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Theory of random population for quantum dots

M. Grundmann and D. Bimberg
Institut für Festkörperphysik, Technische Universita¨t Berlin, Hardenbergstrabe 36, D-10623 Berlin, Germany

~Received 29 October 1996!

Carrier capture and recombination in quantum dots are random processes. Conventional rate equation mod-
els do not take into account this property. Based on our theory of random population we predict recombination
spectra, transients, and gain of quantum-dot ensembles. Even with infinitely fast interlevel energy relaxation
excited levels become considerably populated. The impact of a slowdown of energy relaxation is modeled and
criteria for a conclusive experimental observation of a finite interlevel-scattering time are given.
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I. INTRODUCTION

The luminescence from various quantum-dot systems
been studied in detail as a function of excitation dens
Among these systems are localized excitons in growth in
rupted quantum wells,1 strain-induced quantum dots,2 and
self-organized quantum dots.3,4 A common feature observe
is that with increasing excitation density excited states
populated and luminescence from these states is monito
In the case of localized excitons in quantum wells, the ex
ton and biexciton population have been investigated,1 while
for other systems transitions between excited states
equal2,4 and different3 quantum numbers for electrons an
holes were observed. Typically luminescence from exci
states is observed before the ground-state luminescen
saturated.

It is a common belief that for efficient energy relaxatio
into the lowest available state there will be no luminesce
from excited states as long as the ground state is not s
rated. Consequently, observation of luminescence from
cited states before the lower-energy transition is saturate
attributed2,4 to a slowdown of interlevel scattering, known a
the ‘‘phonon bottleneck’’5 effect. In the following we will
first analyze a typical rate equation model and then pre
our theory of random population~RP!, which considers car-
rier capture and recombination as random processes. We
argue that even for infinitely fast energy relaxation with
each dot excited states become populated before the lo
state is saturated.

Throughout this paper we will assume that the ene
separation between dot states is large compared tokBT, so
that thermal population of excited states can be neglec
~low-temperature limit!.

II. RATE EQUATION MODELS

Conventional rate equation models rely on a mean-fi
theoretical scheme in the sense that they assume level p
lations averaged over the quantum-dot ensemble. Var
rate equation models may be considered to describe cap
and recombination in quantum dots, taking into account
ferent capture and relaxation processes, e.g., Refs. 4 an
We discuss here the simple ‘‘trickle-down’’ model, whic
leads to the typical result of rate equation models, nam
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vanishing occupation of excited states for fast energy re
ation.

Two nondegenerate energy levels foreh pairs are as-
sumed. The population of the levels shall bef 1 and f 2 , with
0< f i<1. eh pairs shall be captured with a generation ra
~excitation! G into the upper level. The radiative lifetimet r
of the eh pairs in the ground and the excited states is
sumed to be identical. The relaxation from level 2 to 1
governed by the intrinsic relaxation timet0. The rate equa-
tion model is then for the stationary case

2
f 2
t r

2
f 2~12 f 1!

t0
1G50, ~1a!

2
f 1
t r

1
f 2~12 f 1!

t0
50. ~1b!

This model is a simplified two-level version of the mod
presented in Ref. 4 for five levels with degeneracies. It sh
serve only as a typical example; additional complexity do
not alter its principal results. An analytical expression can
obtained for the solution of Eqs.~1a! and ~1b!. In the limit
t0→0 the solution forG,1/t r is

f 15Gt r , f 250. ~2a!

In the case 1/t r,G,2/t r , the solution is

f 151, f 25Gt r21. ~2b!

We note that for infinitely fast energy relaxation~or inter-
level scattering! rate equation models generally yield vanis
ing population of excited levels as long as a lower level
not completely filled.

III. RANDOM POPULATION

The ‘‘trickle-down’’ rate equation model and other ra
equation models that include additional capture mechani
result in zero population of excited levels for infinitely fa
energy relaxation~t0→0!. Infinitely fast energy relaxation
means that when a dot is filled withn electron-hole pairs,
they are in the lowestn possible energy states at all time
However, such kinds of rate equation models, working w
level populations averaged over the ensemble, do not
scribe a quantum-dot ensemble population appropriately
9740 © 1997 The American Physical Society
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55 9741THEORY OF RANDOM POPULATION FOR QUANTUM DOTS
Let us look at a simple example and assume that the
ternal excitation is low,G,1/t r . The~large! total number of
quantum dots shall beND . Thus f 1ND quantum dots are
filled with one electron-hole pair, the rest are empty. If no
an additionaleh pair is captured from the reservoir by th
quantum-dot ensemble, two things can happen: If it is c
tured by an empty dot,f 2 remains zero. However, there is
finite chance that it is captured into one of thef 1ND dots that
are already filled with oneeh pair, makingf 2.0. This is a
contradiction to the prediction of the rate equation mode

In the following we develop a theory based on the id
that the carrier capture by and recombination in quant
dots are essentially random processes. The RP mod
based on the following assumptions:~i! We consider an en
semble ofND dots. Each of the dots hasM levels for elec-
trons and holes. Each level is counted separately, eve
some of them are degenerate in energy.~ii ! Radiative transi-
tions occur only between electrons and holes with the sa
level numbers and result in photons of energyEn . ~iii ! The
radiative lifetime t r for all radiative transitionsEn is the
same. Nonradiative channels do not exist.~iv! The external
excitation fills a reservoir~wetting layer, barrier! with a gen-
eration rateG. From this reservoir carriers are captured in
the dots. Additionally carriers in the reservoir can recomb
with a radiative lifetimetb . ~v! All dots are neutral, i.e., only
eh pairs are captured. Further below we will also consid
separate capture of electrons and holes with identical cap
times. ~vi! The number ofeh pairs in the reservoir shall b
NR . The time it takes to transfer oneeh pair from the reser-
voir into one empty dot~to any of itsM levels! is t c

0/NR .
Later we will use the termtc5t c

0/ND . When the dot is
completely filled withM eh pairs it cannot capture add
tional carriers. We assume a linear decrease of capture
with the dot filling; i.e., when the dot is populated withn eh
pairs, the capture time is (12n/M )21 t c

0/NR . We will also
consider a model with constant capture time, independen
n. ~vii ! Interlevel energy relaxation is infinitely fast, i.e
when the dot is populated withn eh pairs, the lowestn
levels for electrons and holes are filled. Further below
will consider finite energy relaxation times.~viii ! The low-
temperature limit applies; i.e., no carriers are reemitted
the dots into the reservoir and no excited states are therm
occupied. Depopulation of dots by the Auger effect is n
glected and subject to further studies.

With the above assumptions the steady-state solutio
the model can be given analytically. Conditions~i!, ~ii !, and
~iii ! are valid for uncoupled dots in the strong confinem
regime. Nonradiative recombination can be easily accoun
for by interpretingt r andtb as effective lifetimes. Fast en
ergy relaxation~vii ! gives thelower limit of population of
excited levels. In a numerical treatment no restrictions ap
and different radiative lifetimes for the different transitio
~iii !, partly forbidden transitions~ii ! could be taken into ac
count. Capture of single carriers~v! and finite interlevel scat-
tering time will be considered further below.

Typical realistic time constants aret r'tb'1 ns and a
capture timetc in the 10-ps range,tc!t r . For our numerical
examples in the following we will usetb5t r and
tc5t r /100.

The ensemble is described with microstates. The num
of quantum dots filled withn eh pairs shall beNn

M. Thus
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Nn
M5ND . ~3!

The probability of finding a dot withn eh pairs is
wn

M5Nn
M/ND . The numberNeh of eh pairs in the entire

ensemble, and the average population^n& are

Neh5 (
n50

M

nNn
M , ^n&5

Neh

ND
5 (

n50

M

nwn
M . ~4!

The recombination rate from thei th level ~i.0, empty dots
do not contribute to the spectrum! is

Ri
M5

1

t r
(
m5 i

M

Nm
M5

ND

t r
(
m5 i

M

wm
M . ~5!

The total recombination rateRD from the quantum dots is
(n.0)

RD5(
i51

M

Ri
M5

Neh

t r
5
ND

t r
^n&. ~6!

The recombination rate~spectrum! at a particular energy is

I 0
M~E!5(

i51

M

Ri
Md~E2Ei !. ~7!

In this formula the actual energy degeneracies of the lev
play a role. In order to fit the model to real quantum-d
ensembles with size fluctuations a Gaussian inhomogen
broadening is introduced. We assume that variation of tr
sition energiesEi with population is small compared to th
inhomogeneous broadening, as found in recent experime
investigations.2,3 The spectrum is then given by

I M~E!5(
i51

M

Ri
MG~E2Ei ,s i !, ~8!

where G(E,s)5(1/A2ps)exp(2E2/2s2). We note that
~since we work in the low-temperature limit! dots of differ-
ent ground-state energy have the same population. T
means that the carrier distribution isnonthermaldue to the
lack of interdot coupling. Such nonthermal carrier distrib
tion has recently been found in quantum-dot lasers.7

The master equation for theNn
M dots filled with n eh

pairs in the random population model is (0,n,M )

dNn
M

dt
5

~n11!Nn11
M

t r
2
nNn

M

t r
1
NRNn21

M

tc
0 S 12

n21

M D
2
NRNn

M

tc
0 S 12

n

M D50. ~9a!

For n50 andn5M we have the special cases

dN0
M

dt
5
N1
M

t r
2
NRN0

M

tc
0 50,

~9b!
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dNM
M

dt
52

MNM
M

t r
1
NRNM21

M

tc
0 S 12

M21

M D50.

For the reservoir we have the additional condition

dNR

dt
5G2

NR

tb
2
NR

tc
0 (

n50

M

Nn
MS 12

n

M D50. ~10!

By iteratively solving the equation system forNn
M we find

Nn
M5N0

M 1

n! SNR

tc
0 t r D n)

m50

n21 S 12
m

M D . ~11!

From the normalization condition~3! and Eq. ~10! NR is
determined:

NR

ND
52

M

2

tb1tc
t r

1
1

2

Gtb
ND

1SM Gtb
ND

tc
t r

1FM2 tb1tc
t r

2
1

2

Gtb
ND

G2D 1/2. ~12!

Subsequently allNn
M can be calculated.

If in another model of carrier capture it is assumed t
the capture time is independent ofn, the solution is given by

NR5
Gtc

11tc /tb
'Gtc . ~13!

In the limit M→` the capture probability also does not d
pend on the filling and the (12n/M ) terms are identical to
1. Then the same formula~13! applies. Furthermore, th
probability to find a quantum dot withn eh pairs is then
given by a Poisson distribution

wn
M5

ln

n!
exp~2l!, with l5^n&5

Gt r
ND

1

11tc /tb
'
Gt r
ND

.

~14!

For finiteM we find in the low excitation limitG→0,

NR→
Gtb

11tb /tc
'Gtc , ~15!

since usually the capture time is much faster than the rec
bination time in the barrier. In the high excitation limi
G→`, when for finiteM all quantum dots are saturated, w
find NR→Gtb .

IV. RECOMBINATION SPECTRUM

The recombination spectrum for a particular excitationG
is obtained from Eq.~8!. For simplicity we assume the quan
tum dots to be disklike, so that their energy levels can
well described by a two-dimensional harmonic oscilla
model. TheK energy statesEk aregk52(k11) degenerate
The total number of levels isM5K(K11)

Ek5Eh1~k11!\v, k50,1,...,K21. ~16!

The energetic broadeningsk depends on the variationsh of
the offset energyEh , e.g., due to disk thickness variatio
and the fluctuationsv of \v, e.g., due to disk radius fluctua
tions
t

-

e
r

sk5Ash
21~k11!sv

2 . ~17!

For our numerical example we uses520 meV for all tran-
sitions, and\v560 meV. In Fig. 1 we show the recombina
tion rates for different recombination energiesEk and for the
reservoir as a function of excitationG. For low excitation
(G!ND/t r) only luminescence from the ground state
present. Due to the random nature of capture and recom
nation the intensity of an excited levelEk11 rises well before
the intensity of the energetically lower stateEk saturates,
even for the assumed infinitely fast energy relaxation wit
the dots. However, theEk12 level does not start to exhibi
significant intensity beforeEk saturates. In Fig. 2 spectra a
shown for quantum dots withK55 at different excitation
levels for RP theory and the ‘‘trickle-down’’ rate equatio
Thus in the light of this model, only the definite observati
of luminescence from theEk12 level beforeEk is saturated
provides a fingerprint of finite energy relaxation time. T
conclusion on a ‘‘phonon-bottleneck’’ effect from the obse
vation of luminescence from theEk11 state before the lowe
transition is saturated4 is not valid.

V. LASER PROPERTIES

From the population statistic the gain spectrum can
calculated. Here, we consider the gain of the ground-s
transition~the two lowest levels!. The gain of the quantum
dot ensemble is given by

g5Cg~2 f21!, ~18!

FIG. 1. Intensity ~recombination rate! on the dot statesEk ,
k50,...,3 and thereservoir~Res.! as a function of external excita
tion density in linear~a! and double logarithmic~b! plots. Solid
~dashed! curves in~a! are for simultaneous~separate! electron and
hole capture.
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55 9743THEORY OF RANDOM POPULATION FOR QUANTUM DOTS
whereCg is a constant collecting all prefactors, andf is the
population probability of the ground state. In terms of ou
model,

f5
w1
M

2
1 (

n52

M

wn
M512

w1
M

2
2w0

M . ~19!

Therefore

g5Cg~12w1
M22w0

M !. ~20!

ForM→` the excitation dependence of gain is

g5CgH 12F21
Gt r
ND

GexpS 2
Gt r
ND

D J
'Cg$12@21^n&#exp~2^n&!%. ~21!

In Fig. 3 we compare the gain versus excitation curves f
quantum dots with different numbers of levels. Alread
M520, i.e.,K54, for the two-dimensional harmonic oscil-
lator, is very close to the limitM→`. As the solid curve we
have included the gain obtained from the conventional ra
equation model4 for t050, which fills all dots equally from
the bottom. In RP theory the gain of the ground state at
injection current 2ND/t r is Cg@124 exp~22!#'0.46Cg , i.e.,
only about half the saturated value, forM→`. The solid
circles denote the gain from the ‘‘trickle-down’’ rate equa
tion model4 with K55 and t05t r /100. Obviously this
model overestimates the gain and underestimates the curr
for gain saturation.

The transparency currentI tr , for which g50, has a simi-
lar value for all models,

I tr'eND /t r . ~22!

We note that this value is two times larger than the usu
result from mean-field theory, where transparency is o
tained for electron and hole population probabilitie
f n512 f n51/2, with an associated recombination current

I52eND /t r f n~12 f v!5 1
2eND /t r .

FIG. 2. Spectra for the level populations of Fig. 1 for
Gt r /ND52, 6, 10, 16, and 20 for RP theory~solid lines! and rate
equation model for five states andt0/t r /100 ~dashed line!.
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VI. SEPARATE CAPTURE

In this section we discuss separate capture of electr
and holes. We assume identical capture times for electr
and holes, which leads to charge neutrality of both the r
ervoir and the dot ensemble.Nn,m

M shall be the number o
dots (n,m) being populated withn electrons andm holes;
for nÞm the dot is charged. We immediately fin
Nn,m

M 5Nm,n
M . The master equations~9! can be easily modi-

fied for the separate capture of electrons and holes. We
that the recombination rate from the (n,m) dot is
min(n,m)Nn,m

M /t r . For the resulting equation system
simple analytical solution cannot be given. In Fig. 1~a! we
compare the numerical solution forK54 with the model of
eh pair capture. Only for the highest state and high exc
tion the two models exhibit a significant difference: the hig
est state saturates quicker and the intensity from the rese
only starts at higher excitation density. In the following se
tions we will therefore use the model ofeh-pair capture.

Although the luminescence spectra do not differ sign
cantly for the two capture models, we mention a peculiar
of the population of charged dots. In Fig. 4 we depict t
population probabilitieswn,m

M 5Nn,m
M /ND and the number of

carriers in the reservoir for dots with two levels (M52) as a
function of excitation. At low excitationG→0 simply
charged dots (N 10

2 ) are as frequent as empty dots (N 00
2 );

additionally double charged dots are present (N 20
2 ). For

G[0, however, the solution is of courseN005ND . This is
not a true discontinuity of the solution since forG→0 it
takes longer and longer time to ‘‘load’’ the charged dots w
carriers and reach the steady state. The transparency cu
in this case isI tr5

5
8eND/t r , i.e., almost a factor of 2 smalle

than for an ensemble of neutral dots and slightly larger th
the result from mean-field theory.

VII. FINITE INTERLEVEL SCATTERING

Nonzero interlevel scattering times can be included in
model numerically using Monte Carlo simulations of ca
ture, scattering, and recombination. We assume that any s
tering event between a filled upper level and an empty low
level is described by the same scattering timet0. We note
that the probabilitywn

M to find a dot withn ehpairs does not

FIG. 3. Gain on the ground state~two levels! for rate equation
models with infinitely fast energy relaxation~solid line!, ‘‘trickle-
down’’ rate equation model with five states~Ref. 4! for t05t r /100,
and random population theory forM5`.
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9744 55M. GRUNDMANN AND D. BIMBERG
depend ont0 and remains unchanged from the solution giv
in Eq. ~11!. The effect of nonzerot0 is that then ehpairs are
no longer in then lowest levels; actually there are no
p n
M5( M

n )5n!/M !(n2M )! possible distributions of then
eh pairs over theM available levels. In the limit of very
slow interlevel energy relaxation,t0→` and t0/t r@1, the
eh pairs are equally distributed among all levels and
probability of finding a dot in any of thep n

M possible states
is identical and given bywn

M/p n
M.

The impact of the interlevel-scattering time on the lum
nescence from an excited state is first shown for the simp
example, a dot with two statesK52. In Fig. 5 we depict the
ratio I 0/I 1 of the recombination rates fromE0 ~ground state!
andE1 ~excited state! as a function oft0 for two different
excitations. For fast relaxationt0→0 the ratio tends toward
the limit obtained analytically from Eq.~11!. For slow relax-
ation t0→` the ratio reaches 1/25g0/g1 , determined by the
state degeneracies.

A comparison of the recombination rates for zero a
finite scattering time for theK54 dot is visualized in Fig. 6.
For finite interlevel relaxation the saturation of lower leve
is slower and excited states gain intensity at lower excita

FIG. 4. Probability to find (n,m) dots withn electrons andm
holes as a function of excitation forM52 for separate electron an
hole capture. Curve labeled Res. describes the number of ca
NR/ND in the reservoir.

FIG. 5. Ratio of the luminescence intensity on thek51 and
k50 states for a quantum dot withK52 states~M56 levels! for
two different excitation densities~given in units ofND/t r! as a
function of the interlevel-scattering timet0.
e

st

d

n

density. TheEk12 level now appears before theEk level is
saturated as a fingerprint of the slowdown of relaxatio
Spectra for different excitations andt050 andt r are visual-
ized in Fig. 7. We note that a modified model, allowin
capture into the top quantum-dot level only and subsequ
interlevel relaxation, yields almost identical spectra for t
parameters used in Fig. 7.

VIII. RECOMBINATION DYNAMICS

The recombination dynamics can also be modeled w
RP theory by settingG50 in Eq. ~10! and solving the time
dependence~9a!, ~9b!, and~10! numerically fort050 using a
Runge-Kutta algorithm. Let us assume that the excitationG
is terminated at the timet50, when the dot ensemble i
characterized by the steady-state carrier distributionNn

M(0)

ers

FIG. 6. Intensity of luminescence from quantum-dot states w
K54 states as a function of excitation for different interlevel sc
tering times~t050, t05t r!. For t050 the curves are identical with
those from Fig. 1~a!. The scatter in the points fort0Þ0 is due to the
Monte Carlo method used.

FIG. 7. Spectra for quantum-dot withK54 states for different
excitations~G52, 4, 6, 8, and 10ND/t r! and interlevel-scattering
times. The dashed line represents the luminescence spectrum fr
completely saturated dot ensemble.
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55 9745THEORY OF RANDOM POPULATION FOR QUANTUM DOTS
and NR(0). In Fig. 8 the time development of theK54
quantum dot is shown for a steady-state initial populat
due toG520 ND/t r . For infinitely fast interlevel scattering
lower levels remain at their steady-state intensity as long
the closest excited state did not significantly decay. For n
zero interlevel energy relaxation time, lower levels start
decay immediately due to the partly suppressed refilling
lower levels emptied by radiative recombination. Transie

FIG. 8. Transients forM520 (K54) dot in RP theory; steady
state excitation fort,0 isG520 ND/t r . The interlevel scattering
times aret050 ~solid line!, andt05t r ~points!. The scatter in the
points fort0Þ0 is due to the Monte Carlo method used.
s.

s

.

n

s
n-
o
f
s

showing such an effect for the first excited and grou
quantum-dot state were reported in Ref. 8.

IX. CONCLUSION

We have developed a theory of population of quantu
dot levels based on the random nature of capture, interle
energy relaxation and recombination processes. The l
populations obtained from models with simultaneous a
separate capture of electrons and holes are very similar.
find that still under the assumption of infinitely fast ener
relaxation within each dot, the next excited state is alrea
significantly populated before the energetically lower st
saturates. This behavior is in contrast to the results of c
ventional rate equation models. For nonzero interlev
scattering time the saturation of levels becomes slower
higher excited states become populated earlier.

In the light of our model we conclude that a clear spe
troscopic manifestation of the ‘‘phonon-bottleneck’’ effe
~slow energy relaxation! is present only if~1! the lumines-
cence from theEk12 state~or higher states! is observed be-
foreEk is saturated.~2! In the transient from the steady sta
~all! lower levels start to decay right after termination of t
excitation.
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