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Gaussian solution of a charge-density-wave model
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We study the static and dynamic properties of the Fukuyama-Lee-Rice model for charge-density waves
pinned by random impurities by means of a self-consistent Gaussian approximation. A depinning transition is
observed, from an insulating to a conductive phase, when the externakEfisldaised above a critical value
E., which depends both on the elastic coupling constant and on the disorder strength. The dynamics are
characterized by an early stage followed by a crossover to an asymptotic regime. In the depinned phase a
stationary periodic state is attained for long times characterized by a scaling behavior of the averagd,current
namely,J~(E—E.)“, with »=0.497+0.004.[S0163-182@7)03508-X]

[. INTRODUCTION namely, the polarization and the field correlation functions,
by means of a self-consistency prescription which formally
The static and dynamic properties of charge-densitflinearizes the problem. This widely used technique of statis-
waves(CDW) pinned by random impurity potentials and un- tical mechanics, well suited for Ginzburg-Landau models,
der the influence of an applied external field have attracted has also been used in the study of order growth in an Ising
great deal of interest from theorists and experimentalistsystem quenched below the critical line. In that case the
alike. This is mainly due to the very rich phenomenologyshortcomings of this approximation are due to the remark-
observed in real materials such as NpSRef. 1) and able difference between the exact field distribution, which is
Ko.3gM00; (Ref. 2 which has been successfully reproducedpeaked around a couple of free energy minima, and the
by Ginzburg-Landau-type Hamiltonian models. The phasd>aussian approximant. In the case of the CDW model the
diagram of these systems consists of an insulating, low fieldnethod is more powerful because, due to the presence of an
pinned phase separated from a non-Ohmic conductive regianfinite number of potential minima, each of which is ran-
by a field-induced phase transition. The insulating regiordomly shifted by the quenched noigéx), a Gaussian distri-
shows several properties that are usually observed in glasdtion is expected to be, at least qualitatively, adequate. In
systems such as hysteresis, stretched exponential relaxatidfig. 1 the outcomes of a numerical simulation of Ef).are
and a highly degenerated number of metastable states. Tipgesented, showing that the GA can be considered rather
conductive phase is characterized by long time transients,

narrow-band and broadband noise, mode locking, and 5000 T
memory effects. s
The most widely used model for the dynamics of this 4000 ]
system has been that of Fukuyama, Lee, and®Riescribing
an elastically deformable CDW pinned by random impuri- 3000 B
ties. This results in the following equation of motion: g 2000 |
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for the field y(x,t), whereB is an elastic coupling constant, i
E is the applied electric field, ang(x) is a quenched white 1000 B b
noise which takes into account the stochasticity of the impu- -50 0 50 100 130 200 250 300 350

rity distribution. An overall analysis of the features of E#j).

has proven to be a hard task in both the theoretical and the
numerical respect. Analytical difficulties arise mainly be-
c?use of the ?refeglce Oflnlany 'néeTaCt”lﬂ Sptar‘]tlal mﬁuf Id:O.S, E=0.6, ando=10) over a 18 lattice ind=1 is plotted at

oF ‘many metastable solutions below the thresho 1€10 yitferent timest. The figure suggests that, in this region, the GA is

Simulations, on the other hand, can be extremely time CON3t least qualitatively correct. The quantiB(¢) calculated in the

suming, especially in the region close to the sliding threshyyie ime regimet=900) is shown in more detail in the inset, where
0_|d’ 5%”3 they have been studied mainly in one dimen, comparison is made with a Gaussian(didntinuous ling Apart
sion.™ from the tails of the distribution, where probably finite size effects

In this paper we study the Fukuyama-Lee-Ri#&R)  pecome sensible, one observes general, good agreement between
model by means of a self-consistent Gaussian approximatiofie data and their Gaussian interpolation. In the pinned phase, due
(GA) or Hartree approximation, which allows one to write to the presence of more complicated correlations, the agreement

down closed-form equations for the main observableswith the GA is less satisfactory.

FIG. 1. The probability distributiofP(¢) obtained by numerical
integration of the FLR model, Eq1), in the depinned phas@
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satisfactory for the description of the depinned dynamics. In yC(k,t) ) )

the pinned region, close to the threshold field for sliding, the —— = —2{Bk“+h[P(1),S(t) ]}C(k,t) + 2BK*G(k,1),

GA is probably less reliable. (10)
This paper is divided in five sections. In Sec. Il the GA is ] )

introduced for the study of the static and dynamic propertieyvhere we have defined the cross correlati@ik,t)

of CDW. In Sec. IIl the equilibrium properties of the system =(¢(k.t)7(—k)) and the quantityh[P(t),S(t)] is defined

are computed in the framework of the Hartree approximatioﬁhmug

and the calculation of the threshold field is discussed. In Sec.

IV the dynamics of the model is studied both in the pinned ¢ 4(x+ 1 t)sing(x,t)) — P(t) w:h[p(t),s(t)]c(r,t),
and in the depinned phase. In Sec. V we summarize the dt
results and discuss some conclusions. (11)
with
Il. GAUSSIAN APPROXIMATION
h[P(t),S(t)]=e SV"2cosP(t). (12)

We assume the following probability distribution for the ) )

shifted field (x,t)=y(x,t)+ 7(x) at timet: The equation of motion fo&(k,t) can be deduced from Eq.
(1), as forC(k,t); we obtain

_ [detC™*(k,H)]* (Kt

{¢}= T (k,t)

ot

=—{Bk?+h[P(t),S(t)]}G(k,t) + BK?0.
(13

Equations (7), (10), and (13) constitute the governing

integro-differential equations describing the static and dy-

X[qs(k,t)_l:)(t)]}, (2) ~ namic behavior of the FLR model in the present Gaussian
approximation. Experimental works on CDWRefs. 1 and 2

as well as numerical analysis based on the FLR model usu-

ally probe the properties of the system by considering the

behavior of the polarization curred{t) =dP(t)/dt together

C(k,t)=(p(k,t) p(—k,1))— P2(t) 5(Kk), 3) with the correlation function

the so-called structure factor, is the Fourier transform of the D(r,t) = (X, t) (x+1,t)) — P3(1). (14

real space equal time pair connected correlation function 1o Fourier transfornd (k,t) of this quantity can be related
_ 52 to C(k,t) andG(k,t) throughD(k,t)=C(k,t)—2G(k,t)+o.

D ={e(xng(x+r,0) = PAL), @ In a previous papérthe behavior of CDW has been stud-
and the operatof) represents an average with respect to théed in the largeN limit (spherical mode¢l Usually the
distribution (2), namely, (g{¢h)=/D¢ g{d}P{#}, where largeN equations are closely related to those of the dynami-
g{¢} is a generic function. We specify the quenched fieldcal Hartree approximation. This happens because when the

xexpr - % f d9k[ o(k,t)—P(t)]C(k,t)
[k|<A

whereA is a high momentum phenomenological cuté{t)
=(¢(x,t)) is the polarization,

7(X) to be Gaussianly distributed with expectations local potential is an algebraic polynomial of the order param-
eter field (the Ginzburg-Landau potential, for instaname
(n(x))=0 (5 simply averages each term over the Gaussian distribution
and employing Wick’s theorem. Due to fluctuations this proce-

dure produces a renormalization of a finite number of coef-
() p(x+1)) = d(r). 6) ficie.nts_. In the present case, h_owe_ve_r,.since the pinning po-
tential is a transcendent function, infinitely many terms are
From Eq.(1) the governing equation fdP(t) is obtained as renormalized, leading to a radically different form of the
linearized potential as compared to the lajerodel equa-
dP(t) TP S+ E 7 tions. More precisely the GA causes an exponerid)
dt [P(1),S(H]+E, @) dependence of the amplitude of the trigonometric potentials
f[P(1),S(t)] and h[P(t),S(t)] in Egs. (7), (10), and (13
whereas in the larght model S(t) appears mainly like a
o o . phase in the trigonometric functions. The role of fluctuations
fIP(),S(1)]=(sing(x,t)) =" ="sinP(t) ®) is then very different in the two cases. In the lafgdimit
and S(t)=(¢%(x,t))—P?(t) is the averaged squared field fluctuations are irrelevant in the vicinity of the critical field
fluctuation. This quantity must be evaluated self-consistentljor sliding whereas in the GA they play a central role in the
through the equation of motion for the structure factgk,t) determination of the threshold field and of the dynamics.
through These differences, which will be stressed further in the fol-
lowing sections, arise because, although both the theories are
Gaussian at all times, the physics which is described is radi-
S(t)= flkl<A W C(k,t). ©) cally different: in the largeN model, due to the presence of
the O(N) symmetry, the CDW essentially flows down the
Transforming Eq(1) into reciprocal space we obtain valleys of the potential; in the GA the order parameter is

where
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scalar and the CDW is interested by a barrier dynamics, as 1 e ——————————
we shall see, which is much more realistic with respect to the L T — — — — o=1 ]
original FLR model. As will be shown in Sec I\see also 0.8 .\("~.._ _____ .
Fig. 5 the very presence of barriers causes strong distortions J I S —— o=5 |
of the CDW, because the system is not allowed to cross the 0.6 [\ S~__ .
barriers by rigid translation; for this reason fluctuations turn  ~ R e o=10 ]
out to play a relevant role in the vicinity of the critical field 90 0.4 — \\ .
whereas their importance is negligible in t€N) model, Y Se— 0 |
thus determining different physical properties. 0.2 i TTos
m o e o=50 ]
. STATICS
We consider the behavior of Eq$7), (10), and (13 -0.2 e
studying, first, the static properties of the model. By setting 0 5 10 15 20 25
equal to zero the left-hand sides of E¢8), (10), and (13 @) B
we obtain
sinP ()= — —efi)lz (15 1.02 ' ' ' [ ' '

and

0987 ~TM _
21,4
C(k,) Bk (16) Lo 0:96° I w L

= [Bk2+ e*S(w)/ZCOS:)(OC)]Z . I I I I
0.94 u
Enforcing Eq.(9) we arrive at the self-consistency condition 1 { Ar
0.92 B
dk k*
S(o0)= BZJ . 0.9 I~
(x)=0 K<a (2m) 9 [BIK2+ \Je S —E22
(17 0.88 T T T T | r

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Equation(17) does not admit solution foE larger than a (b) B
critical value E.(B,o), as will be clear below; hence
E=E/(B,o) is the threshold field for sliding. Below FIG. 2. In(a) the threshold field&E(B,o) determined from Eq.
E.(B,o) the CDW relaxes to the static equilibrium configu- (17) is plotted againsB for different values of the disorder
ration while aboveE (B, o) it is depinned and slides. F&  strengtho. In (b) the comparison is made between a numerical
or o sufficiently smallS(«)=0. Hence the critical field is determination ofE;(B,o) obtained by direct computer simulation
determined by the singularity of the integrand atof Eq. (1) on a one-dimensional $point mesh with lattice constant
EE(B’U)ZeXd—S(OO)]:]__ In the largeB limit, instead, by ~a=2 (points with error bassand the results of the GAheavy
neglecting e~ SCI_EZ with respect toB K2in Eq. (17) we dots, in_thPT casea_=1. The figure shows good agreement in the
find (=) — ce, with c=A/(27)%. Proceeding as before we Srong pinning regimésmall B).
obtain E;(B,o)=ex{d —(c/2)a]. This result should be com-
pared with the one found in Ref. 8, where a similar calcula-critical point one is allowed to negle&(t) with respect to
tion has been employed. In Ref. 8 it is argued, supported b¥?(«) in the self-consistency equation becafqe¢) diverges
a comparison with the values & derived by direct com- approachingE, and S(») is finite. As a result the critical
puter simulation of Eq(l), that the GA allows one to accu- field turns out to be independent both®fnd ofg, because
rately calculate the threshold field for small values of thethese parameters determine the weight of fluctuations, and
coupling constanB. In Fig. 2a) the critical field determined one findsE.=1. In the present approach, due to the structure
by Eq.(17) is shown as a function d8 for different values of the self-consistency equatiog(t) always produces finite
of oin d=1. In Fig. 2b) a comparison is presented betweencorrections from the trivial valu&.=1, which corresponds
the determination o (B,o) obtained by direct numerical to B=0 (or ¢=0). The physical origin of this mathematical
simulation of Eq.(1) and the result of the GA in the case property is the following: when the quenched disorder is
o=1. The comparison shows, in agreement with Ref. 8, thastored into the system the energy of the CDW is minimized
the GA is reliable in the strong pinning regidemall B), by an adequate compromise between pinning and elastic en-
which corresponds to small fluctuations of the field. Forergies. Sincé ando determine the relative strength of these
weak pinning(largeB) S(«) is large and the Gaussian ansatztwo contributions, equilibrium properties depend continu-
for the fluctuations is less accurate, because in this limibusly on these parameters, andEso. One can easily con-
E.(B,o) should go to zero. vince oneself by inspection of Eql7) that S(«) is a mo-

The results of this section illustrate the profound differ- notonously increasing function ef for fixed B. Hence, as
ences between the lardelimit and the GA for CDW. In the the the disorder increases, the CDW gets more and more
spherical model the fluctuations turn out to be irrelevant ascattered among many minima of the local potential. One
the critical point; this occurs because in the vicinity of thecould expect that the GA breaks down when the fluctuation
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of the FLR equation grows too much with respect to the GA.
The fact that, in this approacB(«) grows with the disorder
strength suggests that the GA is reliable in the regi@n<1.

1000 m 100
100 |
IV. DYNAMICS i
10 |

P(t)
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In this section we study the dynamics of the model. In
order to characterize the dynamical process we need to
specify the initial configuration of the fiel@(x,0). In the 1
following we will consider an uncorrelated initial condition
characterized byC(k,0)=A and G(k,0)=0; the initial value I
of the polarizatiorP(0) is not very relevant: since the model 0.1 Tl il e 0.1
is invariant under 2 rigid translations this variable is always 1 10 1?° 1000 10
near to one of the equilibrium values of the pinned phase. On (a)
the other handS(0) can be, depending oA, very far from
equilibrium. In this case an early stage is observed, which
can be rather long, followed by a crossover to an asymptotic
regime characterized by the relaxation of the system already
near equilibrium. In the conductive phase a similar situation
may occur since, althougR(t) grows indefinitely,S(t) at-
tains, for long times, a stationary solution characterized by
periodic oscillations around a mean valsen this phase an
early stage can be required, depending on the initial condi-
tion, to bringS close toS. Then the late stage is entered. If
S(0)> S() [or S(0)> Sin the conductive regigpsince the
fluctuations of the field are large, the effective strength of the o Mo o oy
pinning potential is averaged to zero and the CDW is free to 1 750.8 1501 2250 3000
slide under the influence of the external field alone. By ne- (P) t
glecting f[ P(t),S(t)] with respect toE we find

100 F———T—————— T ———— 1000
800

600

(Nw
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FIG. 3. The behavior oP(t) and of S(t) is plotted. In(a) the
P(t)=Et (18) evolution of these quantities is shown in the pinned redBra1,
E=0.5,0=5, andd=1). An early regime is evident, characterized
in the early stage. From E@10), neglectingh[ P(t),S(t)] by P(t)=Et and S(t)~(Bt) %44, followed by an exponential
with respect toBk? and G(k,t) with respect toC(k,t), by relaxation to the equilibrium configuration. Between these two re-

virtue of the initial condition, we obtain gimes an intermediate behavior can be observed that is character-
ized by periodic oscillations d§(t) that widen until the system gets
(Bt)—d/Z trapped around one local minimum. (h) the same quantities are

S(t)~ (19 shown in the depinned regioiB=1, E=0.772, 0=5, andd=1).

a After an early and an intermediate regime analogous to the one
As Fig. 3 shows, these considerations apply to both th@bserved in the insulating region a stationary periodic state is
pinned and the depinned phase. In this time domain théeached that is characterized by a staircase grow(of and an

CDW behaves as a simple elastic string driven by the exter2Scilating behavior oS(t).
nal field E because the elastic energy stored in the system b¥symptotic solution P(x¢) — P(t) ~ () — S(t) ~exp(—bt)

the initial condition prevails over the local potential. As time hereb i tant. Ab threshoid a stati tate i
passes an8(t) approaches its asymptotic value, the effect of VNEreb 1S a constant. Above threshold a stafionary state 1

the pinning potential becomes gradually more relevant and ftained which is charac_tenzed by pemdlcgscnlatlo_ns of
different regime is observed which is characterized by ar%(t) and J(t) g_round t.he" mean values and J [see Fig.
oscillatory behavior ofS(t) around a mean value which is (0)]. I_n th? crmca! region above threshoIE{:E?(B,a)] a
still decaying. In this time domain the system still tries to numerical integration of Eqs7), (10), and(13) yields
dissipate elastic energy by reducing fluctuatidns., S(t)] T e ®

but, differently from the very early stage, in order to cross I~[E=Ec(B,0)]", 20
barriers it is forced to deform periodically in time. This os- with a value of the exponend which is compatible withw
cillatory behavior, which is enhanced by the quenched ran=3 with good accuracy in any dimensiod (w=0.497
domness strengtty, is very reminiscent of the depinned mo- =0.004 ind=1; see Fig. 4 For E>E_, on the other hand,
tion which is observed asymptotically f&>E_ (see also the local potential can be neglected in Ed) and w=1. In
Fig. 5 and will be further discussed below. /8ft) = S(x) Fig. 4 J is plotted againsE in the critical region abové&,

the CDW enters the asymptotic regime which is characterfor d=1. The same resulty=3, is predicted by simple one-
ized by a complex balancing between the external field angarticle models' and by the largeN limit solution.” The
the potential terms. In the insulating phase the system getsean field result olv=2 (Ref. 12 has led to the expectation
trapped around one local minimum and an exponential relaxthat the CDW model with many interacting degrees of free-
ation of bothP(t) and S(t) towards the equilibrium values dom would showw+3. The analytical work of Parisi and
P(),S(«) is found. Equation(7), in fact, admits the Pietronerd® on a coarse-grained version of the FLR model



9548 FEDERICO CORBERI 55

0.35 —r—rs .‘. R N large too, the behavior is similar but more complicated be-
- ‘ ] cause the CDW is scattered among many minima. As Fig. 3
0.3 F ] shows, an analogous behavior is also observed in an inter-
025 | E _mediate stage Qf the dynamics befor_e the system gets trapped
B ] into a local minimum folE<E_ or attains the stationary state
02 F 3 for E>E,. This somewhat complex character of the dynam-
- i ] ics which is captured by the GA, however, does not produce
0.15 | E any appreciable difference in the velocity exponenwith
01 b E respect to its single-particle value. On the other hand, our
F ] determination disagrees violently with the mean field result
0.05 F = o=3, suggesting that our approach, although mean field in
0 E ] spirit, is radically different from that of Ref. 12 when dy-

' namical properties are considered.
0.82 0.8425 0.865 0.8875 0.91 prop

£ V. CONCLUSIONS
FIG. 4. The average curredtis plotted against for B=1 and In this paper we have studied the dynamic Hartree ap-

o=7°/3 in d=1. Crosses represent the results of the numericaproximation for CDW. This analytical scheme allows one to
integration of Eqs(7), (10), and (13), while the continuous line  compute the static and dynamic properties of the original
describes the lawg — Ec)® with ©=0.497. CDW model in a relatively simple way. The approximation

is quite satisfactory and reproduces several properties of the
leads tow=1 in every dimensiord. Given the minuscule original model such as the presence of a depinning transition
extent of the critical regime observed in most of the systemsgt a critical value of the applied fiel (B,o) which de-
the prospect of conclusive evidence about this exponerfends both on the elastic coupling const&naind on the
coming either from numerical simulations or experiments ondisorder strengthr. In the depinned region the critical be-
real systems appears unlikely. The result of this sectiomavior is described by the scaling Ia®0), with  consistent
shows that the same value @ffound in simple one-particle- with w=2 in every dimension, for the polarization current.
type models(the largeN limit can also be considered to Accurate numerical determinations of this exponent in CDW
belong to this class of models since fluctuations are alloweéhodels are quite difficult due to the smallness of the critical
but they are irrelevant at criticalitycan also be obtained region and because the crossover to the high field behavior,
when many interacting degrees of freedom are taken int@,=1, is so gradual that one can be misled by a simple
account, as in the present scheme, despite the fact that tgaight line on a log-log plot of the current. Analogous dif-
physics described by the GA in the sliding region close to thgiculties are also encountered in the numerical simulation of
threshold field is by far more complex than the one observedn automaton model for CDW introduced by Myers and
in single-coordinate models. To this purpose it is interestingsethna Their analysis yieldso=0.45+0.05 ind=1, which
to observe, in Fig. 5, the crossing mechanism of a barrier ifs in excellent agreement with the prediction of the GA, and
the GA. Initially the CDW lies in a minimum of the local gjightly larger values of this exponent in higher dimensions
potential. The external field is not sufficient to produce awhere their results probably suffer from the inability to go to
rigid translation of the CDW across the barrier; due to ajarge enough linear system sizes to resolve the critical re-
favorable realization of the quenched noig®), however, a  gime, as observed by the authors themselves. Direct numeri-
small region of the CDW becomes locally depinned andcal simulation®*of Eq. (1) report slightly larger values of
crosses the potential maximum. This produces an avalanchgis exponent.
effect, since the nearest neighbors are pulled through the |n the present approach the correlations are taken into
barrier too, and there is a sudden increase of the fluctuatiogccount at an elementary level, allowing one to compute the
S(t). The mechanism ends when the whole system reachefreshold field and the depinned dynamics with good accu-
the next minimum. For larg8 or o, since in this cas&is  racy in the strong pinning regimeB<1. From the inspec-

tion of Fig. 1 no significant deviations from Gaussianity are

N observed when the system is depinned, suggesting that our
36 b results relative to the conductive phase are reliable. It would

i i P be interesting to know, by a more extensive and systematic
35 b numerical analysis, wheth@¥(¢) is effectively Gaussian, be-
34 | 115 cause, in that case, our results are exact. On the other hand,

;Z,: 33 [ ‘3” the method is not as suitable for studying the behavior of

as b 41 CDW in the critical region belovE.(B,o), where compli-
a1 b cated strongly non-Gaussian correlations set in.

i {05 As a final comment let us add that in the same scheme it
30 F is possible to take simply into account the effect of thermal
29 b . -~ 0 noise.

130 140 150 160 170 180 190 200
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