JqGq

gb~ ivn!.

~13!

As follows from Eqs.~9!–~12!, this set contains four equa
tions, and only three of them are interconnected, while
solution of the separated equation for the longitudinal~i.e.,
parallel to the field! component of the tensorGq

ab( ivn) is
written as

Gq
xx~ ivn!5

Sq
xx~ ivn!

12JqSq
xx~ iv!

. ~14!
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55 987QUANTUM PARAMAGNETIC FLUCTUATIONS IN . . .
Solving the three equations for the other nonzero com
nents of the tensor, one has

Gq
yy~zz!~ ivn!5$12JqSq

zz~yy!~ ivn!2Rq~ ivn!%/JqRq~ ivn!,
~15!

Gq
yz~zy!~ ivn!5Sq

yz~zy!~ ivn!/Rq~ ivn!, ~16!

Rq~ ivn!512Jq@Sq
zz~ ivn!1Sq

yy~ ivn!#

1Jq
2@Sq

zz~ ivn!Sq
yy~ ivn!2Sq

zy~ ivn!Sq
yz~ ivn!#,

~17!

where the excitation spectrum is defined by the solutions
the equationRq(v)50.

From these equations we see not only how interac
develops the discrete single-site spectrum into continu
branches of collective modes, but also that the modes
excitations with the polarization vectors displayed within t
plane perpendicular to the magnetic field are built up fr
all single-site modes with polarizations in this plane.

E. Spin waves in the mean-field approximation

To elucidate the situation, let us consider the first orde
the perturbation theory and, thus, setSq

ab(v)'S0
ab(v) de-

fined by Eqs.~9!–~12!. Also, we assume that the temperatu
T!D and the two upper levels of the single-site spectr
are almost unpopulated, i.e., that in Eqs.~9!–~12!
r10'r20'21, whiler21'0. Then, from Eq.~14!, it follows
that

Gq
xx~v!52

2

D

D2

v22V1q
2 , ~18!

where the spectrum of this mode of the excitations is defi
as follows:

V1q
2 5D222D2~Jq /D!. ~19!

From Eqs.~18! and~19! it is clearly seen how the exchang
interaction brings a dispersion into the spectrum, and how
elevated fields, it goes away from the instability related
the point of compensation of the anisotropy by the excha
at qmax. The magnetic field increases the energy of spin fl
tuations, and decreases the weight of the exchan
interaction contribution into this branch of the spectru
This makes the dispersion curve more flat.

The Green function for all types of fluctuations of the sp
projections may be written in the general form

Gq
mn~v!5

Lmn

v22V iq
2 , ~20!

wherem,n5x,y,z. The amplitudeLxx522D2/D and for
i51 the frequencyV1q is given by Eq.~19!, while ampli-
tudes of the fluctuations of the spin projections perpendic
to the field are defined as follows:

Lyy52
1

D
$2«10D2~2mH !2@ 1

2 1~Jq /D!#%, ~21!
-

f

n
s
of

f

d

at
o
e
-
e-
.

r

Lzz5
1

D
$2«10@«102D#1~2mH !2~Jq /D!%, ~22!

Lyz52Lzy52ivmH/D. ~23!

For all those fluctuations the spectrumV iq5V2q is unique,
and given by the equation

V2q
2 5«10

2 22Jq«101~2mH !2~Jq /D!2. ~24!

At H50 this equation coincides with Eq.~19!, as it should.
In an applied field this degeneracy ofV1q and V2q is

lifted, but not for all wave vectors, as it seems at first sig
Indeed, an applied magnetic field increases the energ
excitations for all wave vectors, but it distorts differe
branches of the excitations in a different way. In particul
the dispersion curveV2q for certain directions does becom
steeper and not flatter. This behavior is related to theJq

2 term
in Eq. ~24!.

As a consequence, two dispersion surfaces may hav
line of intersection in reciprocal space, defined by the eq
tion V1q5V2q . For the wave vectors belonging to this lin
the fluctuations of the magnetization projections parallel
the magnetic field have the same frequency as fluctuat
polarized in the plane perpendicular to the field.

At low fields the line of degeneracy is a solution of th
equation

Jq'D@32A17#/4, ~25!

which is in this approximation independent on the magne
field strength. This means that at low fields both types
fluctuations, with the wave vectors defined by this equati
experience the same influence of the magnetic field. Ho
ever, for the range ofq space at one side of the line given b
Eq. ~25!, the magnetic field suppresses the fluctuations w
one polarization more efficiently, while in the range on t
other side it is more efficient for another polarization. As w
shall see, for our set of parameters Eq.~25! has a solution at
the range of the wave vectors whereJq is close to its mini-
mum. Unfortunately, the resolution of the instrument was
good enough to verify the intersection of those branches.
the other hand, this question is quite interesting from a th
retical point of view. Indeed, Eqs.~19!, ~24!, and ~25! are
derived in the mean-field approximation and the fluctuatio
correction may change the conclusion drawn above.

Here it is important to note that the equations above c
tain an effective magnetic field which is to be found in t
same approximation as was used for their derivation. T
corresponding transcendental equation for this fieldH reads

H5He1
2J0H

AD21~2mH !2
, ~26!

whereJ0 is the exchange integral atq50. At low effective
fields the solution of this equation gives the following line
dependency:H(He)'He /(122J0 /D), which reflects the
enhancement of the effective field on a given spin due to
positive exchange interaction, with neighboring spins ‘‘ma
netized’’ in an external magnetic field. If the paramet
122J0 /D!1, then at low external fields the effective fie
H@He .
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This solution of Eq.~26! is valid at the applied fields
2mHe!H*5(D22J0)

3/2/2J0
1/2. Within the range of exter-

nal fieldsH*!mHe!D/2 the effective field is approximate
by the following equation:mH'(J0DmHe)

1/3. At extremely
high fields 2mHe@D the effective fieldmH'mHe1J0/2,
i.e., it is still higher than an applied field.

If one defines the energy of the Zeeman splitting
EZ5meff(He)He , where meff5g̃(He)mB , then within the
framework of the MFA the effectiveg̃ factor should reach its
highest valueg̃5g/(122J0 /D) at low fields, fall down pro-
portionally to He

22/3 within the rangemH*!mHeD/2 and
approach its asymptotic valueg̃'g at highest fields.

One must, however, admit that these conclusions m
have quite a restricted range of validity~or even be incorrect!
if the differenceD22J0!D. In the particular compound
RbFeCl3, as we shall see, it is relatively small. As a resu
the correlations of the ferromagnetic type fluctuations
quite developed, which reflects the tendency of the sys
toward one-dimensional ferromagnetic ordering along
chains. These fluctuations not only bring appreciable cor
tions to the solutions obtained in the MFA, but, as is w
known, they prevent the ordering in low-dimensional sy
tems predicted by the MFA.

Fortunately, in our case the system is not very close to
instability point defined~in the MFA! by the equation
D52J0. Moreover, a relatively weak in-plane antiferroma
netic exchange interaction is sufficient to lead the sys
away from the instability with respect to the one-dimensio
ferromagnetic ordering. Therefore, we believe that fluct
tions do not bring drastic changes to the behavior of
system, and their influence may be accounted for by a pro
generalization of the results obtained in the MFA. The ot
important consequence following from the fact that the f
romagnetic susceptibility of the system is quite high sho
however be discussed separately.

F. Demagnetizing effects

The magnetic field inside the sample is defined as

Hi
a5He

a24pNabMb. ~27!

The difference betweenHe andHi arises due to the contri
bution of the induced magnetizationMa5xabHe

b, and de-
pends on the sample shape. This representation of the m
netization is valid for the ellipsoidal sample, and t
components of the demagnetization tensorNab are related to
the major axis of the ellipsoid~see Ref. 25!.

The susceptibility tensor of a samplexab(H i) is generally
a function of the internal fieldH i . It should satisfy the fol-
lowing equation:26

xab5x0
ab24px0

amNmnxnb, ~28!

wherex0
ab(H i) is the susceptibility of the magnetic matte

while xab is the susceptibility of the sample. In fact, th
susceptibilityx0

ab corresponds to the Green functions co
sidered above, if one substitutes an external magnetic fie
these functions with the internal one.

If the magnetic fieldHe5Hx is directed along one of the
ellipsoid axes, then the solution of this equation has a sim
form,
s
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xxx5
Nxx0

xx

114px0
xx , ~29!

whereNx is the demagnetization factor in the direction of t
applied field, andxxx andx0

xx are the corresponding compo
nents of the susceptibilities of the sample and the matter

Substituting Eq.~29! into Eq. ~27! for the internal field
then gives the following equation:

Hi5
He

114pNxx0
xx~Hi !

. ~30!

This nonlinear equation cannot be solved analytically for
general case even using the equations forx0

xx(Hi) derived in
the MFA. However, an analysis of limiting cases similar
that has been carried out in Refs. 26, 27 and 22; let us d
conclusions on the qualitative behavior of the internal m
netic field as a function of the field applied to a samp
Indeed, from Eq.~30! it follows that if the susceptibility
x0(Hi) is high, then the internal fieldHi!He , which is a
direct consequence of the demagnetization effect. On
other hand, the susceptibility reaches its maximum value
fields equal to zero, and it decreases if an internal fi
magnetic-field strength increases. As a result, the inte
magnetic field may be much smaller than theHe at low
applied fields, while it approachesHe if the applied fields are
high enough.

This may readily be demonstrated using the equations
tained above. In the framework of the MFA, the unifor
static susceptibilityx0

xx5(v0/4p)Gxx, in accordance with
Eq. ~18!, has the following form:

x0
xx5

v0

4p

2D2

D3~Hi !22J0D
2 , ~31!

where D(Hi)5AD21(2mHi)
2. This equation should be

substituted into Eq.~30!, and solved with respect toHi .
At low values of He , the susceptibility x0

xx

'2v0 /$4p(D22J0)%, and

mHi'~D22J0!
mHe

D0
H 11

3mHe

2D0
1•••J , ~32!

where D05$D22J012Nxv0%, and the approximation is
valid if He!D0. In the opposite limit, i.e.,He@D0, the in-
ternal field is close to the external one.

At our particular set of parameters~see the correspondin
section! demagnetizing effects at low applied fields play
important role. Therefore in all final equations for the Gre
functions the external field should be substituted with
internal one. However, in order to keep the notations,
shall use in the following the effectiveg̃(Hi) factor, intro-
duced above, which is a function of the internal but not t
external magnetic field. This obstacle seems to be quite
sential in view of the nonlinear dependencyHi(He).

Indeed, conclusions on the behavior of the effect
g̃(Hi) factor are based on analysis of Eq.~26!, in which the
external fieldHe should also be substituted withHi . As a
result, at low fields theg̃(He) factor does not decrease, a
was concluded above, but rather increases with the app
field strength. This is due to the fact that in accordance w
Eq. ~32! the internal field increases faster then the exter
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one. The particular behaviorg̃ can in principle be obtained a
a result of a numerical solution of Eqs.~26!–~31!. It depends
not only on the range of applied fields and internal para
eters of the system, but also on the shape of a sample.
is, however, beyond of the scope of the present study.

Here we shall not pay anymore attention to this questi
mostly for the following reasons. The equations above do
take into account the fluctuational corrections which m
play an essential role for a quantitative dependencyg̃(He).
Therefore we shall useg̃ as a free parameter in the descri
tion of our data on inelastic neutron scattering for each va
of the magnetic field. Then the field dependencies ofg̃ and
other parameters may be analyzed separately, including
analysis of the role in their behavior of the fluctuational c
rections. This role is apparently not restricted by only t
renormalization of the functiong̃(He). Rather developed
quantum fluctuations should change the behavior of the fu
tionsV1,2q(He). Therefore, in particular, the position of th
line given by Eq.~25! may not actually be true, because th
equation does not account for the spectrum renormalizat

G. Fluctuational corrections

.
Here, with the goal to describe the field dependence of

measured quantities, we restrict ourselves, by the analys
the general structure of the fluctuational corrections, to
susceptibilities derived above in the MFA. Thus the aims
this analysis are to introduce a proper parametrization of
measured branches of the spectrum, and then to derive
equations, which could be employed in the description of
neutron scattering intensities with the same set of par
eters.

The set of parameters of the real Hamiltonian of the s
tem is, actually, not well known, and those found experim
tally are already renormalized by the fluctuations, which
quite developed even at low temperatures. Therefore in
preferences in the selection of the diagrams we shall also
the arguments following from the experimental observatio
One of the most important among these observations is
the fluctuations do not cause any appreciable damping to
excitations.

Therefore, in the first approximation we should mos
take into account those corrections to the MFA which ren
malize, but do not bring broadening into, the spectru
These kinds of fluctuational corrections arise due to
renormalization of the unit-cell blocks presented in Fig.
They correspond to the processes of the self-interaction
given spin via creation of virtual excitation in the spin m
dium. Meanwhile, the processes of the interaction of diff
ent spins via virtual exchange by the excitations, such
shown in Fig. 1~c!, could be in this approximation omitted

The result of such a renormalization can be summari
in a quite simple way. First, subject to the renormalization
a single-site magnetizationm and/or the value of the mea
effective field. This is reflected in energy shifts of the sing
site excitation spectrum and, as discussed above, accou
for by a substitution in the equations for«ll8 in Eqs. ~9!–
~12! with the g factor for effective g̃(Hi) factor, where
Hi5Hi(He).

Then, in the same order of the perturbation expans
one should renormalize the spin autocorrelation functi
-
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Sab(v). It could be shown that the leading terms in th
equations for the corresponding corrections may be
counted for by the introduction of some factorsQx(Hi),
Qy(Hi), andQz(Hi) in a such a manner thatSxx'QxS0

xx ,
Syy'QyS0

yy , Szz'QzS0
zz, andSyz'QyzS0

yz , whereS0
ab is

given by Eqs.~9!–~12!, andQyz
2 5QyQz .

Substituting these expressions into Eqs.~14!–~17!, one
may calculate the components of the Green funct
Gq

mn(v) generally represented by Eq.~20!. In this equation
the frequenciesV1,2q should now be substituted for by th
renormalized ones,

Ṽ1q
2 5D222QxJqD

2/D, ~33!

Ṽ2q
2 5«10

2 22Jq«10~D̃/D!1QzQy~2mH/D!2~Jq
2/D!2,

~34!

where D̃51/2$(Qz1Qy)D1(Qz2Qy)D%. Simultaneously,
the amplitudesLmn in Eq. ~20! should be substituted for by
the following quantities:

L̃xx522QxD
2/D, ~35!

L̃yy52
1

D
$2«10D̃2~2mH !2Qz@1/21QyJq /D#%, ~36!

L̃zz5
1

D
$«10@Qy«102D̃#12~mH !2QzQyJq /D%. ~37!

The set of Eqs.~33!–~37! completes the parametrization ne
essary to describe our experimental data. Actually, the
rametersQx , Qy , Qz , and g̃ are functions of the interna
magnetic field. ThusQxyz(Hi) depends ong̃(Hi), while the
latter one is defined by the magnetic susceptibility, which
parametrized byQxyz. Therefore, all parameters are corr
lated and, cannot generally be used in the fitting routine
free. In forthcoming theory they should be expressed via
parameters of the Hamiltonian, which are actual free para
eters of the substance. However, since the variation
g̃(He) andQxyz(He) with the applied magnetic field is no
very pronounced one still may vary them independently.

A complete study would then include a quantitative ana
sis of the field dependencies of those parameters, and a c
parison with the experiment. This, however, invokes so
numerical calculations and more accurate measureme
which are both in progress.

III. EXPERIMENT AND RESULTS

The inelastic neutron-scattering investigations were p
formed at the cold neutron Three Axis Spectrometer 4F2
the Laboratoire Le´on Brillouin ~LLB ! at Saclay. All the
scans were performed with fixedkf51.55 Å21 and a beryl-
lium filter in front of the analyzer to suppress higher-ord
reflections from the analyzer. The collimation was 1208,
308, 508, and 508. The sample of RbFeCl3 had a volume of
about 0.4 cm3, and the lattice parameters used at low te
perature werea56.991 Å andc55.943 Å. The sample tem
perature was kept at 5.5 K throughout the experiment. T
temperature was chosen as a compromise between bein
enough above the first phase transformation at 2.55 K
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990 55TOPERVERG, DORNER, SONNTAG, AND PETITGRAND
being not too high, where damping becomes important.
superconducting magnet of the LLB with vertical field had
maximum field strength of 5.5 T. Data were collected at 0
3, 4, and 5.5 T.

Two typical experimental scans for the scattering inten
ties I (Q,v) measured as functions of the energy transfev
at fixed momentum transfersQ are represented in Fig. 2. Th
scans were performed at the maximum fieldH'55.5 T
through the modesV1 andV2, the upper and lower frequen
cies, respectively. The positionsQ5(0.5,0.5 0) and
Q5(0.5,0.5 2) are identical by means of translational sy
metry. Similar scans were performed along theQ5(j,j,l )
directions forl50 and 2.

The data are to be fitted in accordance with the equa

I i~Q,v!5I 0E dv8R~Q,v2v8!@N~v8!11#

3~dab2eaeb!ImGq
ab~v8,V iq!, ~38!

whereR(Q,v2v8) is the resolution function of the spec
trometer, ande5Q/Q is a unit vector in the direction o
the momentum transfer,Q5t1q, wheret is a reciprocal-
lattice vector. The components of the Green funct
Gq

ab(v8,V iq) are defined by Eqs.~20! and ~33!–~37!.
If damping, @i.e., the imaginary part of the self–energ

Sq
ab(v)# is ignored, then, in accordance with Eq.~20!, one

obtains

ImGq
ab~v!5

pL̃ab

2V iq
@d~v2V iq!2d~v1V iq!#, ~39!

FIG. 2. ConstantQ scans at the maximum applied field for tw
equivalent positions in reciprocal space.
e
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i-

-

n
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and the line shape of the spectra should be entirely descr
by the resolution function of the instrument. In fact, som
small line broadening of the spectra has been detected,
by means of fitting the data to the damped harmon
oscillator model, in some cases the intrinsic width came
to 20–50 % of the instrumental resolution. Because
widths of the inelastic scattering peaks were generally sm
the resolution was insufficient to arrive at any conclusio
about their line shape. For the sake of simplicity, we use E
~38! and~39! for the description of our data. The frequenci
of the modes as determined by the fitting routine are p
sented in Figs. 3–5.

The fitting routine also provided an integrated intens
I int(Q,V iQ) by means of

I int~Q,V iQ!5E dvV iq@N~v!11#21I i~Q,v!. ~40!

From Fig. 2 one can already conclude that the relative int
sities of the modesV1 and V2 depend strongly onQ. A
detailed discussion will follow in Sec. IV.

Due to the limited beam time the data are not as comp
as one could wish. Nevertheless the statistics were in m
cases good enough to determine frequencies. But the p
sion of determining intensities suffers from large error ba
Mode splitting with increasing field could clearly be ob
served for the low-frequency modes but at high frequenc
near l51 the splitting could not be verified within the ex
perimental resolution.

FIG. 3. Dispersion curves of the low-energy magnetic exci
tions for the direction perpendicular to the chains at different a
plied fields. The lines represent the best fit of our theory.
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IV. DISCUSSION

A. Frequencies

The experimentally obtained frequencies were compa
to the theoretical predictions. First we fitted the data for
frequenciesV1(q) andV2(q) at zero field to Eqs.~19! and
~24! ~which coincide for zero field! and obtained the follow-
ing values of the parameters:

D50.58960.005@THz#'19.660.2@cm21#,

J150.074360.0007@cm THz#'2.4860.02@cm21#,

J2520.011860.0003@THz#'20.3960.01@cm21#,

J8520.005460.0002@THz#'20.18060.007@cm21#.

We also repeat for comparison the values for CsFeCl3 at 1.6
K ~Ref. 13! with D50.52260.003@THz#, J150.0629
60.0002@THz#, J2520.009560.0004@THz#, and
J8520.004260.0001@THz#. In accordance with Ref. 5
D~ RbFeCl3)50.588@THz#, andD~CsFeCl3)50.527@THz#.

As can be seen from Figs. 3–5 the calculated dispers
curves at zero field reproduce the experimental data v
well. To calculate the dispersion curves measured un
magnetic field we kept these four parameters fixed. Ad
tional parameters, to be varied, were the effectiveg̃(He)
factor,Qx , Qy , andQz ; see Eqs.~33! and ~34!. The latter
ones renormalize the spin autocorrelation functions.

FIG. 4. Dispersion curves of the magnetic excitations along
chain direction for (1,1,j), which is identical to (0,0,j). The lines
represent the best fit of our theory.
d
e

n
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Preliminary fits had shown that the values forQy and
Qz were nearly the same. Therefore we reduced the num
of additional parameters to three settingQy5Qz .

The values obtained at four different external fields d
pend on the field, and are shown in Fig. 6. For the parame
Qx andQy5Qz , which by definition have the value 1 at zer
field, we interpolated the results by aH'

2 expression as given
in Fig. 6. Forg̃(He) this was not possible, because its val
at zero field is not known.

Figure 3 shows the low-frequency part of the spectru
i.e., the dispersion curves perpendicular to the chain dir
tion in the@jj l # direction with l50 and 2. The evolution of
the splitting and the shift of the modes is again well rep
duced by the theoretical calculations.

In Figs. 4 and 5 we give dispersion curves in t
@0 0 j# and @0.5 0.5j# directions. A splitting could be de
tected only forj<0.6. This is not surprising, because th
theory predicts a mode crossing at aboutl'0.7. At wave
vectors around this value it is then of course impossible
observe a splitting.

Already in the study of CsFeCl3 in an external field per-
pendicular to the chain axis the results at high frequenc
exhibited a discrepancy between experiment and theory.
T and 1.6 K, a splitting could just be observed up to t
highest frequencies. However, the theoretical approac14

used at that time predicted a much larger splitting at h
frequencies than observed.

e FIG. 5. Dispersion curves of the magnetic excitations along
chain direction for (0.5,0.5,j). The lines represent the best fit of ou
theory.
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B. Intensities

The determination of intensities in inelastic neutron sc
tering is a difficult task. Inelastic signals have typica
1025 of the intensities of Bragg reflexes. Therefore spurio
effects may easily influence the inelastic intensities. Besi
absorption and sample shape, simultaneous Bragg reflec
are probably the most dangerous phenomena. While
sample is oriented on a position in an inelastic scan, a Br
condition may simultaneously be fulfilled for the incomin
neutron beam. This reflection takes the intensity out of
primary beam and throws it somewhere into 4p space. As a
consequence the inelastic signal is reduced.

One way to increase confidence in measured intens
would be to perform the series of experiments at two diff
ent neutron energies, as was done28 before. In the presen
case we found that intensities at positions near each oth

FIG. 6. Field variation of the renormalization paramete
Qx(H') andQy(H')5Qz(') fitted to quadratic law as given in th
inset. Forg̃(H'), the line is just a guide to the eye.
ys
t-

s
s
ns
he
g

e

es
-

in

Q space could be compared. They could also be follow
with increasing field. But there were intensities at a giv
Q which were out of scale in a similar way at all applie
fields.

To avoid some of these problems we assumed that b
intensities of the split modes are influenced in the same w
by spurious effects. This is the reason why we decided
interpret ratios of intensities at the same position inQ space.
This assumption leaves it still open whether a spurious Bra
reflection comes into play for one of the two signals b
means of a variation of the incoming energy during the sc
On the other hand, experience shows that such spur
Bragg reflections were broad with respect to parameters s
as incoming energy and sample orientation. The interpre
tion of ratios also makes unnecessary the estimation of
magnetic form factor and the Debye-Waller factor.

We analyzed the intensities of all scans in@j,j,l # direc-
tions for l50 as well as forl52 using Eq.~40!. The ratios
I int(Q,V1)/I int(Q,V2) are presented in Fig. 7 together wit
the calculated curves. The scatter of the data represents
uncertainties of the experimental results. Nevertheless,
remarkable how well the calculations reproduce the da
The intensities have been calculated after a fit of the th
retical expressions to the frequencies. Here we want to st
that no further parameters were introduced to calculate int
sities. The agreement between experiment and theory is
isfactory, and provides further confidence into the theore
cally derived expressions.
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FIG. 7. Intensity ratios of the inelastic scattering signals at
highest applied field from the modes of the two dispersion curve
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