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Gaussian solution of a charge-density-wave model

Federico Corberi
Dipartimento di Fisica, Universita` di Roma ‘‘La Sapienza,’’ Piazzale Aldo Moro 2, 00185 Rome, Italy

~Received 29 April 1996; revised manuscript received 1 October 1996!

We study the static and dynamic properties of the Fukuyama-Lee-Rice model for charge-density waves
pinned by random impurities by means of a self-consistent Gaussian approximation. A depinning transition is
observed, from an insulating to a conductive phase, when the external fieldE is raised above a critical value
Ec, which depends both on the elastic coupling constant and on the disorder strength. The dynamics are
characterized by an early stage followed by a crossover to an asymptotic regime. In the depinned phase a
stationary periodic state is attained for long times characterized by a scaling behavior of the average currentJ̄,
namely,J̄;(E2Ec)
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I. INTRODUCTION

The static and dynamic properties of charge-den
waves~CDW! pinned by random impurity potentials and u
der the influence of an applied external field have attracte
great deal of interest from theorists and experimental
alike. This is mainly due to the very rich phenomenolo
observed in real materials such as NbSe3 ~Ref. 1! and
K0.30MoO3 ~Ref. 2! which has been successfully reproduc
by Ginzburg-Landau-type Hamiltonian models. The pha
diagram of these systems consists of an insulating, low fi
pinned phase separated from a non-Ohmic conductive re
by a field-induced phase transition. The insulating reg
shows several properties that are usually observed in gl
systems such as hysteresis, stretched exponential relaxa
and a highly degenerated number of metastable states.
conductive phase is characterized by long time transie
narrow-band and broadband noise, mode locking,
memory effects.

The most widely used model for the dynamics of th
system has been that of Fukuyama, Lee, and Rice3 describing
an elastically deformable CDW pinned by random impu
ties. This results in the following equation of motion:

]c~x,t !

]t
5B¹2c~x,t !2sin@c~x,t !1h~x!#1E ~1!

for the fieldc~x,t!, whereB is an elastic coupling constan
E is the applied electric field, andh~x! is a quenched white
noise which takes into account the stochasticity of the im
rity distribution. An overall analysis of the features of Eq.~1!
has proven to be a hard task in both the theoretical and
numerical respect. Analytical difficulties arise mainly b
cause of the presence of many interacting spatial modes4 and
of many metastable solutions below the threshold fie
Simulations, on the other hand, can be extremely time c
suming, especially in the region close to the sliding thre
old, and they have been studied mainly in one dim
sion.5,9,14

In this paper we study the Fukuyama-Lee-Rice~FLR!
model by means of a self-consistent Gaussian approxima
~GA! or Hartree approximation, which allows one to wri
down closed-form equations for the main observab
550163-1829/97/55~15!/9544~6!/$10.00
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namely, the polarization and the field correlation functio
by means of a self-consistency prescription which forma
linearizes the problem. This widely used technique of sta
tical mechanics, well suited for Ginzburg-Landau mode
has also been used in the study of order growth in an Is
system quenched below the critical line. In that case
shortcomings of this approximation are due to the rema
able difference between the exact field distribution, which
peaked around a couple of free energy minima, and
Gaussian approximant. In the case of the CDW model
method is more powerful because, due to the presence o
infinite number of potential minima, each of which is ra
domly shifted by the quenched noiseh~x!, a Gaussian distri-
bution is expected to be, at least qualitatively, adequate
Fig. 1 the outcomes of a numerical simulation of Eq.~1! are
presented, showing that the GA can be considered ra

FIG. 1. The probability distributionP~f! obtained by numerical
integration of the FLR model, Eq.~1!, in the depinned phase~B
50.5, E50.6, ands510! over a 105 lattice in d51 is plotted at
different timest. The figure suggests that, in this region, the GA
at least qualitatively correct. The quantityP~f! calculated in the
late time regime~t5900! is shown in more detail in the inset, wher
a comparison is made with a Gaussian fit~continuous line!. Apart
from the tails of the distribution, where probably finite size effec
become sensible, one observes general, good agreement be
the data and their Gaussian interpolation. In the pinned phase,
to the presence of more complicated correlations, the agreem
with the GA is less satisfactory.
9544 © 1997 The American Physical Society
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55 9545GAUSSIAN SOLUTION OF A CHARGE-DENSITY-WAVE MODEL
satisfactory for the description of the depinned dynamics
the pinned region, close to the threshold field for sliding,
GA is probably less reliable.

This paper is divided in five sections. In Sec. II the GA
introduced for the study of the static and dynamic proper
of CDW. In Sec. III the equilibrium properties of the syste
are computed in the framework of the Hartree approximat
and the calculation of the threshold field is discussed. In S
IV the dynamics of the model is studied both in the pinn
and in the depinned phase. In Sec. V we summarize
results and discuss some conclusions.

II. GAUSSIAN APPROXIMATION

We assume the following probability distribution for th
shifted fieldf~x,t!5c~x,t!1h~x! at time t:

P$f%5
@detC21~k,t !#1/2

~2p!d/2

3expH 2
1

2 E
uku,L

ddk@f~k,t !2P~ t !#C21~k,t !

3@f~k,t !2P~ t !#J , ~2!

whereL is a high momentum phenomenological cutoff,P(t)
5^f~x,t!& is the polarization,

C~k,t !5^f~k,t !f~2k,t !&2P2~ t !d~k!, ~3!

the so-called structure factor, is the Fourier transform of
real space equal time pair connected correlation function

C~r ,t !5^f~x,t !f~x1r ,t !&2P2~ t !, ~4!

and the operator̂& represents an average with respect to
distribution ~2!, namely, ^g$f%&5*Df g$f%P$f%, where
g$f% is a generic function. We specify the quenched fie
h~x! to be Gaussianly distributed with expectations

^h~x!&50 ~5!

and

^h~x!h~x1r !&5sd~r !. ~6!

From Eq.~1! the governing equation forP(t) is obtained as

dP~ t !

dt
5 f @P~ t !,S~ t !#1E, ~7!

where

f @P~ t !,S~ t !#5^sinf~x,t !&5e2S~ t !/2sinP~ t ! ~8!

and S(t)5^f2~x,t!&2P2(t) is the averaged squared fie
fluctuation. This quantity must be evaluated self-consiste
through the equation of motion for the structure factorC~k,t!
through

S~ t !5E
uku,L

dk

~2p!d
C~k,t !. ~9!

Transforming Eq.~1! into reciprocal space we obtain
n
e

s

n
c.

e

e

e

ly

]C~k,t !

]t
522$Bk21h@P~ t !,S~ t !#%C~k,t !12Bk2G~k,t !,

~10!

where we have defined the cross correlationG~k,t!
5^f~k,t!h~2k!& and the quantityh[P(t),S(t)] is defined
through6

^f~x1r ,t !sinf~x,t !&2P~ t !
dP~ t !

dt
5h@P~ t !,S~ t !#C~r ,t !,

~11!

with

h@P~ t !,S~ t !#5e2S~ t !/2cosP~ t !. ~12!

The equation of motion forG~k,t! can be deduced from Eq
~1!, as forC~k,t!; we obtain

]G~k,t !

]t
52$Bk21h@P~ t !,S~ t !#%G~k,t !1Bk2s.

~13!

Equations ~7!, ~10!, and ~13! constitute the governing
integro-differential equations describing the static and
namic behavior of the FLR model in the present Gauss
approximation. Experimental works on CDW~Refs. 1 and 2!
as well as numerical analysis based on the FLR model u
ally probe the properties of the system by considering
behavior of the polarization currentJ(t)5dP(t)/dt together
with the correlation function

D~r ,t !5^c~x,t !c~x1r ,t !&2P2~ t !. ~14!

The Fourier transformD~k,t! of this quantity can be related
to C~k,t! andG~k,t! throughD~k,t!5C~k,t!22G~k,t!1s.

In a previous paper7 the behavior of CDW has been stud
ied in the large-N limit ~spherical model!. Usually the
large-N equations are closely related to those of the dyna
cal Hartree approximation. This happens because when
local potential is an algebraic polynomial of the order para
eter field ~the Ginzburg-Landau potential, for instance! one
simply averages each term over the Gaussian distribu
employing Wick’s theorem. Due to fluctuations this proc
dure produces a renormalization of a finite number of co
ficients. In the present case, however, since the pinning
tential is a transcendent function, infinitely many terms a
renormalized, leading to a radically different form of th
linearized potential as compared to the large-N model equa-
tions. More precisely the GA causes an exponentialS(t)
dependence of the amplitude of the trigonometric potent
f [P(t),S(t)] and h[P(t),S(t)] in Eqs. ~7!, ~10!, and ~13!
whereas in the large-N model S(t) appears mainly like a
phase in the trigonometric functions. The role of fluctuatio
is then very different in the two cases. In the large-N limit
fluctuations are irrelevant in the vicinity of the critical fiel
for sliding whereas in the GA they play a central role in t
determination of the threshold field and of the dynami
These differences, which will be stressed further in the f
lowing sections, arise because, although both the theories
Gaussian at all times, the physics which is described is r
cally different: in the large-N model, due to the presence o
the O(N) symmetry, the CDW essentially flows down th
valleys of the potential; in the GA the order parameter
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9546 55FEDERICO CORBERI
scalar and the CDW is interested by a barrier dynamics
we shall see, which is much more realistic with respect to
original FLR model. As will be shown in Sec IV~see also
Fig. 5! the very presence of barriers causes strong distort
of the CDW, because the system is not allowed to cross
barriers by rigid translation; for this reason fluctuations tu
out to play a relevant role in the vicinity of the critical fiel
whereas their importance is negligible in theO(N) model,
thus determining different physical properties.

III. STATICS

We consider the behavior of Eqs.~7!, ~10!, and ~13!
studying, first, the static properties of the model. By sett
equal to zero the left-hand sides of Eqs.~7!, ~10!, and ~13!
we obtain

sinP~`!52
E

e2S~`!/2 ~15!

and

C~k,`!5
sB2k4

@Bk21e2S~`!/2cosP~`!#2
. ~16!

Enforcing Eq.~9! we arrive at the self-consistency conditio

S~`!5sB2E
uku,L

dk

~2p!d
k4

@Bk21Ae2S~`!2E2#2
.

~17!

Equation~17! does not admit solution forE larger than a
critical value Ec(B,s), as will be clear below; hence
E5Ec(B,s) is the threshold field for sliding. Below
Ec(B,s) the CDW relaxes to the static equilibrium config
ration while aboveEc(B,s) it is depinned and slides. ForB
or s sufficiently smallS~`!.0. Hence the critical field is
determined by the singularity of the integrand
E c

2(B,s)5exp@2S~`!#51. In the large-B limit, instead, by
neglectingAe2S(`)2E2 with respect toBK2 in Eq. ~17! we
find S(`)→cs, with c5L/(2p)d. Proceeding as before w
obtainEc(B,s).exp@2~c/2!s#. This result should be com
pared with the one found in Ref. 8, where a similar calcu
tion has been employed. In Ref. 8 it is argued, supported
a comparison with the values ofEc derived by direct com-
puter simulation of Eq.~1!, that the GA allows one to accu
rately calculate the threshold field for small values of t
coupling constantB. In Fig. 2~a! the critical field determined
by Eq. ~17! is shown as a function ofB for different values
of s in d51. In Fig. 2~b! a comparison is presented betwe
the determination ofEc(B,s) obtained by direct numerica
simulation of Eq.~1! and the result of the GA in the cas
s51. The comparison shows, in agreement with Ref. 8, t
the GA is reliable in the strong pinning region~small B!,
which corresponds to small fluctuations of the field. F
weak pinning~largeB! S~`! is large and the Gaussian ansa
for the fluctuations is less accurate, because in this li
Ec(B,s) should go to zero.

The results of this section illustrate the profound diffe
ences between the large-N limit and the GA for CDW. In the
spherical model the fluctuations turn out to be irrelevan
the critical point; this occurs because in the vicinity of t
as
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critical point one is allowed to neglectS(t) with respect to
P~`! in the self-consistency equation becauseP(t) diverges
approachingEc and S~`! is finite. As a result the critical
field turns out to be independent both ofB and ofs, because
these parameters determine the weight of fluctuations,
one findsEc[1. In the present approach, due to the struct
of the self-consistency equation,S(t) always produces finite
corrections from the trivial valueEc51, which corresponds
to B50 ~or s50!. The physical origin of this mathematica
property is the following: when the quenched disorder
stored into the system the energy of the CDW is minimiz
by an adequate compromise between pinning and elastic
ergies. SinceB ands determine the relative strength of the
two contributions, equilibrium properties depend contin
ously on these parameters, and soEc . One can easily con-
vince oneself by inspection of Eq.~17! that S~`! is a mo-
notonously increasing function ofs for fixed B. Hence, as
the the disorder increases, the CDW gets more and m
scattered among many minima of the local potential. O
could expect that the GA breaks down when the fluctuat

FIG. 2. In ~a! the threshold fieldEc(B,s) determined from Eq.
~17! is plotted againstB for different values of the disorde
strengths. In ~b! the comparison is made between a numeri
determination ofEc(B,s) obtained by direct computer simulatio
of Eq. ~1! on a one-dimensional 103 point mesh with lattice constan
a52p ~points with error bars! and the results of the GA~heavy
dots!, in the cases51. The figure shows good agreement in t
strong pinning regime~smallB!.
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55 9547GAUSSIAN SOLUTION OF A CHARGE-DENSITY-WAVE MODEL
of the FLR equation grows too much with respect to the G
The fact that, in this approach,S~`! grows with the disorder
strength suggests that the GA is reliable in the regionsB!1.

IV. DYNAMICS

In this section we study the dynamics of the model.
order to characterize the dynamical process we need
specify the initial configuration of the fieldf~x,0!. In the
following we will consider an uncorrelated initial conditio
characterized byC~k,0!5D andG~k,0!50; the initial value
of the polarizationP~0! is not very relevant: since the mod
is invariant under 2p rigid translations this variable is alway
near to one of the equilibrium values of the pinned phase.
the other hand,S~0! can be, depending onD, very far from
equilibrium. In this case an early stage is observed, wh
can be rather long, followed by a crossover to an asympt
regime characterized by the relaxation of the system alre
near equilibrium. In the conductive phase a similar situat
may occur since, althoughP(t) grows indefinitely,S(t) at-
tains, for long times, a stationary solution characterized
periodic oscillations around a mean valueS̄. In this phase an
early stage can be required, depending on the initial co
tion, to bringS close toS̄. Then the late stage is entered.
S(0)@S(`) @or S(0)@S̄ in the conductive region#, since the
fluctuations of the field are large, the effective strength of
pinning potential is averaged to zero and the CDW is free
slide under the influence of the external field alone. By
glecting f [P(t),S(t)] with respect toE we find

P~ t !.Et ~18!

in the early stage. From Eq.~10!, neglectingh[P(t),S(t)]
with respect toBk2 andG~k,t! with respect toC~k,t!, by
virtue of the initial condition, we obtain

S~ t !;
~Bt!2d/2

D
. ~19!

As Fig. 3 shows, these considerations apply to both
pinned and the depinned phase. In this time domain
CDW behaves as a simple elastic string driven by the ex
nal fieldE because the elastic energy stored in the system
the initial condition prevails over the local potential. As tim
passes andS(t) approaches its asymptotic value, the effect
the pinning potential becomes gradually more relevant an
different regime is observed which is characterized by
oscillatory behavior ofS(t) around a mean value which i
still decaying. In this time domain the system still tries
dissipate elastic energy by reducing fluctuations@i.e., S(t)#
but, differently from the very early stage, in order to cro
barriers it is forced to deform periodically in time. This o
cillatory behavior, which is enhanced by the quenched r
domness strengths, is very reminiscent of the depinned mo
tion which is observed asymptotically forE.Ec ~see also
Fig. 5! and will be further discussed below. AsS(t).S(`)
the CDW enters the asymptotic regime which is charac
ized by a complex balancing between the external field
the potential terms. In the insulating phase the system
trapped around one local minimum and an exponential re
ation of bothP(t) andS(t) towards the equilibrium value
P(`),S(`) is found. Equation~7!, in fact, admits the
.

to

n

h
ic
dy
n

y

i-

e
o
-

e
e
r-
y

f
a
n

-

r-
d
ts
x-

asymptotic solutionP(`)2P(t);S(`)2S(t);exp~2bt!
whereb is a constant. Above threshold a stationary state
attained which is characterized by periodic oscillations
S(t) and J(t) around their mean valuesS̄ and J̄ @see Fig.
2~b!#. In the critical region above threshold [E.Ec(B,s)] a
numerical integration of Eqs.~7!, ~10!, and~13! yields

J̄;@E2Ec~B,s!#v, ~20!

with a value of the exponentv which is compatible withv
51

2 with good accuracy in any dimensiond ~v50.497
60.004 ind51; see Fig. 4!. ForE@Ec , on the other hand
the local potential can be neglected in Eq.~7! andv51. In
Fig. 4 J̄ is plotted againstE in the critical region aboveEc
for d51. The same result,v51

2, is predicted by simple one
particle models11 and by the large-N limit solution.7 The
mean field result ofv53

2 ~Ref. 12! has led to the expectatio
that the CDW model with many interacting degrees of fre
dom would showvÞ1

2. The analytical work of Parisi and
Pietronero13 on a coarse-grained version of the FLR mod

FIG. 3. The behavior ofP(t) and ofS(t) is plotted. In~a! the
evolution of these quantities is shown in the pinned region~B51,
E50.5,s55, andd51!. An early regime is evident, characterize
by P(t)5Et and S(t);(Bt)2d/2/D, followed by an exponential
relaxation to the equilibrium configuration. Between these two
gimes an intermediate behavior can be observed that is chara
ized by periodic oscillations ofS(t) that widen until the system get
trapped around one local minimum. In~b! the same quantities ar
shown in the depinned region~B51, E50.772,s55, andd51!.
After an early and an intermediate regime analogous to the
observed in the insulating region a stationary periodic state
reached that is characterized by a staircase growth ofP(t) and an
oscillating behavior ofS(t).
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9548 55FEDERICO CORBERI
leads tov51 in every dimensiond. Given the minuscule
extent of the critical regime observed in most of the syste
the prospect of conclusive evidence about this expon
coming either from numerical simulations or experiments
real systems appears unlikely. The result of this sec
shows that the same value ofv found in simple one-particle
type models~the large-N limit can also be considered t
belong to this class of models since fluctuations are allow
but they are irrelevant at criticality! can also be obtained
when many interacting degrees of freedom are taken
account, as in the present scheme, despite the fact tha
physics described by the GA in the sliding region close to
threshold field is by far more complex than the one obser
in single-coordinate models. To this purpose it is interest
to observe, in Fig. 5, the crossing mechanism of a barrie
the GA. Initially the CDW lies in a minimum of the loca
potential. The external field is not sufficient to produce
rigid translation of the CDW across the barrier; due to
favorable realization of the quenched noiseh~x!, however, a
small region of the CDW becomes locally depinned a
crosses the potential maximum. This produces an avalan
effect, since the nearest neighbors are pulled through
barrier too, and there is a sudden increase of the fluctua
S(t). The mechanism ends when the whole system reac
the next minimum. For largeB or s, since in this caseS̄ is

FIG. 4. The average currentJ̄ is plotted againstE for B51 and
s5p2/3 in d51. Crosses represent the results of the numer
integration of Eqs.~7!, ~10!, and ~13!, while the continuous line
describes the law (E2Ec)

v with v50.497.

FIG. 5. The crossing mechanism of a barrier is shown in
depinned phase~B51, E50.95,s51, andd51!.
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large too, the behavior is similar but more complicated b
cause the CDW is scattered among many minima. As Fig
shows, an analogous behavior is also observed in an in
mediate stage of the dynamics before the system gets tra
into a local minimum forE,Ec or attains the stationary stat
for E.Ec . This somewhat complex character of the dyna
ics which is captured by the GA, however, does not prod
any appreciable difference in the velocity exponentv with
respect to its single-particle value. On the other hand,
determination disagrees violently with the mean field res
v53

2, suggesting that our approach, although mean field
spirit, is radically different from that of Ref. 12 when dy
namical properties are considered.

V. CONCLUSIONS

In this paper we have studied the dynamic Hartree
proximation for CDW. This analytical scheme allows one
compute the static and dynamic properties of the origi
CDW model in a relatively simple way. The approximatio
is quite satisfactory and reproduces several properties of
original model such as the presence of a depinning transi
at a critical value of the applied fieldEc(B,s) which de-
pends both on the elastic coupling constantB and on the
disorder strengths. In the depinned region the critical be
havior is described by the scaling law~20!, with v consistent
with v51

2 in every dimension, for the polarization curren
Accurate numerical determinations of this exponent in CD
models are quite difficult due to the smallness of the criti
region and because the crossover to the high field beha
v51, is so gradual that one can be misled by a sim
straight line on a log-log plot of the current. Analogous d
ficulties are also encountered in the numerical simulation
an automaton model for CDW introduced by Myers a
Sethna.9 Their analysis yieldsv50.4560.05 ind51, which
is in excellent agreement with the prediction of the GA, a
slightly larger values of this exponent in higher dimensio
where their results probably suffer from the inability to go
large enough linear system sizes to resolve the critical
gime, as observed by the authors themselves. Direct num
cal simulations10,14of Eq. ~1! report slightly larger values o
this exponent.

In the present approach the correlations are taken
account at an elementary level, allowing one to compute
threshold field and the depinned dynamics with good ac
racy in the strong pinning regimesB!1. From the inspec-
tion of Fig. 1 no significant deviations from Gaussianity a
observed when the system is depinned, suggesting that
results relative to the conductive phase are reliable. It wo
be interesting to know, by a more extensive and system
numerical analysis, whetherP~f! is effectively Gaussian, be
cause, in that case, our results are exact. On the other h
the method is not as suitable for studying the behavior
CDW in the critical region belowEc(B,s), where compli-
cated strongly non-Gaussian correlations set in.

As a final comment let us add that in the same schem
is possible to take simply into account the effect of therm
noise.
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