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Electron energy loss in composite systems
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The interaction of scanning transmission electron microscopy electrons with composite systems is investi-
gated by following a mean-field theory of the effective response function. Expressions for the inverse longi-
tudinal dielectric function of isolated spheres and cylinders are derived. Experimental valence loss spectra from
SiO, polymorphs are analyzed and the insensitivity of the plasmon peak to the density of the material is
explained[S0163-182807)02715-X

I. INTRODUCTION spherical particles has been derived, within a mean-field ap-
proximation, by Barrera and Fuch$.Maxwell-Garnett’s
Theoretical descriptions of the interaction of high-energytheory’ and previous theories for isolated sphétéérepre-
electron beams with surfaces and with small particles havéent the long-wavelength limit and the dilute limit, respec-
been of basic importance in the development of scanningVely, of the theory of Barrera and Fuchs. General expres-
transmission electron microscopy. In the case of electrongions for the momentum-dependent effective inverse
moving on a definite trajectory energy-loss spectra have bedfngitudinal dielectric function of a system of cylindrical
calculated for planar interfacéssphered cylinders3-®>and ~ Particles, of interest in the investigation of valence loss spec-
more complex geometrids® On the other hand, electron- tra from zeolites" and tubular fullerene, are not available.

loss spectra for a broad beam geometry can be analyzed, via N this paper we present an alternative approach for the
the concept of an effective medium, from the effective in-€valuation of the effective longitudinal response function of
verse longitudinal dielectric response. Effective-mediumsingle isolated particles in aninfinite medium. First of aII,wg
theories have been used for many years to analyze Opticgpproduce former rc_asults for isolated _sphgres. Then we d(_erlve
spectra and have also been proved to be useful to interpr8t 9eneral expression for the effective inverse longitudinal
electron-energy-loss experiments. response functlpn of |solateq cylinders. Finally, we apply our

The q=0 limit of the average dielectric function for a thgory to explain the experimental vglence loss spectra ob-
system of spherical particles was first derived byt@ined by McComb and Howléfrom SiO, polymorphs, by
Maxwell-Garnetf within a mean-field approximation valid Modeling different silica polymprph; as less dense versions
for small values of the volume occupied by the spheres. Th€f the most dense material, stishovite.

Maxwell-Garnett dielectric function is successful in the op-

tical range; however, in electron-energy-loss spectroscopy Il. THEORY

the electrons may excite modes with wavelengths smaller
than the particle size and an appropriate dielectric function
should retain information about the structure of the medium p&(r 1) = poe! (@) 2.1
through a dependence on momentum transfer.

A momentum-dependent effective longitudinal dielectricis introduced into an inhomogeneous medium of dielectric
function can be derived by equating the energy-loss probfunction (q,q’,). It induces a chargp™(r,t) in the sys-
ability of electrons passing through a composite system wittiem whose density Fourier components have the form
the bulk-energy-loss probability. Fujimoto and Komdkn- inds ,
cluded all multipoles to derive, within the hydrodynamic ap- P™(Q", @) =poK(q',q,w), 2.2
proximation for a free—electrqn gas, the energy loss of gyhere K(q',q,») represents the density-density response
bro_ad beam of fast electrons incident on an |sc_)lated Spher_?unction of the medium
This result for the energy loss was later generalized to obtain
an expression that is valid for any local dielectric function K(g,9",0)=[e(9,q",0)] - Sa.q’- (2.3
inside the sphert:*? Finally, these results have been re- '
cently extended and an expression for the effective longitu- On the other hand, the probability per unit time for a swift
dinal dielectric function of a random system of identical electron to transfer momentuqand energyi » to an inho-

Suppose that a test charge density

0163-1829/97/54.5)/95508)/$10.00 55 9550 © 1997 The American Physical Society



55 ELECTRON ENERGY LOSS IN COMPOSITE SYSTEMS 9551

mogeneous electronic system is, within the first Born apwith ¢®{(r,t) being the scalar potential created by the test
proximation, proportional to the dynamic structure fattor charge andgi™(r,t) and #™(r,t) being scalar potentials
created by the charge induced in the bulk and the surface,

4me® respectively.
S(g,w)=— e Ime™(q,q,w). (2.9

Thus, in order to interpret electron-energy-loss experiments, A. Spheres

we are interested in the evaluation of the momentum depen- The introduction of Eqs(2.7)—(2.9) into Eq. (2.6) gives,
dent effective inverse longitudinal dielectric function for a spherical particle of radius centered in a box of vol-
ume ) —oo,

€xt(Q,0) =€ 1(q,q,0), (2.5

which can be derived after projecting the induced charged Egﬁl(q,w):(l—f)fal+f€;1
densityp™™(r,t) onto theqth Fourier component

—i(g-r—wt) _
Eeff (o) =1+ ——. (2.6) ind ind
Po ddg(r,t) q’) (r,t)
If one assumes that the inhomogeneous medium has transla- oo r—a- oo r—at '

tional invariance at the macroscopic scale, an ensemble av-
erage of the effective inverse dielectric function of E2,6)
can be made and E) of Ref. 13 is obtained.

Instead, we consider a homogeneous isolated particle withow, we introduce the well-known expansions, in terms of
local dielectric functione,, inside a box with local dielectric spherical harmonics, of a plane wave and also the Coulomb
function €,, f being the relative part of the volume of this potential due to a point charge and find, after applying Egs.
box occupied by the particle. The test charge density of Eq(2.10 and(2.11):

(2.1) induces in the bulk of the particle and the host a charge
with a single density Fourier component

(4m)%pg
ind = -
p(q,0) = pole; '~ 1) @p ST

(2.13

iot

and

»  m=l|
X3 3 V(@ Yin( G @ @) (1),

pb(d,@)=pol€s 1), (29 (2.14

respectively, and it also induces a surface charge density,
which appears from the difference between the normal comwhere
ponents of the electric fields created in and outside the sur-

face
€, €0
Gia.w)=— g e
- ' €, teo(1+1)
O )= 2 [V )+ Fl -~V B2 0l ], o
1., B L I+1
A 29 x|~ e i (da) +(eqi— €0 Dirs1(@) 5771
wheren represents a unit vector in the direction perpendicu- (2.15
lar to the surface andw'”d(r,t) is the scalar potential created '
by the induced surface char '“d(r t) is determined by the
continuity of the total scalar potential and the normal com- -and
ponent of the displacement vector
—@+D i <
tot(r t |r r- tOt(r t)|r rt (2-1() f(r)= a ' " r=a (2_16)
r=(0+D  otherwise.

and

Ym is the spherical harmonic function anpdthe spherical
Bessel function of the first kind.

Then, the introduction of Eq2.14) into Eq.(2.13 gives
the following result for the effective inverse longitudinal di-
ot o ind ind electric function of a homogeneous sphere of dielectric func-
O, )= ¢™(r, 0+ g (r,0)+¢g(r,t), (212 tion e, immersed in a medium of dielectric functiasg:

eV (r,t)-n|,_+=€,Vo(r,t)-nl,—,-, (2.10)

where ¢™ represents the total potential
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» and the introduction of Eqs2.21)—(2.23 into Eg. (2.20
Eeﬁl(q,w)zeol+f(6wl—601)[ 1+3, (21+1) gives
I=0
e(l+1) ji(ga) . ey 1 ( €, €0
- gw)=€, +e, f{ —3
{ clteltl) qa 1+ o o T €.t 260
L [1C PR * _%sew_eo g €er_2EO _gzewlgo
€w|+60(|+1) qa Ji-1(9 ’ €y €n €0 €w €0
217 ><<qa>2+0<<qa)4>]. (2.24
and taking advantage of the identfly
The first two terms of the right-hand side of EQ.24) re-

o produce the well-known dilute limit of the Maxwell-Garnett
> (21+1)j,(0)j{ (x)=0, (2.189  dielectric function and the third term retains information
=0 about the structure of the medium through a dependence on

Eq. (2.17 can also be expressed as the ga parameter.
. i\(qa) 2 B. Cylinders
et (U w)=(1—f)eg 1+ €, +3>, 1(21+1) &} For a homogeneous infinite cylinder of radiasand di-
=1 qa electric functione, centered in a box of dielectric function
, €9 and volume()— o, the introduction of Eqs(2.7)—(2.9)
- (21+1) into Eq. (2.6) gives
_ 1_ -1y = 7
X|=(+L)/leg~—€, +€w|+60(|+1) .
o =(1—f)e; t+fe, !
(2.19 €erf (0, ) = ( )€g €y
Equation (2.19 exactly coincides with the dilute limit 1 _
(f—0) of the effective inverse dielectric function of Barrera + amp Qf dre” '@ et s p—a)
0

and Fuch¥ and the electron-energy-loss probability derived

from this equation reproduces the results of Refs. 11 and 12.
If one assumes that the radius of the sphere is small, i.e.,

ga<1, an expansion of Eq2.17) with respect toqa gives,

up to second order,

IP(r 1)
ap

Ip(r,t)
o ap

X

’

p=at

(2.29

where p represents the component ofin a plane perpen-
dicular to the axis of the cylinder. Then, after the introduc-
wheref,_g, f,—;, andf,_, represent monopole, dipole, and tion of cylindrical Bessel functions and by requiring that the
quadrupole contributions, respectively, total scalar potential and the normal component of the dis-
placement vector be continuous we fieke the Appendjx

the expression for the scalar potential created by the induced

p=a

ot (0, 0) =€ "+ F(e, —eg N{L+F o+ f_1+f 5},

4
floo=—1+ E(qa)2+ O((qa)h), (2.21)  charge at the surface of the cylinder
) 4pg .
1 1 €, ind r1t = el(qzz_wt)
fi-1= - 5(aa)%+ 3] 1- 5(qa)2| 5 +0((aa)), L
(2.22 o
and X 2, i "coIme)Gr(d,0)F(p),
f_—2(qa)’ =2 O((qa)* 2.2 (2.20
1-2=3(0a) m+ ((qa)™), (2.23 where
e 'QJ (Qa)+ (e ‘q,— €, )l (g,a)fP
Gs(q,w)z((:‘w—eo) 1) Q m(Q ) ( ) QZ 0 ) m(qZ ) m (227)

— €,02! 1n(0,8) + €00, m(A,2) K, (9,2)K [ (0,2)
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and esite, @ quartz, and silicalite. Stishovite is a high-density
_ form of silica, with specific gravity of 4.28, and the other
| Im(azp) i p<a silica under study, coesite; quartz, and silicalite, are less-

f(p)= I n(0,2)K-1(q,a)Km(0,p)  Otherwise. dense polymorphs of specific gravity of 2.93, 2.66, and 1.79,

(2.28 respectively?® Their structure is built from SiQ tetrahedra
] with every silicon having four oxygens and every oxygen
Q andq, represent components of the total momenyim  having two silicons as nearest neighbors.

a plane perpendicular and in a direction parallel to the axis of \McComb and Howie also determined, from the experi-
the cylinder, respectivelyJ,, represents the cylindrical mental spectra, the bulk-energy-loss functiong+_ ] for
Bessel function oflthe first kind,, and Ky, are modified  gach silica polymorph investigated and found that the spectra
Bessel functionsf(y is given by Eq.(A10), and up are  from coesitea quartz, and silicalite are all similar, showing
Newmann numbers. Then we take advantage of the identitiegn insensitivity of the plasmon peak to the density of the
, 2) , (1) material, while the spectrum of the stishovite differs consid-
A Km(G2) ' =QIn(Qa) — Al (A2 fm"s (229 graply. In Ref. 14 they regarded coesieguartz, and sili-

with fﬁﬁ) andfﬁnz) of Egs.(A10) and (A1), and® palite as Iess—d_ense versions of stisho_vite formgd by m@xing
in some spherical spaces of vacuum in stishovite or stisho-

K1) = X[ 1) + 1 ()K= 0K ()], 23 vite in vacuum, but they were not able to interpret the ex-
m (=X =100 H 100K () K- ()] (2-30 periments in terms of Maxwell-Garnett and other available
and the introduction of Eq2.26 into Eq.(2.25 gives versions of effective-medium theory. They also tried to re-

gard coesite as the starting material to modetuartz and

. . I silicalite, but they were not able to reproduce the insensitiv-
Eefi () =€g +F(e,"—€ 7)) 1+ (Qa)%+(q,2)° ity of the position of the loss peak for these three materials.
z On the other hand, it appears from the structure of these
* wmdn(Qa) materialé® that the modeling of zeolites by mixing spheres
-1 mYm . . g s . . .
X 2 [€,am(0,2)— €] K I in an otherwise infinite medium is not appropriate. Instead,
m=0 m(922) ! m(d22) mixing in infinite cylinders in vacuum should model the

structure of the zeolites under study more adequately and we
X[Gwl&(an)f%uGoKr’n(an)fEﬁ)]}v (2.30) have eY?Iuated, therefore,.from EQ.31) the loss function
Im[ — €. (Q,w)] of the zeolites under study.
The experiment shows a prominent peak in the loss func-

where
tion of stishovite, the most dense of the four materials, at
1 (0,2)Kn(0,2) E=31.2 eV**which can be identified with a bulk plasmon
a a)=——F———. (2.32  loss of plasmon frequenc
= Ky P quency
The termsa,,(q,a), which contain the surface plasmon 5 4mnée? )
modes, are in agreement with previous results for the energy- wp=—p— T05 (3.1
e

loss probabilities of electrons moving on definite
trajectories® and the energy-loss probability derived from
Eq. (2.31) coincides with the integration over impact param-
eters of the energy loss of well-focused beams moving in

n and# () being the valence electron density and the band-
gap energy, respectively. However, the peak in the loss func-

parallel direction to the axis of the cylindstin particular, if tion of the three other materials appears to be insensitive to

the momentum transfer is located in a plane perpendicular tgl_e density of the material and could be identified instead
the axis of the cylinderd,a=0), Eq.(2.31) gives with a surface plasmon loss. Therefore, we have taken
2 , Eq.(2.

stishovite as the reference material of dielectric functgn

> and we have evaluated from E¢R.31 the loss function
e (9, 0)=¢x 4+ f(e,t— 651)[ 1- —Jo(Qa)J;(Qa) Im[ — o (9, w)] of coesite.x quartz, and silicalite, with fill-
Qa ing fractions of 0.68, 0.62, and 0.42, respectively.
4 o If one assumes that the radius of the cylinders is small

4 E Jn(Qa) ga<1, the main features of the energy-loss function are con-
Qa e, * €y m=1 trolled by the component of the momentumin a plane
perpendicular to the axis of the cylindérConsequently, we
_ have takermy,a=0 and different values oQa. The largest
*L€uIm-1(Q3) EOJmH(Qa)]]' (2-33 wave vectr(?rzfor which the bulk plasmon is a WeII-(?efined
excitation is approximately equal @,/vg, ve being the
Fermi velocity; however, experimental valence-loss spectra
were acquired by using an effective collection angle of
McComb and Howi& carried out valence-loss spectros- 8.3 mrad, so that for a typical incident electron energy of
copy with four SiO, polymorphs of different density and 100 keV the largest transferred wave vector would be 5.89
determined, after a Kramers-Kronig analysis of the data, thé ~! and this means that for cylinders with a radius of up to
real and imaginary parts of the dielectric function for each5 A the adimensional paramet@ra would take values of up
sample. The four Si@ polymorphs used were stishovite, co- to approximately 3.0.

Ill. ELECTRON ENERGY LOSS IN ZEOLITES
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FIG. 2. Experimental loss functions for coesiwolid ling), «
i _ i quartz (dashed ling silicalite (dash-dotted ling and stishovite
(dotted ling, as taken from Ref. 14.

1.5

8 energy loss of 31.2 eV, which is identified with a bulk plas-
mon loss, as discussed above. Surface modes, described by
the termsea,(g,a) of Eq. (2.32, are all very close to the
planar mod& and, in particular, forqg,a=0 they are all
equal to the planar modsee Eq(2.33]. Consequently, the
peak near 24 eV in the loss function for coesitequartz,
] and silicalite is associated with surface modes. The height of
. these surface modes decreases as the para@etecreases
“ % as a consequence of the fact that the relative strength of the
bulk mode increases wita, but it changes very little for
‘ ' T values ofQa between 0 and 1. On the other hand, the effect
S of changing the volume fractioh to model different mate-
- ' ] rials appears also in a variation of the surface mode height,
the ratio between surface mode heights being equal to the
] ratio between the corresponding volume fractions.
7 The experimental loss functions are shown in Fig? &.
is obvious from Figs. 1 and 2 that peak positions are well
described by our theory and also the insensitivity of the plas-
mon peak to the density of the material is explained. How-
ever, there are two discrepancies between our theory and the
experiment. First, the ratio between the experimental surface
mode heights is smaller than the ratio between volume frac-
. L L tions, which our theory predicts. Second, experimental sur-
“o 10 20 30 40 50 face modes exhibit a slight shift in position from 23.2 eV for
(©) Energy (eV) the less-dense material, silicalite, to 24.0 eV for coesite.
This is consistent with the expectations that for a collection
FIG. 1. Energy-loss functions I e, (q, )] for infinite cyl-  of cylinders the plasmon peak should be sensitive to the
inders of stishovite in vacuum with volume fractiohs 0.68(solid  filling fraction, appearing at larger energies as the filling
line), 0.62 (dashed ling and 0.42(dash-dotted lineto model co-  fraction is increased and in the limit 6f=1 all losses being
esite, « quartz, and silicalite, respectively, and three values ofdue to the bulk plasmon as the experimental data for stisho-
Qa: (a) 0.0, (b) 1.0, and(c) 3.0. Dotted lines represent the experi- yjte indicates. This dependence éncannot be explained
mental loss function for stishovite. within our theory, but within the range of densities for the
three least-dense materials under study the position of the
The energy-loss functions [m e;ﬁl(q,w)] calculated surface mode peak is expected to change very little, as
from Eq. (2.31) for coesite,a quartz, and silicalite on the shown by the experiment.
basis of the experimental data for the dielectric function of In the case of swift electrons moving with velocity
stishovite are shown in Fig. 1, with three values @#&: along the axis of the cylinders the probability per unit path
0.0, 1.0, and 3.0. The bulk-energy-loss function of stishovitdength, per unit energy, for the electrons to transfer energy
is also represented, showing a prominent peak for an electroiiw to the medium i¥

Energy—loss function
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Energy—loss function

0.5
T

40 50 (a) Energy (eV)

pus T T L N

1
T

Energy—loss function
Im[€ 4]

0.5
T

(b) Energy (eV)

o) 10 - 20 ‘ 30 l 40 50

(b) Energy (eV) FIG. 4. Real and imaginary parts of the effective dielectric func-
tion of Eq. (2.3) with Qa=0.1 and a volume fraction of 0.68,
0.62, and 0.42 to model coesitolid line), @ quartz(dashed ling

and silicalite(dash-dotted ling respectively; the dotted lines repre-

. sent the measured real and imaginary parts of the dielectric function
of stishovite(Ref. 14. The real parts are represented @ and the
corresponding imaginary parts {h).

0.8

0.6

Energy—loss function
0.4

1(Q Q _
)l F(w):;fo dQQqu;Im[—eeﬁl(q,w)], (3.3

., e (0, ) being given by Eq(2.31). Q. represents the com-
] ponent of the largest transferred wave veagrin a plane

L S perpendicular to the axis of the cylinder and

(C) Energy (eV)

FIG. 3. Energy-loss functioff (w) as obtained from Eq3.2) qzzg. (3.9
with v =05% and g.a= 3.0, for infinite cylinders of stishovite in v
vacuum with a volume fraction @f) 0.68,(b) 0.62, and(c) 0.42 to
model coesiteg quartz, and silicalite, respectively. The points in-

dicated by an asterisk represent the corresponding experimental loss In ';'g' ﬁ the exp_erllmental curves for thﬁ energy-lois fun_cr-w
functions, as taken from Ref. 14. tions for the materials under study are shown, together witl

our calculated results for the energy-loss functiofw) of
electrons traveling at 0.85 as obtained from Eq3.3) with
g.a=3.0. It is clear that both peak positions and shapes are
Pw:WF(“’)' (3.2 approximately well described by our theory. This agreement
is also obvious(see Ref. 1%in Fig. 4, where the real and
imaginary parts of our calculated effective dielectric func-
where tions are represented f@@a=0.1.

eZ



9556 J. M. PITARKE, J. B. PENDRY, AND P. M. ECHENIQUE 55

IV. CONCLUSION where p_/p~ represent the smaller/larger pfandp’, the
omponents of andr’ in a plane perpendicular to the axis
the cylinder.z andz’ represent the components oaind

in the direction of the axis of the cylindegy— ¢’ is the
angle betweep andp’, andl,, andK,, are modified Bessel
unctions.

Now we replace, for simplicity, the dielectric function of

In conclusion, we have presented an alternative approach
for the evaluation of the effective longitudinal response func- ,
tion of single isolated spheres and cylinders in an infinite”
medium. We have derived a general expression for the effe
tive inverse dielectric function of isolated cylinders and we
Qm\ég %%T;ﬁ%rc:)lfqrsﬂffo(;?ﬁfr:ﬁtp?ér:];?;e%ee Iﬁ;ies peicglr;rf]:aod%e hostey by 1 and qonsider the scalar potential created by
the insensitivity of the plasmon peak with the density of thethe test charge density of E(.1),
material by associating this peak with the existence of sur- p(r, t)
face modes. Our theory for isolated cylinders predicts, of d(r,t)= jdr (A4)
course, surface mode positions that are independent of the
volume fractionf and we interpret the slight shift in position and the potential created by the bulk charge density induced
as the volume fraction increases as a consequence of theside the cylinder,
interaction between the cylinders, which has been neglected

in our theory. The numerical approach to this problem re- ind _ pit'fd(r,t)
cently developett on the basis of photonic band-structure dp (r,t)= p<adr [r—r'] (AS)
calculationé? has been proved to be useful in the study of
this interactior?> Work in this direction is now in progre$§. ~ where
A more detailed presentation of the derivation of the effec- .
b pIN(r 1) = pol( e 1— 1)el@T—wb), (A6)

tive inverse longitudinal dielectric function of an isolated

cylinder in an infinite medium will be presented elsewhere,Then the introduction of Eq$2.1) and (A6) into Eqgs.(A4)
in the frame of the self-energy formalisth. and (A5) gives

o

ATPO | gae .
620 = Gz gz > i ™Im(Qp)cosne
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m=0
APPENDIX: DERIVATION OF EQ. (2.26 where
In order to study the response of an infinite cylinder we o
introduce the expansion of a plane w&ve & (q)= In(Qp) —Im(dzp) fry’ i p<a (A9)
- m'd Km(a,p)f2  otherwise,
giQr= 20 i ™Im(Qp)coame, (Al)  with
o
(1)
whereQ and p represent vectors located in a plane perpen- fin qzaJm(Qa)Km,l(qza)+QaJm,1(Qa)Km(qz(aA?10)

dicular to the axis of the cylindet) being the angle between
them, J,, represents the cylindrical Bessel function of theand

first kind, andu,,, are Neumann numbers @
fr'=0,a3m(Qa)ln-1(d,2) —Qady 1 (Qa)l n(g,a).
1 for m=0 (A11)

(A2) Finally, we introduce EqgA7) and(A8) into Eq.(2.12 and,

after applying Eqs(2.10 and(2.11), we find Eq.(2.26 with
We also expand the Coulomb potential due to a positive unit Ppiving Eqsi2.10 219, a(2.26

Mm™—

2 for m=1.

point charge at’ as® G (g, )
2 © -1 ! -1_ ! (1)
|I'—I"|71:;J’ dg,codq,(z—2)] —(e,~1) €o Q/‘]m(Qa)'F(ew 1)(izllm(QZa)Tm ’
0 —€,0, n(9,2) + 9,1 m(92) K " (g,2) K (g.2)
» (Al12)
X Eo Ml m(0z0<)Km(gzp=)cogm(¢—¢')], and if the cylinder is immersed in a medium of dielectric
m=

function €y, Eq. (A12) is easily found to be replaced by Eq.
(A3) (2.27.
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