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Resonance impurity states in a quantum well in the presence of electric
and strong magnetic fields
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~Received 29 July 1996; revised manuscript received 23 October 1996!

An analytical approach to the problem of an impurity electron~or hole! in a quantum well~QW!, subject to
electric and strong magnetic external fields both directed perpendicular to the heteroplanes, is developed. The
impurity center is located at the edge of the QW. It is shown that the combined potential acting on the electron
~or hole! resembles that of a double quantum well. One of the wells is formed by the Coulomb impurity
potential and the QW boundary at which the center is located and the other well by the electric-field potential
and the other boundary of the well. Analytical expressions for the energy levels are obtained. Our main interest
is in the resonance when the levels associated with the two effective QW’s anticross. The explicit dependences
of the resonance splitting upon the width of the QW and on the magnitudes of the electric and magnetic fields
are obtained. Estimates of the expected splittings are made using the usual parameters associated with GaAs
QW’s. @S0163-1829~97!03216-5#
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I. INTRODUCTION

The problem of resonance devices based on impurity l
dimensional heterostructures has attracted considerabl
tention in recent years. The reason is that advances mad
growth techniques and control by the development
molecular-beam epitaxy and metal organic chemical va
deposition methods of manufacturing specific structures h
increased considerably the amount of available experime
data. Similarly, it has become clear that a study of impurit
in such systems is important because the optical and tr
port properties of devices made from these materials
strongly affected by the presence of shallow impurities.

Numerous experimental and theoretical papers have b
written within the past decade concerning the effects of e
tric and magnetic fields acting on heterostructures contain
impurities. Comprehensive summaries have been give
Santiagoet al.1 and Shi, Peeters, and Devresse2 for example.
Much of this work has been concerned with single quant
well ~QW! structures. Greene and Bajaj3,4 and Greene and
Lane5 studied the effects of magnetic fields by using a var
tional method. This method has been used also by Cen
Bajaj to study impurity states in symmetric6 and asymmetric7

QW’s subject to parallel electric and magnetic fields direc
perpendicular to the heteroplanes.

The majority of papers on this subject describe numer
calculations. Nevertheless, analytical methods of study
the effects of impurities in QW’s subject to external fiel
are of much interest because they enable the basic physi
the problem to be kept clearly in view throughout the ana
sis. The authors have been involved in an analytical met
which was devised originally for the problem of impuri
states in a QW subject to a strong magnetic field.8,9 Effects
on impurity states in a QW subject to parallel electric a
strong magnetic fields directed perpendicular to the lay
have been studied analytically10,11 by taking the QW to be
550163-1829/97/55~15!/9779~7!/$10.00
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narrow compared to the radius of the impurity electron sta
In this paper, this analytical approach is extended to

QW system with the impurity at the edge of the QW. A
though this system potentially has very interesting and us
properties, it does not appear to have been considered be
The combination of the lack of inversion symmetry in th
electric field and the positioning of the impurity at the ed
of the QW together generate a type of resonance structu
which the combined potential governing the electron sta
closely resembles that of a double quantum well. One of
wells is formed by the Coulomb impurity potential and th
QW boundary at which the impurity is located; the oth
well is constructed from the electric-field potential and t
other boundary of the QW. It is shown that such a syst
contains electron states which have a quasi-Coulomb cha
ter and are similar to size-quantized states. The study of s
systems is important as properties such as tunneling ti
and optical transition strengths will be strongly influenced
such impurities.

The explicit dependencies of the impurity electron en
gies upon the magnitudes of the magnetic and electric fie
and the width of the QW are obtained. Attention is focus
on the resonance between the levels associated with the
effective wells so that tunneling of the electron through t
barrier separating the effective wells becomes possible.
shown that these levels anticross. Simple analytical exp
sions for the resonance splitting of the levels are deriv
The energy gap between the resonance levels has a s
effect on the tunneling time and results in an alteration in
spatial distribution of the wave function. This in turn defin
the kinetic and optical properties of such semiconduc
structures in the presence of external fields.

II. GENERAL THEORY

The z axis is chosen to lie along the direction of th
parallel uniform magneticB and electricE fields that are
9779 © 1997 The American Physical Society
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directed perpendicular to the heteroplanes and the QW
modeled by an infinite square well of widthd. This analysis
concentrates on the problem in which the impurity is po
tioned at the edge of the QW. In this case, the poten
barrier caused by the electric fieldE has the largest effec
and has a major influence on the stability of the impur
states. The position of the impurity, which coincides with t
left edge of the QW, is taken to be the pointz50. The other
parameters relevant to the calculation are the impurity B
radiusa0 , the magnetic lengthaB , and the dimensionles
electric fields which is the electric fieldE scaled relative to
the impurity electric field. They are defined as usual by

a05
4pee0\

2

me2
, aB5A\/eB, s5

E
1
2 @e/4pe0ea0

2#
,

wheree is the dielectric constant andm ande are the effec-
tive mass and charge of the carrier, respectively. We ass
further that the energy bands may be taken as spheric
symmetric with a parabolic cross section and to be non
generate.

In the strong magnetic-field limit for which

aB /a0!1, ~2.1!

and in the effective-mass approximation, the longitudi
function f (N,m)(z) of the electron at a positionr (r,z) for the
case in which the electric field is directed along the nega
z direction, satisfies the equation10,11

2
\2

2m

d2

dz2
f ~N,m!~z!1@VN,m~z!2eEz# f ~N,m!~z!

5WN,mf
~N,m!~z!, ~2.2!

with the boundary conditions

f ~N,m!~0!50, f ~N,m!~d!50 ~2.3!

and with

VN,m~z!52
e2

4pe0e
E ux'N,m~r!u2

Ar21z2
dr ~2.4!

andWN,m5E2E'N,m whereE is the energy of the impurity
electron. In the above expressions, the functionx'N,m(r)
describes the transverse motion of the electron of ene
E'N,m in the magnetic fieldB in the x-y plane. The Landau
energies relative to the bottom of the conduction band
given by

E'N,m5
\eB

2m
~2N1umu1m11!6mBB, ~2.5!

wheremB is the effective Bohr magneton for the electron a
the quantum numbers areN,m whereN50,1,2,... andm
50,61,62,... .

In order to simplify the calculations, we consider only t
ground transverse state for whichN5m50 though the re-
sults obtained below will be valid qualitatively for any tran
verse state. The relevant transverse function has the for
is

-
l

r

e
lly
e-

l

e

y

re

x'0,0~r!5
1

A2paB
expF2

r2

4aB
2 G . ~2.6!

Thus we may drop the subscripts from the variables rela
to the transverse motion and writeV for V0,0, f for f

(0,0) and
W forW0,0. Note that Eq.~2.2! describes both Coulomb-typ
states (W,0) and size-quantized states8,9 for whichW.0. It
has been found that the levels of lowest energy have a qu
Coulomb character under the conditiond@a0 . These levels
are affected strongly by external fields while the siz
quantized levels depend only weakly upon the magnitude
the fields and upon the impurity potential. Further, we co
sider the quasi-Coulomb states having energiesW,0.

In order to solve Eq.~2.2!, it is convenient to introduce
the notation

u52z/a0l, g52r/a0l, Wl52R/2l2,

where

R5e2/4pe0ea0

is the impurity Rydberg constant. Equation~2.2! then be-
comes

d2f l~u!

du2
1S l^0u~u21g2!21/2u0&1

l3

8
su2

1

4D f l~u!50,

~2.7!

where ^0u u0& is an average with respect to the functio
x'0,0(r). The quantum numberl labels the states of the
motion along thez axis. The transformation of coordinate
affects the boundary conditions, which thus become

f l~0!50, f l~2d/a0l!50. ~2.8!

The analysis of Eq.~2.7! will be based upon the Hasegaw
Howard method12 together with a comparison equation.13

III. CALCULATIONS

Our approach to the problem is to consider the solutio
to Eq. ~2.7! for the three regions in turn and match them
the boundaries.

A. The left boundary of the QW „impurity center region…

Following the method developed in Ref. 8, under the co
dition

u@^0ugu0&;2aB /a0l,

Eq. ~2.7! transforms into the equation

d2f l~u!

du2
1S l

u
2
1

4
1

l3

8
suD f l~u!50. ~3.1!

In the zeroth approximation for whichs50, we find that the
two independent solutions to this equation are the Whitta
functionsWl,1/2 andMl,1/2. The general solution is given b

f l~u!5AWl,1/2~u!1BWl,1/2~u!, ~3.2!
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whereA andB are constants. In the regionu!1, an iteration
method is performed by double integration of Eq.~2.7! using
the trial functions satisfying the first boundary conditio
@from Eq. ~2.8!#,

f l
~0!~u!5au~u21g2!1/2ln@u1~u21g2!1/2#,

wherea is a constant. A comparison of the coefficients
then made between the results of the integration taken
u@^0ugu0& and the standard expansion of the Whittak
functions involved in Eq.~3.2! for u!1 ~see, for example
Gradshtein and Ryzhik14!. When terms of the same order a
equated, a set of two linear equations

AG21~2l!1 1
4al^0ug2u0&50 ~3.3!

and

AG21~2l!w~l!1B2a^0ug lngu0&50 ~3.4!

result, where

w~l!5c~12l!11/2l12C21 ~3.5!

and whereG(x) is the gamma function,c(x) is the psi func-
tion ~the logarithmic derivative of the gamma function!, and
C is the Euler constant (50.577).

In the next approximation, the effect of the electric fie
on the Coulomb energiesWl can be calculated by th
method of a comparison equation.~A detailed presentation o
this method can be found in Ref. 13.! Following Ref. 13, the
equation for the quantum numbern, which defines the impu-
rity energyW52R(2n2)21, is given by

E
0

4lS l

u
2
1

4D
1/2

du5E
0

4nS n

u
1

n3

8
su2

1

4D
1/2

du. ~3.6!

It follows from Eq. ~3.6! that

n5l@12 3
4~sl

4!#. ~3.7!

B. The region adjacent to the right-hand boundary of the QW

In this region, the effect of the electric fieldE overcomes
the influence of the impurity center so that the comparis
equation in place of Eq.~3.1! is the equation for the Airy
functions Ai and Bi.15 The general solution to Eq.~3.1! can
be written in the form

f l~u!5J Ai ~2h!1K Bi~2h!, ~3.8!

whereJ andK are constants. In the above expression,
following definitions have been made:

h~u!3/25
3

2 E
t1

u

q~ t !dt for h.0 ~3.9!

and

uh~u!u3/252
3

2 E
t1

u

uq~ t !udt for h,0, ~3.10!

where

q~ t !5@l/t21/41~l3/8!st#1/2 ~3.11!

and wheret1 is the greater root of the equationq(t1)50.
or
r

n

e

C. The intermediate region

Under the condition

sl4!1, ~3.12!

within the region defined byu@1, and (l3/8) su!l/u, the
functions~3.2! and ~3.8! can be matched and thus tunnelin
between the two wells of the effective potential occurs. U
der the condition~3.12!, the arguments of the Airy function
h(u) given in Eqs.~3.9! and~3.10! and involved in Eq.~3.8!
are calculated in an explicit form. A comparison of th
expression14 given in Eq. ~3.2! for u@1 and that obtained
from Eq.~3.8! for the asymptotic regionh,0 with uhu@1 is
then made.15When terms of the same form are equated, a
of two linear equations

BG21~12l!2 1
2Jp21/2~ls1/3!1/2e2F~l!50 ~3.13!

and

A2Kp21/2~ls1/3!1/2eF~l!50 ~3.14!

result where

F~l!52/@3sl3#1l ln~sl3/8!. ~3.15!

On substituting the wave function~3.8! into the second
boundary condition~2.8!, we have

J Ai ~2h0!1K Bi~2h0!50, ~3.16!

whereh05h(2d/a0l). Using expressions~3.9! and ~3.10!,
the parameterh0 can be written in an explicit form

h05pF12
2sl4

122sl4 x
23/2~x1/22tan21x1/2!G for x.0,

~3.17!

h052upuF11
2sl4

122sl4 y
23/2S y1/211

2
ln
12y1/2

11y1/2D G
for x,0, ~3.18!

where

p5
ds1/3x

a0~11x!
, x5

sdl2

a0~122sl4!
21 for x.0

~3.19!

and wherey52x for x,0.
The set of linear algebraic equations~3.3!, ~3.4!, ~3.13!,

~3.14!, and~3.16! are solved by the determinantal procedu
to give in turn the transcendental equation, which includ
the tunneling, in the form

Ai ~2h0!l
21G22~2l!@w~l!22uQ~l!u#

1 1
2e

22F~l!Bi~2h0!50, ~3.20!

where the functionsw~l!, F~l!, and the parameterh0 are
given by Eqs.~3.5!, ~3.15!, and ~3.17!–~3.19!, respectively.
The functionQ(l) is given by

Q~l!5
2^0ug lngu0&

l^0ug2u0&
5

Ap

2g S lng

l
112

1

2
CD

for Q~l!,0, ~3.21!
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whereg521/2aB /a0!1. On solving Eq.~3.20!, the quantum
numberl can be found which in turn determines the impu-
rity electron energyWl .

IV. RESULTS

The combined potential generated by the quasi-Coulom
field of the impurity ~2.4!, the effects of the electric field
E, and the boundaries of the QW is shown in Fig. 1. Th
main object of this approach is to investigate resonances b
tween the quasi-Coulomb states formed by the impurity po
tential and the left-hand boundary of the QW and the state
formed by the uniform electric fieldE and the right-hand
boundary of the QW. Equation~3.20! enables the resonance
process to be kept clearly in view. The last term in the left
hand part of this equation describes the tunneling of an ele
tron from the impurity well towards the triangular well close
to the right boundary through the potential barrier which ha
a powerF@1.

A. The zeroth approximation

At this stage, the term mentioned above may be ne
glected. As a result, Eq.~3.20! decomposes into two inde-
pendent equations

Ai ~2h0!50 ~4.1!

and

w~l!22uQ~l!u50, ~4.2!

representing the two effective wells. Then Eq.~4.1! describes
the ground and nearest so-called electric levels in the tria
gular well adjacent to the right-hand boundary atz5d. The
solution to Eq.~4.1! has the form15

FIG. 1. Schematic form of the potentialUN,m(z)5VN,m(z)
2eEz, whereVN,m is given by Eq.~2.4! and whereW2,C

(0) @from Eq.
~4.7!# andW2,el

(0) @from Eq.~4.4!# are the first excited quasi-Coulomb
and ‘‘electric’’ levels, respectively. The electric fieldE and the QW
width d are chosen to provide resonance between the ground qua
Coulomb and electric levels.DW11, given by Eq.~4.16!, is the
resonance splitting of these levels.
b

e
e-
-
s

-
c-

s

-

n-

h05ak , k51,2,3,..., ~4.3!

wherea152.34,a254.09,a355.52,a456.79,...., for ex-
ample. On substituting the expression~3.17! in ~4.3!, the
quantum numberslk and the electric energy levelsWk

(0) can
be written in the explicit form

2
Wk

~0!

R
521/lk

252
1

2 S da0 s2aks
2/3D

2F14 S da0 s2aks
2/3D 21 8

3
sG1/2. ~4.4!

Equation~4.2! describes the ground and nearest impur
levels in the quasi-Coulomb well adjacent to the left-ha
boundary atz50. The solution to Eq.~4.2! then has the
form8

ln5n1dn , n51,2,3,...., ~4.5!

where the quantum defectdn (!1) in an unbounded semi
conductor is given by

dn5@2uQ~n!u2c~n!22C1121/~2n!#21. ~4.6!

As pointed out above, in order to take into account the eff
of the electric fieldE on the quasi-Coulomb levels, the qua
tum numberln in Eq. ~4.5! should be replaced by the quan
tum numbernn given in Eq.~3.7!, so that

2
Wn

~0!

R
52

1

nn
2 52

1

ln
22

3

2
sln

2. ~4.7!

Thus, in the zeroth approximation, the system of the ene
levels is the sum of two independent series of energies.
first series is formed by the electric levelsWk

(0) as given by
Eq. ~4.4!. The second seriesWn

(0) are the quasi-Coulomb
levels shifted towards low energies by the electric fieldE.
The electron having an energyWk

(0) is localized within the
triangular well close to the right boundary of the QW whi
the electron having the energyWn

(0) is localized within the
impurity well close to the left-hand boundary of the QW. F
a sufficiently weak electric fieldE, the group of the electric
levels has a higher energy than the quasi-Coulomb group
that the relevant states are not in resonance.

If the electric field increases in magnitude, both groups
levels move toward lower energies. It follows from Eq
~4.4! and ~4.7! that, under conditiond/a0@1, the shift
(;2sd/a0) of the electric levels exceeds the sh
(;23n2s/2) of the quasi-Coulomb levels. As a result, the
two groups of levels can become equal to one another. Un
the conditionWn

(0)5Wk
(0) , the relevant quasi-Coulomb an

electric levels appear to be in resonance. On using exp
sions~4.4! and ~4.7!, this condition becomes

1/ln
25ds/a02aks

2/32 1
3sln

2, ~4.8!

whereln andak are defined by Eqs.~4.5! and~4.3!, respec-
tively.

On solving Eq.~4.8!, the magnitudes of the electric fiel
at resonancesnk can be found. These define the cases
which thenth quasi-Coulomb level and thekth electric level
are in resonance. The dependencies of the quasi- Coul

si-
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energy levelsWn
(0) in Eq. ~4.7! and the electric energy levels

Wk
(0) in Eq. ~4.4! upon the magnitude of the electric fields

are displayed in Fig. 2.

B. The first approximation

In the first approximation, the last term on the left-han
part of Eq.~3.20! is taken into account. Note that this Eq
~3.20! satisfies the limiting case of zero electric field. Settin
E50 in Eq. ~3.20! and using the asymptotic expressions fo
Airy functions Ai(2h0) and Bi(2h0) for large values of
uh0u@1 with h0,0, the quantum numbersln can be ob-
tained in the form

ln5n1 1
2dn„11$11~4n/@n! 2dn# !~2d/a0n!2n

3exp~22d/a0n!%1/2…, ~4.9!

wheredn is defined by Eq.~4.6!. The expression~4.9! coin-
cides completely with that obtained for the quantum numbe
of the diamagnetic impurity center positioned at the edge
the QW in the absence of the electric field.8

We expand the Airy functions Ai(2h0) and Bi(2h0) in
Eq. ~3.20! and the functionw~l! in the power series in (l
2lk) and (l2ln), respectively, wherelk is given by Eqs.
~4.3! and ~4.4! andln by Eqs.~4.5! and ~4.6!. Also we use
explicit expressions forh0(l), w~l!, andQ(l) from Eqs.
~3.17!, ~3.5!, and~3.21!, respectively, and the result

l21G22~2ln!5n21~n! !2dn
2.

On substituting the expansions obtained into Eq.~3.20!
and using Eqs.~4.1! and~4.2!, we arrive at a quadratic equa
tion for the quantum numberl. The roots of this equation
can be written in the form

l~1,2!5 1
2 ~ln1lk!6@ 1

4~ln2lk!
21Dnk

2~s!#1/2,
~4.10!

where

FIG. 2. Dimensionless energy 2W/R versus the dimensionless
electric fields ~solid lines, arbitrary units!. The dashed lines display
the independent ground (n1 , l1) and first excited (n2 , l2) quasi-
Coulomb ~4.7! and electric~4.4! levels. The relevant resonance
fields snk and the resonance splitting of the ground levels (n5k
51), whereDnk is defined by Eq.~4.11!, are indicated.
r

rs
f

Dnk~s!5bnk
1/2s1/3e2F~s! ~4.11!

and where

bnk52
Bi~2ak!nlk

3

4 Ai8~2ak!n!
2 .

Equation~4.10! describes the effect of anticrossing betwe
the energy levels which are derived from the state origina
in different parts of the effective potential. It follows from
Eq. ~4.10! that, if the electric fields and the resonance valu
snk are far apart so that

1
4~ln2lk!

2@Dnk
2 ~s!, ~4.12!

then the quantum numbers are close to those obtained in
zeroth approximation, namely,

l~1!>ln , l~2!>lk . ~4.13!

In the case of resonance for which

s5snk , ln5lk[lnk , ~4.14!

we have

l~1,2!5lnk6Dnk~snk!. ~4.15!

As pointed out above, the quantum numberln in Eqs.
~4.13!–~4.15! should be replaced bynn @Eq. ~3.7!#. At reso-
nance, the differences between the quantum numbersl (1)

and l (2) and the associated energiesWl(1)2Wl(2)5DWnk
are given by

l~1!2l~2!52Dnk~snk!, DWnk52RDnk~snk!/n
3.
~4.16!

Thus if the resonance between the quasi-Coulomb le
~4.7! and the electric levels~4.4! occurs, any crossing arisin
in the zeroth approximation turns into anticrossing in t
next approximation.

V. DISCUSSION

The approach described above enables the basic ph
connected with the electron states to be kept in vi
throughout the analysis. As the effect of the magnetic fi
and the width of the QW on the impurity energy levels h
been studied in detail previously,3–5,8 we have concentrated
here on the influence of the electric fieldE on the electron
states. If the applied electric fields and resonance field
snk are widely separated, the system of energy levels is
sum of independent quasi-Coulomb~4.7! and electric~4.4!
levels. The wave function is concentrated within either t
impurity well or triangular well close to the left- or right
hand boundary of the QW, respectively. In the case of re
nance for whichs>snk , the nth quasi-Coulomb andkth
electric states become very close in energy. The relevant
is defined by Eq.~4.16! and resonance tunneling between t
impurity and triangular wells is possible and a drastic red
tribution of the wave function occurs. The wave functio
related to the components of the energy doublet attain
twin-peaks configuration. Calculations of the wave functio
call for specific consideration. The pattern of the energy l
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els versus the magnitude of the electric field is shown in F
2.

Under the conditiona0 /d!1, an approximate solution to
Eq. ~4.8! is given by

snk>1/ln
2~a0 /d!1ak /ln

4/3~a0 /d!5/31 1
3 ~a0 /d!2.

~5.1!

It follows from Eq. ~5.1! that, for a fixed index of the quasi
Coulomb leveln, the resonance fieldsnk increases as a func
tion of the index of the electric levelk. Meanwhile, for a
fixed indexk, the resonance fieldsnk decreases with increas
ing index n. Also, the expression~5.1! enables the depen
dence of the resonance field on the width of the QWd to be
determined. The wider the QW, the smaller the resona
field snk . In turn, it is clear from Eqs.~4.11! and~3.15! that
the resonance gapDnk rises as the resonance fieldsnk in-
creases. From the approach described above, we obtai
dependence of the binding energyuWlu of the impurity elec-
tron on the magnitude of the magnetic and electric fields
follows from Eqs.~4.7!, ~4.6!, and ~3.21! that, if the mag-
netic or electric field increases in magnitude, the bind
energy increases in each case.

A comparison of our analytical results with those obtain
by numerical methods would be desirable at this point. C
and Bajaj6 have developed a variational method for the c
culation of the binding energy of the hydrogenlike impur
electron in ‘‘dielectric’’ quantum wells for which the dielec
tric constant of the barrier material is much less than tha
the well material for the cases when both the magnetic
electric fields are taken to be perpendicular to the h
eroplanes. As pointed out in Ref. 6, a difference between
values of the dielectric constants has little effect allowing
qualitative comparison between the results to be made
contrast to our calculation, the coordinatez50 in Ref. 6 was
taken to be at the central point of the QW. Thus, in order
make a comparison, the binding energy calculated in Re
should be increased by an amount1

2eEd. Taking this factor
into account, good qualitative agreement is found betw
our calculations of the binding energy and the experime
data shown in Fig. 6 of Ref. 6.

Recently, Caoet al.16 have calculated variationally th
excitonic states in a superlattice coupled with an enlar
quantum well in the presence of an electric field. For
resonance electric field, the energy levels in the quan
well and Stark levels in the superlattice were shown to a
cross. Moreover, the pattern of the energy levels given
Ref. 16 correlate well with that shown in Fig. 2. Thus it m
be safely suggested that the anticrossing of the reson
levels caused by the electric field is similar for various typ
of low-dimensional structures.

The transition energy from the ground impurity sta
(W1

(0)) to the first excited state (W2
(0)) is of interest both

experimentally and theoretically.6,17 On using Eqs.~4.7!,
~4.9!, ~4.6!, and ~3.21!, the expression for the transition en
ergyW2

(0)2W1
(0) can be written in an explicit form. In orde

to simplify the result, a sufficiently wide QW and a suffi
ciently strong magnetic field are necessary. In the logar
mic approximation (g!1, u lngu@1), and under the condition
exp(2d/a0) less thangu lngu21, we obtain
.
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~5.2!

From Eq.~5.2!, it follows that, if the electric field increase
in magnitude and if the width of the QW increases, the tra
sition energy decreases in each case. These results a
general agreement with experimental data17 in which the
transition energy has been measured experimentally bu
zero magnetic field. However, if the magnetic field increa
in magnitude, the transition energy~5.2! was found to in-
crease in agreement with the numerical results presente
Ref. 6.

On considering possible experiments, estimates of s
able values for the parameters for the GaAs QW~m
50.067m0 , e512.5, a0598.7 Å) for a well for which the
width d@a0 must be made. For a strong magnetic field~B
540 T, aB /a050.4! and a weak electric field~E1153.8
3104 V m21, s1150.066!, the resonance splittingDWnk of
the ground quasi-Coulomb and ‘‘electric’’ levels~k5n51,
b1150.21, l151.28! may be found from Eq.~4.16! such
that DW1151.2 meV. Also, a redshift of the ground impu
rity level may be obtained from Eq.~4.7! with the result that
DW1

(0)51 meV. These values are those typically found
experiments. The chosen electric fieldE11 causes the pen
etration through the potential barrier to be relatively wea
This in turn leads to the result that an extremely wide Q
width of d51500 Å is needed to demonstrate this effe
When this value forE11 is exceeded, the penetration in
creases and the above method of solving Eq.~3.20! becomes
inappropriate. However, clearly in the presence of a stron
electric field (s<1), the effect of the resonance splittin
holds for QW’s of standard periodsd;(3–5)a0 . In this
case, a numerical approach should be used.

VI. CONCLUSIONS

In summary, we have developed an analytical appro
for the problem of an electron~hole! captured by an impurity
center positioned at the edge of a QW in the presence
strong magnetic and electric fields directed perpendicula
the heteroplanes. It has been shown that the combined po
tial is similar to that of a double quantum well as depicted
Fig. 1. For specific values of the electric field, resonan
between the levels associated with different wells occurs
tunneling between the wells becomes possible. The rele
resonance energy levels are found to anticross. The ana
cal dependencies of the resonance splitting of the levels u
the width of the well and on the magnitudes of the elect
and magnetic fields are obtained. This in turn defines
tunneling time of the electron and the oscillator strength
optical transitions in semiconductor structures with impur
quantum wells in the presence of magnetic and elec
fields. Such a geometry does not appear to have been
sidered before but it is expected to be of interest and us
on account of its influence on the electrical transport a
optical properties of devices constructed in this way.
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