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The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and
numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong
interaction case. More precisely, a semiclassical approach based on nhoncommutative geometry techniques is
used to understand the intricate structure of such a spectrum. An interaction induced localization effect is
furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles
in a uniform magnetic field with on-site interactidi$0163-18207)02016-X]

I. INTRODUCTION gXxq matrix whose entries are periodic functions of the qua-
simomentum components. Thus,ifis close to any rational
The study of crystal electrons submitted to a magnetianultiple of 2, it is possible to compute the spectrum using
field has been extensive since the early works of Lahdausemiclassical methods.
and Peierl€. These studies have led to deep insights in the Based on these remarks, many theoretical and mathemati-
physics of electrons in solidénterpretation of the de Haas cal works were published during the past fifteen years using
van Alphen effect investigation of the Fermi surfac ..).  arenormalization group analy$tsnd pseudodifferential op-
The number of contributions on the subject between 195@rators technique's.On the basis of the techniques of non-
and 1970 reveals the importance of magnetic field effectscommutative geometrd, another approach was developed in
Twenty years ago, Hofstadter numerically computed theorder to reformulate and extend the semiclassical retilts.
spectrum of the Harper modeand discovered its fractal The algebraic semiclassical approach is justified by the sim-
structure as a function of the normalized magnetic flux peplicity of its application and its efficiency, for example, in
lattice celP (Fig. 1). the computation of Landau levels both in Harper-like
The problem of a two-dimensional electron on a periodicmodels® and in a model Hamiltonian on a triangular
lattice has been of special interest in solid state physics dutattice!® The comparison between semiclassical formulas
ing the past fifteen years: superconductiagd normal-metal and exact calculations extracted from the various spectra for
networks! Harper-like models have been used to describeye 27Q gives surprisingly accurate agreement even for
the quantum Hall effeétin organic conductors, in Anyon relatively largey’s (namely, y/27<0.2).
superconductivity and in flux phases for the Hubbard  While in the above formulation of the problem of Bloch
model*° electrons in a magnetic field the particles are considered on a
If the lattice is given by the positions of the ions of a two-dimensional lattice, it is possible to map it exactly onto
metal, the lattice spacing is of the order of 1 A, so that a one-dimensional lattice with quasiperiodic potential. The
even with the highest magnetic fields that can be producephteresting property of such a lattice is the duality between
now, namelyB~20 T, we geta= y/27r~0.5X10" % which momentum and spatial coordinates pointed out by Aubry and
is fairly small and shows that in this situation a “semiclas- Andre!’ This Aubry duality results in a delocalized structure
sical” approximation will always be relevant. As a matter of of the eigenstates characterized by an algebraic decay and a
fact, an effective Planck’s constant denoted pypropor-  multifractal eigenspectrum. This leads to a quasidiffusive
tional to the applied magnetic field naturally appears as amwave packet spreading on such a latfit&’
adjustable variable of the problem. Therefore the weak mag- Recently, a number of authors have followed a new path
netic field limit y—0 corresponds to the semiclassical limit in the study of the combined effect of interaction and disor-
h—0. The corresponding classical phase spacB=aD is  der. Thea priori simple problem of two interacting particles
the quasimomentum space, namely, the Brillouin zone of thén a random potenti&! has indeed revealed an unsuspectly
corresponding lattice. Topologically it is a two-torus and thelarge interaction induced delocalization effect. However, the
appearance of the magnetic field transforms it into a nonepposite effect has been discovered in the case of two par-
commutative two-torus ticles in a quasiperiodic potential. In this case, the interaction
Whenevery=2mp/q, (p,qeN) the lattice Hamiltonian leads to the emergence of a pure-point component out of the
H recovers some periodicity and Bloch's theory applies. Wespectrum of the noninteracting problem. These facts have
shall see then thatl can be represented as a self-adjointbeen firmly established by overconvincing numerical and
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analytical result$"?? It is one of the purposes of this paper with K,=(P,—qeA,)/%h, u=1,2 andA=(A;,A;) is the
to again express these arguments in more detail. vector potential satisfying cu)=B, g is the electron

We shall present in this work analytical and numericalcharge. Moreover, the quasimomenta, K, satisfy
results derived from the two-particle Harper problem with an

on-site interaction on a one-dimensional lattice. More pre- [Ky,Ky]=iqeBlh. (2)
cisely we devote the second section to the presentation of the

algebraic semiclassical approach on the noninteracting pro-€t us note that this commutation rule becomes canonical
lem U=0. The corresponding spectrum is somehow an inwhen replacing: by q.B/#. This effective Planck constant
tricate superposition of two Hofstadter butterflies. The aim of(divided by 27) is proportional to the magnetic fiel and
Sec. Ill is to study the small interaction regime where usuaPehaves as a varying physical parameter, quite naturally.
perturbation theory can be applied. The evolution of the The spectrum ofH_ is E,=Egfierw(2v+1) with
spectrum as a function of the strength of the interaction willEo=7%2/2m, fiex=0eB/%, andw=1. Therefore

be presented. After building the analytical framework in Sec.

IV, we apply it to the computation of the levels in the strong E,=fw(v+1/2), )
interaction regime. We show that for very large the spec- wherew.=q.B/m, is the cyclotronic frequency andis the
trum is divided into two parts: one corresponding to the Nnonq gndau quantum number.

interacting case and the second one, looking like a Mathieu \yhen B=0, the electron energi(k) for each conduc-
spectrum corresponding to localized states strongly influzign pand is given by Bloch's theory, where the quasimo-
enced by the interaction. Based upon Aubry’s dudiityt,  ontum componente= (k; ,k,) are defined modulo the re-
can be proved that all the wave functions are localized in thi%iprocal lattice such that for a simple square lattice in the
regime as far as the _Mathiey part of the spectrum is Conﬁght-binding approximation E(K) = 2E[ cosk,a,)
cerned. Finally, we discuss in Sec. V the problem of two_ o e o)) wherea,, is the vector of the Bravais lattice in

interacting particles on a two-dimensional lattice Smeittedthe,u direction. The charge carriers energy is calculated by
to a magnetic flux. expandingé(k) near its extremum, denoted ly, namely,

E(k)=E(k,)+#%(M ™). kik:/2+O(|k|3), 4
Il. NONINTERACTING MODEL (k) =E(ke) + %M kik, (1K @

. L . where M stands for the effective mass matrix such that
In his 1930s study of the electronic diamagnetism of met,-1_ D2E(k,)/#i2
c .

als, Landau computed the energy spectrum of a free electron 1,5 Landau theory leads to a substitution
subject to a uniform magnetic fiefdIf B is uniform and
parallel to one axis, for example axis 3, the kinetic energy i
written as

4<iaiHIA<i=1/ﬁ(P—qu)ai when an external magnetic field
Is applied. We have the following commutation rule:

[Ki . K1=iqeBaa; /h=2im¢ij | po=2i ma=iy, (5)

("K'iJr K2) (1) whereg,=h/q. is the flux quantume;; is the magne_tic flux
through the cell generated bwi(,a;) and a= ¢;; /¢, is the
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normalized magnetic flux. For a crystal with periodic spac-and the eigenequation becomes
ing, the Peierls operatdP(k) is represented by an effective

Hamiltonian? namely, d(n+ 1)+ @d(ny—1)+ 2N coq2man; + B) dp(ny)
.. . =E&¢p(Nny), (14
— im
Pl %" Mn()€™, me 2%, © where we included the additive energy due to the motion in

the field direction in the eigenvalugand where we changed
the origin ofn;.
A It is possible to characterize the properties of eigenfunc-
Her(K1,Ko) =2, he™mK. (7)  tions from Eq.(14) by looking at a special regime, namely
m N<<1. Therefore, the hopping term is dominant and we can
If several bands intersect the Fermi level, the interband couf€at the quasiperiodic potential part of the eigenvalue equa-

pling due to the magnetic field is neglected and therefore tion as a perturbation. It is then easy to see that the solutions
are given fora =0 by Bloch wavesp,(n) = exp(kn) with an

H o= 2t(coK; + coK ), (8)  energyE=2cok. For 0<\<1, the perturbation theory al-

_ _ _ lows us to perform an expansion of eigenvalues and eigen-
wheret is physically interpreted as a transfer term corre-states in\ such that

sponding to the required energy for an electron to jump from
one site to anothemearest neighbomwof the lattice. "
For a wave functiony(n,,n,) defined on the two- E(k)=2cos<+§ Aem(k),
dimensional lattice’?(Z?), the magnetic field effect can be
seen through the magnetic translation operators such that

whereh,(a) are smooth functions ok. Thus

(ny.ny) p(m) =" 1+ 2 N ynt ) | =€ Mun(yn+ ).

(ullﬁ)(nlanz):e(iiqem)f )Amlﬁ(nl_l,%% (15

(ng—1n,
o Evaluating the first- and second-order perturbation theory
L0y o : . :
_ (~iq /h)f Adi B contributions and replacing the expressi¢hS) in Eq. (14)
(U (ny,np)=e 9™ | 0 Rg(ngn=1), (9 jeads to
in an appropriate gauge we get ANUpy1tUp_1)+2cog ym+k)u,=E(K)u,. (16)
(Uhp)(ny,ny)=(ng—1,ny), The previous equation is known as the “almost Mathieu”

_ eigenvalue equation and the argument above is the Aubry
(Uap)(ng,nz) =€ """h(ng,np—1). (100 duality!” between momentum and coordinate representations.

Because of the presence of the uniform magnetic field, th@‘S far as spectral properties are concemed one can be easily

magnetic translation operators no longer commute, namel}ponvmced that dealing with BIoc_h states means that the
in that case States are extended. Thanks to this duakity; 1/A between

Egs.(14) and(16), it is quite natural to get localized states
Ul =€ MUU, (12) fqr the glmost Mathieu Hamiltonian at smalls. More pre-

) ) . ) cisely, it has been proved that the almost Mathieu Hamil-
wherey is the normalized magnetic flux per lattice cell de- tgnian has a pure point spectrum at smatl and for almost
fined by y=2mwa=2m¢/pq, ¢ being the flux per unit cell g g's.2 Conversely ifA>1, the almost Mathieu Hamil-
and  ¢o=h/ge the flux quantum. If we set tonian has a purely continuous spectrum for almost all
U, =expiK,), U,=exp(K,) using the commutation rule pg's.?

(11), we obtain Settingt=1 in formula(8) and using the magnetic trans-
lation operatord{; andif, defined on the two-dimensional

o oq_9Baa o square lattice by Eq.10), the previous Harper equation can
[K1.Ka]= o 2 W%_ZI ma=iy, (12 be written as the action of an effective Hamiltonian such that
which corresponds to E@5) in the particular case=1 and Heff=ul+u1_1+u2+u2_1. 17)
j=2.
Following Harper’ the eigenvalue equation is written In order to study the two interacting particles model on a

ia.BnalA quasiperiodic lattice we transform the previous eigenvalue
Eol(n1+a,nz) + ¢(ny—a,ny) +Ne'9e Mm@ y(ny,ny+a) equation(14) into (\=1),
—iggBnialh — -
the YN ne=@)J=280(na). (13 oo yn, + By)+ 208 Nyt B)+U By, o I, )
\ represents the strength of the quasiperiodic potential.
Let us assume plane-wave behavior in one direction, i.e., T ®n +10, % én—1n,7 @0y nye1t dnn,-1=Edbn n,s
we sety(ny,n,) =/ dB eP"2¢(n,) since the coefficients in (19)

the previous equation only involvue;:
an whereg, , are related to the quasimomentum components of
(ny,np)=€'PM2¢(ny) the noninteracting case. In the following we shall consider
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B1.,=B. Here we chose the form of on-site interaction which _ _

only influences the symmetric configurations while the anti-H= 2>, (h(m,o)e'mkc-i-i\/;h(m,o)e'mkch
symmetric ones remain not affected by Due to that, we "
shall only discuss symmetric configurations in the following.

In the most simple case of noninteracting particles +7
(U=0), the spectrum can be computed as before and is
shown in Fig. 2. (21

As we pointeq out beforey=2ra appears in our prob— which we rewrite as
lem as an effective Planck constant since the magnetic trans-
lation operatorg/; andi{, obey canonical commutation rules IH 1
in y. Therefore, we study the semiclassical limit by letting H="mH(k0) + 7(—(kc’o)——%(%H(kc:o)KMKV)

y—0. It is also possible to perform calculations near a ra- dy 2

tional value of the magnetic flux, namely +0(y%?). (22)

v'=y—2mp/g—0. The efficiency and the accuracy of our

calculations allow us to explain some features of the correThe 9H/Jy term takes into account a possible expligit
sponding spectra. dependence of the classical Hamiltonian, whereas,H

Wheny=0, corresponding t8 =0, we recover the band represents the inverse effective mass matrix due to the band
function E(k), wherek=(k,k,). To study the Landau lev- function curvature. By a unitary transformation, the qua-
els, we expand the classical symbol of the Hamiltoniandratic term can be written a®(K3+K3)/2 wherew is re-

dh imkg 1 imk 2
E(m,O)e —Eh(m,O)e ¢(mK)

+0(¥%?),

around an extremum of the band function denoteck by lated to the determinant of the Hessian matrix
1 d,d,H(k:,0). We recognize here the harmonic oscillator
_ Hamiltonian. For this reason, the energy levels denoted by

K)=H(ke)+ 50 Kok, k,+---. 1 .
Hk)=H(ke) 2 I H koK, (19 E, are called “Landau levels” and are equal, to that order in

izati iata i : . v, 1o +1/2) leading to
The quantization of(k) consists in replacing the magnetic v 0wl ) 9

translation operators by 1 12
. , E,(y)=H(ke,0)+ y(2v+1) deEDZH(kC,0)>
Ui=exli(ke+yKp1,  j=1.2, (20
wherek,; are the bottom well coordinates akd are opera- 4 7( (9H(kc’0)> +e +O(PN) (23)
tors satisfying Heisenberg’s commutation relations ady '

[K{,K,]=i. The quantized of, denoted byH, is written as

The formula(23) has been checked numerically on sev-
eral models. To illustrate it, let us consider the two-particle
Harper Hamiltonian on the square lattic8) near the maxi-
mum k.= (0,0) of the band function. Using Eq&0) and
with mK=m;K;+m,K,. In the weak field limit, one for- (22) the quantized Hamiltonian is then expressed as an ex-
mally expandsH in powers ofy/y: pansion in powers o¥:

H= E h(m, ,y)ei(mkc+ HmK),
m
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02 . . an=7/\y+27N/\y, NeZ.Keeping only terms up to the
second order iny we end up with a harmonic oscillator. In
this approximation and in the continuous case the one-
particle wave functions of the unperturbed Hamiltonian are
therefore given by

y y /
Y (y)=H,[ —]exp —— 2"vINym. (27)
vy 2y

Here,H ,(x) is a Hermite polynomial, the index refers to

the Landau levely=x—qy in terms of the minimum of
potentialqy around which the harmonic approximation has
been performed, and is the spatial coordinate. This expres-
sion is of course valid, provideg and |x—qy|<1, i.e., in

the small magnetic field regime, and not too far away from a
potential minimum. Extending our expansion to higher pow-
ers iny would allow us to increase the range of validity of
0.0 : ; this expression. We could indeed write the exact normalized

50 6.0 7.0 8.0 . . . .
E wave functions in an expansion inas

B ol 4

2
FIG. 3. Comparison between semiclassical calculati@®® y
<py(y)=eXP( - CoH,

+7C1H§}l)<i) ...

(full curves_) and the exact_ numerical spectrypoints for Landau _ 2y \/;, \/;
sublevels in the two-particle Harper model on the square lattice
when U=0. Data are extracted in the region of energies corre- (28)
sponding to the maximum (0,0) of the band function. For the purpose of discretization, we introduce a continu-
ous variableé e R labeling the well, and a discrete oihe
H=8—y[(K{")2+ (KG)2+ (KP)2+(KE)?] e Z numbering the sites. Then=&—14/y since in the cho-
2 sen representation, the intersite spacingisy/y. The set
+ %[(K§1>)4+(K(21))4+(K(lz))4+(K(22))4]+O(y3), {¢,} builds a quasiorthogonal basis in the sense thattfor

#¢', due to the Gaussian envelop of the states we have

(24)
where theK*? are quasimomenta for particle 1 and 2, re- EI e (€= 1Y) @, (&' —I\y)=0(exp(— 1/%))5, .
spectively. Finally it gives the Landau levels: 29)

— 2 2
vy (V) =8=2y(r1 vt 1)+ 9T (20,+1) These functions are periodic i with period 1A/y. In the
(204 1)24 21164+ O(13), (25) semiclassical limit the norm o, is

E

o0

where v, and v, are the Landau quantum numbers associ-

ated with particle 1 and 2, respectively. To check the accu_”%”z:l;_w o (€1 \/;)|2:1/‘/;f dyle,(y)*=11y.

racy of this formula, we compared it to the data extracted (30)
from the numerical spectrum obtained by exact diagonaliza- ) ) )
tion. Figure 3 shows the accuracy of such a semiclassic&Fonsequently, to get normalized one-particle wave functions

expansion in the description of the spectrum of the two-On the discrete lattice’(Z) we must multiply thee's by a

particle Harper model wheg—0. factor ¥4 We thus can write the symmetrized two-particle
unperturbed wave functions as
I1l. WEAK INTERACTION REGIME
’ Y
. . §,§ Ny — 2 _ r_ 1!
We present here a simple perturbative treatment that en- bun (L= \[2[%(5 'J;)@u(f ")

ables us to implement the already presented results for the
weakly interacting case. The first-order contribution allows t(pﬂ(§—|\/;)(p,,(§’—|'7)]
us to understand the splitting of Landau bands at sufficiently
weak interaction, and describes it qualitatively well. It more- X[1=6,,,(1— 1/\/5)]- (3D

over enlightens the mechanism through which interaction af-
fects the system. Using the representation defined by E(%h
(20), we write the unperturbed Hamiltonian as

We are now able to compute the first-order correction for
e energy. Because of the exponentially localized character
of Eg. (28), two particles located on different wells have
o= 208 V7K ) +2C0g \7K>). (26)  only an exponentially small overlap, and as a consequence
do practically not interact. Therefore the first-order interac-
In the semiclassical limity—0, we expand(26) in a  tion induced correction to the energy is nonzero only for
power series around a minimum of potential symmetric wave functions wit§=¢'. We have
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1_ e 2 , , FIG. 5. Compar_ison between semiclassical calculations ex-
AEM=U X (¢35, (L1")) o[ §=&"+ (I —\v] tended by perturbation theo5) (full curves and an exact nu-
b merical spectrum(pointg for the two-particle Harper model with
on-site interaction ay =0.4.
=U 55,5’ J dY(QDM(Y)‘Py(Y))Z(Z_ 5#,1/)
action splits the butterfly into two parts. One of them is prac-
+O0(exp(— 1/y)). (32 tically not affected by the interaction and corresponds to the
states where particles are far from each other. The second
one is shifted and relays to the situation where particles form
pair states. Here, the interaction results in a global shift of
1 the spectrum. In this way, new states appear in the initial
AE! >~U5§Y§,\/—_ (33 gaps of the noninteracting spectrisee Figs. 4, 6, and Fig.
The numerical factor can be estimated from the harmonid(b) in Ref. 21]. Direct analysis of eigenstates shows that the
approximation(27) which leads to corresponding states are exponentially localiZed/e shall
come back to this point later on for the case of strong inter-

Y action.
AER=Udpp\5—=Ud e (34)

for states with Landau quantum numbéfs0) and (0,1). IV. STRONG INTERACTION REGIME

This result shows that the interaction primarily acts on two- The stronalv interacting redime needs a special treatment
particle states with a high double-site occupancy. In what gy g reg P

follows we shall call such states “pair states.” States forqune analogous to the one presented in Sec. Il. As we will

which the particles are located around different potentiaFee’ Schur's complement formula can be successfully ap-

minima practically do not respond to the interaction There-p”ed to construct an effective Hamiltonian. The latter is then

fore, switching on the interaction does not modify most offoﬁrrﬁ:}gzd g;o?npme\r,vzgﬂfs im;?a(cjzglr:verrehligr:g v%??ég:ﬁe d
the spectrum as can be seen on Fig. 4. that rti. les located on d)i/ff rent tgntigl minima do not
From Eqgs.(25) and(34) and for small enough interaction, particies locate _0 erent potentia a do no
the shifted part of the spectrum is given by respond to each other: for su_ch pairs, the interaction is sup-
pressed by an exponentially small term of order
y O(Uexp(—1/y)). Therefore, this picture remains valid even
B, (¥)~8+U~ / Cy— 2y(vy+ v+ 1)+ ¥ [(2vy+1)? for largeU’s, the relevant parameter being the magnetic flux.
Pair states on the other hand undergo an energy increase of
+(2v,+1)2+2]/16. (35)  orderAE~U. Therefore when the strength of the interaction
U>0 increases, one part of the spectrum is almost not af-
The amazing agreement between the numerically comfected. Another spectral structure appears, initially looking
puted spectrum obtained by exact Lanczos diagonalizatiolike a shifted butterflysee Fig. 4 wher&) =0.4), then evolv-
and Eq.(35) is shown in Fig. 5 wher&J=0.4. It is a confir- ing to a shifted Mathieu spectrum as the interaction grows
mation of our reasoning: pair states form the shifted part obigger and biggetsee Figs. 6, 7, and 8 whete=5, 10, and
the spectrum. Because these states are much fewer thaf, respectively
states where particles are located in different wells, the In this section, we present an analytical approach that
shifted spectrum is much less dense. In this sense the inteatlows us to understand completely the mechanism driving

From Eq.(28), the dominant term in the last integral is of
an orderO(yy) so that we finally have
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FIG. 6. Spectrum of the two-particle Harper model in the inter-  FIG. 8. Spectrum of the two-particle Harper model in the
mediate regimeJ=5 up toq=23. strongly interacting regimé& =20 up toq=23.

this evolution of the spectrum. Further details like the split-

ting of the Landau band, =0, »,=1 will also be computed, 4 | et P and Q be the orthogonal projections on each
even though the physics is less transparent ttsze Fig. 7. subspace of that decomposition, namely,
We shall concentrate our semiclassical calculation near the

band function maximunk.=(0,0) corresponding to the en-
ergyz~U+ 4 in the spectrum. The two-particle Hamiltonian P=2> |mem){mem|,
can be expressed in the following way: m

ing on a Hilbert space that can be decomposed{asP

Hrp= >, [2cog ym+ B)+2cos yn+ )] Q=1— P=n§n |m@n)y(men.

m,n

In other words,P is the eigenprojection on pair states and
Q isits orthogonal. 1 is an eigenvalue dfi;p and does not
belong to the spectrum @H+,pQ then it is also an eigen-
value of the following effective Hamiltonian:

X |menymen|+UY, [m@m)(mem|
m

+ >, m@n)[(men+1|+(men—1|
m#n

+{m+1®n|+(m—1enl]. (36) H?TP(Z):PHT|PP+PHTpomQHnPP-

The strategy is based on the so-called Schur complement (37)

formula. Our HamiltoniarHp is a self-adjoint operator act- WhenU is large the dominant term in the effective Hamil-

tonian given by the Schur complement formy&¥) corre-

1.00 T T . . . .
e sponds to the pair states. The semiclassical approach we in-
troduced in Sec. Il remains valid so that
080 | 1 HS@=HHzo+ yzi + ¥?2,+0(¥%)]. The implicit equa-
tion to be solved is then
0.60 F ] HSE(2) =20+ vz + ¥*2,+ O(°), (38)
3 with
0.40 | .
HTb(2) =HY(2) + yHTIX(2) + ¥*HY (2 + O(7?).
(39
0.20 ] The expansion of the dominant term reads
0.00 , PHmpP=U+4cog\yK,)
-800 -400 0.0 4.00 8.00 12.00 )2
E =U+4-29K3+=K3+0(¥%), (40

FIG. 7. Spectrum of the two-particle Harper model in the
strongly interacting regim& =10 up toq=23. and if we considetJ large,z is large too so that
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54.0 54.1 54.2 z(y) =54.1597- 1.4133y+ 0.55392. A similar computation
E can be done near the band function minimgy (7, )

FIG. 9. Comparison between semiclassical calculatidng corresponding to the energy~U—4.

curves, see texand exact numerical spectruipoints for levels in The_ structure O_f the pair Stat_es for>1 can be under-_
the two-particle Harper model fdy = 50. stood in the following way: the diagonal term corresponding
to the energy of particles located on the same site is
4xcosin+B)+U. The transition amplitude on the diagonal
1 1 H H H ok . . o
_1.Q TZ'PQ + Q T'PQS eQ +0O(z7%). n,,=n is given by the amplitude of the hopping via virtual
z-QH7pQ z z z ’

states wittn,—n,=*=1 and energy denominatorld/ There
4D are two such paths so that the effective amplitude is
Expressing the different contributions in Schur’s formula andVer=2/U. The same expression can be derived by the Schur

expanding in powers of leads to formalism (see Sec. V. After dividing the Hamiltonian by
Vit We arrive to the eigenfunctions equation in the form of
8 32 176 Harper (14) with A replaced byAg=U>1. Sinceh>1
H%—?R:(Z):4+U+E+?+?+O(Zi4), b ( ) b YA eff eff

whenU>1, the pair states are always within the localized
phase of the Harper equation showing exponential localiza-
" —2(2+8z+ 64)[ ) 724 47+ 34 } tion. In Fig. 10, we show a typical eigenstate of the Mathieu

Hyip(2) = 3 5+ z3+82+64Ki part of the spectrum fot) =50 andy/27=34/55. The fact
that it is localized confirms the pure-point character of the

3 2 corresponding spectrum.

H<TZIg,(z _Z +823+ 256 K‘2‘+ 23 +4z+70 K‘l‘} Above we showed that in the case of strong interaction,
z Z°+8z+256 we havel>1. This explains the appearance of a pure-
7 748 point component in the spectrum. However, we think that
+2—5— (K2K2+ K3K3) — 8—5— this pure-point component will even appear for small values

z z of the interaction. Our argument is the following: without
(2+8)? interaction, the system obeys Aubry’s duality while the pres-

+ 16m(Ki+ K2). (42)  ence of the interaction introduces Aubry’s duality breaking.

Indeed, from Eq(18) it is easy to see that the interaction acts
Finally, we have to solve Eq38) to get the coefficients in the coordinate space and the symmetry with momentum
Zo, Z;, andz,. The corresponding equations for those coef-space disappears whehw 0. Formally, this argument is not
ficients are at most of degree four. We shall give here thgufficient to prove the existence of a pure-point spectrum at

equation thatz, has to satisfy at the ord@(z %), arbitrary smallU. However the ensemble of numerical data
we have here and in Refs. 22 and 21 confirms this conjec-
8 32 176 ture.
4+U+ Z + zZ + = =2p. (43 WhenU is large, the unshifted part of the spectrum looks

very much like the spectrum &=0. The main difference
In a very similar way used for the computation nf, the  can be found by looking carefully at the Landau levidse
analytical expressions @; andz, can be derived from Egs. Fig. 11). The reminiscence of the existence of the interaction
(38), (42), and(43). The good agreement with the exact nu-is seen through the appearance of a splitting of Landau sub-
merical spectrum can be seen on Fig. 9o 50. Here the levels. This splitting only exists when Landau quantum num-
numerical values for the sublevels are far,,=0, bers are different; # v, and the two particles are located in
z(y)=54.1597-0.2826y+0.0356y°, for v;,=(0,1), the same well. Such a behavior is illustrated by Fig. 11. The
z(y)=54.1597-0.8480y+0.2084y?, for wv;,=(1,1), other sublevels are described by the semiclassical formulas
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0.10 . dimensional square lattice submitted to a uniform magnetic
E flux, the eigenvalue equation reads
i

ivy1 —1Yy1
€ ¢’X1+l,y1,x2,y2+e 'l’xl—lvyl,xz,yz_" wxl,y1+1,X2,y2

ivy2
+ ’pxl,ylflxz,yz_l'e ¢x1,y1,x2+l,y2
—ivys
t+e ‘/fxl WY1 ,x2—1,y2+ l/fxl WY1 ,x2,y2+1+ ‘ﬂxl,yl,xz Yo~ 1
s e " . +U 5X1’X25y1'y2¢xl'y1’><2’y2: E¢X1'y1’x2'y2’ (46)

where &, ,,y1) are integers denoting the positions on the
square lattice and) is the on-site interparticle interaction.

For U=0, the previous equation can be reduced to the one-
dimensional Harper equation we discussed above(Eg).
With interaction, the same equatidh8) can be obtained in
the ansatz of plane waves propagating in one direction with
renormalized interactiorJ.?? While this plane-wave ap-
0.00.5 70 50 proximation is a standard approach for the one-particle
E Harper problem, it has to be handled with care in the inter-
acting case. Indeed this plane-wave ansatz breaks the sym-
FIG. 11. Semiclassical calculatiort45) (full curve) and exact metry of the original probleni{46). This symmetry can be
numerical spectrunipoints for the splitting of thev,=0, »,;=1  seen in the limit of strong interactiod>1. In this case,
Landau sublevel in the two-particle Harper model &b 20. there should be two energy bands: one corresponding to the
) ) ) ] o ) pair states when particles are located on the same site with
obtained in the casd =0 (25). To derive this splitting using energyE~U and the other witlE~1 for the states in which
semiclassical analysis, we again apply the Schur complemegie two particles avoid each other. In the higher energy band,
formula. Dealing with the unshifted butterfly leads us to con-ihe eigenvalue equation for the pair states up to the terms of
sider as the dominant ter@H+,,Q such that Eq(37) be-  ,rder 1U has the form

comes

2 )

1 U(EZ| 7y¢x+ l,y+ e 2 «/yd)xfl,y—’_ ¢x,y+l+ d’x,yfl)

HSR(2) = QHpQ+Q HTIPPW PHpQ.
(44 +U ¢x,y= E¢x,y . (47)

Applying the same scheme as before produces an addiere the term 2J represents the transition amplitude for pair

tional shift from the unperturbed energy given in first orderStat(.es' It; derivation .iS simi_lar to the case of two interapting
in by particles in the one-dimensional Harper model. Indeed if one

keepsx;=X, then the hopping term is given By.=2/U
because there are two paths with virtual energy
U (Y12—Y12t1) which contribute to the hopping term in
the y direction. Similarly the hopping in th& direction is
Veg=2e"27/U.

This shift is valid for the second Landau sublevel This representation shows that the symmetry between the
(v1=0, v,=1), its accuracy is shown in Fig. 11 and the two two directions or the Aubry duality is not broken by the
splitted subbands are given bi(y)=8-4.1666y and interaction. The main reason is that the symmetry of the

[0E(y)|=4 (49)

Y
U+4’

E(y)=8—4v up to order 1 iny. interaction is invariant under rotations on the square lattice.
In the limit of largeU, this property can be seen through Eq.
V. TWO INTERACTING PARTICLES (47). However the symmetryAubry’s duality) should also
ON A TWO-DIMENSIONAL LATTICE be preserved for small interaction. Due to that, we expect

. ) that similarly to the Harper model with=1, the interaction
Even though the studied model was derived from a modeyill not generate a pure-point component in the spectrum.

of two-dimensional electrons, its effective dimension is 1: asjowever this conjecture has to be directly checked in further
we already pOInted out, E(ﬁl8) was derived assuming that ana|ytica| and numerical studies.

the particle propagates as a plane wave in one direction. This

assumption, though reasonable in the one-particle model, VI. CONCLUSIONS

could be violated by interaction induced quantum interfer-

ences in the two-particle case. Therefore the question of the In this paper we have emphasized a localizing effect due
survival of interaction induced localization effect for two in- to the combined action of an on-site interaction and a quasi-
teracting particles in two dimensions remains an open probperiodic potential. Unlike in the random potential ca%ex-

lem. In this section we would like to discuss briefly this tended unperturbed states are localized by the interaction,
situation. For two interacting particles moving on a two-and this localization occurs at arbitrarily small attractive/
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repulsive interaction. We successfully identified the mechaponent in the spectrum will not arise. Further verifications of
nism responsible for this effect as a decoupling of a Mathieuthese conjectures are required.

like model from the original two-particle Harper model in

the limit of large interaction. Our conjecture is that a similar ACKNOWLEDGMENTS

mechanism will also work for small due to an interaction This work has been supported in part by the Fonds Na-
induced breaking of Aubry’s duality. This breaking happenstional Suisse de la Recherche. Two of #sB. and Ph.J.

in one-dimensional incommensurate models, however iwant to thank the Institut de Physique NelUehadSwitzer-
two-dimensional magnetic models, we expect that the intertand) and the Laboratoire de Physique Quantique Toulouse
action will not break the duality and that a pure-point com-(France for hospitality.

“Also at Budker Institute of Nuclear Physics, 630090 Novosibirsk, Cambridge, England, 1988Vol. 2.

Russia. 12M. wilkinson, Proc. R. Soc. London, Ser. 291, 305(1984).
1L.D. Landau, Z. Phys64, 629 (1930. 13B. Helffer and J. Sjstrand, Suppl. Bull. SMAL16(4), 34 (1988.
2R.E. Peierls, Z. Phys80, 763(1933. 14R. Rammal and J. Bellissard, J. PhyRarig 51, 1803(1990.
3W.J. de Haas and P.M. van Alphen, Leiden Commga8d 15A. Barelli and R. Fleckinger, Phys. Rev. 45, 11 559(1992.

(1930. 163, Bellissard, C. Kreft, and R. Seiler, J. Phys24, 2329(1991.
4P.G. Harper, Proc. Phys. Soc. London, Sects&\ 874 (1959;  7S. Aubry and G. AndreAnn. Isr. Phys. Soc3, 133(1979.

68, 879 (1955. 18T Geisel, R. Ketzmerick, and G. Petschel, Phys. Rev. I68t.
5D.R. Hofstadter, Phys. Rev. B4, 2239(1976. 1651(1992); 67, 3635(1991); 69, 695(1992.
®B. Pannetier, J. Chaussy, R. Rammal, and J.-C. Villegier, Phys-°M. Wilkinson and E.J. Austin, Phys. Rev. 50, 1420(1994.

Rev. Lett.53, 1845(1984. 20p L, Shepelyansky, Phys. Rev. Le®#3, 2607 (1994); Y. Imry,
"B. Pannetier, J. Chaussy, and R. Rammal, Phys. B3, 245 Europhys. Lett30, 405(1995.

(1986. 2. Barelli, J. Bellissard, Ph. Jacquod, and D.L. Shepelyansky,
8M. Kohmoto, L. Kadanoff, and C. Tang, Phys. Rev. L6, Phys. Rev. Lett77, 4752(1996.

1870(1983. 22D L. Shepelyansky, Phys. Rev. B, 14 896(1996.
9Y.H. Chen, F. Wilczek, E. Witten, and B.I. Halperin, Int. J. Mod. 22J. Bellissard, R. Lima, and D. Testard, Commun. Math. P&gs.

Phys. B3, 1001(1989. 207(1983; Ya.G. Sinai, J. Stat. Phyd6, 861(1987; V. Chu-
0R. Rammal and J. Bellissard, Europhys. L&8, 205 (1990. laevsky and Ya.G. Sinai, Commun. Math. Phy25 91 (1989;
113, Bellissard, inOperator Algebras and Applicatioredited by J. Franlich, T. Spencer, and P. Wittweihid. 132 5 (1990.

D.E. Evans and M. TakesakiCambridge University Press, 2*W. Chojnacki, Commun. Math. Phy$43 527 (1992.



