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Application of Bragg-confined semiconductor structures for higher-energy
resonant intersubband second-harmonic generation
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The existence of bound electron states above the barrier in Bragg-confined structures is proposed as a means
of extending the range of photon energies suitable for resonant intersubband second-harmonic generation
beyond what is available in conventional quantum-well structures. Within the envelope-function approximation
the expressions are first derived for energies and wave functions of bound states in Bragg structures with an
asymmetric perturbation layer. A systematic procedure, based on supersymmetric quantum mechanics, is then
described for the design of optimized structures to get the maximum nonlinear susceptibility. An example of a
calculation for the case of pump photon enefigy~ 240 meV is also presented and the design aspects of such
structures are considerd&0163-18207)00115-X]

I. INTRODUCTION with an asymmetric perturbation layer for resonant intersub-
band SHG, taking advantage of the high-lying bound states
Among various electronic and optical properties of low-they support. We first derive the expression for bound-state
dimensional semiconductor structures, their nonlinear optica¢nergies in such structures, allowing for an arbitrary varia-
properties attract continuous research attention because ttien of the potential and the effective mass in the perturba-
nonlinearity can be resonantly enhanced by appropriate tation layer. Then we turn to optimizing the structure with
loring of the structure. The second-order nonlinearity basedespect to the second-order nonlinearity, using a systematic
on intersubband transitions, responsible, e.g., for the secongocedure based on the supersymmetric quantum-mechanics
harmonic generatiofSHG) in the infrared, is most effective approach? Finally, we present an example of a calculation
in the case of double resonancehen the spacing between and a design of a structure matched for SHG of Am{CO
three equidistant states coincides with the pump photon erlase) radiation, also discussing the possibility of its practical
ergy. It has been studied in various asymmetric quantuniealization.
well (QW) structures: Values of the conduction-band off-
set(the barrier heightbetween the QW constituent semicon-
ductors essentially set the upper limit of photon energies that Il. THEORETICAL CONSIDERATIONS

can undergo frequency doubling under double-resonance | semiconductor microstructures the effective mass is
conditions. This is because the QW has to accommodaigenerally position dependerieither in a continuous or a

2.5-3 times larger than the pump photon energy. Indeedschrginger equation then takes the fofn
though not for this reason alone, this process been studied

mostly for the case of a 10,6m CO, laser pump™ or

larger wavelengths Pairs of semiconductors that have larger _ ﬁ_z i 1 UV =E¥ 1)
band offsets, suitable for QW’s for higher-energy SHG, are 2 dz\m(z) dz '

often lattice mismatched or indirect-gap materials, which are

inconvenient for this purpose. Consider a one-dimensional SL structure having symmetric

Th? recently proposed Bragg-confined SUPC&‘_@S U(z) andm(z) dependences within a periafj perturbed by
(BCS'’s) that support bound states above the barrier top prog single asymmetric perturbation layer of widtiFig. 1(a)].
vide an effectively increased t?and offset and therefore mayypile the strict periodicity of the structure is lost, there
extenc_i the apphca@hty of QW'’s for resonant SHG at h'gh?rclearly remains “local”  periodicity in the regions
energies. A BCS is actually a semiconductor superlattice _ ., —6) and (8,+), provided the long-range effects of
(SL) with the strict periodicity perturbed in a limited re_gion, the perturbation layefe.g., the accumulated space charge
which may be called the perturbation layer. Along with the 516 neglected. In this cagexemplified in Fig. 1b) for the
conventional “piecewise continuous” miniband SpECtr“m'Kronig-Penney SL the wave function in the unperturbed

there appears an additional discrete spectrum: bound statgsyions may be written as a linear combination of two coun-
lying in minigaps, at energies that are both below and abov?erpropagating waves

the top of the barriers. Their wave functions are localized to

the perturbation layer, decaying away from it, as a result of _ _

constructive interference of waves reflected at well/barrier¥ (2)=C1U(2)e™#+Cou_(2)e” ", z<—5 or 2>,

interfaces in the SL portions of the structure. All studies of )

BCS’s until now considered only the case of a symmetric

perturbation layer when the structure lacks any significanwvhereu..(z) are the periodic parts of Bloch wave functions

second-order nonlinearity. andk, is thez component of the wave vector. To find the
In this paper we consider the possibility of using BCS’swave function in the unperturbed region one should first de-
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FIG. 1. (a) Schematic view of a periodic structure with an asym-
metric perturbation layer anih) the corresponding energy diagram
in the case of Kronig-Penney SL portions of the structure.

termineu.(z) within one period of the SL. Taking the pe-
riod nearest the perturbation layer we have

U.(2) = *22=consff«(z) + (= k,) fo(2)], )

wheref.(z) andf,(z) are the even and odd, with respect to
the period midpoint az= §,+d/2, solutions of the Schro
dinger equatiorinote that the Hamiltonian is symmetric with
respect to this point These are obtained by integrating Eq.
(1) in the interval @, 5+d) with the fundamental boundary
conditions fe(8p)=1, fi(S)=0 and fy(5)=0,
fo(80) =1. The factorg( +k,) is determined from Bloch pe-
riodic boundary conditions.. (8g—d/2)=u.(5+ d/2) as

d
ke f9(50+§ +k,d
O(£ky) =i g et —— 4
fO 50"_5

where k,d is given by the miniband dispersion relation
E(k,), which read¥’

Mgy (o)
d

:

2

cogk,d)=
Mg

oot

X[fe(2)f5(2) + fe(D)To(2) 1= 5+ ai2

=F(E) 5
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To find bound states in minigaps, due to the presence of
the perturbation, we recall that thekg is complex, given

by'® k,=n=/d+ik, in the nth minigap, withk,>0. Equa-
tions (4) and (5) then become
coshik,d)=(—1)"F(E) (6)
and
+k B 50+ (_1)nF(E)_1 (=1)"2
f(=ko)= (—1)"F(E)+1
=% Opound E)- (7)

With complexk, the constan€, in Eq. (2) has to be zero in
the region g> 6) and the same applies @, in (z<— ). It
follows from Eq.(3) that the wave function of a bound state
in the nth minigap takes the following form in tHeh period
of the SL [—-6-ld<z<—-6—-(1-1)d or &+(I-1)d
<z<é+Id]:

W(2)=C_ g(— )" " Ve "IN (2)  Gpound o(2)],
8

where the subscripR and the plus sign correspond to
z> 6, while the subscript and the minus sign correspond to
z<—4, and it is implicitly taken that the functiong, ,,
initially defined within a single perio@with 1=1), map into
more remote periods by simple translation. Inside the pertur-
bation layer the wave function may also be written as a linear
combination of two particular solutions

V(2)=A1y1(2) +Azya(2z), —06<z<9, 9
wherey,(z) andy,(z) are found by integrating Eql) using
the fundamental boundary conditioyg(0)=1, y;(0)=0
andy,(0)=0, y5(0)=1. Imposing the conventional bound-
ary conditions (the continuity of W(z) and of
[1/m(2)][d¥(2)/dz]) at z=*5 to the wave functions
(8) (with I =1) and(9) results in a 4 4 homogeneous linear
system inA;, A,, C_, and Cg. Nontrivial solutions re-
quire the corresponding determinant to be zero, which, to-
gether with fo(—8)=fe(8), fi(—38)=—Fi(d), fo(—9)
=—1o(8), fo(—=0)=1f5(8), and mg(—38)=mgy(J),

because the effective massg; (z) is position dependent. results in

7(6) 0 —Yi(=8) —ya=9)

m5(—5), 0 _/_5 _/_5

S WERAL Yi(=8) —ys(=9)
=0, 10
0 W8 a®)  —yalo) (10

ms(6) | o o
0 me(3) 7 (6) y1(9) Y2(9)
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wheren(z) = f&(2) + Opound o(2) @andmy(z) denotes the elec- For any general forms of the Slsymmetri¢ period and
tron effective mass in the perturbation layer. From Bd))  the (asymmetri¢ perturbation layer it is very likely that the
the bound-state energies in SL’'s with a generally asymmetriabove procedure would have to be performed numerically.
perturbation layer are found from The particular case of the rectangul&ronig-Penney SL,
however, enables the functiorfg ,(z) and the dispersion
E(k,) to be found analytically>!® This is the case one usu-
ally has in practice, or at least a good approximation to it,
neglecting the self-consistency effefisg. 1(b)]. Numerical

_ my(—9)
Mg (J)

7/’(5)[ 7(O)[Y1(— 0)Y5(8) ~y1(8)y2(— )]

ms(5) ] solution of the Schidin ion then h b -
s SV — &)=Vl — SWol — S ger equation then has to be per
Mg (6) 7' (OLY1(0)Ya( = 0)=Ya( = 0)¥2(— 9] formed only in the perturbation layer—&,+ 6) to find
Y1,42).
— 5){ (VL= 8)ya(8) —YL(SYH(— )] The bound-state wave functions decay away from the per-
turbation layer, with the decay constant given by Eg).
M) They are derived from bound stat@s resonant statesf the
5 . . .
+ 0 (O[Y1(OYH =) —yi(— )y (5)]] perturbation layer for energies beldabove the barrier top.
Mg (5) ! 2 ! ? The degree of the wave-function confinemeéotalization

-0. (11) reflects the degree of constructive interference of waves scat-
tered at SL interfaces, as observed in the region of the per-
The boundary conditions a= = § enable the three coeffi- turbation layer. Good localization corresponds to large val-
cients, e.g.A;,andC_, to be expressed in terms G as  ues ofk,d, which is difficult to maximize analytically for any
general structure. Yet, for Kronig-Penney SL’s the maximum

, ms(8) localization conditions for above-the-barrier states are simple
Ar2=| n(9)y2.4(0) = me(0) 7 (5)y2,1(5)} and completely analogous to those for optical multilayer
structures’ They have the form of quantum-mechanical
% Cr=K1.Cr. Bragg reflection conditiofs!!
W(Y1,Y2)|z-5 ' 2 2
kgb=(q+3)m, kwa=(r+z)m, (15
77( 5)yé( 5)_ ma( 5) 7]’(5))/2(5) where kB=[2mB(E_ Uo)/ﬁz]llz, kW=[2mel/ﬁ2]l/2, and '
_ Mg (5) q,r=0,1,2,3, ... g andmy, are the effective masses in
CL= ms(— 8) the barrier and well in the SL portion of the structurfgqua-
7(6)y(— )+ me (9) 7' (8)y2(—9) tions (15) thus define the structure parameters necessary to
St get the best localization of some above-the-barrier state.
W(Y1,Y2) = s Below-the-barrier states are generally well localized anyway
m R and rather insensitive to the structure parameters, provided
they do not come too close to allowed minibands of the SL.
=K;Cpg, (12 Considering now the double-resonant SHG in these struc-

tures, we note thafat least three equidistant levels are re-
quired for this process. The fact that BCS’s support discrete
states at above-the-barrier energies enables one to increase

whereW(yy,y,) =y1(2)y2(2) —y1(2)y2(2) andCg itself is
determined from the wave-function normalization

JTZIW(2)]?dz=1. Using Egs(8) and(9) we find the pump(and harmonig photon energies beyond the range
(1+K2)Q iy provided by classical QW structures with all three states be-
_ T 2 2 low the barrier. The pump light wavelength pf5um, for
——rg t K1Y+ K5Y5+ 2K KoY , . . . .
R1—e 2 122 1h2liz instance, would require a classical QW with the band offset

(13)  of =0.6 eV at least, in order to accommodate three states,
where Q= [9T9£2(2)+ 62. §2(2)]dz Y, = [° 2 (Z)dz, ~ Whichis the limit of availability in most heterojunctions. The
ande: J fiin[(Ziglz)(Z)d?unJO( )1dz Y122 1% ¥142) problem may be solved by resorting to a BCS type of struc-

This completes the procedure of finding the bound-stat ulre, IWlﬂll two st?tes _belovx:c ﬁnd one_dgbove the barr]rle:a
wave functions. In the special case of a symmetric perturbat—)ee\z;ﬁ’Iéczl\i’;ae\éesgggt't%nﬁa?/et areiggg'v(';g:;te?ﬁfes t?]eou
tion layer the fundamental solutions inside yt,(z) and transition matrix elements will begsmhIIAs additional de-
y»(2), have even and odd parity, respectively, and the full_;

wave function then also has a definite parity. Equainty o 93renocs W O (1ed PUEIares oF Be e barter
would then take the form Yy Yy p yer p

rameters, and much less by those of SL, and care should be
my( S) taken only to keep the_m away from SL minibands: The en-
Mo (0) n’(&)yl(é)} ergy of above-the-barrier state, on the other hand, is strongly
SL influenced by both the perturbation layer and the SL param-
my( ) eters, as is its localization. As the third point, the Fermi level
7(6)y4(8)— Me(d) 77'(5))/2(5)} =0, (14  in ann-doped BCS will be close to the lowest miniband, so
st the lowest bound state has to be below it in order to acquire
where the zeros of the firgsecondl term correspond to en- significant electron concentration. In view of all these con-
ergies of everfodd bound states of this symmetric structure. straints and the complicated form of E41), the design of a

[ 7(0)y1(0)—

X
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more or less optimized structure of this type by a purely ﬁZ d2

trial-and-error method would be very difficult. Instead, one UsdX¥)=Uei(X) = — gzt + LX) I}, (21)
may first attempt to design a symmetric structure with equi-

distant states, their energies given by a simpler @d). where]l(x)= f"m@u(x)dx and (pu(X) denotes any bound-
Being symmetric it would lack any second-order nonlinear-state-scaled wave functiom(x). Transforming back to the
ity, but should satisfy all other requirements stated above. Aseal-space coordinate we find, after a lengthy derivation,
the second step this symmetric BCS should be used asthat the supersymmetric partner potentialt(z) of Eq. (1)
starting point to generate a family of isospectral structuresis

which will be asymmetric and therefore allow SHG by using

the supersymmetric quantum mechanidSUSYQM) 72 d

approach? From this family the structure with the best per- Usd2)= [ U(2)—- m*(T(z)E) dz

formance is then selected. ' ’

In applying the above methods to real semiconductor
structures, however, due attention is to be paid to the effects
of nonparabolicity, which may be quite prominent because
one deals with energies high above the conduction-band

||

edge, at least in some parts of the structure. The nonparabo- R 1 dm*(z,U(2).E)
licity may be conveniently described by an energy-dependent 2 2[m*(z,U(2).E)]° dz
effective mass, based on the two-band Kane nmiddel
) 1 d2m* (z,U(z),E)] 52
m* (2,U(2),E)=m(2) 1+EE—L(JZ()Z) (16) A[m*(z,U(2),B)]* dz? 2
9 . 5

where Ey(2z) is the material compositioncand hence the x{ = 1 dm* (z,U{2).E)
position) dependent band gap. Using the standard SUSYQM 2[m*(2,U{2),E)]° dz
approach necessitates that Hd), with the energy- and
position-dependent effective mass, should be recast into a N 1 d?m*(z,U{2),E) 29
more conventional form with a variable potential but con- 4[m*(z,U{2),E)]? dz° - (22

stant mass. This can be accomplished by introducing a suit-

ab]y chosen invertable coordinate transfozmg(x) in Eq. Equatlon(22) is in fact a differential equatlon to be solved
(1), which then takes the form for Ug{z). This complicated form occurs because of

m* =m*(z,U.{2),E). If the mass were constant).{z)
, 2 would be given by an explicit expressibéhTo a good ap-
7| gxln(mg")] proximation, however, the nonparabolicity at lower energies

#?  d%u(x) @ A?
_ng/Z dX2 _ng/Z -

may be neglected, and at higher energies one may take

2 m* (z,U¢{z),E)~m*(z,U(z),E), inducing cancellation of

+ Em[ln(mg’)]]U(X)+[L—J(x)_E]u(X):o' the last two terms in Eq(22), which then becomes an ex-

plicit expression forUg{z). Having derived the expression

17) for U{2) using the coordinate transform and SUSYQM

where the scaled wave functian(x) is related to the true methods, all the relations hereafter will be given in terms of
wave function by ¥(x)=¥(g(x))=const(x){ymg’, and the real coordinate only.

m(x) =m(g(x)), U(x)=U(g(x)), and g’=dg(x)/dx. To The explicit, though approzdr_nate, exprgssion for(2)
cast Eq.(17) into the common textbook form we set a con- should now be used in the Schlinger equation
straint B2 d (1 dv. N )
r_ng/2:mo>01 (18) _?d_z W dz +USS(Z) s§— s - ( 3)
wherem, does not depend ox, which gives The corresponding wave functions, as they depend on the
real coordinate, are
72 d?u(x)
~ 2mg a2 T[VYer(x)—EJu(x)=0, (19 o(2)
Vss(2)=Y¥i(2D)+ 75 so(t)‘l’i(t)dt. (24)
. AN+1(2) ),
with
) where¥;(z) denotes theth eigenfunction of Eq(1), ¢(2)
stands for any eigenfunction of E(l) (usually, though not
Uer(x)=U(x) — 2m, [ ( (Inym) ) (In\/—)} necessarily, that of the ground statand
(20) z
Equation(19) has the identical eigenspectrum to the original I(2)= f_wso (tHdt. (25

Eqg. (1), but it has the constant effective mass and can be

subjected to the standard isospectral supersymmetric tran¥here is a free parametgrin Egs.(21)—(25), which may be
form. According to the SUSYQM theor¥, the supersym- given any value except those in the rangd<\<0 for
metric partner to the potentidl .«(x) is given by physical reasongcontinuity of the wave functions There-
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fore, a single-parameter family of potentiélg{z;\) is gen-
erated. Specifically, choosing(z)=¥,(z), the normalized
wave function¥ .4(z) with the same index=1| reads

NN+ 1)

Wss(z)zm

Vy(2). (26)
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when w= Q4= , for states labeled as 0, 1, and(l2ere
taken to be the lowest thrgeand is given by

2 e%(poo— p11) MM 12M 50
zzzmax szo (ﬁrz)Z '

(30

Furthermore, if the original potential and the effective mass
are symmetric and the eigenfunctions have definite paritywhereT, is the (assumed commgroff-diagonal relaxation

then

I(Z)=ficcp2(t)dt+ Jochz(t)dt=%+joch2(t)dt

=1- f, Zcpz(t)dtzl—l(—z),

wherefrom

(27)

UsdZM)=Us(~2,—(A+1)) (28)

and one can see that all physically different potential
U.{z) may be generated by giving only positive values to
\. A negative\ would just deliverU {z) of the same shape,
but reversed. Finally, we may note tHa{{z) becomes only
marginally different fromU(z) asA — +«; therefore major
effects are to be expected at smaller valuea .of
Thus, starting from the original potenti&)(z) (corre-

sponding to the symmetric structyyr@®ne finds, via the su-

persymmetric transform, a parameter-dependent family o
asymmetric isospectral potentials and varies the paramet%!‘e’
\ so as to maximize the second-order nonlinearity. Through

out this scanning oveh the states energies remain un-

changed, while the wave functions, and hence the transitio

matrix elements, vary.

IIl. NUMERICAL RESULTS AND DISCUSSION

As an example here we attempt to design and optimize
BCS-based asymmetric structure for double-resonant S
matched for the pump wavelength of 5.&m (i.e.,
hw=242 me\}, corresponding, e.g., to CO laser radiation.
We consider am-doped structure based on direct-gap semi
conductors and assume that the band gap is sufficiently lar
so that interband transitions are negligible. T##, nonlin-

ear susceptibility then arises only due to electronic intersub

band transitions and is given lfg.g., Ref. 1

3 1

2__°© -
K (Lo+Q)—ily

Xzzz WEI

Pii — Pu _ P~ Pkk
a)-l—Q“—F“ w—Q|k—iFk| ’

(29

XZ MMMy

whereM;; are the dipole matrix element&;; are the tran-
sition frequencies between statesand j, p;; denotes the
sheet density of electrons residing on siate, is the length
of the structure[’;; is the off-diagonal relaxation rates, and
w is the frequency of th€pump light wave. The largest
value ofy{?.is obtained in the double-resonance regime, i.e.

HE

rate and the off-resonant contributions of states other than O,
1, and 2 are neglected. Variation of the potential and the
wave functions by changing the paramekefSec. ) will
clearly affect the matrix elements in E¢30), but not the
population of states, since all the potentials are isospectral.
Assuming thatl", remains(at least approximatejyconstant
as\ varies, the optimization of!{2), amounts to finding the
value of\ that will maximize the product of the three matrix
elementsITA(A\)=MgM,M,,. Certainly, the potential
U.{z) obtained by the procedure described in Sec. Il should
be practically realizable, i.e., the full potential excursion

S':‘,hould not exceed the band offset offered by the semicon-

ductor system used. In particular, the derivative of the effec-
tive mass, which appears in E@2), implies that an abrupt
change of the effective mass would lead to the optimized
potential with §-function peaks. The corresponding wave
functions would still be regular and physically acceptable
and could straightforwardly be used in further calculation.
Yet the potential withs-function peaks cannot be realized in
Practical semiconductor structures, so we prefer to avoid
ch a situation. It is thus clear that the structure should be
designed so that the effective mass varies smoothly or, even
better, is simply constant. The potentja€., the conduction-
5and edgeand the effective mass in any graded semicon-
uctor alloy are related to each other to some extent, but still
may be tailored independently within some limits, set by
either physical constraint§io component of an alloy may
contribute more than 100% or less than )0®&6 additional
5equirement$e.g., that the structure should be unstrained or
trained within reasonable limjtsin this example we at-
tempt to design a graded alloy structure such that its poten-
tial is variable but the effective mass constétcept for a
slight z dependence coming in implicitly, through nonpara-

gtéolicity). This additional restriction upon the effective mass

Is intended to makéJ . z) generally smoother. The possibil-
ity of achieving such a structure is considered next.

In composition-modulate(graded ternary alloys such as
Al ,Ga; _,As, both the conduction-band ed@e., the poten-
tial) and the effective mass are position dependent. However,
the two dependences are related to each other and cannot be
tailored separately. It is therefore not possible to achieve a
specified constant effective mass and a specified variable po-
tential unless the two semiconductors happen to have the
same effective mass. The situation is thoroughly changed if
we go to quaternary alloys. While they formally provide
enough freedom to get anyp* andU.{z), there are some
practical restrictions to be observed. For one, the fact that
any single compound cannot contribute more than 100% or
less than 0% in the alloy composition significantly limits
what really can be achieved. Furthermore, the variation of
the alloy composition also leads to the lattice constant vary-
jng across the structure, which may be large enough to in
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duce a considerable strain and appearance of misfit dislocalloys (AxlBl_xlclel_yl)x’ +(szBl_X2Cy2Dl_y2)(1
tions, which would degrade the device performance. Among_xf) wherex’ =x’(2) is varied in such a way as to get the
binary 1ll-V compounds there is no pair that is simulta- required modulation of the conduction-band edge, i.e., of the
Eequsly I?.tt'.(t:e matotl:hetq ar;)d ec:fe?;uvet masti T‘;";Ched V‘éjh'l otential. This graded alloy will still be of the same quater-

aving a finite conduction-band offset, so that their grade ary Ay»B1-x(»Cys D1y tyPe as are the two basis al-
alloy would automatically be strain-free and have a constanlt ; . . -

. . oys and the maximum excursion f(z) is clearly limited
effective mass. However, such pairs can be found amon U.. If the atomic species in basis allovs were chosen
alloys. Consider, for instance, a quaternary alloy of the typ . 0 v thei d dp I Id be at | y ¢ -

AB; ,CyD; . We do the following two steps. imerently, e:r grade ”a oy Y]V-OE ea feas a qw; arnary
(i) Keeping the atomic specidsB,C,D fixed, we search ©f MOré comp |cr?te alloy, which we pre er'lto aqu :
for two different compositions, i-eAxlBlfxlclelfyl and To describe this procedure in more detail, we first denote

szBl,XZCYZDl,yZ, where at least one of;#x, andy; the —two  basis alloys AxlBl‘chlel‘yl and

#Y, is satisfied, which are characterized by the same Iatticészl*Xszszyz as Q(x..,y,) and Q(xz,yz)., respec-

constant and effective mass and at the same time have &gely. If two alloys are to have the same effective mass and

large a band offsetly as possible. lattice constant, the following two equations should be satis-
(i) Then we make a graded alloy of the two “basis” fied:

X1Y1MactX1(1—Yy1)Map+y1(1—X1) Mg+ (1—X1)(1—y1)Mpgp
=XpYoMact X2(1=Y2)Map+Yo(1—Xz) Mg+ (1—X3)(1—Yy2)Mgp, (31

X1Y18actX1(1—Yy1)aaptyi(1—X1agc+(1—X1)(1-yq)agp

=XaY2aact X2(1=Y2)aapTYa(1—Xz)agct (1—X2)(1-Y2)app, (32
|
wherem,c anda,c denote the effective mass and the lattice A=Mpp—Mgp, B=Mgc—Mgp,
constant of theAC compound, etc., and these quantities in
the alloy are taken to scale linearly with the contributions of C=Mpc—Map— MgctMgp, D=asp—agp,
the corresponding compound¥egard’s law, themselves
being tabulated in the literature. Certainly, this is only a good E=agc—agp, F=asc—asp—agctagp. (36

approximation to the true dependences of these quantities ; : .
the alloy composition. There are very few data on appropri(—]Irhus it should checked whethexy(y,) found in this way

ate “bowing” parameters for various alloys, and if these are physipally acceptanle, whilexl_(,yl) take var.ious values
could be found for the alloys considered here the procedurf Ombthr? dlntﬁrv?l[(a\,lﬂ ahnSVi(Ijletirr?m(ta tr?ze e::]ectlv?rm?ssfl and
would remain essentially the same, with slight modification € band ofiset, c characterize the pair of alloys.
of Egs. (31) and (32). Clearly, with two equations and four Using the data for the effective mass and the lattice constant
. . y : 9

unknowns, the system is indeterminate. There may be a lar %f lll-V binary compounds,” where il denotes Al, Qa, or In_
number, i.e., a continuous set of solutions, but they shoul hd V denotes P, As, or Sb, we explored 6.‘" the nine possible
belong to the interval & (X;,X,.,y1,y,)<1 to be physically quaternary alloys based upon them. In six cases no accept-

s A able solution %,,y,) was found for any X;,y;). In the rest
acceptable. Fixing some values of, exg.andy; within this .
range, Eqs(31) and (32) reduce to a quadratic equation in, of the three cases, the conduction-band offdgtwas then
I . S calculated using the data of Ref. 20. It was found that the
say, X, and, upon solving it, a linear equation y3. How- allov Al-In._-P.Sb offers the maximumU. of 231
ever, of the two solutions one is triviah=x; andy,=y;, SO Y AL 1-xPyS01 -y 0

- . / . .. meV, which is insufficient to accommodate three levels
one should extract the nontrivial solution by using the VleteSpaceol by~240 meV. In Alin, ,P,As, , the bestUg

rules to get amounted to 360 meV, with the effective mass in the range
yy A B ~0.15 (in free-electron mass unjts while the alloy
Xo=— RCR T (33 Gaxln 1_XP.ySb1_y hadUg, around 500 meV and the effec-
tive mass in the range-0.07.
Since the supersymmetric transform is known to make the
Y2=Y1+R(X2=X0), (34) potentials generally “deeper” than the originals and the ma-
where trix element productI® tends to increase as the effective
mass decreases, we choose the alloyl®a ,P,Sb; .
AF—-CD Specifically, we choose the basis alloyQ;=(x;
R=Ge"753 (39  =0y;=1) and Q,=(x,=0.83y,=0.46), i.e., InP and

Gay gidNg.17P0.465b0 54, With the effective massn* =0.073,
and the band offsetU,»,=580 meV, and the band gaps of
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FIG. 2. Product of matrix elemeni$® in the asymmetric BCS FIG. 3. Optimized supersymmetric potentibl.{z) (dashed
as it depends on the parametein the supersymmetric transform, line), the starting symmetric potentiédotted ling, and the finally
obtained withe(z) =¥ (2). adjusted potentidly,(z) to be realizedsolid line).

Eg1=1.35 eV andEg,=1.5 eV. Both are direct-gap semi- = [ZW%z¥4dz we found that the produdti(® depends
conductors, as may be seen directly or by linear interpolatiomn \ as displayed in Fig. 2in the casep(z)=V,(2z)] and
of the data in Refs. 20 and 21. takes the maximum value di{2,=392 A% at \,=0.09.
The first step in the design is to generate a symmetrigyiostly affected by the transform is the central part of the
structure with three equidistant states, spaced\By=fiw  perturbation layer, which becomes remarkably asymmetric,
=242 meV, observing all the restrictions discussed in Seowhile the SL portion of the structure remains essentially un-
IIl. We took the perturbation layer potential to be of truncatedchanged. The optimized potential and the original symmetric
parabolic type potential are given in Fig. 3. Bound-state energies were then
calculated for this optimized potential according to Ehjl)
Uo, —d<z<—2zp or zp<z<9¢ and values ofE,=162 meV,E;=418 meV, andE,= 654
U(z)=y1 _[AE 2 5 (37 meV were found. The levels’ equidistance condition was
S 7] Z —2p<Z<Z, thus significantly perturbed, as a consequence of approxima-
tions introduced in the supersymmetric transform, with
wherez,=(2Uoh%/m* AE?)"? is the point where the para- AE,,=256 meV andAE,,=236 meV instead of the target
bolic potential reaches the vallg, here taken to amount to  value AE=242 meV. To correct for this it is necessary to
Uo=430 meV. Energies of the two below-the-barrier boundmodify U.(z) slightly. Whatever law of modification is
states may be estimated from the ideal linear harmonic osised, two free parameters are necessary to allow two goals
cillator formula E;=(i+ 3)AE, i=0,1. After a number of (AEy;=242 meV andAE;,=242 meV} to be achieved.
trials we found that the structure witt=14 A, b=66.5 A, Clearly, this corrected potential should be as close to the
and 25=121 A, with the nonparabolicity included via Eq. original Us{z) as possible, so that it still has a largs least
(16) and E4(2)=[1—-U(2)/UomadEg1+[U(2)/UomadEg2:  close to maximurm product of matrix element$l(?). Here
satisfies about all the requirements. It has bound states @fe have used simple coordinate scaling inside the perturba-
Ep=171 meV (even statg E;=414 meV (odd statg and tion layer only, i.e., instead dfi{z) we set a new potential
E,=657 meV(even statg which are either below the first U (z'), defined asUs,(z')=U<{z), wherez’ = az+ 8|z
miniband or deep inside minigaps between the minibandand « and g are the symmetric and asymmetric dilatation
extending from 325 to 356 meV, 499 to 619 meV, and 680 tacoefficients. These are to be adjusted by numerical solution
896 meV. The first two bound states are below the barriepf the Schrdinger equation. The small peak W{z), on
and are very well localized Sin(Eo is well below the first the right-hand side of the We{F|g 3)' was also eliminated
miniband ancE, is close to the middle of the minigap. The by this method. The values of the dilatation coefficients
third state is above the barrier, with the conditiqt8) sat- a=1.02 andﬁ: 0.10 were found to restore the levels’ equi_
isfied askw(E;)a=m/2 andkg(E;)b=3m/2 (so it is opti-  distance, giving E,=168 meV, E;=411 meV, and
mally localized, and interlevel spacing IS E,=653 meV (hence AEy=243 meV andAE;,=242
AEq=AE;,=243 meV. This provides a good basis for the mev), and the product of matrix elements now is
supersymmetric transform to be applied. . 11(®=385 A%, This final potential, also given in Fig. 3, is
A problem that arises in this second step is that theynly slightly different fromUg{z) and the corresponding
energy-dependent effective mass leads to an energymjyes of[1® are very close as well, i.e., the “degree of
dependent supersymmetric potential, which will be differentasymmetryn of the structure has not changed very much
for the three states and cannot be realized in real structure@mte thate=1 and8=0 make the “identity transform}.
To circumvent this difficulty we made the supersymmetric  The final potential displayed in Fig. 3 can now be realized

transform while fixing the energy to the middle of the rangesing the graded alloyd,) . (Q,);_ by suitably grading
of interest and subsequently did some “fine polishing” of he “mole fraction” x'(2). In effect

the optimized potential. By changing the valuexofn Egs.
(24) and (26) and calculating the matrix elementd;; UgmaxX' (2) = Ujin(2) +const, (38
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FIG. 4. Grading profile, i.e., the mole fractiorgz) andy(z) in FIG. 5. Bound-state energies in G@No1Po4650.54
the Galn,_,P,Sb;_, alloy, necessary to realize the potential InP-based single-QW structure, as it depends on the well layer
Usin(2) in Fig. 3. width c, calculated by the nonparabolic envelope function and the

empirical pseudopotential methods. The absolute eftbisk solid

where const simply accounts for the fact that the referencines can be read on the right vertical axis.

point for measuring the potentibl;,(z) is arbitrary. To take ) _ ) .
advantage of the full span of the potential offered by the Finally, we briefly discuss a point that seems relevant to
chosen basis alloys one should take cefk;y|, where justify the accuracy of the rgsults presented. In view of the
Us,, denotes the minimum value of the potential in Fig. 3’rather large energies associated .Wlth Bragg—conflned states
equal to— 120 meV: therefore (these may t_)e well above the barrier top and'very high above
the conduction-band edge of the well semicondyctaore
may doubt whether even the energy-dependent effective
— Usin(2) + U gl (39) mass gives a reasonably accurate description of the
U0 max ’ conduction-band dispersion. The problem may be circum-
vented by employing a more elaborate model, e.g., the em-
Since the graded alloy Q). (Q1)1-x is of the pirical pseudopotential method. Such an approach would be
same quaternary type as the two basis alloys, i.epurely numerical, more time consuming, and also difficult to
Gay(zIN1-x2)PySb1-y(z, the mole fractionsx(z) and  implement for complicated structures such as BCS's. To re-
y(z) may Dbe written as x(z)=x,x'(z) and solve this point we made test calculations, using the empiri-
y(2)=1+(1-y,)x'(2). Their profiles, corresponding to the cal pseudopotential method, for a simple structure tractable
finally optimized potential of Fig. 3, are given in Fig. 4. by it: a single QW. The method is described in Ref. 22 and
The purpose of this example was to illustrate the capabilthe form factors were taken from Ref. 23 for InP and Ref. 24
ity of BCS-based structures to extend the range of photoffor GaP, GaSb, and InSb. Along with the “normal” Ga
energies that may be used for SHG under double-resonantsdn g 1P 46500 54/INP QW with U,=580 meV, a fictitous
(intersubbang conditions. One may want, however, to find structure withU, deliberately increased to 880 meV was
what may loosely be called “figure of merit,” i.e., to com- also considered in order to access the energy range above
pare the nonlinearity provided by BCS’s against that of clas580 meV, where Bragg-confined states will be found in the
sical barrier-confined structures at the same value of pumpormal structure. Bound-state energies obtained by the
photon energyallowing also for the fact that the classical pseudopotential calculations were then compared against
structure may be only fictitous, i.e., not realizable for largerthose found from the envelope-function model with nonpa-
energies For this purpose we have generated, via the superrabolicity. Results are displayed in Fig. 5. Clearly, although
symmetric transform, the optimized asymmetric potentiakhe energy-dependent effective mass is definitely not the best
starting from the idealizethot truncateglparabolic potential model for the conduction-band dispersion, errors introduced
U(2)=3m*(AE/%)?Z%, keeping the same values of by it are very low for energies less than 400 meV for QW's
AE=242 meV andm,=0.073 as above. Here we found ~40 A wide (as corresponds to our optimized BC%t
Nop=0.12 andl'[ﬁﬁgxw 1000 A3, This indicates that Bragg higher energies the absolute error tends to increase, but is
confinement is not as effective as the conventional barriestill acceptable for all energies of interdstepartures from
confinement and BCS wave functions have a lower overlaphe levels’ equidistance that are within the linewidth, typi-
(hence also smaller matrix elementslowever, this is the cally <10 meV, are tolerab)e Certainly, the errors intro-
price to be paid for increasing the photon energies to a rangaguced by the envelope-function model with nonparabolicity
that cannot be covered by conventional structures. Some immay also be corrected by additional polishing of the opti-
provement may be achieved by further optimizing the potenmized potential, as described above, if it is really necessary.
tial, via an iterated supersymmetric transform, but since the As a final remark, we should note that tk@aln(PSh
derived potentials will become even deeper, not much is talloy is not technologically common and there may appear
be expected of this and such a procedure was not attemptelifficulties if one attempts a realization of the structure pro-
here. posed above. Essentially, it was chosen here to make the

x'(2)
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calculations easier and to illustrate the idea of using BCS’sabolic effective mass in the Gln,_,As/AlIn;_,As sys-

for shorter-wavelength SHG while satisfying some funda-tem is only approximate, the analytically designed structure
mental requirements for quantum heterostructtes lack  would require some amount of numerical polishing in order
of strain in the first place From a practical point of view it o restore the levels equidistance required for its application.
may actually be advantageous to use other, much more stud-

ied alloys, such as the Gain g 53AS/Al g 4dNo.5AS pair, lat-

tice matched to I_nP, which has a high pand offset of IV. CONCLUSION

Uy~500 meV. With the band-edge effective masses of

0.043n, and 0.07&, and band gaps of 0.87 eV and 1.49 The method for electronic-structure calculation in Bragg-
eV, respectively, there is peculiarity of this system in that theconfined structures with an asymmetric perturbation layer,
nonparabolic effective masses turn out to be very clése based on the envelope-function approach, is described. It is
within a few percentfor a wide range of energies (0800  then used to design a structure suitable for double-resonance
meV measured from the Gho;_,As conduction-band intersubband second-harmonic generation at pump photon
edge. Taking the effective mass to be position independentnergies that cannot be covered by conventional QW struc-
though still dependent on energy would somewhat simplifytures. The structure is optimized by employing the supersym-
the above considerations, and the structure design, becausetric quantum-mechanics approach, allowing for a system-
an ordinary Schrdinger equation might be used at any par-atic search of the best potential shape, which provides the
ticular energy. However, since the constancy of the nonpalargest nonlinear susceptibility.
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