PHYSICAL REVIEW B VOLUME 55, NUMBER 15 15 APRIL 1997-|

Resonance impurity states in a quantum well in the presence of electric
and strong magnetic fields
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An analytical approach to the problem of an impurity electf@nhole in a quantum wellQW), subject to
electric and strong magnetic external fields both directed perpendicular to the heteroplanes, is developed. The
impurity center is located at the edge of the QW. It is shown that the combined potential acting on the electron
(or hole resembles that of a double quantum well. One of the wells is formed by the Coulomb impurity
potential and the QW boundary at which the center is located and the other well by the electric-field potential
and the other boundary of the well. Analytical expressions for the energy levels are obtained. Our main interest
is in the resonance when the levels associated with the two effective QW's anticross. The explicit dependences
of the resonance splitting upon the width of the QW and on the magnitudes of the electric and magnetic fields
are obtained. Estimates of the expected splittings are made using the usual parameters associated with GaAs
QW's. [S0163-182107)03216-3

I. INTRODUCTION narrow compared to the radius of the impurity electron state.
In this paper, this analytical approach is extended to a
The problem of resonance devices based on impurity lowQW system with the impurity at the edge of the QW. Al-
dimensional heterostructures has attracted considerable dhough this system potentially has very interesting and useful
tention in recent years. The reason is that advances made Rioperties, it does not appear to have been considered before.
growth techniques and control by the development offNe combination of the lack of inversion symmetry in the

molecular-beam epitaxy and metal organic chemical Vapoglectric field and the positioning of the impurity at the edge

deposition methods of manufacturing specific structures havaf thé QW together generate a type of resonance structure in
hich the combined potential governing the electron states

increased considerably the amount of available experimentéﬁ; | bles that of a doubl ' o fth
data. Similarly, it has become clear that a study of impuritiesC osely resembles that of a doubl€ quantum well. Une of the
vells is formed by the Coulomb impurity potential and the

in such ms is importan h ical and tran ) . I
such systems is important because the optical and tra W boundary at which the impurity is located; the other

port properties of devices made from these materials arwe” is constructed from the electric-field potential and the
strongly affected by the presence of shallow impurities. . i
gy Y P b her boundary of the QW. It is shown that such a system

Numerous experimental and theoretical papers have be i lect at hich h _Coulomb ch
written within the past decade concerning the effects of electOn algs elec rqln sta es whic t.avg atqtua3|:rhou ctmc]i cfara(;]—
tric and magnetic fields acting on heterostructures containin rand are similar to size-quantized states. 1he study ot suc

ystems is important as properties such as tunneling times

impurities. Comprehensive summaries have been given i - " . )
Santiagcet al® and Shi, Peeters, and Devréstr example. and o_ptlcal transition strengths will be strongly influenced by
' ' ysuch impurities.

Much of this work has been concemed with single quantu The explicit dependencies of the impurity electron ener-

well structures. Greene and Bdjdjand Greene and . ) : LS
Lanerggmied the effects of magnetic fiIeIst by using a varig.gies upon the magnitudes of the magnetic and electric fields

tional method. This method has been used also by Cen anadqd the width of the QW are obtained. Attention is focused
Bajaj to study impurity states in symm eftiand asymm etric ON the resonance between the levels associated with the two

QW'’s subject to parallel electric and magnetic fields directe ffe<_3t|ve wells SO that tunne_lmg of the electron thro_ugh the_

perpendicular to the heteroplanes. arrier separating the effective wells becomes possible. It is
The majority of papers on this subject describe numericap: o !

calculations. Nevertheless, analytical methods of studyin lons for the resonance splitting of the levels are derived.

the effects of impurities in QW’s subject to external fields he energy gap bgtwegn the resonance levels has a strong

are of much interest because they enable the basic physics ecton th? tur_mellng time and resu_lts inan alteratlon in the

the problem to be kept clearly in view throughout the anrclly—s’pat'afI d|§tr|but|on Of the wave fL_mct|on. This in turn defines

sis. The authors have been involved in an analytical methoH1e kmetlc. and optical properties of .SUCh S

which was devised originally for the problem of impurity Structures in the presence of external fields.

states in a QW subject to a strong magnetic fielEffects Il GENERAL THEORY

on impurity states in a QW subject to parallel electric and '

strong magnetic fields directed perpendicular to the layers The z axis is chosen to lie along the direction of the

have been studied analyticaify*! by taking the QW to be parallel uniform magneti® and electricE fields that are
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directed perpendicular to the heteroplanes and the QW is 1 p?
modeled by an infinite square yvell qf width j’his a}na!ysis ' Xio0dpP)=—"—— exp{ - E} (2.6
concentrates on the problem in which the impurity is posi- v2mag B

tioned at the edge of the QW. In this case, the potenti
barrier caused by the electric fiel has the largest effect
and has a major influence on the stability of the impurity
states. The position of the impurity, which coincides with the
left edge of the QW, is taken to be the pomt 0. The other
parameters relevant to the calculation are the impurity Boh
radiusay, the magnetic lengtlag, and the dimensionless
electric fields which is the electric fieldE scaled relative to
the impurity electric field. They are defined as usual by

all'hus we may drop the subscripts from the variables related
to the transverse motion and wrkéfor Vg o, f for (©% and
W for Wy . Note that Eq(2.2) describes both Coulomb-type
states (W< 0) and size-quantized statégor whichW=>0. It
pas been found that the levels of lowest energy have a quasi-
Coulomb character under the conditidera,. These levels
are affected strongly by external fields while the size-
guantized levels depend only weakly upon the magnitudes of
the fields and upon the impurity potential. Further, we con-
sider the quasi-Coulomb states having eneryfiesO.

In order to solve Eq(2.2), it is convenient to introduce
the notation

E

_477660ﬁ2
eldmegead]’

ag= e ag= VhleB,

S:

wheree is the dielectric constant and ande are the effec-

tive mass and charge of the carrier, respectively. We assume
further that the energy bands may be taken as sphericalyhere
symmetric with a parabolic cross section and to be nonde-

u=2z/agh, g=2plagh, W,=—R/2\?,

generate.
In the strong magnetic-field limit for which

aglapg<l, (2.2

and in the effective-mass approximation, the longitudinal d*f,(u)

function f(N™(z) of the electron at a position(p,z) for the

case in which the electric field is directed along the negative

z direction, satisfies the equatidrt*

h? d?
52 (V™M@ + [Va(2) —eEZT N ()

2p d
=Wy nf N™(2), (2.2
with the boundary conditions
fNM™0)=0, fN™(d)=0 (2.3
and with
2 2
V(D)= gree 'X%“;' dp (24

andWy n=E—& nm Wheref is the energy of the impurity
electron. In the above expressions, the functigry m(p)

R=e%/4meqeay

is the impurity Rydberg constant. Equati¢®.2) then be-
comes

A1
+ )\<O|(u2+g2)*1’2|0>+§su—L—1 fy(u)=0,

2.7)

where (0| |0) is an average with respect to the function
Xio0dp). The quantum numbek labels the states of the
motion along thez axis. The transformation of coordinates
affects the boundary conditions, which thus become

du?

£,(0)=0, f,(2d/ag\)=0. 2.9

The analysis of Eq(2.7) will be based upon the Hasegawa-
Howard methotf together with a comparison equatith.
Ill. CALCULATIONS

Our approach to the problem is to consider the solutions
to Eq.(2.7) for the three regions in turn and match them on
the boundaries.

A. The left boundary of the QW (impurity center region)

describes the transverse motion of the electron of energy Following the method developed in Ref. 8, under the con-
& n,m in the magnetic field in the x-y plane. The Landau dition
energies relative to the bottom of the conduction band are

given by u>(0|g|0)~2ag/ap\,
feB Eq. (2.7) transforms into the equation
5“"”‘:2_ (2N+|m|+m+1) = ugB, (2.5
a a2 () (A 1 A3 B
whereug is the effective Bohr magneton for the electron and a2 tlgT 21 g su/hw=0. (3.9)

the quantum numbers af¢,m where N=0,1,2... andm
=0,+1,%2,... . In the zeroth approximation for whick= 0, we find that the

In order to simplify the calculations, we consider only the two independent solutions to this equation are the Whittaker
ground transverse state for whith=m=0 though the re- functionsW, j;, andM, ;.. The general solution is given by
sults obtained below will be valid qualitatively for any trans-
verse state. The relevant transverse function has the form

fa(u)=AW) 11(u) +BW) 11u), (3.2
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whereA andB are constants. In the regian<1, an iteration
method is performed by double integration of E2}.7) using

the trial functions satisfying the first boundary condition

[from Eq.(2.8)],

f10(u) = au(u®+g?) MAnfu+ (u?+g%)*,

9781

C. The intermediate region
Under the condition
sni<1, (3.12

within the region defined by>1, and ¢3/8) su<\/u, the
functions(3.2) and(3.8) can be matched and thus tunneling

where « is a constant. A comparison of the coefficients ispetween the two wells of the effective potential occurs. Un-
then made between the results of the integration taken foger the conditior(3.12), the arguments of the Airy functions
u>(0|g|0) and the standard expansion of the Whittaker,y) given in Egs(3.9) and(3.10 and involved in Eq(3.9)

functions involved in Eq(3.2) for u<1 (see, for example,

Gradshtein and Ryzht®). When terms of the same order are

equated, a set of two linear equations

AT ~1(—\)+1an(0|g?/0)=0 (3.3
and
AT " Y(—=\)e(N)+B—a(0|g Ing|0)=0 (3.9
result, where
e(\)=(1l—\)+1/2+2C—-1 (3.5

and wherd’(x) is the gamma functionj(x) is the psi func-
tion (the logarithmic derivative of the gamma functjpand
C is the Euler constant=£0.577).

In the next approximation, the effect of the electric field
on the Coulomb energie®V, can be calculated by the
method of a comparison equatigA detailed presentation of

this method can be found in Ref. 1Following Ref. 13, the
equation for the quantum numberwhich defines the impu-
rity energyW=—R(2v%) "1, is given by

af)n 1\12 4y
) (a‘z) du- |,

It follows from Eq. (3.6) that

v V3 1/2
G+ g Su— Z) du. (3.6

v=A[1-3\9]. 3.7

B. The region adjacent to the right-hand boundary of the QW
In this region, the effect of the electric field overcomes

the influence of the impurity center so that the comparison

equation in place of Eq(3.1) is the equation for the Airy
functions Ai and Bit® The general solution to E¢3.1) can
be written in the form

f,(u)=J Ai(— 7)+K Bi(—7), (3.9

are calculated in an explicit form. A comparison of the
expressioH given in Eq.(3.2) for u>1 and that obtained
from Eq.(3.8) for the asymptotic regiom<0 with | 7|>1 is
then madé® When terms of the same form are equated, a set
of two linear equations

B 1(1-\)—3Jm Y (\s'¥)Ve *M=0 (3.13

and

A_K,n_—l/Z()\Sll3)1/2e(1)()\):O (314)

result where

d(N)=2[3s\3]+\ In(s\%/8). (3.15

On substituting the wave functiof8.8) into the second
boundary conditior{2.8), we have

J Ai(— 1) +K Bi(—17)=0, (3.16

where o= n(2d/ag\). Using expression&3.9) and(3.10,
the parameter;, can be written in an explicit form

23)\4 —3/2(,1/2 —1,,1/2
no=p|1— 1_23)\4x (x*“—tan “x"%)| for x>0,
(3.17
2s\4 1 1-y?
= I V7. N T Sl
70=—Ipl| 1+ 7553 Y (y I
for x<0, (3.18
where
_ds¥ _ sd\? L for x=0
P ao(1+%) * T ag(1—2s0%) or X
(3.19

and wherey= —x for x<0.
The set of linear algebraic equatiof&3), (3.4), (3.13,

whereJ andK are constants. In the above expression, the3-14, and(3.16 are solved by the determinantal procedure,

following definitions have been made:

(u)3’2=§ ) (t)ydt for >0 (3.9
i 2 ), q n .
1

and

3 [u
== [“lawid for p<0, @10
1

where
q(t)=[N/t—1/4+ (\3/8)st]*/? (3.12)

and where, is the greater root of the equatigrft;)=0.

to give in turn the transcendental equation, which includes
the tunneling, in the form

Ai(— oA T 2(=M)[e(M)—2|Q(N)|]

+3e722MBi(—79) =0, (3:20

where the functionsp(\), ®(\), and the parameten, are
given by Eqs.(3.5, (3.15, and(3.17—(3.19, respectively.
The functionQ(\) is given by

2(0g Ing|0)

QM= olg70y 2y

b 1
|nx+l—§ C)

for Q(A)<0, (3.2))
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n=ag, k=123..., 4.3

U
N.m wherea;=2.34, a,=4.09, a3=5.52, a,=6.79,...., for ex-
ample. On substituting the expressi@®l17) in (4.3, the
0 d 7z quantum numbers, and the electric energy leve¥(”) can

be written in the explicit form

0)
1/d
kK _ _ip2—_Z 203
2 R L/ng 2(aos S )

1/d 2 8 1/2
(© - Z (a— S— akSZIS) + § S (4.4
Wa e 0
Equation(4.2) describes the ground and nearest impurity
T levels in the quasi-Coulomb well adjacent to the left-hand
—1A 11 boundary atz=0. The solution to Eq(4.2) then has the
form®
Ap=n+6,, n=123...., 4.5

FIG. 1. Schematic form of the potenti&ly n(2)=Vym(2)
—eEz whereV , is given by Eq(2.4) and wherew. [from Eq.
(4.7)] andW§), [from Eq.(4.4)] are the first excited quasi-Coulomb
and “electric” levels, respectively. The electric fieltland the QW 8,=[2|Q(n)|— ¢(n)—2C+1— 1/(2n)]’1. (4.6)
width d are chosen to provide resonance between the ground quasi-

Coulomb and electric levelsAW,;, given by Eq.(4.16), is the  As pointed out above, in order to take into account the effect
resonance splitting of these levels. of the electric fielde on the quasi-Coulomb levels, the quan-
tum number\ , in Eq. (4.5 should be replaced by the quan-

where the quantum defeét, (<1) in an unbounded semi-
conductor is given by

wherey=2%2ag /a,<1. On solving Eq(3.20, the quantum  tum numbery, given in Eq.(3.7), so that
numberA can be found which in turn determines the impu- 0
rity electron energy, . W 1 1 3 .,
——=——>5=—5—5S\;. 4.7
R vy, N, 2
IV. RESULTS

Thus, in the zeroth approximation, the system of the energy

The combined potential generated by the quasi-Coulomievels is the sum of two independent series of energies. The
field of the impurity (2.4), the effects of the electric field first series is formed by the electric levai® as given by
E, and the boundaries of the QW is shown in Fig. 1. Thegq. (4.4). The second series/\”) are the quasi-Coulomb
main object of this approach is to investigate resonances bgevels shifted towards low energies by the electric fiEld
tween the quasi-Coulomb states formed by the impurity poThe electron having an energy(® is localized within the
tential and the left-hand boundary of the QW and the stategjangular well close to the right boundary of the QW while
formed by the uniform elec_trlc fiel& and the right-hand 14 electron having the energ/ygo) is localized within the
boundary of the QW. Equatiof8.20 enables the resonance ;.\, riv well close to the left-hand boundary of the QW. For

process to be kept clearly in view. The last term in the Ieﬂ'a sufficiently weak electric field, the group of the electric

hand part of this eq_uation describes the _tunneling of an ele%vels has a higher energy than the quasi-Coulomb group, so
tron from the impurity well towards the triangular well close that the relevant states are not in resonance

to the right boundary through the potential barrier which has If the electric field increases in magnitude, both groups of

a power®>1. levels move toward lower energies. It follows from Egs.
o (4.4 and (4.7) that, under conditiond/ag>1, the shift

A. The zeroth approximation (~—sd/ay) of the electric levels exceeds the shift

At this stage, the term mentioned above may be ne(~ —3n?s/2) of the quasi-Coulomb levels. As a result, these
glected. As a result, Eq3.20 decomposes into two inde- two groups of levels can become equal to one another. Under

pendent equations the conditionW(®=W(?, the relevant quasi-Coulomb and
electric levels appear to be in resonance. On using expres-
Ai(—75)=0 (4.)  sions(4.4) and(4.7), this condition becomes
and 1IN2=ds/ag— as?°— 3s\2, (4.8
e(M)—2|Q(\)|=0 (4.2  Where\, anda, are defined by Eq¢4.5 and(4.3), respec-
’ tively.
representing the two effective wells. Then E4.1) describes On solving Eq.(4.8), the magnitudes of the electric field

the ground and nearest so-called electric levels in the triamat resonances,, can be found. These define the cases in
gular well adjacent to the right-hand boundaryzatd. The  which thenth quasi-Coulomb level and tHeh electric level
solution to Eq.(4.1) has the forn? are in resonance. The dependencies of the quasi- Coulomb



FIG. 2. Dimensionless energW? R versus the dimensionless
electric fields (solid lines, arbitrary unifs The dashed lines display

the independent ground/{, \;) and first excited ¢,, \,) quasi-

Coulomb (4.7) and electric(4.4) levels. The relevant resonance

fields s, and the resonance splitting of the ground leveis-k
=1), whereA, is defined by Eq(4.11), are indicated.
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Ank(s)zﬂnkllzsllse_q)<s) (4-11)

and where

Bi(— aj )N\
o e s —
4 Ai'(—a)n!

Equation(4.10 describes the effect of anticrossing between
the energy levels which are derived from the state originally
in different parts of the effective potential. It follows from
Eq. (4.10 that, if the electric fields and the resonance value
S,k are far apart so that

I —NYZ>A%(s), (4.12

then the quantum numbers are close to those obtained in the
zeroth approximation, namely,

energy levelsV® in Eq. (4.7) and the electric energy levels We have

W in Eq. (4.4 upon the magnitude of the electric fiesd
are displayed in Fig. 2.

B. The first approximation

In the first approximation, the last term on the left-hand
part of Eq.(3.20 is taken into account. Note that this Eq.
(3.20 satisfies the limiting case of zero electric field. Setting
E=0 in Eq.(3.20 and using the asymptotic expressions for

Airy functions Ai(— ny) and Bi(— 7g) for large values of
| 7o|>1 with 5,<0, the quantum numbers, can be ob-
tained in the form

An=n+3258,(1+{1+(4n/[n!25,])(2d/ayn)?"
X exp(—2d/agn)}*?), (4.9
where é, is defined by Eq(4.6). The expressior4.9) coin-

AD=\,, \@=)\,. (4.13
In the case of resonance for which

S=Spk» )\n:)\kz)\nkv (414)

A(l'z):)\nkiAnk(Snk)- (4.19

As pointed out above, the quantum numbey in Egs.
(4.13—(4.19 should be replaced by, [Eq. (3.7)]. At reso-
nance, the differences between the quantum numb€rs
and \® and the associated energid, 1)— W, @)=AW,
are given by
)\(1)_)\(2):2Ank(snk), AWnkZZRAnk(Snk)/ng.
(4.1

Thus if the resonance between the quasi-Coulomb levels
(4.7 and the electric levelgt.4) occurs, any crossing arising

in the zeroth approximation turns into anticrossing in the
next approximation.

V. DISCUSSION

cides completely with that obtained for the quantum numbers

of the diamagnetic impurity center positioned at the edge o

the QW in the absence of the electric fiéld.

We expand the Airy functions Aif ng) and Bi(— 7o) in
Eqg. (3.20 and the functiong(\) in the power series inX
— N\ and (A —\,), respectively, wher is given by Eqs.
(4.3) and(4.4) and\,, by Egs.(4.5 and(4.6). Also we use
explicit expressions fomo(N), ¢(\), and Q(\) from Egs.
(3.17, (3.5, and(3.21), respectively, and the result

N3 (=N =n"1(n!)2 S,

On substituting the expansions obtained into E2120

and using Eqsi4.1) and(4.2), we arrive at a quadratic equa-

tion for the quantum numbex. The roots of this equation
can be written in the form

NE2= 3 (Nt M= [ = M)+ And(8) 112
(4.10

where

¢ The approach described above enables the basic physics
connected with the electron states to be kept in view
throughout the analysis. As the effect of the magnetic field
and the width of the QW on the impurity energy levels had
been studied in detail previously®>®we have concentrated
here on the influence of the electric fididon the electron
states. If the applied electric field and resonance fields
S,k are widely separated, the system of energy levels is the
sum of independent quasi-Coulon.7) and electric(4.4)
levels. The wave function is concentrated within either the
impurity well or triangular well close to the left- or right-
hand boundary of the QW, respectively. In the case of reso-
nance for whichs=s,,, the nth quasi-Coulomb andkth
electric states become very close in energy. The relevant gap
is defined by Eq(4.16 and resonance tunneling between the
impurity and triangular wells is possible and a drastic redis-
tribution of the wave function occurs. The wave functions
related to the components of the energy doublet attain the
twin-peaks configuration. Calculations of the wave functions
call for specific consideration. The pattern of the energy lev-
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gl's versus the magnitude of the electric field is shown in Fig.W(20)_W(10> _ E . 7y . } E 4 ex;{ B i
Under the conditiora,/d<1, an approximate solution to iR 47 Jaling 21 o
Eq. (4.8 is given by 3 2y g1 q

_ES 3+ \/;||n'y|+23_0 exp{—a—o

Sn= 12 (ag/d) + ay INY3(ag 1d) %3+ L (ag/d)2.
(5.1 (5.2

From Eq.(5.2), it follows that, if the electric field increases

It follows from Eqg. (5.1) that, for a fixed index of the quasi- in magnitude and if the width of the QW increases, the tran-
Coulomb leveln, the resonance fielg}, increases as a func- sition energy decreases in each case. These results are in
tion of the index of the electric levéd. Meanwhile, for a  general agreement with experimental datm which the
fixed indexk, the resonance fiels, decreases with increas- transition energy has been measured experimentally but for
ing indexn. Also, the expressioifs.1) enables the depen- zero magnetic field. However, if the magnetic field increases
dence of the resonance field on the width of the QW6 be  in magnitude, the transition enerd$.2) was found to in-
determined. The wider the QW, the smaller the resonancerease in agreement with the numerical results presented in
field s,,. In turn, it is clear from Eqs(4.11) and(3.15 that  Ref. 6.
the resonance gap,, rises as the resonance fiedg, in- On considering possible experiments, estimates of suit-
creases. From the approach described above, we obtain thgle values for the parameters for the GaAs QW
dependence of the binding eneriyy, | of the impurity elec- =0.067n,, e=12.5,a,=98.7 A) for a well for which the
tron on the magnitude of the magnetic and electric fields. lwidth d>a, must be made. For a strong magnetic fi¢ld
follows from Egs.(4.7), (4.6), and (3.2)) that, if the mag- =40T, ag/a,=0.4 and a weak electric fieldE;;=3.8
netic or electric field increases in magnitude, the bindingx 10* Vv m™%, s;,=0.066, the resonance splittingW,, of
energy increases in each case. the ground quasi-Coulomb and “electric” levels=n=1,

A comparison of our analytical results with those obtainedBn: 0.21, \;=1.28 may be found from Eq(4.16 such
by numerical methods would be desirable at this point. Ce"ﬂhatAWn: 1.2 meV. Also, a redshift of the ground impu-
and Baja] have developed a variational method for the cal-rity level may be obtained from Eq4.7) with the result that
culation of the binding energy of the hydrogenlike impurity AW(lo)zl meV. These values are those typically found in
electron in “dielectric” quantum wells for which the dielec- experiments. The chosen electric fidid, causes the pen-
tric constant of the barrier material is much less than that okration through the potential barrier to be relatively weak.
the well material for the cases when both the magnetic angis in turn leads to the result that an extremely wide QW
electric fields are taken to be perpendicular to the hetygih of =1500 A is needed to demonstrate this effect.
eroplanes. As pointed out in Ref. 6, a difference between th@\/nan this value forE,; is exceeded, the penetration in-
values of the dielectric constants has little effect allowing a. e55e5 and the above method of solving B®0 becomes

qualitative comparison between the results to be made. Ifhanropriate. However, clearly in the presence of a stronger
contrast to our calculation, the coordinate0 in Ref. 6 was  gjectric field 6<1), the effect of the resonance splitting

taken to be at the central point of the QW. Thus, in order to,|4s for QW's of standard period$~(3—5)a,. In this
make a comparison, the binding energy calculated in Ref. 8,50 4 numerical approach should be used.

should be increased by an amogmEd. Taking this factor ’
into account, good qualitative agreement is found between
our calculations of the binding energy and the experimental

data shown in Fig. 6 of Ref. 6. In summary, we have developed an analytical approach
Recently, Caoet a|.16 have calculated Variationa”y the for the prob]em of an e|ectrdmo|e) Captured by an |mpur|ty
excitonic states in a superlattice coupled with an enlargegenter positioned at the edge of a QW in the presence of
quantum well in the presence of an electric field. For thestrong magnetic and electric fields directed perpendicular to
resonance electric field, the energy levels in the quantunthe heteroplanes. It has been shown that the combined poten-
well and Stark levels in the superlattice were shown to antitjg| is similar to that of a double quantum well as depicted in
cross. Moreover, the pattern of the energy levels given inFjg. 1. For specific values of the electric field, resonance
Ref. 16 correlate well with that shown in Fig. 2. Thus it may petween the levels associated with different wells occurs and
be safely suggested that the anticrossing of the resonanggnneling between the wells becomes possible. The relevant
levels caused by the electric field is similar for various typeq‘esonance energy |eve|s are found to anticross_ The ana'yti_
of low-dimensional structures. . . cal dependencies of the resonance splitting of the levels upon
The transition energy from the ground impurity statethe width of the well and on the magnitudes of the electric
(W) to the first excited stateW(”) is of interest both and magnetic fields are obtained. This in turn defines the
experimentally and theoreticalj*’ On using Egs.(4.7),  tunneling time of the electron and the oscillator strength of
(4.9), (4.6), and(3.21), the expression for the transition en- optical transitions in semiconductor structures with impurity
ergyW(zo)—W(lo) can be written in an explicit form. In order quantum wells in the presence of magnetic and electric
to simplify the result, a sufficiently wide QW and a suffi- fields. Such a geometry does not appear to have been con-
ciently strong magnetic field are necessary. In the logarithsidered before but it is expected to be of interest and useful
mic approximation <1, |Iny/>1), and under the condition on account of its influence on the electrical transport and
exp(—d/ap) less thany|iny| %, we obtain optical properties of devices constructed in this way.

VI. CONCLUSIONS
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