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Application of Bragg-confined semiconductor structures for higher-energy
resonant intersubband second-harmonic generation

D. Indjin,* V. Milanović, and Z. Ikonić
Faculty of Electrical Engineering, University of Belgrade, Bulevar Revolucije 73, 11000 Belgrade, Yugoslavia

~Received 20 May 1996!

The existence of bound electron states above the barrier in Bragg-confined structures is proposed as a means
of extending the range of photon energies suitable for resonant intersubband second-harmonic generation
beyond what is available in conventional quantum-well structures. Within the envelope-function approximation
the expressions are first derived for energies and wave functions of bound states in Bragg structures with an
asymmetric perturbation layer. A systematic procedure, based on supersymmetric quantum mechanics, is then
described for the design of optimized structures to get the maximum nonlinear susceptibility. An example of a
calculation for the case of pump photon energy\v'240 meV is also presented and the design aspects of such
structures are considered.@S0163-1829~97!00115-X#
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I. INTRODUCTION

Among various electronic and optical properties of lo
dimensional semiconductor structures, their nonlinear opt
properties attract continuous research attention because
nonlinearity can be resonantly enhanced by appropriate
loring of the structure. The second-order nonlinearity ba
on intersubband transitions, responsible, e.g., for the sec
harmonic generation~SHG! in the infrared, is most effective
in the case of double resonance,1 when the spacing betwee
three equidistant states coincides with the pump photon
ergy. It has been studied in various asymmetric quan
well ~QW! structures.1–4 Values of the conduction-band off
set~the barrier height! between the QW constituent semico
ductors essentially set the upper limit of photon energies
can undergo frequency doubling under double-resona
conditions. This is because the QW has to accommod
three bound states and the band offset has to be typic
2.5–3 times larger than the pump photon energy. Inde
though not for this reason alone, this process been stu
mostly for the case of a 10.6-mm CO2 laser pump1–4 or
larger wavelengths.5 Pairs of semiconductors that have larg
band offsets, suitable for QW’s for higher-energy SHG,
often lattice mismatched or indirect-gap materials, which
inconvenient for this purpose.

The recently proposed Bragg-confined structures6–11

~BCS’s! that support bound states above the barrier top p
vide an effectively increased band offset and therefore m
extend the applicability of QW’s for resonant SHG at high
energies. A BCS is actually a semiconductor superlat
~SL! with the strict periodicity perturbed in a limited region
which may be called the perturbation layer. Along with t
conventional ‘‘piecewise continuous’’ miniband spectru
there appears an additional discrete spectrum: bound s
lying in minigaps, at energies that are both below and ab
the top of the barriers. Their wave functions are localized
the perturbation layer, decaying away from it, as a resul
constructive interference of waves reflected at well/bar
interfaces in the SL portions of the structure. All studies
BCS’s until now considered only the case of a symme
perturbation layer when the structure lacks any signific
second-order nonlinearity.

In this paper we consider the possibility of using BCS
550163-1829/97/55~15!/9722~9!/$10.00
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with an asymmetric perturbation layer for resonant inters
band SHG, taking advantage of the high-lying bound sta
they support. We first derive the expression for bound-s
energies in such structures, allowing for an arbitrary var
tion of the potential and the effective mass in the pertur
tion layer. Then we turn to optimizing the structure wi
respect to the second-order nonlinearity, using a system
procedure based on the supersymmetric quantum-mecha
approach.12 Finally, we present an example of a calculatio
and a design of a structure matched for SHG of 5.1-mm ~CO
laser! radiation, also discussing the possibility of its practic
realization.

II. THEORETICAL CONSIDERATIONS

In semiconductor microstructures the effective mass
generally position dependent~either in a continuous or a
piecewise-constant manner! and the envelope function
Schrödinger equation then takes the form13

2
\2

2

d

dzS 1

m~z!

dC

dz D1U~z!C5EC. ~1!

Consider a one-dimensional SL structure having symme
U(z) andm(z) dependences within a periodd, perturbed by
a single asymmetric perturbation layer of widthd @Fig. 1~a!#.
While the strict periodicity of the structure is lost, the
clearly remains ‘‘local’’ periodicity in the regions
(2`,2d) and (d,1`), provided the long-range effects o
the perturbation layer~e.g., the accumulated space charg!
are neglected. In this case@exemplified in Fig. 1~b! for the
Kronig-Penney SL# the wave function in the unperturbe
regions may be written as a linear combination of two cou
terpropagating waves

C~z!5C1uk~z!eikzz1C2u2k~z!e2 ikzz, z,2d or z.d,
~2!

whereu6k(z) are the periodic parts of Bloch wave function
and kz is the z component of the wave vector. To find th
wave function in the unperturbed region one should first
9722 © 1997 The American Physical Society
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55 9723APPLICATION OF BRAGG-CONFINED SEMICONDUCTOR . . .
termineu6k(z) within one period of the SL. Taking the pe
riod nearest the perturbation layer we have

u6k~z!6 ikzz5const@ f e~z!1u~6kz! f o~z!#, ~3!

where f e(z) and f o(z) are the even and odd, with respect
the period midpoint atz5d01d/2, solutions of the Schro¨-
dinger equation~note that the Hamiltonian is symmetric wit
respect to this point!. These are obtained by integrating E
~1! in the interval (d,d1d) with the fundamental boundar
conditions f e(d0)51, f e8(d0)50 and f o(d0)50,
f o8(d0)51. The factoru(6kz) is determined from Bloch pe
riodic boundary conditionsu6k(d02d/2)5u6k(d01d/2) as

u~6kz!5 iF f eS d01
d

2D
f oS d01

d

2D G tanS 6kzd

2 D , ~4!

where kzd is given by the miniband dispersion relatio
E(kz), which reads14

cos~kzd!5
mSL~d0!

mSLS d01
d

2D
3@ f e~z! f o8~z!1 f e8~z! f o~z!#z5d01d/2

[F~E! ~5!

because the effective massmSL(z) is position dependent.

FIG. 1. ~a! Schematic view of a periodic structure with an asy
metric perturbation layer and~b! the corresponding energy diagra
in the case of Kronig-Penney SL portions of the structure.
To find bound states in minigaps, due to the presence
the perturbation, we recall that therekz is complex, given
by15 kz5np/d1 ikI in the nth minigap, withkI.0. Equa-
tions ~4! and ~5! then become

cosh~kId!5~21!nF~E! ~6!

and

u~6kz!56H 2F f eS d01
d

2D
f oS d01

d

2D G F ~21!nF~E!21

~21!nF~E!11G ~21!n/2J
[6ubound~E!. ~7!

With complexkz the constantC2 in Eq. ~2! has to be zero in
the region (z.d) and the same applies toC1 in (z,2d). It
follows from Eq.~3! that the wave function of a bound sta
in thenth minigap takes the following form in thel th period
of the SL @2d2 ld,z,2d2( l21)d or d1( l21)d
,z,d1 ld#:

C~z!5CL,R~21!n~ l21!e2~ l21!kId@ f e~z!6uboundf o~z!#,
~8!

where the subscriptR and the plus sign correspond t
z.d, while the subscriptL and the minus sign correspond
z,2d, and it is implicitly taken that the functionsf e,o ,
initially defined within a single period~with l51), map into
more remote periods by simple translation. Inside the per
bation layer the wave function may also be written as a lin
combination of two particular solutions

C~z!5A1y1~z!1A2y2~z!, 2d,z,d, ~9!

wherey1(z) andy2(z) are found by integrating Eq.~1! using
the fundamental boundary conditionsy1(0)51, y18(0)50
andy2(0)50, y28(0)51. Imposing the conventional bound
ary conditions „the continuity of C(z) and of
@1/m(z)#@dC(z)/dz#… at z56d to the wave functions
~8! ~with l51) and~9! results in a 434 homogeneous linea
system inA1, A2, CL , and CR . Nontrivial solutions re-
quire the corresponding determinant to be zero, which,
gether with f e(2d)5 f e(d), f e8(2d)52 f e8(d), f o(2d)
52 f o(d), f o8(2d)5 f o8(d), and mSL(2d)5mSL(d),
results in
U h~d! 0 2y1~2d! 2y2~2d!

2
md~2d!

mSL~d!
h8~d! 0 2y18~2d! 2y28~2d!

0 h~d! 2y1~d! 2y2~d!

0
md~d!

mSL~d!
h8~d! 2y18~d! 2y28~d!

U50, ~10!
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whereh(z)5 f e(z)1uboundf o(z) andmd(z) denotes the elec
tron effective mass in the perturbation layer. From Eq.~10!
the bound-state energies in SL’s with a generally asymme
perturbation layer are found from

2
md~2d!

mSL~d!
h8~d!H h~d!@y1~2d!y28~d!2y18~d!y2~2d!#

1
md~d!

mSL~d!
h8~d!@y1~d!y28~2d!2y1~2d!y2~2d!#J

2h~d!H h~d!@y18~2d!y2~d!2y18~d!y28~2d!#

1
md~d!

mSL~d!
h8~d!@y1~d!y28~2d!2y18~2d!y2~d!#J

50. ~11!

The boundary conditions atz56d enable the three coeffi
cients, e.g.,A1,2 andCL , to be expressed in terms ofCR as

A1,25Fh~d!y2,18 ~d!2
md~d!

mSL~d!
h8~d!y2,1~d!G

3
1

W~y1 ,y2!uz5d
CR[K1,2CR ,

CL5F h~d!y28~d!2
md~d!

mSL~d!
h8~d!y2~d!

h~d!y28~2d!1
md~2d!

mSL~d!
h8~d!y2~2d!

G
3
W~y1 ,y2!uz52d

W~y1 ,y2!uz5d
CR

[KTCR , ~12!

whereW(y1 ,y2)5y1(z)y28(z)2y18(z)y2(z) andCR itself is
determined from the wave-function normalizatio
*2`

1`uC(z)u2dz51. Using Eqs.~8! and ~9! we find

CR5F ~11KT
2!Q

12e22kId
1K1

2Y11K2
2Y212K1K2Y12G21/2

,

~13!

whereQ5*d
d1d@ f e

2(z)1ubound
2 f o

2(z)#dz,Y1,25*2d
d y1,2

2 (z)dz,
andY125*2d

d y1(z)y2(z)dz.
This completes the procedure of finding the bound-s

wave functions. In the special case of a symmetric pertur
tion layer the fundamental solutions inside it,y1(z) and
y2(z), have even and odd parity, respectively, and the
wave function then also has a definite parity. Equation~11!
would then take the form

Fh~d!y18~d!2
md~d!

mSL~d!
h8~d!y1~d!G

3Fh~d!y28~d!2
md~d!

mSL~d!
h8~d!y2~d!G50, ~14!

where the zeros of the first~second! term correspond to en
ergies of even~odd! bound states of this symmetric structur
ic

te
a-

ll

.

For any general forms of the SL~symmetric! period and
the ~asymmetric! perturbation layer it is very likely that the
above procedure would have to be performed numerica
The particular case of the rectangular~Kronig-Penney! SL,
however, enables the functionsf e,o(z) and the dispersion
E(kz) to be found analytically.

13,16This is the case one usu
ally has in practice, or at least a good approximation to
neglecting the self-consistency effects@Fig. 1~b!#. Numerical
solution of the Schro¨dinger equation then has to be pe
formed only in the perturbation layer (2d,1d) to find
y1,2(z).

The bound-state wave functions decay away from the p
turbation layer, with the decay constant given by Eq.~6!.
They are derived from bound states~or resonant states! of the
perturbation layer for energies below~above! the barrier top.
The degree of the wave-function confinement~localization!
reflects the degree of constructive interference of waves s
tered at SL interfaces, as observed in the region of the
turbation layer. Good localization corresponds to large v
ues ofkId, which is difficult to maximize analytically for any
general structure. Yet, for Kronig-Penney SL’s the maximu
localization conditions for above-the-barrier states are sim
and completely analogous to those for optical multilay
structures.17 They have the form of quantum-mechanic
Bragg reflection conditions6–11

kBb5~q1 1
2 !p, kWa5~r1 1

2 !p, ~15!

where kB5@2mB(E2U0)/\
2#1/2, kW5@2mWE/\

2#1/2, and
q,r50,1,2,3, . . . (mB andmW are the effective masses i
the barrier and well in the SL portion of the structure!. Equa-
tions ~15! thus define the structure parameters necessar
get the best localization of some above-the-barrier st
Below-the-barrier states are generally well localized anyw
and rather insensitive to the structure parameters, prov
they do not come too close to allowed minibands of the S

Considering now the double-resonant SHG in these st
tures, we note that~at least! three equidistant levels are re
quired for this process. The fact that BCS’s support discr
states at above-the-barrier energies enables one to inc
the pump~and harmonic! photon energies beyond the rang
provided by classical QW structures with all three states
low the barrier. The pump light wavelength ofl'5mm, for
instance, would require a classical QW with the band off
of >0.6 eV at least, in order to accommodate three sta
which is the limit of availability in most heterojunctions. Th
problem may be solved by resorting to a BCS type of str
ture, with two states below and one above the barr
Clearly, the wave functions of three equidistant states sho
be well localized so as to have a good overlap~otherwise the
transition matrix elements will be small!. As additional de-
sign guidelines, we note that energies of below-the-bar
states are mainly determined by the perturbation layer
rameters, and much less by those of SL, and care shoul
taken only to keep them away from SL minibands. The e
ergy of above-the-barrier state, on the other hand, is stron
influenced by both the perturbation layer and the SL para
eters, as is its localization. As the third point, the Fermi le
in ann-doped BCS will be close to the lowest miniband,
the lowest bound state has to be below it in order to acq
significant electron concentration. In view of all these co
straints and the complicated form of Eq.~11!, the design of a
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55 9725APPLICATION OF BRAGG-CONFINED SEMICONDUCTOR . . .
more or less optimized structure of this type by a pur
trial-and-error method would be very difficult. Instead, o
may first attempt to design a symmetric structure with eq
distant states, their energies given by a simpler Eq.~14!.
Being symmetric it would lack any second-order nonline
ity, but should satisfy all other requirements stated above
the second step this symmetric BCS should be used
starting point to generate a family of isospectral structur
which will be asymmetric and therefore allow SHG by usi
the supersymmetric quantum mechanics~SUSYQM!
approach.12 From this family the structure with the best pe
formance is then selected.

In applying the above methods to real semiconduc
structures, however, due attention is to be paid to the eff
of nonparabolicity, which may be quite prominent becau
one deals with energies high above the conduction-b
edge, at least in some parts of the structure. The nonpar
licity may be conveniently described by an energy-depend
effective mass, based on the two-band Kane model18

m* „z,U~z!,E…5m~z!F11
E2U~z!

Eg~z! G , ~16!

where Eg(z) is the material composition-~and hence the
position-! dependent band gap. Using the standard SUSY
approach necessitates that Eq.~1!, with the energy- and
position-dependent effective mass, should be recast in
more conventional form with a variable potential but co
stant mass. This can be accomplished by introducing a s
ably chosen invertable coordinate transformz5g(x) in Eq.
~1!, which then takes the form

2
\2

2mI g82
d2u~x!

dx2
2

\2

2mI g82 H 2
1

4 F ddx @ ln~mI g8!#G2
1
1

2

d2

dx2
@ ln~mI g8!#J u~x!1@UI ~x!2E#u~x!50,

~17!

where the scaled wave functionu(x) is related to the true
wave function byCI (x)5C„g(x)…5constu(x)AmI g8, and
mI (x)5m„g(x)…, UI (x)5U(g(x)), and g85dg(x)/dx. To
cast Eq.~17! into the common textbook form we set a co
straint

mI g825m0.0, ~18!

wherem0 does not depend onx, which gives

2
\2

2m0

d2u~x!

dx2
1@UI eff~x!2E#u~x!50, ~19!

with

UI eff~x!5UI ~x!2
\2

2m0
F2

1

4 S ddx ~ lnAmI ! D 21 1

2

d2

dx2
~ lnAmI !G .

~20!

Equation~19! has the identical eigenspectrum to the origin
Eq. ~1!, but it has the constant effective mass and can
subjected to the standard isospectral supersymmetric tr
form. According to the SUSYQM theory,12 the supersym-
metric partner to the potentialUI eff(x) is given by
y

i-

-
s
a

s,

r
ts
e
d
o-
nt

M

a
-
it-

l
e
s-

UI ss~x!5UI eff~x!2
\2

m0

d2

dx2
$ ln@l1II~x!#%, ~21!

where II(x)5*2`
x wu

2(x)dx and wu(x) denotes any bound
state-scaled wave functionu(x). Transforming back to the
real-space coordinatez, we find, after a lengthy derivation
that the supersymmetric partner potential toU(z) of Eq. ~1!
is

Uss~z!5HU~z!2
\2

Am* „z,U~z!,E…

d

dz

3F 1

Am* „z,U~z!,E…

d

dz
$ ln@l1I ~z!#%G J

2
\2

2 H 2
1

2@m* „z,U~z!,E…#3 S dm* „z,U~z!,E…

dz D 2
1

1

4@m* „z,U~z!,E…#2
d2m* „z,U~z!,E…

dz2 J 1
\2

2

3H 2
1

2@m* „z,Uss~z!,E…#3 S dm* „z,Uss~z!,E…

dz D 2
1

1

4@m* „z,Uss~z!,E…#2
d2m* „z,Uss~z!,E…

dz2 J . ~22!

Equation~22! is in fact a differential equation, to be solve
for Uss(z). This complicated form occurs because
m*5m* „z,Uss(z),E…. If the mass were constant,Uss(z)
would be given by an explicit expression.12 To a good ap-
proximation, however, the nonparabolicity at lower energ
may be neglected, and at higher energies one may
m* „z,Uss(z),E…'m* „z,U(z),E…, inducing cancellation of
the last two terms in Eq.~22!, which then becomes an ex
plicit expression forUss(z). Having derived the expressio
for Uss(z) using the coordinate transform and SUSYQ
methods, all the relations hereafter will be given in terms
the real coordinatez only.

The explicit, though approximate, expression forUss(z)
should now be used in the Schro¨dinger equation

2
\2

2

d

dzS 1

m*
dCssi

dz D1Uss~z!Cssi5ECssi . ~23!

The corresponding wave functions, as they depend on
real coordinatez, are

Cssi~z!5C i~z!1
w~z!

l1I ~z!
E
z

1`

w~ t !C i~ t !dt, ~24!

whereC i(z) denotes thei th eigenfunction of Eq.~1!, w(z)
stands for any eigenfunction of Eq.~1! ~usually, though not
necessarily, that of the ground state!, and

I ~z!5E
2`

z

w2~ t !dt. ~25!

There is a free parameterl in Eqs.~21!–~25!, which may be
given any value except those in the range21,l,0 for
physical reasons~continuity of the wave functions!. There-
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fore, a single-parameter family of potentialsUss(z;l) is gen-
erated. Specifically, choosingw(z)5C l(z), the normalized
wave functionCssi(z) with the same indexi5 l reads

Cssl~z!5
Al~l11!

l1I ~z!
C l~z!. ~26!

Furthermore, if the original potential and the effective ma
are symmetric and the eigenfunctions have definite pa
then

I ~z!5E
2`

0

w2~ t !dt1E
0

z

w2~ t !dt5
1

2
1E

2z

0

w2~ t !dt

512E
2`

2z

w2~ t !dt512I ~2z!, ~27!

wherefrom

Uss~z;l!5Uss„2z,2~l11!… ~28!

and one can see that all physically different potenti
Uss(z) may be generated by giving only positive values
l. A negativel would just deliverUss(z) of the same shape
but reversed. Finally, we may note thatUss(z) becomes only
marginally different fromU(z) asl→1`; therefore major
effects are to be expected at smaller values ofl.

Thus, starting from the original potentialU(z) ~corre-
sponding to the symmetric structure!, one finds, via the su
persymmetric transform, a parameter-dependent family
asymmetric isospectral potentials and varies the param
l so as to maximize the second-order nonlinearity. Throu
out this scanning overl the states energies remain u
changed, while the wave functions, and hence the trans
matrix elements, vary.

III. NUMERICAL RESULTS AND DISCUSSION

As an example here we attempt to design and optimiz
BCS-based asymmetric structure for double-resonant S
matched for the pump wavelength of 5.1mm ~i.e.,
\v5242 meV!, corresponding, e.g., to CO laser radiatio
We consider ann-doped structure based on direct-gap se
conductors and assume that the band gap is sufficiently l
so that interband transitions are negligible. Thexzzz

(2) nonlin-
ear susceptibility then arises only due to electronic inters
band transitions and is given by~e.g., Ref. 1!

xzzz
~2!5

e3

Lze0\
2(

l
(
k

1

~2v1V ik!2 iGki

3(
l
M ikMklM li F r i i2r l l

v1V i l2G l i
2

r l l2rkk
v2V lk2 iGkl

G ,
~29!

whereMi j are the dipole matrix elements,V i j are the tran-
sition frequencies between statesi and j , r i i denotes the
sheet density of electrons residing on statei , Lz is the length
of the structure,G i j is the off-diagonal relaxation rates, an
v is the frequency of the~pump! light wave. The largest
value ofxzzz

(2) is obtained in the double-resonance regime, i
s
y,

s

of
ter
-

n

a
G

.
i-
ge

-

.,

whenv5V015V12 for states labeled as 0, 1, and 2~here
taken to be the lowest three!, and is given by

xzzzmax
~2! 5

e3~r002r11!

Lze0

M01M12M20

~\G2!
2 , ~30!

whereG2 is the ~assumed common! off-diagonal relaxation
rate and the off-resonant contributions of states other tha
1, and 2 are neglected. Variation of the potential and
wave functions by changing the parameterl ~Sec. II! will
clearly affect the matrix elements in Eq.~30!, but not the
population of states, since all the potentials are isospec
Assuming thatG2 remains~at least approximately! constant
asl varies, the optimization ofxzzz

(2) amounts to finding the
value ofl that will maximize the product of the three matr
elementsP (2)(l)5M01M12M20. Certainly, the potential
Uss(z) obtained by the procedure described in Sec. II sho
be practically realizable, i.e., the full potential excursi
should not exceed the band offset offered by the semic
ductor system used. In particular, the derivative of the eff
tive mass, which appears in Eq.~22!, implies that an abrupt
change of the effective mass would lead to the optimiz
potential with d-function peaks. The corresponding wav
functions would still be regular and physically acceptab
and could straightforwardly be used in further calculatio
Yet the potential withd-function peaks cannot be realized
practical semiconductor structures, so we prefer to av
such a situation. It is thus clear that the structure should
designed so that the effective mass varies smoothly or, e
better, is simply constant. The potential~i.e., the conduction-
band edge! and the effective mass in any graded semico
ductor alloy are related to each other to some extent, but
may be tailored independently within some limits, set
either physical constraints~no component of an alloy may
contribute more than 100% or less than 0%! or additional
requirements~e.g., that the structure should be unstrained
strained within reasonable limits!. In this example we at-
tempt to design a graded alloy structure such that its po
tial is variable but the effective mass constant~except for a
slight z dependence coming in implicitly, through nonpar
bolicity!. This additional restriction upon the effective ma
is intended to makeUss(z) generally smoother. The possibi
ity of achieving such a structure is considered next.

In composition-modulated~graded! ternary alloys such as
Al xGa12xAs, both the conduction-band edge~i.e., the poten-
tial! and the effective mass are position dependent. Howe
the two dependences are related to each other and cann
tailored separately. It is therefore not possible to achiev
specified constant effective mass and a specified variable
tential unless the two semiconductors happen to have
same effective mass. The situation is thoroughly change
we go to quaternary alloys. While they formally provid
enough freedom to get anym* andUss(z), there are some
practical restrictions to be observed. For one, the fact
any single compound cannot contribute more than 100%
less than 0% in the alloy composition significantly limi
what really can be achieved. Furthermore, the variation
the alloy composition also leads to the lattice constant va
ing across the structure, which may be large enough to
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duce a considerable strain and appearance of misfit disl
tions, which would degrade the device performance. Amo
binary III-V compounds there is no pair that is simult
neously lattice matched and effective mass matched w
having a finite conduction-band offset, so that their grad
alloy would automatically be strain-free and have a cons
effective mass. However, such pairs can be found am
alloys. Consider, for instance, a quaternary alloy of the ty
AxB12xCyD12y . We do the following two steps.

~i! Keeping the atomic speciesA,B,C,D fixed, we search
for two different compositions, i.e.,Ax1

B12x1
Cy1

D12y1
and

Ax2
B12x2

Cy2
D12y2

, where at least one ofx1Þx2 and y1
Þy2 is satisfied, which are characterized by the same lat
constant and effective mass and at the same time hav
large a band offsetU0 as possible.

~ii ! Then we make a graded alloy of the two ‘‘basis
ce
in
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te
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d
nt
g
e

e
as

alloys (Ax1
B12x1

Cy1
D12y1

)x81(Ax2
B12x2

Cy2
D12y2

)(1

2x8), wherex85x8(z) is varied in such a way as to get th
required modulation of the conduction-band edge, i.e., of
potential. This graded alloy will still be of the same quate
nary Ax(z)B12x(z)Cy(z)D12y(z) type as are the two basis a
loys and the maximum excursion ofU(z) is clearly limited
to U0. If the atomic species in basis alloys were chos
differently, their graded alloy would be at least a quintarna
or more complicated alloy, which we prefer to avoid.

To describe this procedure in more detail, we first den
the two basis alloys Ax1

B12x1
Cy1

D12y1
and

Ax2
B12x2

Cy2
D12y2

as Q(x1 ,y1) and Q(x2 ,y2), respec-

tively. If two alloys are to have the same effective mass a
lattice constant, the following two equations should be sa
fied:
x1y1mAC1x1~12y1!mAD1y1~12x1!mBC1~12x1!~12y1!mBD

5x2y2mAC1x2~12y2!mAD1y2~12x2!mBC1~12x2!~12y2!mBD , ~31!

x1y1aAC1x1~12y1!aAD1y1~12x1!aBC1~12x1!~12y1!aBD

5x2y2aAC1x2~12y2!aAD1y2~12x2!aBC1~12x2!~12y2!aBD, ~32!
nd
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wheremAC andaAC denote the effective mass and the latti
constant of theAC compound, etc., and these quantities
the alloy are taken to scale linearly with the contributions
the corresponding compounds~Vegard’s law!, themselves
being tabulated in the literature. Certainly, this is only a go
approximation to the true dependences of these quantitie
the alloy composition. There are very few data on appro
ate ‘‘bowing’’ parameters for various alloys, and if the
could be found for the alloys considered here the proced
would remain essentially the same, with slight modificati
of Eqs. ~31! and ~32!. Clearly, with two equations and fou
unknowns, the system is indeterminate. There may be a l
number, i.e., a continuous set of solutions, but they sho
belong to the interval 0<(x1 ,x2 ,y1 ,y2)<1 to be physically
acceptable. Fixing some values of, e.g.,x1 andy1 within this
range, Eqs.~31! and ~32! reduce to a quadratic equation i
say,x2 and, upon solving it, a linear equation iny2. How-
ever, of the two solutions one is trivialx25x1 andy25y1, so
one should extract the nontrivial solution by using the Vie
rules to get

x252
y1
R2

A
CR2

B
C , ~33!

y25y11R~x22x1!, ~34!

where

R5
AF2CD
CE2FB ~35!

and
f

d
on
i-

re

ge
ld

A5mAD2mBD , B5mBC2mBD ,

C5mAC2mAD2mBC1mBD , D5aAD2aBD ,

E5aBC2aBD , F5aAC2aAD2aBC1aBD . ~36!

Thus it should checked whether (x2 ,y2) found in this way
are physically acceptable, while (x1 ,y1) take various values
from the interval@0,1# and determine the effective mass a
the band offset, which will characterize the pair of alloy
Using the data for the effective mass and the lattice cons
of III-V binary compounds,19 where III denotes Al, Ga, or In
and V denotes P, As, or Sb, we explored all the nine poss
quaternary alloys based upon them. In six cases no acc
able solution (x2 ,y2) was found for any (x1 ,y1). In the rest
of the three cases, the conduction-band offsetU0 was then
calculated using the data of Ref. 20. It was found that
alloy Al xIn 12xPySb12y offers the maximumU0 of 231
meV, which is insufficient to accommodate three leve
spaced by;240 meV. In AlxIn 12xPyAs12y the bestU0
amounted to 360 meV, with the effective mass in the ran
;0.15 ~in free-electron mass units!, while the alloy
GaxIn 12xPySb12y hadU0 around 500 meV and the effec
tive mass in the range;0.07.

Since the supersymmetric transform is known to make
potentials generally ‘‘deeper’’ than the originals and the m
trix element productP (2) tends to increase as the effectiv
mass decreases, we choose the alloy GaxIn 12xPySb12y .
Specifically, we choose the basis alloysQ15(x1
50,y151) and Q25(x250.83,y250.46), i.e., InP and
Ga0.83In 0.17P0.46Sb0.54, with the effective massm*50.073,
the band offsetU0max5580 meV, and the band gaps o
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Eg151.35 eV andEg251.5 eV. Both are direct-gap sem
conductors, as may be seen directly or by linear interpola
of the data in Refs. 20 and 21.

The first step in the design is to generate a symme
structure with three equidistant states, spaced byDE5\v
5242 meV, observing all the restrictions discussed in S
II. We took the perturbation layer potential to be of truncat
parabolic type

U~z!5H U0 , 2d,z,2z0 or z0,z,d

1

2
m* S DE

\ D 2z2, 2z0,z,z0 ,
~37!

wherez05(2U0\
2/m*DE2)1/2 is the point where the para

bolic potential reaches the valueU0, here taken to amount to
U05430 meV. Energies of the two below-the-barrier bou
states may be estimated from the ideal linear harmonic
cillator formula Ei5( i1 1

2)DE, i50,1. After a number of
trials we found that the structure witha514 Å, b566.5 Å,
and 2d5121 Å, with the nonparabolicity included via Eq
~16! and Eg(z)5@12U(z)/U0max#Eg11@U(z)/U0max#Eg2,
satisfies about all the requirements. It has bound state
E05171 meV ~even state!, E15414 meV ~odd state!, and
E25657 meV~even state!, which are either below the firs
miniband or deep inside minigaps between the miniba
extending from 325 to 356 meV, 499 to 619 meV, and 680
896 meV. The first two bound states are below the bar
and are very well localized sinceE0 is well below the first
miniband andE1 is close to the middle of the minigap. Th
third state is above the barrier, with the conditions~15! sat-
isfied askW(E2)a5p/2 andkB(E2)b53p/2 ~so it is opti-
mally localized!, and interlevel spacing is
DE015DE125243 meV. This provides a good basis for th
supersymmetric transform to be applied.

A problem that arises in this second step is that
energy-dependent effective mass leads to an ene
dependent supersymmetric potential, which will be differe
for the three states and cannot be realized in real structu
To circumvent this difficulty we made the supersymmet
transform while fixing the energy to the middle of the ran
of interest and subsequently did some ‘‘fine polishing’’
the optimized potential. By changing the value ofl in Eqs.
~24! and ~26! and calculating the matrix elementsMi j

FIG. 2. Product of matrix elementsP (2) in the asymmetric BCS
as it depends on the parameterl in the supersymmetric transform
obtained withw(z)5C0(z).
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5*2`
1`Cssi* zCssjdz, we found that the productP (2) depends

on l as displayed in Fig. 2@in the casew(z)5C0(z)# and
takes the maximum value ofPmax

(2) 5392 Å3 at lopt50.09.
Mostly affected by the transform is the central part of t
perturbation layer, which becomes remarkably asymme
while the SL portion of the structure remains essentially u
changed. The optimized potential and the original symme
potential are given in Fig. 3. Bound-state energies were t
calculated for this optimized potential according to Eq.~11!
and values ofE05162 meV,E15418 meV, andE25654
meV were found. The levels’ equidistance condition w
thus significantly perturbed, as a consequence of approxi
tions introduced in the supersymmetric transform, w
DE015256 meV andDE125236 meV instead of the targe
valueDE5242 meV. To correct for this it is necessary
modify Uss(z) slightly. Whatever law of modification is
used, two free parameters are necessary to allow two g
(DE015242 meV andDE125242 meV! to be achieved.
Clearly, this corrected potential should be as close to
originalUss(z) as possible, so that it still has a large~at least
close to maximum! product of matrix elementsP (2). Here
we have used simple coordinate scaling inside the pertu
tion layer only, i.e., instead ofUss(z) we set a new potentia
Ufin(z8), defined asUfin(z8)5Uss(z), wherez85az1buzu
and a and b are the symmetric and asymmetric dilatatio
coefficients. These are to be adjusted by numerical solu
of the Schro¨dinger equation. The small peak inUss(z), on
the right-hand side of the well~Fig. 3!, was also eliminated
by this method. The values of the dilatation coefficien
a51.02 andb50.10 were found to restore the levels’ equ
distance, giving E05168 meV, E15411 meV, and
E25653 meV ~hence DE015243 meV andDE125242
meV!, and the product of matrix elements now
P (2)5385 Å3. This final potential, also given in Fig. 3, i
only slightly different fromUss(z) and the corresponding
values ofP (2) are very close as well, i.e., the ‘‘degree
asymmetry’’ of the structure has not changed very mu
~note thata51 andb50 make the ‘‘identity transform’’!.

The final potential displayed in Fig. 3 can now be realiz
using the graded alloy (Q2)x8(Q1)12x8 by suitably grading
the ‘‘mole fraction’’ x8(z). In effect

U0 maxx8~z!5Ufin~z!1const, ~38!

FIG. 3. Optimized supersymmetric potentialUss(z) ~dashed
line!, the starting symmetric potential~dotted line!, and the finally
adjusted potentialUfin(z) to be realized~solid line!.
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where const simply accounts for the fact that the refere
point for measuring the potentialUfin(z) is arbitrary. To take
advantage of the full span of the potential offered by
chosen basis alloys one should take const5uUfminu, where
Ufmin denotes the minimum value of the potential in Fig.
equal to2120 meV; therefore

x8~z!5
Ufin~z!1uUfminu

U0 max
. ~39!

Since the graded alloy (Q2)x8(Q1)12x8 is of the
same quaternary type as the two basis alloys,
Gax(z)In 12x(z)Py(z)Sb12y(z) , the mole fractionsx(z) and
y(z) may be written as x(z)5x2x8(z) and
y(z)511(12y2)x8(z). Their profiles, corresponding to th
finally optimized potential of Fig. 3, are given in Fig. 4.

The purpose of this example was to illustrate the capa
ity of BCS-based structures to extend the range of pho
energies that may be used for SHG under double-reso
~intersubband! conditions. One may want, however, to fin
what may loosely be called ‘‘figure of merit,’’ i.e., to com
pare the nonlinearity provided by BCS’s against that of cl
sical barrier-confined structures at the same value of pu
photon energy~allowing also for the fact that the classic
structure may be only fictitous, i.e., not realizable for larg
energies!. For this purpose we have generated, via the su
symmetric transform, the optimized asymmetric poten
starting from the idealized~not truncated! parabolic potential
U(z)5 1

2m* (DE/\)
2z2, keeping the same values o

DE5242 meV andm050.073 as above. Here we foun
lopt50.12 andPmax

(2) '1000 Å3. This indicates that Bragg
confinement is not as effective as the conventional bar
confinement and BCS wave functions have a lower ove
~hence also smaller matrix elements!. However, this is the
price to be paid for increasing the photon energies to a ra
that cannot be covered by conventional structures. Some
provement may be achieved by further optimizing the pot
tial, via an iterated supersymmetric transform, but since
derived potentials will become even deeper, not much is
be expected of this and such a procedure was not attem
here.

FIG. 4. Grading profile, i.e., the mole fractionsx(z) andy(z) in
the GaxIn12xPySb12y alloy, necessary to realize the potenti
Ufin(z) in Fig. 3.
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Finally, we briefly discuss a point that seems relevant
justify the accuracy of the results presented. In view of t
rather large energies associated with Bragg-confined st
~these may be well above the barrier top and very high abo
the conduction-band edge of the well semiconductor! one
may doubt whether even the energy-dependent effec
mass gives a reasonably accurate description of
conduction-band dispersion. The problem may be circu
vented by employing a more elaborate model, e.g., the e
pirical pseudopotential method. Such an approach would
purely numerical, more time consuming, and also difficult
implement for complicated structures such as BCS’s. To
solve this point we made test calculations, using the emp
cal pseudopotential method, for a simple structure tracta
by it: a single QW. The method is described in Ref. 22 a
the form factors were taken from Ref. 23 for InP and Ref.
for GaP, GaSb, and InSb. Along with the ‘‘normal’’ Ga
0.83In 0.17P0.46Sb0.54/InP QW withU05580 meV, a fictitous
structure withU0 deliberately increased to 880 meV wa
also considered in order to access the energy range ab
580 meV, where Bragg-confined states will be found in t
normal structure. Bound-state energies obtained by
pseudopotential calculations were then compared aga
those found from the envelope-function model with nonp
rabolicity. Results are displayed in Fig. 5. Clearly, althoug
the energy-dependent effective mass is definitely not the b
model for the conduction-band dispersion, errors introduc
by it are very low for energies less than 400 meV for QW
;40 Å wide ~as corresponds to our optimized BCS!. At
higher energies the absolute error tends to increase, bu
still acceptable for all energies of interest~departures from
the levels’ equidistance that are within the linewidth, typ
cally <10 meV, are tolerable!. Certainly, the errors intro-
duced by the envelope-function model with nonparabolic
may also be corrected by additional polishing of the op
mized potential, as described above, if it is really necessa

As a final remark, we should note that the~GaIn!~PSb!
alloy is not technologically common and there may appe
difficulties if one attempts a realization of the structure pr
posed above. Essentially, it was chosen here to make

FIG. 5. Bound-state energies in Ga0.83In0.17P0.46Sb0.54/
InP-based single-QW structure, as it depends on the well la
width c, calculated by the nonparabolic envelope function and t
empirical pseudopotential methods. The absolute errors~thick solid
lines! can be read on the right vertical axis.
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calculations easier and to illustrate the idea of using BC
for shorter-wavelength SHG while satisfying some fund
mental requirements for quantum heterostructures~the lack
of strain in the first place!. From a practical point of view it
may actually be advantageous to use other, much more s
ied alloys, such as the Ga0.47In 0.53As/Al 0.48In 0.52As pair, lat-
tice matched to InP, which has a high band offset
U0'500 meV. With the band-edge effective masses
0.043m0 and 0.073m0 and band gaps of 0.87 eV and 1.4
eV, respectively, there is peculiarity of this system in that t
nonparabolic effective masses turn out to be very close~to
within a few percent! for a wide range of energies (02800
meV measured from the GaxIn 12xAs conduction-band
edge!. Taking the effective mass to be position independ
though still dependent on energy would somewhat simp
the above considerations, and the structure design, bec
an ordinary Schro¨dinger equation might be used at any pa
ticular energy. However, since the constancy of the non
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rabolic effective mass in the GaxIn 12xAs/Al yIn 12yAs sys-
tem is only approximate, the analytically designed struct
would require some amount of numerical polishing in ord
to restore the levels equidistance required for its applicat

IV. CONCLUSION

The method for electronic-structure calculation in Brag
confined structures with an asymmetric perturbation lay
based on the envelope-function approach, is described.
then used to design a structure suitable for double-reson
intersubband second-harmonic generation at pump ph
energies that cannot be covered by conventional QW st
tures. The structure is optimized by employing the supers
metric quantum-mechanics approach, allowing for a syst
atic search of the best potential shape, which provides
largest nonlinear susceptibility.
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