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Theory of random population for quantum dots

M. Grundmann and D. Bimberg
Institut fir Festkaperphysik, Technische UniversitBerlin, Hardenbergstrge 36, D-10623 Berlin, Germany
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Carrier capture and recombination in quantum dots are random processes. Conventional rate equation mod-
els do not take into account this property. Based on our theory of random population we predict recombination
spectra, transients, and gain of quantum-dot ensembles. Even with infinitely fast interlevel energy relaxation
excited levels become considerably populated. The impact of a slowdown of energy relaxation is modeled and
criteria for a conclusive experimental observation of a finite interlevel-scattering time are given.
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I. INTRODUCTION vanishing occupation of excited states for fast energy relax-
ation.

The luminescence from various quantum-dot systems has Two nondegenerate energy levels feh pairs are as-
been studied in detail as a function of excitation densitysumed. The population of the levels shallfqeandf,, with
Among these systems are localized excitons in growth interO<f;<1. eh pairs shall be captured with a generation rate
rupted quantum well$,strain-induced quantum dotsand  (excitation G into the upper level. The radiative lifetime
self-organized quantum doté.A common feature observed of the eh pairs in the ground and the excited states is as-
is that with increasing excitation density excited states arsumed to be identical. The relaxation from level 2 to 1 is
populated and luminescence from these states is monitoredgoverned by the intrinsic relaxation timg. The rate equa-

In the case of localized excitons in quantum wells, the excition model is then for the stationary case
ton and biexciton population have been investigatedile

for other systems transitions between excited states of _f_2_ fz(l_fl)+G:0 (1a
equaf* and different quantum numbers for electrons and a To ’

holes were observed. Typically luminescence from excited

states is observed before the ground-state luminescence is fr fa(1—1y)

saturated. N 7r+ 7o =0 (1b)

It is a common belief that for efficient energy relaxation __ ) o .
into the lowest available state there will be no luminescencd Nis model is a simplified two-level version of the model
from excited states as long as the ground state is not satiresented in Ref. 4'for five levels Wlth _degeneraues_. It shall
rated. Consequently, observation of luminescence from ex3€rVe only as a typical example; additional complexity does
cited states before the lower-energy transition is saturated 20t alter its principal results. An analytical expression can be
attributed* to a slowdown of interlevel scattering, known as obtained for the solution of Eqﬁla) and (1b). In the limit
the “phonon bottleneck® effect. In the following we will  70—0 the solution forG<1/7, is
first analyze a typical rate equation model and then present f=—Gr f.—0 24
our theory of random populatiofRP), which considers car- ! o2
rier capture and recombination as random processes. We wilh the case . <G<2/7,, the solution is
argue that even for infinitely fast energy relaxation within
each dot excited states become populated before the lower fi1=1, f,=Gr—1. (2b)
state is saturated.

Throughout this paper we will assume that the energ
separation between dot states is large comparég; T so
that thermal population of excited states can be neglecte
(low-temperature limjt

We note that for infinitely fast energy relaxatidar inter-

¥evel scatteringrate equation models generally yield vanish-

ing population of excited levels as long as a lower level is
ot completely filled.

IIl. RANDOM POPULATION

Il. RATE EQUATION MODELS . .
Q The “trickle-down” rate equation model and other rate

Conventional rate equation models rely on a mean-fieldequation models that include additional capture mechanisms
theoretical scheme in the sense that they assume level poptesult in zero population of excited levels for infinitely fast
lations averaged over the quantum-dot ensemble. Variousnergy relaxation7p,—0). Infinitely fast energy relaxation
rate equation models may be considered to describe captuneeans that when a dot is filled with electron-hole pairs,
and recombination in quantum dots, taking into account difthey are in the lowesh possible energy states at all times.
ferent capture and relaxation processes, e.g., Refs. 4 and lBowever, such kinds of rate equation models, working with
We discuss here the simple “trickle-down” model, which level populations averaged over the ensemble, do not de-
leads to the typical result of rate equation models, namelyscribe a quantum-dot ensemble population appropriately.
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Let us look at a simple example and assume that the ex- M

ternal excitation is low <1/7, . The(large total number of E N,'Y' =Np. 3)

guantum dots shall b&ly. Thus f;Np quantum dots are n=0

filled with one electron-hole pair, the rest are empty. If now . - . o
an additionaleh pair is captured from the reservoir by the ThMe_ prabablllty of finding a dot W'th.n ?h pairs 1S
. e w, =N, /Np. The numberN,, of eh pairs in the entire

guantum-dot ensemble, two things can happen: If it is cap-

. .~ Tensemble, and the average populatjoh are
tured by an empty dofi, remains zero. However, there is a
finite chance that it is captured into one of thé dots that M M
are already filled with oneh pair, makingf,>0. This is a N E ANM (n)= M: 2
contradiction to the prediction of the rate equation model. eh™ < " » Np

In the following we develop a theory based on the idea

that the carrier capture by and recombination in quantunThe recombination rate from tti¢h level (i>0, empty dots
dots are essentially random processes. The RP model i not contribute to the spectriris
based on the following assumptior{s: We consider an en-

nwt . (4)
n=0

semble ofNy dots. Each of the dots had levels for elec- 1M NI
trons and holes. Each level is counted separately, even if RM_— 2 NM=—C z wM (5)
some of them are degenerate in enefgy.Radiative transi- R = R PO = R

tions occur only between electrons and holes with the same
level numbers and result in photons of eneyy. (i) The  The total recombination ratBy from the quantum dots is
radiative lifetime =, for all radiative transitionsE,, is the  (n>0)
same. Nonradiative channels do not exist) The external
excitation fills a reservoifwetting layer, barrigrwith a gen- M

) . . . . Nen Np
eration rateG. From this reservoir carriers are captured into Rp= >, RM=—"=—(n). (6)
the dots. Additionally carriers in the reservoir can recombine =1 Tr Tr
with a radiative lifetimer,, . (v) All dots are neutral, i.e., only
eh pairs are captured. Further below we will also considerThe recombination ratéspectrum at a particular energy is
separate capture of electrons and holes with identical capture
times. (vi) The number ofh pairs in the reservoir shall be M
Ng. The time it takes to transfer oreh pair from the reser- IME)=> RMS(E-E)). (7)
voir into one empty dotto any of itsM levels is 70/Ng. i=1

Later we will use the termr,=7c/Np. When the dot is | this formula the actual energy degeneracies of the levels
completely filled withM eh pairs it cannot capture addi- play a role. In order to fit the model to real quantum-dot
tional carriers. We assume a linear decrease of capture timg,semples with size fluctuations a Gaussian inhomogeneous
with the dot filling; i.e., when the dot is populated witheh  yoadening is introduced. We assume that variation of tran-
pairs, the capture time is (in/M) "~ 7¢/Ng. We will also  jtion energiesE; with population is small compared to the
consider a model with constant capture time, independent Qhnomogeneous broadening, as found in recent experimental

n. (vii) Interlevel energy relaxation is infinitely fast, i.e., jhyestigationg® The spectrum is then given by
when the dot is populated with eh pairs, the lowesn

levels for electrons and holes are filled. Further below we

will consider finite energy relaxation timee6viii) The low-

temperature limit applies; i.e., no carriers are reemitted by

the dots into the reservoir and no excited states are thermally

occupied. Depopulation of dots by the Auger effect is ne-Where G(E,o)=(1/y2mo)exp(-E%20?). We note that

glected and subject to further studies. (since we work in the low-temperature lilnidots of d|_ffer- _
With the above assumptions the steady-state solution gint ground-state energy have the same population. This

the model can be given analytically. Conditiofs (i), and ~ means Fhat the carrier distribution nmnthermaldqe to_thg

(iii ) are valid for uncoupled dots in the strong confinementack of interdot coupling. Such nonthermal carrier distribu-

regime. Nonradiative recombination can be easily accounteon has recently been found in quantum-dot laders.

for by interpretingr, and 7, as effective lifetimes. Fast en- ~ The master equation for thd ;' dots filled withn eh

ergy relaxation(vii) gives thelower limit of population of  Pairs in the random population model is<@<M)

excited levels. In a numerical treatment no restrictions apply

and different radiative lifetimes for the different transitiopnps thﬂ _ (n+ 1)er+1 nNr’YI n NRNI'Y'—l (1_ n- 1)

(iii ), partly forbidden transitiongi) could be taken into ac- dt T Ty T(c) M

count. Capture of single carriefg) and finite interlevel scat- NoNM .

rRNn ( )

M
|M(E)=i§1 RMG(E-E;,ay), (8)

tering time will be considered further below. _ o

Typical realistic time constants arg~r,~1 ns and a Tg M
capture timer, in the 10-ps range;.<< 7, . For our numerical
examples in the following we will user,=7, and

=0. (93

Forn=0 andn=M we have the special cases

7.= 7,/100. dNM NM O NoNM
The ensemble is described with microstates. The number o _1_ %Z '
of quantum dots filled wittn eh pairs shall beN M. Thus dt Tr Tc

(9b)
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For the reservoir we have the additional condition

dNg Ne Nr - oy n
W_G_r_b_jgnzo Ny 1-7]=0. (10

By iteratively solving the equation system fisrY we find

nn—1

I1

I

From the normalization conditiof3) and Eq.(10) Ny is
determined:

Ngr
o0 Tr (11
Tc

1
NM:NQAH(

Ng Mmpt+7r, 1Gr,
No 2 = 2 Np
G M mp+7e 1Gr|3\ M2
tm ey T 22T (g
ND Ty 2 Ty 2 ND

Subsequently alN™ can be calculated.

If in another model of carrier capture it is assumed that

the capture time is independentrofthe solution is given by

Gr.

NR:m%GTC.

(13

In the limit M — o0 the capture probability also does not de-
pend on the filling and the (£n/M) terms are identical to
1. Then the same formulé@l3) applies. Furthermore, the
probability to find a quantum dot with eh pairs is then
given by a Poisson distribution

M_)\n \ th = ()= G, 1 G,
Wh _n! exq )' wi _<n>_ ND 1+ TC/TbN ND '
(14

For finite M we find in the low excitation limilG—0,

GTb

N _ -
R 1+ my/ 7

~Gr1., (15

since usually the capture time is much faster than the reco
bination time in the barrier. In the high excitation limit,
G—o0, when for finiteM all quantum dots are saturated, we

find Ng— G, .

IV. RECOMBINATION SPECTRUM

The recombination spectrum for a particular excitati®n
is obtained from Eq(8). For simplicity we assume the quan-
tum dots to be disklike, so that their energy levels can b

well described by a two-dimensional harmonic oscillator

model. TheK energy stateg, areg,=2(k+1) degenerate.
The total number of levels iIM=K(K+ 1)
k=0,1,...K—1.

Ex=E +(k+1)w, (16)

The energetic broadening, depends on the variatiom, of
the offset energyE,,, e.g., due to disk thickness variation,
and the fluctuatiow, of Zw, e.g., due to disk radius fluctua-
tions
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FIG. 1. Intensity (recombination rajeon the dot state€,,
k=0,...,3 and theeservoir(Res) as a function of external excita-
tion density in linear(a) and double logarithmigb) plots. Solid
(dashed curves in(a) are for simultaneougseparatgelectron and
hole capture.

o= \/Gﬁ-i-(k-i- 1)0'3,. (17

For our numerical example we use=20 meV for all tran-
sitions, andhw=60 meV. In Fig. 1 we show the recombina-
tion rates for different recombination energlgsand for the
reservoir as a function of excitatioB. For low excitation
(G<Np/7,) only luminescence from the ground state is
present. Due to the random nature of capture and recombi-
nation the intensity of an excited levi| , , rises well before

the intensity of the energetically lower stalfg saturates,
even for the assumed infinitely fast energy relaxation within

Mhe dots. However, th&,, , level does not start to exhibit

significant intensity befor&, saturates. In Fig. 2 spectra are
shown for quantum dots witlk=>5 at different excitation

levels for RP theory and the “trickle-down” rate equation.
Thus in the light of this model, only the definite observation
of luminescence from th&, . , level beforeE, is saturated

provides a fingerprint of finite energy relaxation time. The
conclusion on a “phonon-bottleneck” effect from the obser-

é/ation of luminescence from thg, , ; state before the lower

transition is saturatéds not valid.

V. LASER PROPERTIES

From the population statistic the gain spectrum can be
calculated. Here, we consider the gain of the ground-state
transition (the two lowest levels The gain of the quantum
dot ensemble is given by

g=Cq(2f—1), (18)
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0.9 1.0 1.1 models with infinitely fast energy relaxatiqsolid line), “trickle-

Energy (eV) down” rate equation model with five statéRef. 4 for 7,=7,/100,

and random population theory fél =oo.
FIG. 2. Spectra for the level populations of Fig. 1 for

G7,/Np=2, 6, 10, 16, and 20 for RP theofgolid lineg and rate VI. SEPARATE CAPTURE
equation model for five states ang/7,/100 (dashed ling ) ] .

In this section we discuss separate capture of electrons
whereC, is a constant collecting all prefactors, ahds the and holes. We assume identical capture times for electrons
population probability of the ground state. In terms of ourand holes, which leads to charge neutrality of both the res-
model, ervoir and the dot ensembl®&l M shall be the number of

" dots (h,m) being populated witin electrons andn holes;
M M

wy " Wy M for n#m the dot is charged. We immediately find
f= 7+r122 Wn=1=——=wp . (19 NN, =NM . The master equatior®) can be easily modi-
fied for the separate capture of electrons and holes. We note
Therefore that the recombination rate from then,m) dot is
min(n,m)N,’Y[m/rr. For the resulting equation system a
9=Cq(1—wy'—2wyg). (200 simple analytical solution cannot be given. In Figalwe

compare the numerical solution f&r=4 with the model of
eh pair capture. Only for the highest state and high excita-
} tion the two models exhibit a significant difference: the high-

For M —o the excitation dependence of gain is

r

T, '{ G,
exp —
D Np

2+

g= Cg[ 1- est state saturates quicker and the intensity from the reservoir
only starts at higher excitation density. In the following sec-
~Cg{1-[2+(n)]exp —(n))}. (21)  tions we will therefore use the model efrpair capture.
_ ) o Although the luminescence spectra do not differ signifi-
In Fig. 3 we compare the gain versus excitation curves fogantly for the two capture models, we mention a peculiarity
quantum dots with different numbers of levels. Already of the population of charged dots. In Fig. 4 we depict the
M =20, i.e.,K=4, for the two-dimensional harmonic oscil- nopylation probabilitiesv ) =N /Ny and the number of
lator, is very close to the limitl — . As the solid curve we  carriers in the reservoir for dots with two levelI & 2) as a
have included the gain obtained from the conventional ratgynction of excitation. At low excitationG—0 simply
equation modélfor 7,=0, which fills all dots equally from charged dots Ni2,) are as frequent as empty dothl ;)
the bottom. In RP theory the gain of the ground state at apqgditionally double charged dots are preseNt3f). For
injection current Xp/ 7 is Cg[1-4 ex—2)]~0.46C,, i.e.,  G=0, however, the solution is of courdéy,=Np . This is
only about half the saturated value, fdt—o. The solid  not a true discontinuity of the solution since f&—0 it
circles denote the gain from the “trickle-down” rate equa- takes longer and longer time to “load” the charged dots with
tion modef with K=5 and 7o=r,/100. Obviously this carriers and reach the steady state. The transparency current
model. overestimates the gain and underestimates the currggtthis case id,=2eNp/7, , i.e., almost a factor of 2 smaller
for gain saturation. . ~_ than for an ensemble of neutral dots and slightly larger than
The transparency currety, for whichg=0, has a simi-  ne result from mean-field theory.
lar value for all models,

l,~eNp/r, . (22) VII. FINITE INTERLEVEL SCATTERING

We note that this value is two times larger than the usual Nonzero interlevel scattering times can be included in the
result from mean-field theory, where transparency is obModel numerically using Monte Carlo simulations of cap-
tained for electron and hole population probabilitiesture, scattering, and recombination. We assume that any scat-
f,=1—f,=1/2, with an associated recombination current tering event between a filled upper level and an empty lower
level is described by the same scattering titge We note
|=2eNp /7, f (1—f,)=3eNy /7. that the probabilityv ' to find a dot withn eh pairs does not
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FIG. 4. Probability to find f,m) dots withn electrons andn FIG. 6. Intensity of luminescence from quantum-dot states with
holes as a function of excitation fo =2 for separate electron and K =4 states as a function of excitation for different interlevel scat-
hole capture. Curve labeled Res. describes the number of carrietgring times(7=0, 7o= ). For 7,=0 the curves are identical with
Ng/Np in the reservoir. those from Fig. 1a). The scatter in the points fap#0 is due to the

) ] _ Monte Carlo method used.
depend orry and remains unchanged from the solution given

in Eq. (11). The effect of nonzeray is that then ehpairs are  density. TheE, . , level now appears before ttg, level is

no longer in then lowest levels; actually there are now saturated as a fingerprint of the slowdown of relaxation.
=(wm)=n!/M!(n—M)! possible distributions of then  Spectra for different excitations ang=0 andr, are visual-

eh pairs over theM available levels. In the limit of very jzed in Fig. 7. We note that a modified model, allowing

slow interlevel energy relaxationp,— and 7o/ 7,>1, the  capture into the top quantum-dot level only and subsequent

eh pairs are equally distributed among all levels and theinterlevel relaxation, yields almost identical spectra for the

probability of finding a dot in any of the M possible states parameters used in Fig. 7.

is identical and given byvM/pM.

The impact of the interlevel-scattering time on the lumi-
nescence from an excited state is first shown for the simplest
example, a dot with two staté6=2. In Fig. 5 we depict the
ratio | 4/1, of the recombination rates frof, (ground statg
and E; (excited statpas a function ofr, for two different
excitations. For fast relaxation—0 the ratio tends towards
the limit obtained analytically from Eq11). For slow relax-
ation rp—oe the ratio reaches 1£2g,/g,, determined by the
state degeneracies.

A comparison of the recombination rates for zero and

VIll. RECOMBINATION DYNAMICS

The recombination dynamics can also be modeled with
RP theory by settings=0 in Eq.(10) and solving the time
dependenc&a), (9b), and(10) numerically forr,=0 using a
Runge-Kutta algorithm. Let us assume that the excitaBon
is terminated at the timé=0, when the dot ensemble is
characterized by the steady-state carrier distribubid0)

8 1
finite scattering time for th& =4 dot is visualized in Fig. 6. '
For finite interlevel relaxation the saturation of lower levels 7 -
is slower and excited states gain intensity at lower excitation L :

o .
15 LA | MR AR | LERALRRALL | "C_B i ",
L g 5 ‘I‘ .
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~ | M=6 8 4 N
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FIG. 5. Ratio of the luminescence intensity on tke1 and
k=0 states for a quantum dot with=2 stateSM =6 levelg for

two different excitation densitieggiven i

function of the interlevel-scattering time.

n units ofNp/7,) as a

FIG. 7. Spectra for quantum-dot with=4 states for different
excitations(G=2, 4, 6, 8, and 1MNp/7,) and interlevel-scattering
times. The dashed line represents the luminescence spectrum from a
completely saturated dot ensembile.
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; . . . ; . ; . ; showing such an effect for the first excited and ground
S guantum-dot state were reported in Ref. 8.

IX. CONCLUSION

We have developed a theory of population of quantum-
dot levels based on the random nature of capture, interlevel
energy relaxation and recombination processes. The level
populations obtained from models with simultaneous and
separate capture of electrons and holes are very similar. We
find that still under the assumption of infinitely fast energy
relaxation within each dot, the next excited state is already
significantly populated before the energetically lower state
saturates. This behavior is in contrast to the results of con-
ventional rate equation models. For nonzero interlevel-
FIG. 8. Transients foM =20 (K=4) dot in RP theory; steady- Scattering time the saturation of levels becomes slower and
state excitation fot<0 is G=20 Np/, . The interlevel scattering higher excited states become populated earlier.
times aren=0 (solid ling), and 7y=r, (points. The scatter in the In the light of our model we conclude that a clear spec-
points for 7,0 is due to the Monte Carlo method used. troscopic manifestation of the “phonon-bottleneck” effect

(slow energy relaxationis present only if(1) the lumines-
. . cence from thee state(or higher statesis observed be-
and Ng(0). In_ Fig. 8 the time development_c_;f thie =4 . foreEyis saturatgdz(Z) In the tre?nsient from the steady state
guantum dot is shown for a steady-state initial populatio

o 8 . all) lower levels start to decay right after termination of the
due toG=20 Np/ 7, . For infinitely fast interlevel scattering n( ) yng

: . . . excitation.
lower levels remain at their steady-state intensity as long as

the closest excited state did not significantly decay. For non-
zero interlevel energy relaxation time, lower levels start to
decay immediately due to the partly suppressed refilling of This work has been funded by the Deutsche Forschungs-
lower levels emptied by radiative recombination. Transientgyemeinschaft in the framework of Sfb 296.
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