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Edge-magnetoplasmon wave-packet revivals in the quantum-Hall effect

U. Zülicke
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The quantum-Hall effect is necessarily accompanied by low-energy excitations localized at the edge of a
two-dimensional electron system. For the case of electrons interacting via the long-range Coulomb interaction,
these excitations are edge magnetoplasmons. We address the time evolution of localized edge-magnetoplasmon
wave packets. On short times the wave packets move along the edge with classicalE crossB drift. We show
that on longer times the wave packets can have properties similar to those of the Rydberg wave packets that are
produced in atoms using short-pulsed lasers. In particular, we show that edge-magnetoplasmon wave packets
can exhibit periodic revivals in which a dispersed wave packet reassembles into a localized one. We propose
the study of edge-magnetoplasmon wave packets as a tool to investigate dynamical properties of integer and
fractional quantum-Hall edges. Various scenarios are discussed for preparing the initial wave packet and for
detecting it at a later time. We comment on the importance of magnetoplasmon-phonon coupling and on
quantum and thermal fluctuations.@S0163-1829~97!07716-3#
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I. INTRODUCTION

The quantum-Hall~QH! effect occurs in two-dimensiona
~2D! electron systems~ES’s! whenever the chemical poten
tial has a discontinuity which occurs at a magnetic-fie
dependent density.1 For isotropic 2D ES’s, charge gaps occ
at integer and certain noninteger but rational values of
filling factor n:5(n/B) F0, where F05hc/e is the
magnetic-flux quantum. The origin of the charge gap in
case of the integral filling factorn is the Landau-level quan
tization of single-electron orbits in a magnetic field, and t
gap is therefore of the order of the cyclotron energy. For
most part, we will assume in this paper that the 2D ES ha
filling factor that is the inverse of an odd integer:n51/m,
with m odd. If m.1, the charge gap arises from the Co
lomb interaction between the electrons in the QH sample
is typically smaller than the cyclotron energy. When the Q
effect occurs, the bulk of the system is incompressible in
absence of disorder, and the only gapless excitations ar
calized near the boundary of the finite QH sample.2 For
n51/m and the case of a sharp edge, i.e., a confining po
tial that varies rapidly on a length scale of the order of
magnetic lengthl 5A\c/ueBu, the edge excitations ar
expected3 to be well described by achiral Luttinger liquid
~CLL! theory4–6with a single branch of chiral bosons. In th
theory, the edge of a two-dimensional electron system
thought of as a one-dimensional electron gas,7–9 which can
be studied using bosonization techniques. The only lo
lying excitations are collective bosonic density waves. T
CLL picture can be applied if the energy of these excitatio
is much smaller than the charge gap. The wavelength of
lowest-lying bosonic density waves is of the order of t
system size. For sharpn51/m edges in the quantum-Ha
550163-1829/97/55~15!/9800~17!/$10.00
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regime, it turns out2,4 that there is a single branch of boso
and that these are chiral, i.e., they occur with only one s
of the wave vector. If a long-range Coulomb interaction
present, the bosons are called edge magnetoplasmons10–12

~EMP’s!. It is possible to derive an expression for the ener
dispersion relation of edge magnetoplasmons starting f
the microscopic Hamiltonian for electrons moving in
strong magnetic field and interacting via a 3D Coulom
interaction.13 The result, which is valid for both the disk an
strip geometries, is

«M
C 52

M

R
lnFa M

R G . ~1!

Expressions differing from Eq.~1! only in the constanta had
been obtained earlier using a semiclassical approach.12,14,15

Here, the constanta is of order unity and depends weakly o
the geometry of the QH sample,M is a positive integer,16

and R is related to the perimeterL of the QH sample:
R5L/2p. For the disk geometry,R is the radius of the disk.
In Eq. ~1!, as well as in all expressions to follow in thi
paper, we measure physical quantities inquantum-Hall units
to simplify expressions. These units are defined in Table

We can think of the edge of a QH sample as an excita
one-dimensional medium, much like a string. The edge m
netoplasmons are the eigenmodes of this medium. We do
consider coupling to bulk excitations; this approximation
well justified at low temperatures in the middle of a Q
plateau. For the case of a short-range interaction between
electrons, the EMP dispersion is linear in the wave numb
«M
sr5vF M /R. If a long-range Coulomb interaction i
present, the dispersion relation is nonlinear and is given
Eq. ~1!. Using a time-dependent external potential, it is po
9800 © 1997 The American Physical Society
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55 9801EDGE-MAGNETOPLASMON WAVE-PACKET REVIVALS IN . . .
sible to excite a superposition of these eigenmodes. In
way, a wave packet can be created for the electron num
density along the edge. We refer to these as ed
magnetoplasmon wave packets~EMP WP’s!.

In this paper, we examine the formation and evolution
EMP WP’s in two-dimensional electron systems. Expe
mental studies17–24,10,14of EMP’s have employed differen
excitation processes, including capacitive coupling21 or
Ohmic contacts22 between the QH edge and an exciting vo
age pulse. This paper is motivated most strongly by the
pacitive coupling21 approach and we comment later on t
interpretation of these experiments. The physical observa
involved in these probes can all be expressed in terms of
operators involving the creation and annihilation operat
for bosonic density fluctuations~EMP’s!: bM

† and bM . In
particular, the one-dimensional number density of electr
at the edge of a sample with filling factorn, defined by
integrating perpendicular to the edge and comparing with
ground-state density, is related to boson creation and an
lation operators by6

%~u!5 (
M.0

~nM !1/2

2pR
@bM eiM u1bM

† e2 iM u# . ~2!

In this expression, we have fixed the direction of the m
netic field. Reversing the field direction corresponds to int
changingbM

† andbM . In our convention, the EMP’s trave
counterclockwise. The experimental configuration is sho
in Fig. 1.

Localized electron wave packets have been produced
studied in atoms using short-pulsed lasers.25–29A superposi-
tion of highly excited or Rydberg states is formed when
short laser pulse coherently excites a single electron far f
the ground state of an atom. The resulting Rydberg w
packet is localized spatially, and its initial motion mimics t
classical periodic motion of a charged particle in a Coulo
potential. The wave packet will eventually disperse and l
its classical character. However, the wave packet re
sembles at later times in a sequence of fractional and
revivals and super revivals.25,26,30–32The revivals result from
quantum interference between the different eigenstates in
superposition. The appearance of revivals is quite gen
and can occur in quantum systems other than Rydb
atoms,33 including systems with eigenenergies depending
more than one quantum number.34

TABLE I. Quantum-Hall units. Throughout this paper, physic
quantities are measured in these units. Besides the formal ex
sion for each quantum-Hall unit, explicit values are given~as a
function of magnetic fieldB and filling factorn) which apply to 2D
ES’s in AlxGa12xAs/GaAs-heterostructures. The symbolse, \, and
kB denote the electron charge, Planck constant, and Boltzmann
stant, respectively.

Quantity QH unit~in cgs! Values~for GaAs!

Length l 5A\c/ueBu 25.73B@T#21/2 nm
Energy (ne2)/(pel ) 1.393n B@T#1/2 meV
Time (\pel )/(ne2) 4.74310213/nB@T#1/2 s
Temperature (ne2)/(pel kB) 163nB@T#1/2 K
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In the present work, we perform an analysis of the reviva
structure of EMP WP’s in two-dimensional electron system
that on short times exhibit classicalE crossB drift motion in
the electric field that confines the electronic system to a fini
area. At longer times these wave packets disperse but
show that they can also have fractional and full revivals an
super revivals.

We begin in Sec. II with a brief review of Rydberg wave-
packet behavior, including a discussion of fractional and fu
revival of dispersed wave packets. Section III describes th
dynamics of EMP’s in QH samples with sharp edges. Th
exact solution of the time-evolved edge-magnetoplasmo
wave packet is obtained. We demonstrate that EMP WP
can exhibit full and fractional revivals that we illustrate for
one particular set of experimental parameters. The simila
ties between Rydberg wave packets and EMP WP’s are e
amined. In Sec. IV, we discuss experimental issues, taki
into account the decay of EMP WP’s due to scattering pro
cesses occurring in the semiconductor host material. O
conclusions are presented in Sec. V. Some details of t
derivations are given separately in the appendixes.

II. ATOMIC RYDBERG WAVE PACKETS

In this section, we present some background on atom
Rydberg wave packets. These wave packets form when
short-pulsed laser excites an atomic electron into a cohere
superposition of large-quantum-number Rydberg states. Se
eral theoretical approaches have been used to investig
Rydberg wave packets. They have been studied bo
numerically25 and perturbatively.26 A description in terms of
squeezed states has also been given.35 Rydberg wave packets
offer the possibility of approaching the classical limit of mo

es-

n-

FIG. 1. Schematic picture of a chiral-edge-wave excitation an
detection. A voltage pulse is applied to the exciting gate, leading
the formation of an edge-magnetoplasmon wave packet, i.e., a
perposition of edge-magnetoplasmon~EMP! modes. This wave
packet propagates according to the dynamics of EMP and can
detected at a second gate. The study of the detected pulse prov
the opportunity to investigate the dynamical properties of EM
modes as well as the revival structure of edge-magnetoplasm
wave packets.



rg
er
he

w
s
u
f

io
th

ic
s

t
th
l t

ey
ur
he
-
a

er
et
th
l

x
de
sl

f

e
r-

o
ta

th
ck
ci
ria

e
T
la
tio
he
a
e
r
its
de
ith
a

za-

on

h is
on

tical
n be
opu-
und
uter
c-
ing
ted
By
ion
e
ope
n
lve
re-
ck-

be

ffi-

gy
s

e-
se.

in
mo-
es

9802 55ZÜLICKE, BLUHM, KOSTELECKÝ, AND MacDONALD
tion for electrons in atoms. Initially, the motion of a Rydbe
wave packet is semiclassical, exhibiting the classical p
odic motion of a charged particle in a Coulomb field. T
period of the motion is the classical keplerian periodTcl .
This semiclassical motion typically lasts for only a fe
cycles, after which the wave packet disperses and collap
However, quantum interference effects subsequently ca
the wave packet to undergo a sequence of fractional and
revivals.

The full revivals are characterized by the recombinat
of the collapsed wave packet into a form that resembles
initial wave packet. This first occurs at a timet rev. At the full
revival, the wave packet again oscillates with the class
period Tcl . The fractional revivals occur at earlier time
equal to irreducible rational fractions oft rev. At the frac-
tional revivals, the wave packet separates into a se
equally weighted subsidiary wave packets. The motion of
subsidiary wave packets is periodic with the period equa
a rational fraction of the classical periodTcl .

30 Eventually
the periodic revivals fail, but on a still longer time scale th
can reappear and a higher level of revival struct
commences.32 This occurs on a longer time scale called t
super revival timetsr. At times equal to certain rational frac
tions of tsr, distinct subsidiary waves form again, but with
period equal to a rational fraction oft rev. These long-term
fractional revivals culminate with the formation of a sup
revival at the timetsr. At the super revival, the wave pack
can resemble the initial wave packet more closely than at
full revival time t rev. An analysis including the super reviva
time scale has been performed32 both for hydrogenic models
and using supersymmetry-based quantum-defect theory,36 to
model the Rydberg alkali-metal atoms typically used in e
periments. For times typically a few orders of magnitu
greater thantsr, atomic Rydberg wave packets spontaneou
decay into lower-energy states by emitting photons.

Experiments27–29,37have studied the revival structure o
Rydberg wave packets through times;t rev. These experi-
ments use a pump-probe method of detection involving
ther photoionization26 or phase-sensitive Ramsey interfe
ence and electric-field ionization.38–40 In both of these
procedures, the wave packet is excited initially by a sh
laser pulse that creates a superposition of energy eigens
with the principal quantum number centered on a valuen̄.
The wave packet initially forms near the nuclear core of
atom. After the pump pulse has passed, the wave pa
evolves under the influence of the Coulomb potential, os
lating between inner and outer apsidal points of the keple
ellipse corresponding ton̄.

In pump-probe experiments using photoionization, a s
ond laser pulse called the probe pulse ionizes the atom.
photoionization signal is measured as a function of the de
time t between the pump and probe signals. The transi
probability for absorbing the second photon is greatest w
the wave packet is near the core and falls to zero as the w
packet moves away from the nucleus. As a result, the p
odicity in the photoionization signal corresponds to the pe
odicity in the probability for the wave packet to return to
initial configuration. Experiments using this method have
tected the initial periodic motion of the wave packet w
periodTcl , as well as fractional revivals at delay times equ
to fractions oft rev, and a full revival att rev. The fractional
i-
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revivals are characterized by periodicities in the photoioni
tion signals equal to rational fractions ofTcl , as expected.

A second type of pump-probe experiment is based
Ramsey’s method of separated oscillating fields.41 In this
method, an initial laser pulse creates a wave packet, whic
then excited by a second identical laser pulse. Depending
the relative phase between the two time-separated op
pulses, the upper-state population in the wave packet ca
either increased or reduced by the second pulse. This p
lation transfer between the excited levels and the gro
state falls to zero as the wave packet moves towards its o
turning point. The population of the excited levels as a fun
tion of the delay time thus appears as a rapidly oscillat
function, due to the Ramsey interference, that is modula
by an envelope dependent on the wave-packet motion.
monitoring the population of the excited levels as a funct
of time using electric-field ionization, the motion of the wav
packet can be detected via the periodicities in the envel
function. Since electric-field ionization is more efficient tha
photoionization, the Ramsey method is better able to reso
fractional revivals. Indeed, using this method, fractional
vivals consisting of as many as seven subsidiary wave pa
ets have been detected.37

The wave function for a Rydberg wave packet can
written as a superposition of energy eigenstates

C~rW,t !5(
n

cncn~rW !e2 iEnt/\ , ~3!

wherecn are weighting coefficients andcn are energy eigen-
states. For excitations with a short laser pulse, the coe
cients cn are strongly peaked around a central value ofn
equal ton̄. This permits a Taylor expansion of the ener
around the valuen̄. The first three derivative terms in thi
expansion define the time scalesTcl , t rev, andtsr as follows:

Tcl5
2p

u~En̄ !8u
, ~4a!

t rev5
2p

1
2 u~En̄ !9u

, ~4b!

tsr5
2p

1
6 u~En̄ !-u

. ~4c!

The primes denote derivatives with respect ton. The evolu-
tion of the wave packet is controlled by the interplay b
tween these three time scales in the time-dependent pha

For short timest!t rev, only the first-derivative term in
the Taylor expansion ofEn contributes significantly, and we
can writec(rW,t)'ccl(rW,t), where

ccl~rW,t !5(
n

cncn~rW !e2 i2p~n2 n̄ !t/Tcl , ~5!

and we have omitted an overall phase. The functionccl is
periodic with periodTcl . This expression is valid only for
t!t rev, however. Eventually the second-derivative term
the phase becomes appreciable, and the initial periodic
tion is destroyed. The fractional revivals occur at tim
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55 9803EDGE-MAGNETOPLASMON WAVE-PACKET REVIVALS IN . . .
t5m trev/n, wherem and n are relatively prime integers
(m<n). At these times, it has been shown30 that, with third
and higher derivatives neglected, the wave function can
written as a sum of subsidiary wave functions:

C~rW,t !'(
s50

l21

ascclS rW,t1 s

l
TclD . ~6!

The coefficientsas and the integersl depend onm andn and
are defined in Ref. 30. The moduli of theas are equal for all
l , which means that the terms in the sum are equ
weighted. The form of this equation shows that at the fr
tional revivals, the wave function equals a sum of subsidi
waves, each of which has the form of the initial wave fun
tion but is shifted in its orbit by a fraction ofTcl .

The periodicities in the motion of the wave packet a
most easily studied using the autocorrelation functio31

A(t)5^C(rW,0)uC(rW,t)&. The absolute square of the autoco
relation function as a function of time gives the probabil
for the wave packet to return to its initial configuration. In
pump-probe experiment using photoionization, the period
ties in the photoionization signal should match those
uA(t)u2, since both measure the probability for the wa
packet to return to the core. Alternatively, in pump-pro
experiments using the Ramsey method, the ionization sig
depends on the real part of the autocorrelation funct
Re$A(t)%5Re$^C(rW,0)uC(rW,t)&%. This highly oscillatory
function is modulated by an envelope that depends on
wave-packet motion. In the following section, an analysis
the revival structure of edge-magnetoplasmon wave pac
is presented and experimental detection methods are
cussed.

III. DYNAMICS OF EMP’S: THE
EDGE-MAGNETOPLASMON WAVE PACKET

The calculations in this section are based on the mic
scopic theory of QH samples with sharp edges andn51/m.
In this case, the edges have a single branch of chiral bos
The calculations could readily be generalized to cases w
the microscopic physics of the edge requires more elabo
boson models, if motivated by future experimental advanc
For a schematic picture of the experimental geometry
have in mind, see Fig. 1. We show that the edge of quant
Hall systems can be prepared in a state which is a supe
sition of EMP’s narrowly distributed around a peak mo
number. An exact expression for the time evolution of the
wave packets can be obtained and these show an intr
revival structure. Numerical calculations for a particular
of model parameters are used to illustrate the latter.

A. Preparation and evolution of an EMP WP

We consider a QH sample subject to a time-depend
external potential which couples to the charge density of
system. We are motivated in large part by an experim
performed by Ashooriet al.,21 which used capacitive cou
pling between the edge charge density and gates close t
edge of the QH sample to create EMP excitations and
detect their presence. The Hamiltonian describing this c
pling is
e
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H5H01Vext~ t ! , ~7!

with the unperturbed time-independent Hamiltonian for fr
bosons~EMP’s! given by

H05 (
M.0

«M
C bM

† bM , ~8!

and the time-dependent external potential

Vext~ t !5u~ t ! RE
0

2p

du Vext~u! %~u! ~9a!

5u~ t ! (
M.0

~nM !1/2@V2M
ext bM1VM

ext bM
† # . ~9b!

Here,u(t) is the time-dependent voltage pulse applied to
exciting gate; see Fig. 1. The angleu parametrizes the coor
dinate along the edge. The quantity%(u) is the 1D electron
density along the edge and%M is its Fourier transform, while
Vext(u) (VM

ext) models~the Fourier transform of! the coupling
between the gate and the 1D density along the edge, andn is
the filling factor. Equation~2! was used to obtain Eq.~9b!.
We have in mind the situation where the vertical separat
between the plane containing the exciting gate and the p
containing the 2D electron layer is much smaller than
transverse size of the gate so thatVext(u)'1 for the portion
of the edge under the gate and smoothly falls to zero out
this region. The time evolution of the system is calculat
most straightforwardly in the Heisenberg picture where
operators carry all the time dependence and the states
time independent:

bM
6~ t !:5eiHtbM

6e2 iHt . ~10!

~Factors of\ are absorbed in our quantum-Hall units.! The
explicit form of these operators may be obtained by solv
the Heisenberg equation of motion. In order to compress
notation, we write simultaneous equations for creation a
annihilation operators; note thatbM

1[bM
† andbM

2[bM . The
Heisenberg equation of motion then reads

i ] tbM
6~ t !5@bM

6~ t !,H# ~11a!

57«M
C bM

6~ t !7~nM !1/2 u~ t ! V7M
ext , ~11b!

where the second line follows from the first using the co
mutation relations for bosonic operators with the Ham
tonian. The solution is

bM
6~ t !5@bM

61B7M~ t !# exp@6 i«M
C t# , ~12!

whereB6M(t) are complex numbers:

B6M~ t !5~nM !1/2 V6M
ext ~7 i !E

2`

t

dt u~t! exp@6 i«M
C t#.

~13!

The undisturbed edge is a collection of independent h
monic oscillators. When the edge is disturbed by an exte
potential which couples to the edge charge density, each
monic oscillator is subject to a different time-dependent
ternal force. Equation~12! implies that when the edge i
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9804 55ZÜLICKE, BLUHM, KOSTELECKÝ, AND MacDONALD
initially in its ground state, the effect of the external force
to put each oscillator in a coherent state described by
complex fieldB6M(t).

Inserting Eq.~12! into the expression for the electro
number density along the edge@Eq. ~2!#, we obtain the
Heisenberg-picture expression for the edge density oper

%~u,t !5%0~u,t !1s~u,t ! , ~14a!

where

%0~u,t !5 (
M.0

~nM !1/2

2pR
$bM exp@ i ~Mu2«M

C t !#

1 bM
† exp@2 i ~Mu2«M

C t !#% , ~14b!

s~u,t !5 (
M.0

~nM !1/2

2pR
$BM~ t !exp@ i ~Mu2«M

C t !#

1B2M~ t !exp@2 i ~Mu2«M
C t !#% . ~14c!

Equation~14a! is anexactexpression capturing the impact o
the external time-dependent potentialVext(t) on the edge
charge density. Note that the effect ofVext(t) shows up only
in Eq. ~14c! for s(u,t), and that%0(u,t) does not contribute
to the expectation value of%(u,t) since it does not conserv
boson occupation numbers. As a result the density resp
to an external potential is temperature independent.

In the nonequilibrium state created by the excitati
pulse, the time-dependent charge density, given by Eq.~14a!
@^%(u,t)&5s(u,t)#, is identical to the time-dependen
charge density of a linear combination of classical norm
modes. We will henceforth refer to this quantum state of
edge as an edge-magnetoplasmon wave-packet~EMP WP!
state. The time-evolution of the wave packet is given by
~14c!. As was discussed above, the spatial structure of
prepared wave packet as well as its evolution after switch
off the potential is the same at any temperature.

It is shown in Appendix A that it is possible to create
wave packet that has mode numbers strongly peaked ar
a central valueM̃ . One possible scenario uses a sequenc
short voltage pulses on the gate to excite a superpositio
eigenmodes, in analogy to the use of a short laser puls
excite a superposition of Rydberg states. Using this met
of excitation, it should be possible to produce wave pack
with a mean mode numberM̃'10 – 100.

To detect the wave packet, a second~detecting! gate can
be located at coordinateu0 relative to the exciting gate.~Al-
ternately, the exciting gate could also serve as the detec
gate.! The charge signal at the detecting gate can be c
puted as a function of the delay timet:

Q~ t !5RE
0

2p

du Vdet~u2u0! ^%~u,t !& , ~15!

whereVdet(u)'1 under the gate and smoothly goes to ze
outside the gates because of fringe fields. We can loo
think of Q(t) as the charge under the gate. The voltage s
nal on the gate should then be determined by the effec
gate capacitance.~Note that we are not accounting fo
changes in the effective interaction between electrons in
2D ES’s due to screening charges on the gates.! In the ex-
e
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periments of Ref. 21 the voltage signal is approximately
mV per electron under the gate.@If the same gate were use
for excitation and detection we would hav
Vdet(u)5Vext(u).# Inserting Eq.~14a! into Eq. ~15!, we ob-
tain forQ(t)

Q~ t !52ReH 1

2pR(
M.0

QM~ t ! exp@ i ~Mu02«M
C t !#J

~16!

with the Fourier components given by

QM~ t !5~nM !1/2 BM~ t ! V2M
det ~17a!

5nM VM
ext V2M

det ~2 i !E
2`

t

dt u~t! exp@ i«M
C t# .

~17b!

This method of creating an EMP WP using a time-depend
gate voltage and detecting the voltage pulse induced
second gate by the time-dependent charge density of
propagating EMP WP is partially analogous to the pha
sensitive Ramsey method of detection for Rydberg wa
packets.42

We will refer to the picture of the gate-characteristic fun
tionsVext(u) andVdet(u) explained above, in which the gat
is most sensitive to charges that are located in its immed
vicinity, as thelocal-capacitor model. For the calculations
reported below we takeVext(u)5Vdet(u)5exp@2(u R/zG)

2#,
wherezG is the size of the gate. For the Fourier transform
we find thatVM

ext5VM
det;(zG /R) exp@2(M zG /R)

2#. The fac-
tor VM

extV2M
det in Eq. ~17b! then precludes the observation

EMP modes with the wave numberM.R/zG . This fact
leads to an important constraint on the observability of
EMP WP. If the excitation scheme~as discussed in detail in
Appendix A! creates an initial wave packet that is a sup
position of EMP modes with the dominant contribution fro
the mode with wave numberM̃@1, then optimal observabil-
ity of this wave packet using the charge signalQ(t) requires
M̃zG /R,1.

B. Revival structure

To examine the revival structure of an EMP WP, we fi
consider the expectation value for the electron number d
sity along the edge. We assume that the excitation puls
turned off at timet. Then fort.t

^%~u,t !&52ReH (
M.0

cM eiM ue2 i«M
C tJ , ~18!

where

cM5
nM

2pR
VM
ext S 2 i E

2`

t

dt8 u~t8! exp@ i«M
C t8# D .

~19!

The coefficientscM act as weighting functions for the differ
ent modesM . Figure 2 illustrates some possible distributio
for the weightings inM resulting from excitation sequence
detailed in Appendix A. As a result of the weighting distr
bution, only those energies«M

C in Eq. ~18! near «
M̃

C
will
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contribute to the sum. This permits a Taylor expansion
«M
C around the central value«

M̃

C
.

The derivative terms in this expansion define the ti
scales that control the evolution and revival structure of
wave packet, as discussed above in the section on Ryd
wave packets. In this case the expressions for the time sc
are @cf. Eqs.~4!#

Tcl5
2p

u~«
M̃

C
!8u

5
2pR

S ln R

aM̃
21D , ~20a!

t rev5
2p

1
2 u~«

M̃

C
!9u

54pRM̃ , ~20b!

tsr5
2p

1
6 u~«

M̃

C
!-u

512pRM̃2 . ~20c!

The primes denote derivatives with respect toM . Equations
~20! define the classical orbit period, the revival time, a
the super revival time, respectively, for EMP WP’s.

For large values ofM̃'10 – 100 and typical values o
R'104, we find tsr@t rev@Tcl@Tph:52p/«

M̃

C
. Therefore,

for times t!t rev, we can approximate

^%(u,t)&'2Re$%̃cl(u,t)%, where

%̃cl~u,t !5ei ~M̃u22pt/Tph! (
M.0

cM ei ~M2M̃ !~u22pt/Tcl!

5ei ~M̃u22pt/Tph!
•%cl~u,t !. ~21!

FIG. 2. Envelope functionQM(NTexc) for the wave packet as
detected at the end ofN excitation pulses of durationTexc. @See
Eqs. ~16! and ~17! for the definition of the envelope.# The wave
packet is created by multiple short excitation pulses as discuss
Appendix A 2. These curves were all calculated f
Texc50.00532pR andR52500 in quantum-Hall units. The figur
shows results for different numbers of pulsesN. The wave number
M̃ with a maximal weight is determined byTexc. The largerN, the
sharper the peak in the envelope function atM5M̃ . For simplicity,
it is assumed that the geometry of the gates does not influenc
envelope function for the range of wave numbers shown.
f

e
e
rg
les

HereTph52pR/„M̃ ln@R/(aM̃)#…. Thus%̃cl(u,t) is the prod-
uct of a rapidly oscillating43 ~both in space and time! phase
factor and a more slowly varying periodic envelope functio
The period of the rapid spatial oscillations is 2p/M̃ , whereas
Tph is the period of the rapid temporal oscillations. If th
additional phase factor were not present, the charge den
in this approximation would circulate around the edge wi
out distortion and with periodTcl . This motion resembles the
classical drift motion44 of the cyclotron orbit of a charged
particle in a strong magnetic field; it is perpendicular to bo
magnetic and electric fields and has a speedvdr5cE/B. In
the present case, the electric field is perpendicular to the e
of the 2D ES so that the drift is along the edge and
classical period is45 Tcl'2pR/vdr . The electric field which
yields our classical orbit period is that from the neutralizi
background required to stabilize a macroscopic system
charged particles.45 Because of the additional phase fact
this classical motion appears as the envelope of a more r
oscillation of edge charge density. In what follows, we foc
on the evolution of this classical envelope function at long
times.

For times greater thanTcl , the second-derivative term wil
eventually contribute to the time-dependent phase, and
expect a revival structure analogous to the fractional and
revivals of Rydberg wave packets. Indeed, at the tim
t5m trev/n, with m andn relatively prime (m<n), we can
write the sum overM @in Eq. ~18!# as a sum of subsidiary
functions,

^%~u,t !&'2ReH ei ~M̃u22pt/Tph!

3(
s50

l21

as %clS u,t1
s

l
TclD J . ~22!

The coefficientsas are given by

as5
1

l (
M850

l21

expF2p i
m

n
~M 8!2G expF2p iM 8

s

l G , ~23!

with

l5H n2 if n50 ~mod 4! ,

n if nÞ0 ~mod 4!.

~24!

The moduliuasu are equal for alll . Therefore, the sum ove
s in Eq. ~22! consists of an equally weighted sum of subs
iary functions that are shifted in time by fractions of th
classical periodTcl . This demonstrates that at the fraction
revivals the EMP WP’s can be written as a sum of subsidi
waves. The motion of the wave packet is periodic with
period equal to a fraction ofTcl . The full revival occurs
whenm5n51. In this casel51, a051 is the only nonzero
coefficient in Eq.~22!, and the wave-packet sum consists
a single term which has the same form as the initial wa
packet. This analysis fort<t rev ignores contributions from
the higher-order terms in the phase. As a result of th
higher-order terms, the full revival is not a perfect revival
that it does not exactly equal the initial wave packet. Inclu
ing the third-order term in the time-dependent phase, wh

in

the
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FIG. 3. The unnormalized number density^r(u,t)& is plotted as a function of angleu at early times.~a! t50, ~b! t5Tcl/2, ~c!
t5Tcl , and~d! t550 Tcl .
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depends on the time scaletsr, would lead to an analysis o
the super revival structure analogous to that performed
viously for Rydberg wave packets.

The experimentally measured quantity is not%(u,t) but
the charge signalQ(t) at the detecting gate defined in E
~16!. In this expression the weighting coefficientsQM(t) are
constant after the excitation pulse has been turned off.
panding«M

C in a Taylor series inM around the valueM̃
shows that Q(t) has a time dependence similar
^%(u,t)&. The full and fractional periodicities inTcl should
therefore be exhibited in the time dependence of the cha
signalQ(t).

C. Example

As an example, we consider an EMP WP withM̃550. In
the next section, we discuss the experimental feasibility
creating and observing a wave packet with mode number
this range. In realistic samples, such a wave packet will
damped and lose phase coherence due to electron-ph
interactions, and possibly also due to interactions with e
trons in the bulk of the two-dimensional system when it h
localized low-energy excitations. In this section, we igno
e-

x-

ge

f
in
e
on
c-
s

for the moment damping and loss of phase coherence of
wave packet and examine the resulting idealized rev
structure for times up tot rev.

As shown in Appendix A, there are many possib
weighting distributions for the coefficientscM , depending on
the experimental configuration. The analysis of the reviv
given above requires only that the coefficientscM be
strongly peaked around a central valueM̃ . For the sake of
definiteness we take a particular example in this subsect
modeling the coefficientscM by a Gaussian distribution cen
tered onM̃550 with width sM52. We also seta51 and
R5104. From Table I for typical magnetic-field strength
this corresponds to a sample with linear dimension;100
mm and time scales starting from the nanosecond range
be specific, we usen51 andB510 T, which fixes our time
scales toTcl'2.2 ns,t rev'942 ns, andtsr'141 ms. In the
chiral-boson model the time evolution is independent of
overall strength of the signal so we plot results f
^%(u,t)& calculated from Eq.~18! as a function of the angle
u at various times in arbitrary units.

Figure 3~a! shows the initial wave packet for the Gaussi
model considered in this section, which sums to a smo
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FIG. 4. The unnormalized number density^r(u,t)& as a function of angleu at the fractional revivals.~a! t5t rev/6, ~b! t5t rev/4, ~c!
t5t rev/2, and~d! t5t rev.
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envelope on an oscillating background. Figures 3~b! and 3~c!
show the wave packet at timesTcl/2 andTcl , respectively. It
is seen that initially the wave packet maintains its shape
exhibits the classical periodicity. However, for times beyo
Tcl quantum interference effects commence. Figure 3~d!
shows the wave packet at 50Tcl . After 50 classical periods
the wave packet has spread and is no longer localized.

Figure 4 shows the fractional and full revivals. A
t5t rev/6, there are three nonzero terms in the sum in
~22!. The wave packet splits into three equally weighted s
sidiary waves as illustrated in Fig. 4~a!. The motion of the
wave packet is periodic with periodTcl /3. Figure 4~b! shows
the wave packet att rev/4, at which time it consists of a sum
of two distinct subsidiary waves. Here, the motion is perio
with periodTcl/2. A full revival first occurs att rev/2. Figure
4~c! shows that a single wave packet has formed. This
vival has the quantum-mechanical characteristic of be
one-half cycle out of phase with the classical motion.30 Only
at the timet rev does a single wave-packet form that is in st
with the corresponding classical periodic motion. The f
revival at t rev is shown in Fig. 4~d!. It evidently does not
exactly match the initial wave packet. A smaller subsidia
wave packet has also formed.
d

.
-

c

-
g

l

y

The revival structure as a function of time can also
observed by computing the charge signalQ(t). This is the
observable that would be measured in an experiment.
evaluate Eq.~16!, using the same Gaussian weighting
above and ignoring the overall normalization.

Figures 5~a! and 5~b! showQ(t) as a function of time for
times up to and just beyondt rev/2. Here, the revival structure
is revealed through the periodicity ofQ(t). In Fig. 5~a!, the
initial motion is clearly periodic with periodTcl'2.2 ns.
However, as the wave packet spreads and collapses,
peaks inQ(t) disappear and fractional revivals start
emerge. The peaks att rev/4'235 ns have half the amplitud
and periodicity of the initial peaks. This is because the wa
packet has reformed into two distinct parts. The peaks
t rev/6'157 ns have periodTcl/3 and an even smaller ampl
tude, corresponding to the formation of three subsidi
wave packets. Figure 5~b! shows the full revival at
t rev/2'471 ns, which is one-half cycle out of phase with t
classical motion. Here, the amplitude of the peaks matc
that of the initial peaks, and the period is againTcl .

Figure 6 enlarges some of the regions in Fig. 5. Fig
6~a! shows the first few classical cycles for times up to 5
Evidently, the individual peaks with periodTcl actually con-
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sist of envelopes of highly oscillatory signals.43,42 These
rapid oscillations cannot be resolved in Fig. 5. The period
the rapid oscillations isTph'0.036 ns. Figure 6~b! shows an
enlargement ofQ(t) neart rev/6. The period of the envelop
peaks isTcl/3'0.73 ns. Figure 6~c! shows the charge signa
neart rev/4, where two wave packets are moving with peri
Tcl/2'1.1 ns. The charge signal neart rev/2 is shown in Fig.
6~d!. The period is againTcl , but some distortion of the
signal is evident in comparison to the initial peaks in F
6~a!.

This example demonstrates explicitly the formation of f
and fractional revivals of EMP WP’s. The generic featur
are the same as for Rydberg wave packets. At the fractio
revivals, the EMP WP is equal to a sum of subsidiary wa
packets that move with a periodicity equal to a fraction
Tcl . The semiclassical behavior as well as the revivial str

FIG. 5. The charge signalQ(t) is plotted as a function of time in
nanoseconds.~a! and ~b! illustrate the large-scale periodicities i
Q(t) up to times of an order oft rev/2'471 ns. The rapidly oscil-
lating part of the signal is not resolved in these figures and
individual peaks at short times are separated by the classical pe
At partial revivals the period of the revived wave packet is sho
than the classical period. These shorter periods are not resolv
this figure resulting in nearly solid portions of the figure. In th
case the extent of the solid region reflects the amplitude of
revived wave packet.
f

.

l
s
al
e
f
-

ture of EMP WP’s can be detected experimentally by m
suring periodicities in the envelope that modulates rapid
cillations in the charge signalQ(t). These oscillations are th
analog of the Ramsey fringes in Rydberg-wave-packet
periments which use the phase-sensitive method of detec

D. Fluctuations: Quantum and thermal

The EMP WP is a many-mode coherent state: each p
mon mode represents a one-dimensional quantum harm
oscillator, and the creation scheme described above resu
each oscillator mode being excited into a coherent state.
above-mentioned detection scheme yields an average ch
signalQ(t) which reflects purely classical behavior of th
EMP modes. Quantum fluctuation effects appear only in
noise spectrum of the charge signal.

In our detection scheme, we measure the expecta
value of the charge operatorQ̂(t):

Q̂~ t !5RE
o

2p

du Vdet~u2u0! %~u,t ! ~25a!

5 (
M.0

@nM #1/2 $V2M
det bM~ t ! eiM u01H.c.% .

~25b!

It is possible to rewriteQ̂(t) as the sum of a term

@5:dQ̂(t)# that has a vanishing expectation value and c
tributes only to fluctuations, and a term@[Q(t)# which does
not fluctuate at all and equals the expectation value of
charge operator:Q̂(t)5dQ̂(t)1Q(t). Explicitly, we find

dQ̂~ t !5 (
M.0

@nM #1/2 $V2M
det bM ei [Mu02«M

C t]1H.c.% ,

~26!

andQ(t) was defined in Eq.~16!. The variance of the charg
signal is readily evaluated:

^@DQ̂~ t !#2&5^@DQ̂~ t !#2&qu1^@DQ̂~ t !#2& th , ~27a!

^@DQ̂~ t !#2&qu5 (
M.0

nM uVM
detu2 , ~27b!

^@DQ̂~ t !#2& th52 (
M.0

nM uVM
detu2 nM

~0! , ~27c!

with nM
(0) being the thermal-equilibrium occupation numb

of the plasmon mode labeled by quantum numberM . Equa-
tions ~27b! and~27c! represent the noise due to quantum a
thermal fluctuations, respectively.

We assume the detector characteristics to be determ
primarily by geometrical properties, such as the dimens
zG of the capacitor plate. Within the local-capacitor mod
we haveVM

det;(zG /R) exp$2@M zG /R#2% which yields the
result

^@DQ̂~ t !#2&'n 3 H 1 if zT.zG

zG /zT otherwise,
~28!
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FIG. 6. An enlargement of Fig. 5 at various times.~a! the initial classical cycles for 0<t<5 ns, revealing the presence of the rap
oscillations inQ(t). ~b!, ~c!, and~d! show enlargements of Fig. 5 near the timest5t rev/6, t5t rev/4, andt5t rev/2, respectively, correspondin
to the formation of 3, 2, and 1 subsidiary waves at the fractional revivals.
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where the thermal lengthzT :5vdr /(A4pkBT). The regime
where zT.zG is dominated by quantum fluctuation
whereas thermal fluctuations are more important ifzT,zG .

In order to judge the importance of the quantum and th
mal fluctuations for experiments detecting the semiclass
behavior and revival structure of EMP WP’s, we compa
the magnitude of the fluctuations to the amplitude of
charge signalQ(t). As an order-of-magnitude estimate, w
find for the case of an EMP WP which was created using
multiple-short-pulse technique~see Appendix!:

uQ~ t !umax;n
M̃ zG
R

u0 zG
vdr

. ~29!

Typical drift velocitiesvdr are of the order of 53105 m/s, so
that we get a numerical estimate

uQ~ t !umax;3 u0@mV# zG@mm# 3 n
M̃ zG
R

. ~30!

Here,u0 denotes the amplitude of the voltage pulse wh
created the EMP WP. Remember thatM̃zG /R,1 is required
to enable the detection of the EMP WP using the cha
r-
al
e
e

e

e

signal. For a signal-to-noise ratio greater than unity, the a
plitude of the voltage pulse has to satisfy

u0@
R

M̃zG

vdr
zG

max$1,~zG /zT!1/2% , ~31!

or based on the numerical estimate above

u0@mV#@
0.3

zG@mm#
3

R

M̃zG
. ~32!

IV. FINITE LIFETIME OF EDGE-MAGNETOPLASMON
WAVE PACKETS

The previous section analyzed the formation and revi
structure of EMP WP’s, assuming an infinite lifetime for th
EMP’s which form the wave packet. It was shown that th
mal effects have no influence on the preparation and ev
tion of these wave packets apart from contributing to flu
tuations. The revival structures that we have discus
require the coherent evolution of the EMP system. Coupl
to the bulk electron system can in principle destroy ph
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coherence and lead to dissipation for the EMP. However
tuning the magnetic field into the middle of the QH platea
it is possible to virtually eliminate dissipation due to co
pling to the bulk: Since the energy of EMP’s is much smal
than the charge gap, and the EMP wavelength (; system
size! then by far exceeds the localization length (; magnetic
length in the middle of the QH plateau!, it is safe to neglect
the response of the bulk to the EMP excitations. To be so
what more quantitative, we follow the phenomenologic
analysis in Ref. 12, from which it follows that the dampin
rateGbulk of EMP WP’s due to coupling to the bulk is give
by the relation

Gbulk
21

Tcl
;2

t*

Tcl
ln@R/M̃ # . ~33!

Here t* denotes the low-temperature, mid-plateau elect
scattering time in the bulk of the 2D ES, which is alwa
extremely long. For example, in a typical 2D ES, the va
of t* extracted46 from experimental data wast*;1023 sec.
For the values ofTcl considered in this work, we find
Gbulk

21 /Tcl;106 ln@R/M̃#. The scattering timeGbulk
21 is long

compared to the time for EMP-phonon scattering calcula
below @see Eq.~39a!#.

In realistic systems, electrons in the 2D ES will b
coupled to the semiconductor host material via vario
physical processes. For experimentally realistic temperat
and parameter ranges in semiconductors, the most impo
process will typically be the coupling of electrons to 3
acoustic phonons. This coupling leads to a finite lifetime
EMP’s, which we calculate in this section. Comparing t
lifetime to the relevant time scales for semiclassical beha
(Tcl) and for revivals (t rev), we can determine the observ
ability of these effects.

A. Plasmon-phonon coupling—general

The electron-phonon interaction is specified by the f
lowing contribution to the Hamiltonian:47

Hel-ph5(
qW ,l

Ml~qW !~a2qW ,l
†

1aqW ,l!%qW
3D , ~34!

where the operatorsaqW ,l
† (aqW ,l) create~annihilate! phonons

with 3D wave vectorqW , polarization labell, and normal-
mode frequencyvqW

l. Here,%qW
3D denotes the 3D electron den

sity in the QH sample andMl(qW ) is a coupling constan
whose numerical value is known in most materials of int
est. Since EMP’s are collective fluctuations of the elect
density at the edge of our sample, the electron-phonon in
action leads to an effective coupling between phonons
EMP’s. By identifying the contribution to the 3D electro
density from EMP’s we are able to derive a Hamiltoni
which describes the coupling between the EMP and pho
systems. For example, for the disk geometry described
Fig. 1, the Hamiltonian has the form

Hpl-ph5 (
M.0
qW ,l

CM
l ~qW !~aqW ,l1a

2qW ,l
†

!~bM eiM uqW1bM
† e2 iM uqW ! ,

~35!
y
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whereuqW denotes the azimuthal angle of the wave vectorqW in
the plane of the 2D ES’s. Details of the derivation of E
~35! and an analytic expression for the coupling coefficie
CM

l (qW ) are given in Appendix B. It is possible to derive a
expression similar to Eq.~35! which is valid for the strip
geometry; this case is also discussed in Appendix B.

To investigate the effect of plasmon-phonon coupling
the evolution of an EMP WP, we consider a single-plasm
Matsubara Green’s function defined by

GM~t!52^Tt bM~t!bM
† ~0!& , ~36!

and the Fourier transformGM(v) of the retarded Green’s
function, which is obtained from the Fourier transform
GM(t) by a continuation to real frequencies. In the absen
of EMP-phonon coupling,GM(v) reduces to the well-known
result47 for free bosons:GM0 (v)5@v2«M

C 1 id#21 reflecting
the fact that EMP’s are the well-defined excitations of t
system. The presence of phonons causes damping~and an
energy shift! of the EMP’s, leading to the modified resu
GM(v)5@v2 «̃M1 i GM/2#21, with GM

21 being the lifetime
of the EMP with wave numberM . We find

GM52p(
qW ,l

uCM
l ~qW !u2 d~«M

C 2vqW
l
! . ~37!

See Appendix C for details of the calculation.
The meaningful quantity to assess the effect of EM

phonon coupling on the propagation of EMP WP’s isG
M̃

21
,

which we call the lifetime of the EMP WP’s. At energy an
wave-vector scales appropriate for the observation of E
WP’s, acoustic phonons with dispersionvqW

l
5qcl are most

important. In a polar semiconductor, both scattering from
deformation potential and piezoelectric effects contribute
the electron-phonon coupling, whereas in a nonpolar se
conductor the piezoelectric part is absent. In the followi
two subsections, we discuss these two cases separately

B. Polar semiconductors: GaAs

At the long wavelengths used to construct EMP WP
piezoelectric coupling dominates the deformation-poten
scattering of electrons. We therefore neglect the contribu
from the deformation potential in this subsection. The eva
ation of Eq.~37! for the disk case yields

GM'S h14
c̃

D 2er M

R
, ~38!

with e being the semiconductor bulk dielectric constant, a
the piezoelectric coupling constant denoted byh14. Here, the
quantityc̃ is of the order of the speed of sound. This estim
is based on the observation that the drift velocity of the EM
WP is typically;100 times larger than the speed of sou
so that typical projections of the phonon wave vector o
the 2D plane lead to large Bessel-function arguments.~Typi-
cal phonon wavelengths are very small compared to the
of the disk.! Note that modes with a higher wave numb
decay faster.

The relevant quantities to examine when assessing
possibility of observing wave-packet revivals are
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G
M̃

21

Tcl
;S c̃

h14
D 2 r

e

ln@R/M̃ #

M̃
;100

ln@R/M̃ #

M̃
, ~39a!

G
M̃

21

t rev
;S c̃

h14
D 2 r

e

1

M̃2
;S 7

M̃
D 2 . ~39b!

Equations~39! give, respectively, the number of classic
periods and the number of revivals which occur in the me
free time of an EMP WP. We see that, unlessM̃ is very
large, the initial periodicity should be observable. Howev
the likelihood of seeing revivals appears to be quite rem
Equation~39a! shows that the wave packet loses cohere
before it can revive. The typical values of parameters
Al xGa12xAs/GaAs heterostructures used in the calculation
the EMP WP lifetime are taken from Ref. 48 and are sho
in Table II.

C. Interpretation of previous experiment

It is interesting to reexamine the experiments describe
Ref. 21 in the light of these expressions. In that work m
surements were made on a QH sample in GaAs with
geometry sketched in Fig. 1 at temperatureT50.3 K. The
values of the relevant parameters were filling factorn51,
magnetic-field strengthB55.1 T ~i.e., magnetic length
l '11 nm!, R5270mm'2.43104 l , and zG;10 mm. A
single voltage pulse with amplitudeu0550 mV and duration
Texc5100 ps was applied to create the initial wave pack
The latter was observed to move around the disk sample
period Tcl'4 ns while spreading rapidly.~Fewer than ten
cycles can be discerned before the signal vanishes in
noise.! The data donot seem to consist of a rapid oscillatio
that is modulated by an envelope.

We believe that the EMP WP excited in this experime
was composed primarily of modes withM,5, with M51
possibly having the largest amplitude. Our analysis of
time scales would giveTph'Tcl't rev/20. In our interpreta-
tion of this experiment, the period of the rapid oscillation
the charge signal and the classical period~which determines
the periodicity of theenvelope functionthat modulates the
rapidly oscillating charge signal! are nearly equal, and th
revival time is just one order of magnitude larger. The a
sence of a rapid oscillation in the charge signal results fr
the near equality ofTph and Tcl . The decay of the charg
signal in;10 classical periods can be consistently explain
as being due to the spreading of the wave packet due to
nonlinear dispersion of EMP’s. However, because of
small value ofM̃ in this experiment, interference betwee
first- and higher-order terms in the expansion of the non
ear dispersion of the EMP aroundM̃ would be expected to

TABLE II. Parameters of GaAs/AlxGa12xAs heterostructures
according to Ref. 48.

Mass density r 5300 kg/m3

Longitudinal sound velocity cl 5140 m/s
Transversal sound velocity ct 3040 m/s
Deformation potential D 9.3 eV
Piezoelectric constant h14 1.23109 V/m
n
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~and apparently does! obscure the fractional and full revivals
Exciting the EMP WP with a single voltage pulse results in
rather broad distribution of wave numbers in the EMP W
so that the analysis of the revival structure, which is based
a sharply peaked distribution of wave numbers aroundM̃ , is
certainly invalid.

With the drift velocity deduced fromR andTcl , we esti-
mate the thermal length to bezT'3 mm which is smaller
than zG . The experiment therefore was in a regime whe
thermal noise dominates. For a good signal-to-noise ra
the requirementu0@2 mV had to be satisfied; this criterio
was met in the experiment under consideration. The lifeti
of the wave packet as deduced from a calculation outline
this section is;1000Tcl . Therefore, the rapid decay of th
signal cannot be attributed to dissipation into the phon
system.

D. Nonpolar semiconductors: Si and Ge

In nonpolar semiconductors, piezoelectric coupling is a
sent, and the rate of phonon emission by the plasmon
suppressed for the long-wavelength plasmons typically
volved. In this case we find that the ratio of the lifetime a
revival time,

G
M̃

21

t rev
;F R

lnR

1

M̃2G 2 , ~40!

can be made much larger than unity by adjusting the size
the QH sample. For a millimeter-size sample at typical m
netic fields (2pR'1 mm,B510 T!, the ratioG

M̃

21
/t rev;1

(25) for M̃550 (20). The revival structure of EMP WP
disussed in Sec. III should therefore be observable
samples with nonpolar semiconductor host materials, e.g
Si/Ge heterostructures.49

V. SUMMARY AND CONCLUSIONS

In this paper, we have examined the formation and e
lution of edge-magnetoplasmon wave packets in nanost
tures. These wave packets are formed as superposition
edge magnetoplasmons that are the only low-lying exc
tions in finite quantum-Hall samples. By using a sequence
short pulses in the excitation process, it is possible to p
duce a superposition with mode numbers sharply pea
around a central valueM̃ . We have shown that for such wav
packets the initial motion is periodic with a periodTcl . After
several of these cycles, the wave packet collapses and
quence of fractional and full revivals commences. This
vival structure is analogous to that of Rydberg wave pack
in atomic systems; its relevant time scale is the revival ti
t rev.

We find that experiments that use capacitive coupling
the charge-density fluctuation that is associated with
EMP WP both for the creation and detection of the EMP W
are analogous to Rydberg wave-packet experiments that
the phase-sensitive Ramsey method of detection. In b
types of measurement, the semiclassical motion as we
the revival structure is seen in the time variation of the e
velope function of a rapidly oscillating signal.

We have shown that thermal effects have no influence
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the propagation of the wave packet. Examining possible s
narios for the energy loss of EMP’s, we found that plasm
phonon coupling due to piezoelectric effects~in polar semi-
conductors such as GaAs! causes the wave packet to dec
with a lifetime that is typically less than the revival tim
However, for 2D ES’s fabricated in nonpolar semiconduct
such as Si or Ge, piezoelectric coupling is absent and
possible to produce wave packets with large values ofM̃ that
will evolve for times of ordert rev without appreciable decay
In this way, it should be feasible to detect fractional reviv
in experiments. The analysis given in this work of a previo
experiment21 that examined the classical motion of EM
WP’s can serve as a guideline for future experimental stu
of the EMP WP revival structure.
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APPENDIX A: POSSIBLE EXCITATION SCENARIOS
FOR THE INITIAL WAVE PACKET

1. Single short pulse

In the experiments onmm-size quantum dots21 by
Ashooriet al.a single short pulse was applied to prepare
initial wave packet. In our model, the corresponding pu
characteristics is

u~ t !5H u0 for 0<t<Texc

0 otherwise .
~A1!

It is straightforward to calculate the fieldB6M(t) for this
case. We find
B6M~ t !55
0, t<0 ,

~nM !1/2 V6M
ext 72iu0

«M
C expF6 i

«M
C t

2 G sinF«M
C t

2 G , 0,t,Texc ,

~nM !1/2 V6M
ext 72iu0

«M
C expF6 i

«M
CTexc
2 G sinF«M

CTexc
2 G , Texc<t .

~A2!
the

is

an

MP

a

res-
in
This type of excitation cannot lead to an EMP WP state w
a sharply peaked mode distribution and is unlikely to p
duce well-resolved revivals.

2. Multiple short pulses

In analogy with the excitation of Rydberg wave-pack
states in atoms by laser pulses, we propose exciting the
of a QH system using a series ofN short pulses each o
durationTexc. For the specific case of sinusoidal individu
pulses this would give

u~ t !5H u0 sinF 2p

Texc
t G for 0<t<N Texc ,

0 otherwise .

~A3!

In this case we find that fort>NTexc

B6M~ t !5~nM !1/2 V6M
ext 4pu0

Texc

3expF6 i
«M
CNTexc
2 G sin@«M

CNTexc/2#

~«M
C !22S 2p

Texc
D 2 ,

~A4!

which is sharply peaked around a valueM̃ satisfying
«
M̃

C
52p/Texc. Using our notation from Sec. III B, the EMP

WP’s created with the multiple-short-pulse technique sat
h
-

t
ge

y

Tph[Texc. The duration of the short pulses determines
value ofM̃ , whereas the number of pulsesN determines the
width of the peak inB6M(t) at M̃ . Figure 2 illustrates some
possible distributions inM that could be produced using th
method.

3. Adiabatic limit

An important limit of our general results is the case of
adiabatically varying potentialVext(t). In our formalism, this
corresponds to a pulse characteristicsu(t) which varies on a
time scale longer than the time scale set by the lowest E
energy. The time integral in expression Eq.~13! is then
dominated by the exponential, andu(t) can be treated as
constant within the range of integration. We find

B6M~ t !5~nM !1/2 V6M
ext 2u~ t !

«M
C exp@6 i«M

C t# , ~A5!

and the total density response%̃M(t), derived from Eq.~14c!,
is

%̃M~ t !52u~ t ! VM
ext nM

«M
C . ~A6!

The induced density in Eq.~A6! is the instantaneous
ground-state density that minimizes the energy in the p
ence of the slowly varying external potential. The energy
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the presence of the external potential can be expresse
terms of the charge density as follows:

E@%#5E du E du8 Vint~u,u8!%̃~u! %̃~u8!

1u~ t !E du Vext~u! %̃~u! . ~A7!

The configuration that minimizes the energy functional is

%̃M~ t !52u~ t !
VM
ext

VM
int 52u~ t ! VM

ext nM

«M
C , ~A8!

consistent with Eq.~A6!.

APPENDIX B: DERIVATION OF THE EFFECTIVE
EMP-PHONON COUPLING

In this section, the derivation of the effective couplin
between the EMP’s and 3D phonons is given. We start w
the full Hamiltonian@Eq. ~34!# describing the interaction be
tween 3D electrons with the 3D lattice in the sample. It
convenient to study the Fourier components of the 3D e
tron density

%qW
3D

5E d3r eiq
W
•rW %3D~rW ! . ~B1!

As we are dealing with a 2D ES which is confined, say,
the xy plane, we introduce the notationrW5zẑ1r , where

ẑ'r ~in reciprocal space:qW 5qzẑ1Q, ẑ'Q) and assume the
electron density to be peaked strongly atz5z0:
%3D(rW)5x(z)%2D(r ). Then, thez integration in Eq.~B1!
decouples from the rest of the 3D integral, and merely le
to a form factorF'(qz)5* dz eiz•qzx(z). We are left with
the 2D Fourier transform of the 2D electron dens
%2D(r ).

1. Disk geometry

Specializing to the case of a QH sample in the disk
ometry ~see Fig. 1!, we can write approximately

%2D~r !5%0 Q~R2ur u!1%1D~u!d~R2ur u! , ~B2!

where%05n/2p, Q(x) is the Heaviside step function, an
u is the coordinate along the edge~see Fig. 1!. The remain-
ing integrals can be performed. The result is

%qW
3D

5%qW
bulk

1%qW
edge , ~B3a!

%qW
bulk

5F'~qz! nR2 J1~QR! , ~B3b!

%qW
edge

5F'~qz! (
M.0

i M JM~QR! @nM #1/2 ~bM
† e2 iM uqW

1bM eiM uqW ! , ~B3c!

where we writeuqW for the polar angle of the vectorQ in the

xy plane, i.e., the azimuthal angle ofqW in 3D. We remind the
reader thatQ is the projection of the wave vectorqW onto the
plane where the 2D ES is located. To get Eq.~B3c!, we
in

h

c-

s

-

inserted Eq.~2! for %1D(u). Using expression Eq.~B3a! for
the 3D electron density%qW

3D in Eq. ~34!, we find the Hamil-
tonian Eq. ~35! for the coupling between the EMP’s an
phonon modes, with

CM
l ~qW !5@nM #1/2 Ml~qW !i M JM~QR! F'~qz! ~B4!

as the coupling strength. Note thatJM(x) denotes the
M th-order Bessel function of the first kind.

2. Strip geometry

For the sake of completeness, we give the correspond
results for the case of a QH bar~strip geometry!. By QH bar,
we mean a sample with periodic boundary conditions app
in the x̂ direction, and open boundary conditions in theŷ
direction. This configuration space corresponds to the s
face of a cylinder with the axis in theŷ direction. Although
this geometry is not appropriate for the observation of EM
WP revivals, it can be useful in analyzing experiments
which edge disturbances travel along the edge of a H
bar.22

In analogy with Eq.~B2!, we write for the case of the strip
geometry

%2D~r !5%0 Q~W2y!1%1D~u! d~y2W! , ~B5!

withW denoting the width of the strip. We again end up wi
an expression like Eq.~B3a!, and find for the Hamiltonian
describing the plasmon-phonon coupling:

Hpl-ph5 (
M.0
qW ,l

C~qW ,l!~aqW ,l1a
2qW ,l
†

!~bM dM ,2R•qx

1bM
† dM ,R•qx

!. ~B6!

The coupling strength is

C~qW ,l!5@nM #1/2 Ml~qW ! F'~qz! eiW•qy , ~B7!

which is different from the result Eq.~B4! that we found for
the disk case. Note that the factoreiW•qy is simply a form
factor describing the profile of the charge density in theŷ
direction. Here, we have assumed a sharp confining pote
and therefore used ad-function. In general, this is not an
experimentally realistic situation, and we will have to repla
eiW•qy by a form factorF i(qy). A similar form factor should
in principle be included in the analysis for the disk geome
as well, but would not be important for smallM . Note the
differences between the final expression for the coupling
EMP’s to phonons, Eq.~35! for the disk geometry, and Eq
~B6! the for strip geometry.

3. Specialization: Acoustic phonons in semiconductors

For the physical situation we are concerned with in t
paper, acoustic phonons play the dominant role. In po
semiconductors, as for instance in AlxGa12xAs/GaAs hetero-
structures, phonon coupling occurs due to both deformat
potential and piezoelectric scattering. The bare 3D electr
phonon coupling reads
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9814 55ZÜLICKE, BLUHM, KOSTELECKÝ, AND MacDONALD
Ml~qW !5S \

2rV@e~Q!#2v
l
qW
D 1/2@Dqdl,l1 ieh14Ml~ q̂!# ,

~B8!

wherer andV denote the 3D bulk density and the samp
volume, respectively. We have also introduced the stren
of the deformation potential (D) and the piezoelectric cou
pling (h14). For more details on phonons i
Al xGa12xAs/GaAs heterostructures as well as numerical v
ues of the parameters, see Ref. 48. A general referenc
scattering mechanisms in metals and semiconductors is
50. The dielectric functione(Q) incorporates screening o
the original electron-phonon interaction due to man
electron effects. Here, the 2D ES is in the QH regime, a
there is no screening, therefore we sete(Q)→1. Finally, the
functionsMl(q̂) model the directional dependence of t
piezoelectric phonon coupling. For a 2D ES which lies in t
~100! plane of GaAs, we have48

@Ml~ q̂!#25
9

2

Q4qz
2

q6
, ~B9a!

@Mt~ q̂!#252
Q2qz

4

q6
1
1

4

Q6

q6
, ~B9b!

for longitudinal and transverse modes, respectively.

APPENDIX C: PLASMON SELF-ENERGY
DUE TO PHONON COUPLING

Due to the plasmon-phonon coupling, the plasmons
quire a nonvanishing imaginary part of the self-energy tha
related to the rate of phonon emission/absorption by the p
mons. Here, we calculate the plasmon self-energy usin
diagrammatic perturbation theory. Due to azimuthal symm
try, the self-energy is diagonal in angular momentum in
ces. As the Hamiltonian of the coupled EMP-phonon syst
is quadratic, the leading-order diagram gives the exact re
for the self-energy. Note that here we consider the coup
of chiral 1D plasmons to 3D phonons; the problem of chi
1D plasmons coupled to 1D phonons with implications
quantum-Hall edges has been discussed previously.51

The full Hamiltonian of the coupled EMP-phonon syste
~without the external potential forming the initial wav
packet! is

H85H0
pl1H0

ph1Hpl-ph , ~C1!

whereH0
pl is given by Eq.~8!, the expression Eq.~35! for

Hpl-ph in the disk geometry has been derived in Appendix
andH0

ph describes a system of free 3D phonons with disp
sion relationvqW

l:

H0
ph5(

qW ,l

vqW
l
aqW ,l
†

aqW ,l . ~C2!

We want to calculate the single-plasmon Matsubara Gre
function defined in Eq.~36!, which can be written as a sum
hs

l-
on
ef.

-
d

e

c-
is
s-
a
-
-
m
ult
g
l
r

,
r-

’s

over all distinct connected diagrams. Three of the diagra
appearing inGM(t) are shown in Fig. 7. All diagrams o
higher than second order are reducible. The sums over p
non wave vectors that are implicit in the diagrams enfo
the conservation of the plasmon wave number in e
higher-order diagram. Using the standard definition47 for the
phonon propagator

Dl
0~qW ,t12t2!52^Tt@a2qW ,l

†
~t1!1aqW ,l~t1!#@aqW ,l

†
~t2!

1a2qW ,l~t2!#&0 , ~C3!

we find that the full plasmon propagator is given exactly

GM~ ivn!5@ ivn2«M
C 2SM~ ivn!#

21, ~C4!

with the plasmon self-energy

SM~ ivn!5(
qW ,l

uCM
l ~qW !u2 Dl

0~qW ,ivn! , ~C5!

which is the contribution from second-order perturbati
theory, expressed diagrammatically in Fig. 7~d!. The same
result for the plasmon propagator is obtained when integ
ing out the phonon degrees of freedom in a path-integ
expression for the partition function of the coupled EM
phonon system.

After continuation to real frequencies, it is possible to fi
the imaginary part of the self-energy for the retarded Gree
function

Im SM~v!5p(
qW ,l

uCM
l ~qW !u2 @d~v1vqW !2d~v2vqW !# .

~C6!

From this expression, we read off the damping rate for
mode with wave numberM as expressed in Eq.~37!.

FIG. 7. Diagrams involved in the calculation of the plasm
propagator~a, b, c! and the plasmon self-energy~d!, arising from
plasmon-phonon coupling. Straight lines denote the free plasm
propagatorGM0 (t). The wavy line is the usual phonon propagat

Dl
0(qW ,t12t2). ~a! Disconnected diagram; does not contribute
GM(t). ~b! Connected diagram; leading contribution toGM(t). ~c!
Higher-order contribution to the plasmon propagator. Due to a
muthal symmetry such a diagram vanishes unlessM5N. The self-
energy insertion in this diagram is improper. The proper self-ene
is diagonal in angular-momentum indices and consists of the si
diagram shown in~d!.
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