PHYSICAL REVIEW B VOLUME 55, NUMBER 2 1 JANUARY 1997-11

Quantum paramagnetic fluctuations in RbFeCl; in a magnetic field
applied perpendicular to the anisotropy axis
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The results for experimental and theoretical studies of the spin dynamics in the crystal of RifreCl
magnetic field up to 5.5 T applied perpendicular to the anisotropy axis are reported. The data for the excitation
spectrum collected in the inelastic neutron-scattering experiment at 5.5 K, i.e., well above the phase-transition
temperature, are treated in accordance with the theory developed for the quantum paramagnetic fluctuations in
spin-1 systems with strong easy-plane-type anisotropy. In order to check the theory, the parameters extracted
from the spectrum evaluation are used to calculate the expected dependencies of the ratios between intensities
of two measured excitation branches on momentum transfer and magnetic field. No additional fitting param-
eters are needed to obtain a satisfactory agreement with the experimental 80i&3-18207)06701-5

I. INTRODUCTION A magnetic fieldH)| applied parallel to the hexagonal axis
(c axig) in CsFeC}k (Refs. 8—10 and CsFeBs (Ref. 1)

The FE*' ion in the family of ternary compounds leads at low temperature to a linear Zeeman splitting of the
AFeX; (with A=Rb or Cs andX=Cl or Br) has an effective excited doublet. Long-range order appears in Csgedl
spinS=1. A single-site anisotropy caused by the interactionT=0.7 K, H;=3.8 T (incommensurajeand T=0.7 K,
with the crystal field leads locally to a splitting of the triplet H;=4.5 T (commensurate while in CsFeBg the order be-
state into a singletri=0) ground state and a doublet of comes directly commensurate B=1.6 K, H;=4.1 T. The
excited states witln= =+ 1. These compounds have at room mfl_uence of the magnetic fleld_applle_d perpendlcular to the
temperature the same hexagonal structure with space gm@@sotropy axis on the magnetic excitations depends on the

P6;/mmc? Chains of phase sharing Xg octahedra along character of the exchange interaction along the chains. In

the ¢ axis are separated by tifeions. The exchange inter- CsFeBg, with antiferromagnetic coupling along the chains,

action between the chains is antiferromagnetic in all fourthe frequencies and intensities of the excitations were found

compounds, while in the ClI compounds the Fe ions ar fo be independent of the applied field up to 6°Tin

P ’ . b . . E‘CsFeC!g, however, both the frequencies and intensities were
coupled ferromagnetically along the chains and am'ferro'dramatically influenced by the fiefd. The frequencies were
magnetically in the Br compounds. The magnetic interactio

L i r]nterpreted following a theoretical approach by Lindtjand

along the chains is about ten times stronger than betweeg.ymiql4 The agreement was reasonable, with discrepancies
them. This leads to quasi-one-dimensional features of thgenyveen experiment and theory at the higher frequencies of
excitation spectrum. In all compounds the uniaxial easythe spectrum at high fields. There was no satisfactory theo-

plane anisotropy is rather strong and, for example, in the Cgetical prediction available on the wave vector and field de-
compounds it is so strong that the whole crystal remains in endence of intensities.

singlet ground statéSGS for T—0. SGS'’s are also of in-  |n the following we present an investigation of
terest in context with the study of the Haldane gap forRbFeCl, in which the exchange interaction along the chains
S=1 one-dimensional Heisenberg antiferromagfets. is also ferromagnetic, in an external field applied perpendicu-

The Rb compounds exhibit long-range order at low temdar to the anisotropy axis. Section Il presents a theoretical
perature. In RbFeG|** two incommensurate magnetic derivation of explicit expressions, which are used for a de-
structures appearing at 2.50 and 2.35 K are followed belovgcription of both frequencies and intensities in dependence
1.95 K by a commensurate phase found with ferromagnetion the field, and results of other theoretical approaches are
order along the chains and the frustrated 120° structure in thieriefly commented upon. In Sec. Il we describe the experi-
hexagonal plane. The excitations and the soft mode behavionent, and present the experimental results. A discussion and
in this phase were studied by neutron scattering in Refs. 5—&omparison with theory follows in Sec. IV.
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Il. THEORY whereD is the anisotropy constarfor, in accordance with
Ref. 15, the zero-field splitting parametep.=gug is the
magnetic moment of the Fé ion, andug is the Bohr mag-
The problems related to spin dynamics in strongly anisoneton. For simplicity here we have writtengafactor, while
tropic spin-l Systems have been under extensive theoreticm anisotropic Systems one should, Stricﬂy Speaking' use a
discussion for a long time, and a number of rather interestingensorg, which, in accordance with Ref. 15, has two inde-
results have been obtained in this field using different theopendent componentg andg, (see also Ref. 23 In our

retical methods including the random-phase approximaflon, fie|q configuration we denotg=g, in Eq. (2), and small
the correlated-effective-field and dynamical correlated- orthorombic distortion are neglected.

effective-field approgimgtion&‘?” the 1h and strong- The effective on-site fieldH; is a sum of two terms:
based on the Mori formalisnisee Ref. 14, and references jngependent of the site, i.eH;=H. In this sumH, is the

therein, etc. external magnetic field, and the second term corresponds to

. However, most of the theoretical results were formulatedhe molecular field created by the average on-site magneti-
in a such way that the approximations used in the derivation ation ,,m, where

are hardly to be controlled, while the final equations are rep-
resented in a form which makes it difficult to apply them m=m;=(S)=Tr{e TS}/ Tr{e T}, (3)
immediately for the description of our experiment. There- . . :

via exchange interaction.

fore, aiming at practical use, here we present a simple deri- Since we have introduced the effective field, then the sec-

vation of the explicit equations for the components of theOnd term in Eq.(1) describes the exchange interaction be-
nonuniform dynamic susceptibilities directly related to the =0 . 9
tween the spin fluctuations,

intensities of magnetic inelastic neutron scattering.

We shall use the quantum field theory formulation of the
perturbation theory developed for spin operators by Vaks, Hine= —%E Jij(§S—m)(§—m). 4
Lakin, and Pikin(VLP) a long time agd®?°In Ref. 20 this 1#]
theory was applied for calculations of the fluctuational renor-The Fourier transfornd,, of the exchange integrdl; may be
malization of the spin wavéSW) parameters in Heisenberg approximated as follows:
ferromagnets, while in Ref. 21 to those in anisotropic anti-
ferromagnets. Recently it was used to treat the problem of Jq=4{[chosqz+J2c05212]+J’y(qx,qy)}, (5)
dipolar dynamic¥ in ferromagnets.

For us it is important that VLP theory predicts a general
structure of the response function in the case of developed. .
fluctuations, and that even in this case the propagating mod ésplayed in the basal plane. The constant Of. the ferromag-
of the excitations may still survive in a certain range of Waveﬂe“C exchangd, >0 between the nearest neighbors along

vectors. In the present experiment the data were mostly Cof_he_chams IS at_>out one ord_er of magnitude larger than the
lected in a range of parameters, i.e., wave vectors and fre@ntlferromagnetlc exchange integik<0 between the nex-

guencies of the excitations, and temperatures and magnetrj](‘?irgStfntﬁ'ghb?;S within thi. chamsl,. as [;\,N?" as t?ﬁ cok?s.tant
fields in which no appreciable line broadening of the inelas- ol the anfiterromagnetic coupling between he chains

tic scattering signal could be detected. This experimental evi(sece) Rtifs' %hancﬂ] 15d th isot @ris about
dence is actually used as an argument in favor of the ap- n the othér hand, the anisotropy consfans about one

proach employed below. order of magnitud%greater thah—the largest of the ex-
The standard parametrically defined perturbation VLPCNange constants**Thus within a broad range of the wave

diagrammatic expansion formulates as a first step a requld€Ctors dq<D, and only in the vicinity of points with co-
procedure to develop propagating modes starting fronPrdinates in the reciprocal space, “=0, g, =0, and
single-site excitations. This is especially convenient in oudy = 2m/3, 4m/3 (or *= 7 andqy®= m/3,5m/3), is the
case because of the strong single-site anisotropy, which irehergy of the exchange interaction comparable with the an-

vokes to use these excitations as reference thes. isotropy, i.e., dgmna~D. .
Therefore we shall consider the exchange coupling as a

perturbation with respect to the anisotropy—the leading in-

teraction in the system. As we shall see, this idea appears to
The effective-spin Hamiltonian of the system derived bype quite fruitful in a description of the collective excitations

Eibschiz, Lines, and Sherwodd may be represented as a aroundg~q™ In this range of wave vectors the spectrum

A. General

where y(qy,q,) =2 cosj{cosy,+cosy,j—1, andq, is the
ave-vector component along theaxis, whileq, andq, are

B. Hamiltonian

sum of two terms, varies strongly with the temperature T<{D — 2Jmag. Its

softening may finally lead to the phase transition instability
H:H0+Him. (1) atT:TN.

The reference Hamiltoniaf(, corresponds to the noninter- _ _ o

acting spinsS situated at sites affected by the strong C. Single site excitations

single-ion anisotropy and the effective magnetic fielld Apart from the range ofj~ g™ the spectrum is mostly
defined by the single-site spin excitations given by the zero-

Ho=2i HoFEi (D(SY)2- uH;S 1, ) order HamiltonianH,. For H,=0 the spectrum of this

Hamiltonian has two stationary states: a nondegenerated
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ground state E,=0) and a degenerated doublet with where wy=4mu?/v,, andv, is the volume per one atomic
E, ,=D. Correspondingly, the spectrum of the single-site ex-spin.

citation is characterized by only one enerdg,,—Eq=D. On the other hand, ab#0 the imaginary part of the
An applied magnetic fielH, lifts the degeneracy of the Green function is expressed via the Fourier transform of the
doublet. If the field is directed along the anisotropy axis, i.e.pair spin-correlation function,

H.=H,, then the operatd®” has a set of the eigenvectors in

common with the Hamiltoniart,,, and the stationary states (Sg‘,wS‘fq’_Q:2[N(w)+1]ImGg‘ﬁ(w), (8)
may be characterized by the set of the eigenvalues

m?=—1, 0, and 1 of the5? operator. In each of these states where N(w)=[exp(w/ﬂ—1]‘1._ This function _is related to
the expectation values (SW)y=m¥=0 while the inelastic neutron-scattering cross sectisee below

(S?)=S(S+1)=2. This means that in any stationary stateme_?sur?d n thf feXpe”Tfr?t' twurbation th is f
each of the projection: of the vectom experiences rather . de 'rt‘V:‘”atr;] OVT % debpfrfur :[':lhlor][ eory t|s orénu-
extensive quantum fluctuations characterized by the mear#ae hot tor the retaraed, but for the lemperature reen

square deviations(m®)?=((S%)?)— (S, and by the cor- unction?* Therefore, following the standard procedisee,
relation tensox S*SP).

for example, Refs. 24 and 19-23%ve first calculate the latter
If the magnetic fieldH,=H, is applied along the axis, function and then the retarded Green function, as an analytic
i.e., perpendicular to the anisotropy axis, the spectrum of th

ontinuation of the temperature Green functiﬁﬁﬁ(iwn)
Hamiltonian contains three nondegenerated energy level rom the _d|sc_rete sequgr;]ce of the imaginary Magzubara fre-
the ground-state term wit,=1/2(D—A) and two excited JuE€NCIes! w.”_zwnT (W't. n>Q an integer num érpnto
states withE;=D andE,=1/2(D+A), respectively, where the r.eal axis ofw. FO”OW".‘Q this procedyre and using thg
A=[D2+44?H2]Y2 None of the single-site spin projec- matrix elements of the spin operators given above, one im-
tions commute?/vitr; the Hamiltoniaf. and. thus. they are mediately obtains the following set of equations for the
L o 0 ey ingle-site Green function8#(w) =3 #(w) 8 :
no longer conserved quantities in any of the stationary stated i] 0 -
of the Hamiltoniar,. This means that all projections of the
local magnetization experience rather developed quantum
fluctuations in each of the stationary states.
On the basis of the Hamiltonian eigenfunctions the sym- ) )

metrical 3x3 matrix of theS* operator contains only four 2 €10 €1

12 SW(w)=— + (10)
nonzero elementsS5;=Sj,= —(£,1/A)Y? and S3,=S, 0 A | P22 TP 22 |
=(e40/A)*?, which describe the transitions between the cor-
respoqding stationary states with the energies of single-site , 2 €105 1 10512
excitations: e,0=E,—Eq=A, &,=E,—E;=—E, and Eoz(w)=K P72 P77 [ (11)
e10=E;—Eg=E,. The nonzero elements of the antisym- 10 12
metrical matrix of the operatd® are related to the elements i H H

; ; . _ _ i
of § in the following way: = —Sl;= iS5, and Sy 32y __[Plo "ZL “’2 + o "2‘ w2 } (12)
S,= —S,=iS5;. Only the matrix of the operat®" has two A w"— &7 W &1
diagonal elementS;,= —S5,=2uH/A, which corresponds where py,.= pr—pyr and p, = exp(—E, /TS, exp(—E, /T)
; At d AN T PNT PN AT L A S

to the nonzero expectation yalue; for_the magnetization P'O%re the statistical weights of the corresponding eigenstates
jections onto the magnetic-field direction. However, this ma-

trix is nondiagonal and also contains two eIements)\:O’ 1, and 2 of the Hamiltoniaftlo, and H=H(m’) is
S=Sio= D/Ag defined by the mean-field equatiom'=(2uH/A){pg,}.
2= 920~ :

3 - . . — We see that the tensor of the single-site spin correlations
Having these explicit equations for the spin projection

matrix elements one can easily analyze the correlations bez-gﬁ(w) has only four different nontrivial components corre-
tween the fluctuations of different projections of the IocalSpondlng to the different polarizations of the spin projection

maanetization. Thev are generally characterized by the ref_Iuctuations. One of these modes of fluctuations is linearly
9 | Y 9 y y olarized along the field, and has the characteristic frequency

tarded Green function, which is defined as a mean value aq _ _ . . 1
the commutatorGA(t) = —i({S*(t) —m;,S#(0)—m}) at £,0=E>—Eg=A which corresponds to the virtual transition
t>0, andG4(t) :'(J) att<0. Its Fourier transform ] between the grounq and t_he h|ghest—ener_gy level. Three other
' ' components describe a kind of superposition of the two fre-
guency elliptic precession of the spin projections in the plane
perpendicular to the field. The ellipticity is apparently a con-
sequence of the uniaxial anisotropy in this plane. One of
these two frequencies,;=E;—Ey=1/2(D+A) corre-
sponds to the virtual transition from the ground to the first
excited state, while another one reflects the contribution to
he precession coming from the virtual transition between
WO excited states, i.eg;,=E;—E,=1/2(D—A). As long
as the interspin interaction is switched off, the phases of
precessior(or relevant events of the virtual transitionan-
@) domly change from site to site, but the exchange interaction
brings them into coherence.

Exx(a))zg D—2 9)
0 ApZOwZ—AZ’

1 . i
Ggﬂ(w)zﬁz e'q(ri_rj)f dte"“’tGﬁB(t) (6)
1]

is, as is well known(see Refs. 24—26 proportional to the
tensor of the nonuniform dynamic magnetic susceptibility
describing the reaction of the system on the alternating ma
netic field:

a “o ~a
XqB(w): EGqB(QJ),
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action HamiltonianH;,, and, averaging the products of the
spin projection operators, takes into account the fact that
‘Jij =0 ati= J .

Thus in Fig. 1 crossed-hatched circles with two points on
a circle correspond to the average of the products of couples
of spin projection operators, which may belong to the same
site, while dashed lines connect the sites Wi ,, [,#13,
etc. These products can be decomposed into a sum of terms,
as shown in Fig. (b), where the hatched circle denotes the
total single-site block “#(iw,), which corresponds to the
average of a pair of spin projection operators at the same site.
The diagrams for this block are given in Fig(cl Other
terms in Fig. 1b) correspond to the case when spins belong
to different sites. These terms contain irreducible blocks of
higher orders(three-spin, four-spin, etc. Green functipns
FIG. 1. Sketch of the diagrammatic representation of the VLPShown as hatched circles with more then tWO. points on each.
perturbation theory series expansion. They are connected by the dashe_d do_uble Imes,_ which cor-

respond to the effective dynamical interspin interaction

) ) o ) Vﬁﬁ(i ). This may be represented via exchange interaction

Equations(9)—(12), which are just intermediate results, and the total irreducible blocks, as shown in Fi¢g)land, in
appear quite similar to those obtained in Ref. 16 for theaccordance with Fig. (&), via the Green function
ordered phase in the field equal to zero. This is simply due tQ;i”j‘B(i wp).
the fact that the single-site Hamiltonian has the same struc- The first diagram in Fig. (£) shown by an open circle
ture, containing two terms: linear and quadratic ones withwith two points on it corresponds to the mean-field single-
respect to the spin projection operators. However, the paransite susceptibilitys 3#(i ») given in Eqs(9)—(12). The other
eters of the Hamiltonian are different, as well as an exactliagrams shown in Fig.(&) describe the single-site suscep-
form of corresponding equations for the single-site Greenibility renormalization due to the creation of the virtual col-
functions. In particular, in Ref. 16 the anisotropy constant isective excitations in the spin medium.
partly renormalized by use of a correlation parameter intro- Similar renormalization should also be applied to the local
duced into the single-site Hamiltonian. This parameter andgpin averagegS*). The process of such a renormalization
the single-site staggered magnetization are then defined byraay be illustrated in the same way as in Fi¢gc)Lin which
pair of equations: one follows from the condition of self- the hatched circle with two points should be substituted for
consistencysimilar to that in the mean-field approximation by a circle with one point on it, and the number of points on
(MFA)], and the other one from the fluctuation dissipationeach circle in Fig. &) should be reduced by one. Thus an
theorem. In our case, we have the field-induced magnetizgpen circle with one point on it will correspond¢8) in the
tion directed perpendicular to the anisotropy axis. Due tdVIFA, while the second diagram shows the same quantity
symmetry reasons we cannot describe this case by only héenormalized due to the creation and absorption of a fluctua-
mogeneous renormalization, characterized by a unique cofon- Also, one may consider the processes of creation of

relation parametef® Therefore here we discuss an alterna-more than one collective mode by the local excitation and
tive way of renormalization. the exchange between spins by sevévattual) modes, as

shown in Fig. 1c). The circles containing more than two
points correspond to the amplitudes of a decay of the spin
D. Interspins interaction as a perturbation. Larkin equation fluctuations into several ones, or to their scattering by each

other. Of course, they may be “dressed” by the fluctuatin
The physical picture behind the perturbation theory apseids and “delocalize):j " a)g shown in Fig(ld)y. 9

proach is as follows. Each event of the virtual change of a Resolving the series of diagrams given in Figa)1one
spin state at a given site distorts the local molecular field OBmmediately obtains the set of Larkin equations,
the neighboring spins. This may provoke changes in their

states, which creates the fluctuational molecular field on the

next neighbors, and so on, providing a mechanism for the  Gg*(iw,) =2 3*(iw,) + > S (iwn) Gl (iwy).
collectivization of single-site excitations and, in particular, Y=Xxyz

spin-wave propagation. This is illustrated in Figa)l where (13

cross-hatched circles denote the total irreducible blocks,g ¢yiows from Eqs.(9)—(12), this set contains four equa-

aﬂ . . . . . . - - ;
2ij"(iw) linked into the chain via dashed lines correspond-jons “and only three of them are interconnected, while the

ing to the interspin interactiod;; , and the double solid line g tion of the separated equation for the longitudifial.,
describes the collective-mode propagation between sites parallel to the fieldd component of the tenscﬂ’;gﬁ(iwn) is

andj. X
: . . . written as
The diagrammatic expansion in Figial directly follows

from the definition of the temperature Green function S )
Gﬁﬁ(iwn) if one expands the evolution operatof(1/T) Géx(iwn):q—xxn-- (14)
(Refs. 19—22into a power series with respect to the inter- 1-J43¢(1w)
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Solving the three equations for the other nonzero compo- 1
nents of the tensor, one has AZZZK{2810[810—A]+(ZMH)z(Jq/A)}, (22)
Gy *? (i wn) ={1= IS § (i0n) = Ry(i @)}/ IgRy(1 w("i's) AY2= — AW=2iwuHIA. 23
For all those fluctuations the spectrui,= {1, is unique,
GgZ(ZY)(iwn)=Eg'Z(Zy)(iwn)/Rq(iwn), (16)  and given by the equation
2 _ .2 2 2
Rq(lwn):1_Jq[zéz(lwn)+2éy(lwn)] qu—Slo 2Jq810+(2,(LH) (Jq/A) . (24)

227 . 2y 2. At H=0 this equation coincides with E¢L9), as it should.
+I[Zg 1 0n) 2 (1 wg) =251 wn) ZgHiwn)], In an applied field this degeneracy 6f;, and Q,, is
(17)  lifted, but not for all wave vectors, as it seems at first sight.
o , , . Indeed, an applied magnetic field increases the energy of
where the excitation spectrum is defined by the solutions ofycijtations for all wave vectors, but it distorts different
the equatiorRy(w)=0. _ _ branches of the excitations in a different way. In particular,
From these equations we see not only how interactiofe gispersion curvél,, for certain directions does become

develops the discre_te single-site spectrum into continuou eeper and not flatter. This behavior is related toJﬂ"lterm
branches of collective modes, but also that the modes Eq. (24)

excitations with the polarization vectors displayed within the As a consequence, two dispersion surfaces may have a
plane perpendicular to the magnetic field are built up fromIine of intersection in reciprocal space, defined by the equa-

all single-site modes with polarizations in this plane. tion £2;4= . For the wave vectors belonging to this line
the fluctuations of the magnetization projections parallel to

E. Spin waves in the mean-field approximation the magnetic field have the same frequency as fluctuations
To elucidate the situation, let us consider the first order ofolarized in the plane perpendicular to the field. -
the perturbation theory and, thus §e§3(w)%28’3(w) de- At low fields the line of degeneracy is a solution of the

fined by Eqs(9)—(12). Also, we assume that the temperatureequ"’ltion
T<D and the two upper levels of the single-site spectrum

are almost unpopulated, i.e., that in EQq$9)—(12) Jg~DI[3— V174, (29
p10~ P20~ — 1, while p,;~0. Then, from Eq(14), it follows  which is in this approximation independent on the magnetic-
that field strength. This means that at low fields both types of
X fluctuations, with the wave vectors defined by this equation,
N @)= — — D (19) experience the same influence of the magnetic field. How-
a A wZ—Qzlq' ever, for the range af space at one side of the line given by

Eq. (25), the magnetic field suppresses the fluctuations with
where the spectrum of this mode of the excitations is definedne polarization more efficiently, while in the range on the
as follows: other side it is more efficient for another polarization. As we

shall see, for our set of parameters E2b) has a solution at

0%,=A%2-2D%J4/A). (19 the range of the wave vectors whelgis close to its mini-

o mum. Unfortunately, the resolution of the instrument was not
From Eqgs.(18) and(19) it is clearly seen how the exchange go0d enough to verify the intersection of those branches. On

interaction brings a dispersion into the spectrum, and how, ghe other hand, this question is quite interesting from a theo-
elevated fields, it goes away from the instability related toygtjcg] point of view. Indeed, Eqg19), (24), and (25) are
the point of compensation of the anisotropy by the exchanggerived in the mean-field approximation and the fluctuational
atq™. The magnetic field increases the energy of spin flucxoyrection may change the conclusion drawn above.
tuations, and decreases the weight of the exchange- pere it is important to note that the equations above con-
interaction contribution into this branch of the spectrum.izin an effective magnetic field which is to be found in the
This makes the dispersion curve more flat. - ~ same approximation as was used for their derivation. The
T.he.Green function _for aI.I types of fluctuations of the SPin corresponding transcendental equation for this fi¢ldeads
projections may be written in the general form

2JoH
. AMV 20 H:He+ ﬁ, (26)

- 0F (20 JDZ+(2uH)

) . ) whereJ, is the exchange integral g&=0. At low effective
where u,v=Xx,y,z. The amplitudeA™=—2D</A and for fields the solution of this equation gives the following linear
i=1 the frequency,q is given by Eq.(19), while ampli-  gependencyH(Ho)~H,/(1—2J,/D), which reflects the
tudes of the fluctuations of the spin projections perpendiculagnhancement of the effective field on a given spin due to the
to the field are defined as follows: positive exchange interaction, with neighboring spins “mag-

netized” in an external magnetic field. If the parameter
AW= %{2810A—(2,MH)2[% (3N (D) ﬁ;zl—]]O/D<1’ then at low external fields the effective field
o

GL(w)
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This solution of Eq.(26) is valid at the applied fields NXy 3
2uH<H*=(D—2J,)%%23%. Within the range of exter- Xx=m,
nal fieldsH* < uH.<D/2 the effective field is approximated TXo
by the following equationuH~ (JoDuH¢) 3. At extremely ~ whereN* is the demagnetization factor in the direction of the
high fields 2uH>D the effective fielduH~uH +Jo/2,  applied field, and** and x3* are the corresponding compo-
i.e., it is still higher than an applied field. nents of the susceptibilities of the sample and the matter.

If one defines the energy of the Zeeman splitting as Substituting Eq.(29) into Eq. (27) for the internal field
Ez=u*(H)H,, where u®'=g(He)ug, then within the then gives the following equation:
framework of the MFA the effectivg factor should reach its
highest valueg=g/(1—2J,/D) at low fields, fall down pro- Ho— He
portionally to H, % within the rangeuH* <uH.D/2 and "1+ 4aN Y (H;)

approach its asymptotic valige=g at highest fields. . . : :
One must, however, admit that these conclusions maTh|s nonlinear equation cannot be solved analytically for the

have quite a restricted range of validityr even be incorregt %eneral case even using the equationsd(H,) derived in

: : ; the MFA. However, an analysis of limiting cases similar to
if the differenceD—2J,<D. In the particular compound ! ) i
RbFeCk, as we shall see, it is relatively small. As a result,that has been carried out in Refs. 26, 27 and 22, let us draw

the correlations of the ferromagnetic type fluctuations arézon.Ch;.Si%ns on t?e qgalitat]icvehbefhal\c/iior ofl_thde internal m?g'
quite developed, which reflects the tendency of the syste edtlc dlef as é u;(;:tlt_)nf O” the tr|1et .?pﬁ led to a 'st;':_llr.np €
toward one-dimensional ferromagnetic ordering along th ndeed, from Eq.(30) it follows that if the susceptibility

chains. These fluctuations not only bring appreciable correcX.O(Hi) is high, then the internal fielmi.<|_!e’ which is a
tions to the solutions obtained in the MFA, but, as is We“dlrect consequence of the demagnetization effect. On the

known, they prevent the ordering in low-dimensional Sys_other hand, the susceptibility reaches its maximum value at
tems p,redicted by the MFA fields equal to zero, and it decreases if an internal field

Fortunately, in our case the system is not very close to thgnagnet?c-ﬁ_eld strength increases. As a result, the internal
instability point defined(in the MFA) by the equation mag_netlc_ field m_ay_be much sme_lller than_tH«g_at low
D=2J,. Moreover, a relatively weak in-plane antiferromag- applied fields, while it approachés, if the applied fields are

netic exchange interaction is sufficient to lead the systenl?'ghh?nough' dilv be d d using th . b
away from the instability with respect to the one-dimensional_ 1 NS may readily be demonstrated using the equations ob-

ferromagnetic ordering. Therefore, we believe that fluctuat@ned above._lrj_thta;xframework of the MFA, the uniform
tatic susceptibilityxy = (wo/47)G**, in accordance with

tions do not bring drastic changes to the behavior of the i /
system, and their influence may be accounted for by a propdfd- (18), has the following form:

(29

(30

generalization of the results obtained in the MFA. The other ® 2 D2
important consequence following from the fact that the fer- xXX= Z0 —_——, (32
romagnetic susceptibility of the system is quite high should 4m A°(H{)—2JoD
however be discussed separately. where A(H;)=D?+(2uH;)?. This equation should be
N substituted into Eq(30), and solved with respect td; .
F. Demagnetizing effects At low values of Hg, the susceptibility xg*
The magnetic field inside the sample is defined as ~2awq/{4m(D—-2Jp)}, and
Hf=Hg— 47N ME. (27) MH_%(D_ZJO)MHe 14 3KHe 32
: Ay 2A, ’

The difference betweeHh, andH; arises due to the contri- S
bution of the induced magnetizati®= y*#H%, and de- ~Where Ag={D—2Jo+2N"w}, and the approximation is
pends on the sample shape. This representation of the ma¥@lid if He<Ao. In the opposite limit, i.e.He>A,, the in-
netization is valid for the ellipsoidal sample, and thetérnalfield is close to the external one. _
components of the demagnetization terld6f are related to At our particular set of parametefsee the corresponding
the major axis of the ellipsoi¢see Ref. 2h section demagnetizing effects at low applied fields play an

The susceptibility tensor of a samp&?(H,) is generally important role. Therefore in all final equations for the Green
a function of the internal fieldH; . It should satisfy the fol- functions the external field should be substituted with the

lowing equatior?® internal one. However, in order to keep the notations, we
shall use in the following the effectivg(H;) factor, intro-
X“B=X83—47r)(8"“N”Vx”ﬁ, (28) duced above, which is a function of the internal but not the

external magnetic field. This obstacle seems to be quite es-

where x3#(H;) is the susceptibility of the magnetic matter, sential in view of the nonlinear dependenidy(H,).
while y*# is the susceptibility of the sample. In fact, the Indeed, conclusions on the behavior of the effective
susceptibility)(gﬁ corresponds to the Green functions con-g(H;) factor are based on analysis of E6), in which the
sidered above, if one substitutes an external magnetic field iaxternal fieldH, should also be substituted with;. As a
these functions with the internal one. result, at low fields th@(H,) factor does not decrease, as

If the magnetic fieldH,=H, is directed along one of the was concluded above, but rather increases with the applied
ellipsoid axes, then the solution of this equation has a simpléeld strength. This is due to the fact that in accordance with
form, Eqg. (32 the internal field increases faster then the external
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one. The particular behavigrcan in principle be obtained as =*#(w). It could be shown that the leading terms in the

a result of a numerical solution of EqR6)—(31). It depends equations for the corresponding corrections may be ac-

not only on the range of applied fields and internal paramcounted for by the introduction of some facto@k(H;),

eters of the system, but also on the shape of a sample. Tth(Hi), andQ,(H;) in a such a manner th&**~Q,>3",

is, however, beyond of the scope of the present study.  S¥~Q,3¥, 3?%~Q,3§%, and3Y*~Q, 3¢, where3 ¢# is
Here we shall not pay anymore attention to this questiongiven by Egs.(9)—(12), andQ§Z= Q,Q,.

mostly for the following reasons. The equations above do no Substituting these expressions into E¢s4)—(17), one
take into account the fluctuational corrections which MaYmay calculate the components of the Green function

play an essential role for a quantitative dependegidy.). GE¥(w) generally represented by E0). In this equation

Therefore we shall usg as a free parameter in the descrip- e frequencieg); 5, should now be substituted for by the
tion of our data on inelastic neutron scattering for each valugo,qrmalized ones

of the magnetic field. Then the field dependencieg @nd

other parameters may be analyzed separately, including the 02 =A2-2QJ,D%A (33)
analysis of the role in their behavior of the fluctuational cor- 1 . ’
rections. This role is apparently not restricted by only the =2 _ 2 X 2012/ A2
renormalization of the functioj(H,). Rather developed Yoq= 107 2Jgo 20l A/8) + QQy(2uHIA)™(J/A) '(34)
quantum fluctuations should change the behavior of the func- _

tions () x(He). Therefore, in particular, the position of the where A=1/2{(Q,+Q,)A+(Q,—Q,)D}. Simultaneously,
line given by Eq.(25) may not actually be true, because this the amplitudes\#” in Eg. (20) should be substituted for by
equation does not account for the spectrum renormalizationhe following quantities:

G. Fluctuational corrections AX¥= — 2Q,D?/A, (35

Here, with the goal to describe the field dependence of the
measured quantities, we restrict ourselves, by the analysis of
the general structure of the fluctuational corrections, to the
susceptibilities derived above in the MFA. Thus the aims of ~ 1 ~
this analysis are to introduce a proper parametrization of the ~ A**=3{e1d Qye10~ A]+2(uH)?Q,Q,Jq/A}.  (37)
measured branches of the spectrum, and then to derive the
equations, which could be employed in the description of théThe set of Eqs(33)—(37) completes the parametrization nec-
neutron scattering intensities with the same set of paramessary to describe our experimental data. Actually, the pa-
eters. rametersQ,, Qy, Q,, andg are functions of the internal

The set of parameters of the real Hamiltonian of the sysmagnetic field. Thu®,,(H;) depends omg(H;), while the
tem is, actually, not well known, and those found experimeniatter one is defined by the magnetic susceptibility, which is
tally are already renormalized by the fluctuations, which areparametrized byQ,,,. Therefore, all parameters are corre-
quite developed even at low temperatures. Therefore in ouated and, cannot generally be used in the fitting routine as
preferences in the selection of the diagrams we shall also ugeee. In forthcoming theory they should be expressed via the
the arguments following from the experimental observationsparameters of the Hamiltonian, which are actual free param-
One of the most important among these observations is thatters of the substance. However, since the variation of
the fluctuations do not cause any appreciable damping to thg(H,) and Q,,(H.) with the applied magnetic field is not
excitations. very pronounced one still may vary them independently.

Therefore, in the first approximation we should mostly A complete study would then include a quantitative analy-
take into account those corrections to the MFA which renorsis of the field dependencies of those parameters, and a com-
malize, but do not bring broadening into, the spectrumparison with the experiment. This, however, invokes some
These kinds of fluctuational corrections arise due to thewumerical calculations and more accurate measurements,
renormalization of the unit-cell blocks presented in Fig. 1.which are both in progress.

They correspond to the processes of the self-interaction of a

given spin via creation of virtual excitation in the spin me- IIl. EXPERIMENT AND RESULTS

dium. Meanwhile, the processes of the interaction of differ-

ent spins via virtual exchange by the excitations, such as The inelastic neutron-scattering investigations were per-
shown in Fig. 1c), could be in this approximation omitted. formed at the cold neutron Three Axis Spectrometer 4F2 at

The result of such a renormalization can be summarizethe Laboratoire [en Brillouin (LLB) at Saclay. All the
in a quite simple way. First, subject to the renormalization isscans were performed with fixdéd=1.55 A~! and a beryl-

a single-site magnetizatiom and/or the value of the mean lium filter in front of the analyzer to suppress higher-order
effective field. This is reflected in energy shifts of the single-reflections from the analyzer. The collimation was 1,20
site excitation spectrum and, as discussed above, account8@’, 50', and 50. The sample of RbFeGlhad a volume of

AVY=— %{281(;— (2uH)?Q[1/2+Q,J,/AT}, (36)

for by a substitution in the equations feg,. in Egs.(9)—  about 0.4 cm, and the lattice parameters used at low tem-
(12 with the g factor for effectiveq(H;) factor, where perature wer@=6.991 A andc=5.943 A. The sample tem-
H;=H;(H,). perature was kept at 5.5 K throughout the experiment. This

Then, in the same order of the perturbation expansioniemperature was chosen as a compromise between being far
one should renormalize the spin autocorrelation functiongnough above the first phase transformation at 2.55 K and
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FIG. 2. Constan@ scans at the maximum applied field for two FIG. 3. Dispersion curves of the low-energy magnetic excita-
equivalent positions in reciprocal space. tions for the direction perpendicular to the chains at different ap-
plied fields. The lines represent the best fit of our theory.
being not too high, where damping becomes important. The

superconducting magnet of the LLB with vertical field had agnq the line shape of the spectra should be entirely described
maximum field strength of 5.5 T. Data were collected at 0, 25y the resolution function of the instrument. In fact, some
3,4, and 5_-5 T. ) o _small line broadening of the spectra has been detected, and,

Two typical experimental scans for the scattering |ntenS|<Dy means of fitting the data to the damped harmonic-
ties 1(Q,w) measured as functions of the energy transfer oscillator model, in some cases the intrinsic width came up
at fixed momentum transfe(@ are represented in Fig. 2. The t5 20-50 % of the instrumental resolution. Because the
scans were performed at the maximum fiedd =55 T wjidths of the inelastic scattering peaks were generally small,
through the mode& ; and(),, the upper and lower frequen- the resolution was insufficient to arrive at any conclusions
cies, respectively. The positionQ=(0.5,0.50) and apout their line shape. For the sake of simplicity, we use Egs.
Q=(0.5,0.52) are identical by means of translational sym+38) and(39) for the description of our data. The frequencies
metry. Similar scans were performed along Qe (£,£,I)  of the modes as determined by the fitting routine are pre-
directions forl=0 and 2. sented in Figs. 3-5.

The data are to be fitted in accordance with the equation The fitting routine also provided an integrated intensity

lin(Q,{ig) by means of

Ii(Q,w)Zloj do'R(Q,w—ow")[N(w')+1]
><(5aﬁ_eaeﬁ)|megﬁ(w/’niq)’ (38) Iim(Q1QiQ):J dwﬂiq[N(w)-l-l]_lli(Q,w). (40)

where R(Q,w— ") is the resolution function of the spec-
trometer, ande=Q/Q is a unit vector in the direction of From Fig. 2 one can already conclude that the relative inten-
the momentum transfe= +q, where 7 is a reciprocal-  sities of the mode<); and (), depend strongly orQ. A

lattice vector. The components of the Green functiondetailed discussion will follow in Sec. IV.
Ggﬁ(w”Qiq) are defined by Eq$20) and (33)—(37). Due to the limited beam time the data are not as complete

If damping, [i.e., the imaginary part of the self—energy as one could wish. Nevertheless the statistics were in most

328(»)] is ignored, then, in accordance with E@0), one  cases good enough to determine frequencies. But the preci-
d sion of determining intensities suffers from large error bars.

obtains
Mode splitting with increasing field could clearly be ob-
Aab served for the low-frequency modes but at high frequencies
ImGgB(w)=7T [8(0—Qig)— 8w+ Qig)], (39 nearl =1 the splitting could not be verified within the ex-

2Q4 perimental resolution.
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FIG. 4. Dispersion curves of the magnetic excitations along the FiG, 5. Dispersion curves of the magnetic excitations along the

chain direction for (1,1£), which is identical to (0,&). The lines
represent the best fit of our theory.

IV. DISCUSSION

A. Frequencies

chain direction for (0.5,0.%). The lines represent the best fit of our
theory.

Preliminary fits had shown that the values fQ and
Q, were nearly the same. Therefore we reduced the number

The experimentally obtained frequencies were comparedf additional parameters to three settiQqg=Q, .
to the theoretical predictions. First we fitted the data for the The values obtained at four different external fields de-

frequencied),(q) andQ,(q) at zero field to Eqs(19) and
(24) (which coincide for zero fieldand obtained the follow-
ing values of the parameters:

D=0.589+0.003 THz]~19.6+ 0.4 cm 1],
J;=0.0743+0.000Tcm THZ]~2.48+0.0Fcm 1],
J,=—0.0118+0.0003 THz]~ —0.39+ 0.0 cm 1],

J’=—0.0054+ 0.0002 THz]~ —0.180+ 0.007 cm™ 1.

We also repeat for comparison the values for Cskell.6
K (Ref. 13 with D=0.522+0.003THz], J;=0.0629
+0.0002 THz], J,=—0.0095+0.0004 THz], and
J’'=-0.0042-0.0001THz]. In accordance with Ref. 5,
D( RbFeCkL)=0.588[THz], andD (CsFeCkL) =0.527[THz].

pend on the field, and are shown in Fig. 6. For the parameters
Qx andQ,=Q,, which by definition have the value 1 at zero
field, we interpolated the results byl—bf expression as given

in Fig. 6. Forg(H,) this was not possible, because its value
at zero field is not known.

Figure 3 shows the low-frequency part of the spectrum,
i.e., the dispersion curves perpendicular to the chain direc-
tion in the[ £&1] direction withl =0 and 2. The evolution of
the splitting and the shift of the modes is again well repro-
duced by the theoretical calculations.

In Figs. 4 and 5 we give dispersion curves in the
[00&] and[0.5 0.%] directions. A splitting could be de-
tected only foré<0.6. This is not surprising, because the
theory predicts a mode crossing at abbs#0.7. At wave
vectors around this value it is then of course impossible to
observe a splitting.

As can be seen from Figs. 3-5 the calculated dispersion Already in the study of CsFegGlin an external field per-
curves at zero field reproduce the experimental data verpendicular to the chain axis the results at high frequencies
well. To calculate the dispersion curves measured undezxhibited a discrepancy between experiment and theory. At 6
magnetic field we kept these four parameters fixed. Addi-T and 1.6 K, a splitting could just be observed up to the

tional parameters, to be varied, were the effeciyél,)
factor, Qy, Qy, andQ,; see Eqs(33) and(34). The latter
ones renormalize the spin autocorrelation functions.

highest frequencies. However, the theoretical apprfach
used at that time predicted a much larger splitting at high
frequencies than observed.
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1ar FIG. 7. Intensity ratios of the inelastic scattering signals at the
highest applied field from the modes of the two dispersion curves in
1.0 [Qx =1+0.0124H,2 ] the direction perpendicular to the chains. The full and dashed lines
! : . . : represent the predictions of our theory.
Q space could be compared. They could also be followed
3l with increasing field. But there were intensities at a given
o Q which were out of scale in a similar way at all applied
o fields.
Q 2L To avoid some of these problems we assumed that both
'-'5, intensities of the split modes are influenced in the same way
by spurious effects. This is the reason why we decided to
1r interpret ratios of intensities at the same positioQispace.
This assumption leaves it still open whether a spurious Bragg
0 . . . , . reflection comes into play for one of the two signals by

0 1 2 3 4 5 6 means of a variation of the incoming energy during the scan.
Tesla On the other hand, experience shows that such spurious
Bragg reflections were broad with respect to parameters such
as incoming energy and sample orientation. The interpreta-
tion of ratios also makes unnecessary the estimation of the
magnetic form factor and the Debye-Waller factor.
B. Intensities We analyzed the intensities of all scang §¢,1] direc-
tions forl=0 as well as fol =2 using Eq.(40). The ratios
Iint(Q, Q) /1(Q,Q,) are presented in Fig. 7 together with

FIG. 6. Field variation of the renormalization parameters
Qx(H,) andQ,(H,) =Q,(L) fitted to quadratic law as given in the
inset. Forg(H ), the line is just a guide to the eye.

The determination of intensities in inelastic neutron scat
tering is a difficult task. Inelastic signals have typically
10~ of the intensities of Bragg reflexes. Therefore Slouriousthe calculated curves. The scatter of the data represents the

effects may easily influence the inelastic intensities. Besidegncertlf'rk;ﬁ'esh()f the ﬁxt;?]erlmelntalll tr_esults. Negerthetlﬁssa Itt IS
absorption and sample shape, simultaneous Bragg reflectioi‘%mar able how well the calculations reproduce the data.

are probably the most dangerous phenomena. While th t? |r|1tensmes_ havte ?ﬁe? calcula_ted |a_|fter a fit of tthte tr;eo—
sample is oriented on a position in an inelastic scan, a Brag Ical expressions 1o the frequencies. Here we want o Sress

condition may simultaneously be fulfilled for the incoming at no further parameters were introduced to calculate inten-

neutron beam. This reflection takes the intensity out of thes'}'est' The agreem_ednt bfetvl/ﬁen ex%_ezjrlment_apdt';]he?r:y IS ?_at-
primary beam and throws it somewhere into 4pace. As a Istactory, and provides Turther confidence into the theoreti-

consequence the inelastic signal is reduced. cally derived expressions.
One way to increase confldence in .measured mtensmes ACKNOWLEDGMENTS
would be to perform the series of experiments at two differ-
ent neutron energies, as was dthkeefore. In the present We are greatly indebted to S. V. Maleyev, O. Sgiia
case we found that intensities at positions near each other #nd to M. Steiner for fruitful discussions.
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