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Many-body effects in the one-dimensional electron gas with short-range interaction
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We discuss interaction effects for the one-dimensional electron gas with a repéiaetion interaction
potential by using the random-phase approximatimd a local-field correction. Analytical results for the
local-field correction of charge-density fluctuations and spin-density fluctuations are obtained. The ground-
state energy is found to be in better agreement with the exact result than the ground-state energy calculated
within the random-phase approximation. We calculate the pair-correlation functions for electrons with parallel
and antiparallel spins and the paramagnetic susceptibility. The energies of the collective densitwgiqiles
and the collective spin modesg(q) are calculated and compared with the energy of the electron-hole exci-
tations wene(q): wg(q—0)>wen-(q—0)>ws(q—0). The critical exponents for the long-distance behavior
of correlation functions are found to be described by local-field corrections. We compare our results for the
critical exponents with recent results obtained by bosonization techniques and the conformal field theory.
[S0163-18297)04415-9

[. INTRODUCTION eracy in wire structures based onGe, _, is g,=2.1° This
motivates our study of the valley degeneracy. The study of
In connection with the long-range Coulomb interactionthe limit g,—o is motivated by recent experimental results
potential for the interacting electron gas the random-phaseoncerning the collective modes of a Bose conden$aiad
approximation (RPA), a mean-field theory describes the theoretical work concerning the possibility of a Bose con-
ground-state energy and the excitation spectrum in the limitlensation in one dimensidA.
of weak coupling, e.g., for a small RPA parameterhigh Spin fluctuations can be treated by introducing the LFC
electron density! Deviations from the RPA can be de- for the spin susceptibility, and result in a Stoner-like en-
scribed within the concept of the local-field correction hancement factor. The Lobo, Singwi, and TodiST)
(LFC).2 This concept was successfully used in a self-approacf uses the concept of the LFC for the spin suscep-
consistent calculation for electron gases by Singwi, Tositibility for the electron gas with long-range Coulomb inter-
Land, and Sjander(STLS).3 action. We use our analytical approach for density fluctua-
The ground-state energy of a one-dimensional electrotions in order to treat spin fluctuations for a short-range
gas with a repulsives-function interaction potentialcan be interaction potential.
calculated exactly.In the following we use the RPA as the In recent years intense activity in condensed-matter
mean-field theory. The RPA becomes wrong for a large intheory was directed toward the Luttinger liquid and the Hub-
teraction potential. We will show that the RPA can be im-bard model in one dimension, in order to understand better
proved by the so-called LFC representing many-body effectsorrelation effects. For a review, see Ref. 14. Both models
beyond the mean-field theory. can be solved exactf{. More recent methods to calculate
In two recent papers we considered many-body effects fomany-body effects are bosonization technidfiesnd the
a Bose condensd&teand an electron géswith long-range  conformal field theory’ For the Hubbard model, critical ex-
Coulomb interaction by using an analytical form of the ponents for the long-distance behavior of correlation func-
static-structure facto{SSH. It was shown that with increas- tions have been calculated. Using the analytical results ob-
ing valley degeneracy the correlation energy increggse  tained in this paper, it is pointed out that the theory of STLS
one-dimensional Bose condensate with short-range intera@nd LST allows us to make contact with recently developed
tion, where exchange effects are not present, is a model syapproaches. By studying the pair-correlation function
tem, where analytical results for the LFC and the pair-g(z—<), we derive critical exponents for our model, and we
correlation function can be obtainédExchange effects have compare and discuss similarities and differences with dia-
to be taken into account for a one-dimensional electron gagrammatic(weak-coupling resultst® exact resultg? results
with short-range interaction. In this paper we show that, usebtained by bosonization techniquésand the conformal
ing an analytical form of the SSF,° one obtains transparent field theory:’ Doing this we supply arguments about how to
analytical results for the LFC and the ground-state energyrelate the “older” many-body theoryusing the concept of
By comparing our results with exact results and numericathe LFQ with more ‘“recent” work in this field (using
results within the STLS approachye show that the analyti- bosonization techniques and conformal field theory
cal form of the SSF is indeed a very good approximation. The paper is organized as follows. In Sec. Il we describe
The effect of a finite valley degeneracy in the case of ahe model. Our theory and the results for charge fluctuations
short-range interaction is studied. In quantum wire structureare derived and discussed in Sec. Ill. In Sec. IV we present
made from GaAs/AlGa;, _,As, the valley degeneragy,=1. the theory and the results for spin fluctuations. We discuss
However, it was shown in experiment that the valley degeneur theory in connection with other theoretical work in Sec.
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V. We explain the relevance of the local-field correction incollective excitations are taken into account. If one-particle
connection with critical exponents in Sec. VI. We commentexcitations are not present, as for a Bose condensate where
on some experimental work in Sec. VII. The conclusion isSy(q)=1, one obtains the Feynman-Bijl foriThe detailed
presented in Sec. VIII. form of the SSF reflects the structure X}(q,w)
+Vo[1—-G(y)] in X(q,w). Equations(3) and (4) can be
II. MODEL solved analytically by usingSy(g=<2kg)=0q/2kz and
] ] . Sy(g>=2kg)=1 for the one-dimensional free-electron gas.
We study a one-dimensional electron model with kinetic ~ \yjith Sy(q) =1 we obtain the SSF of the Bose gas, where
energy, characterized by an effective massand interaction  ne expression is exact. This model was studied before, and
energy characterized by the potendgl. The interaction po-  gnalytical results for the LFC have been obtaifidebr an
tential between two particles at; and r, is given by  glectron gas, exchange effects have to be taken into account
V(ry,r) =Vod(r1—ro). In the Fourier space the interaction yjg 5 (q). Equation(4) for an electron gas represents an
potential is independent of the wave numheand expressed gpproximation, and this approximation allows us to derive
asV(q)=V,. The electron density and the electron mass anaytical results for the LFC. The validity range can only be
define, together with/,, the r(_alevant.d|men3|onless param- judged after comparison with results where this approxima-
eter y for the strength of the interaction as tion has not been performed as in Ref. 5. It should be noted
—mVe/n=7C./2 (1) that this approximation was also used in Ref. 7 for an elec-
Y 0 p'eGy - tron gas with long-range Coulomb interaction, where exact
The parametelC, was introduced beforal® g, is the results are not availablga. It is one qf the issues of t_his paper
valley degeneracy. The electron density defines the FerniP Show that the analytical expression for the SSF is a good
wave numbekg via n=2g,kg/7. We express all results as aPProximation. _
functions ofy. The parametey depends om andV,, andy With Egs.(3) and(4), we find
is small for large density an¢or) small V,. Our results, 1 1+89§y[1—G(y)]/772

which we derive in the following, depend gnandg, or C,, G(y)==— > =15
andg, . Vo=h?b/7m characterizes the interaction of elec- 29, [1+4g;y[1-G(y))/ 7]
5) represents a cubic equation f&(y). An ex-

trons with scattering length. h is Planck’s constant. In the Equation(
plicit solution of the cubic equation will not be given in this

following, we useh=21r.
paper. However, it is not difficult to obtain numerical results
IIl. CHARGE FLUCTUATIONS for the relevant solution of the cubic equation with
A. Theory 1/29,<G(y)<1. For a large valley degeneragy,— <,

) ) ) o only the terms in Eq(5) containingg, survive, and we find
For a short-range interaction potential the LFC is mdepenG(y):2[7[1_6(7)]]1/2/77 which is the result for a Bose

dent of the wave numbérand the dynamic density response condensate in one dimensidthis equation corresponds to a

®)

functionX(q,w) is given by quadratic equation for the LFC. Fgy,—« the kinetic and
X0 ) exchange energies vanish, and the only energy which stays
X(q,w)= Chhl ) (2) finite, the limitg,—co, is the correlation energy. This limit
1+Vo[1-G(y)]Xo(q,w) was discussed in detail for a long-range interaction potential
Xo(q,) is the Lindhard function of the one-dimensional IN Ref. 8. _ _
free electron gasG(y) is the LFC for density fluctuations, 1N lowest-order result is obtained by settfBy) =0 on
and was discussed befdt&® Collective modes are defined the right-hand side of EGS). This is the RPA for the LFC.
by poles of the response functions:X{dj,wy(q))=0 de- We find
scribes the collective modesy(q) for density @) excita- 1 1+8g2y/ 72
tions (zero sounyd Grpa(7)= — 2—”21/2 (6)
Within the STLS approach, the LFC is given®by 29, [1+4g,y/ ]
1 e The first term in Eq(6) with Ggpa(y=0)=Gpea=1/2g, rep-
GSTLSZE f dq[1—S(q)]. ®) resents the exchange term or the Hartree-Fock approximation
0

(HFA) of the LFC. The asymptotic law for weak coupling is

In the following we use5(y) =Ger.s. S(q) is the SSF and, Written as

following the arguments given in Refs. 6, 7, and 9, we use

. . 6g;
the analytical expression G(y—0)= 29 1+(1-1/29,) % y+O(y?|. (7
S(q)= 5 > - 1P (4)  The term linear iny represents correlation effects. The ex-
[1/Sp(q)“+4n“y[1-G(y)]/q7] pressions given in Eq¥6) and (7) strongly overestimate

Sy(q) is the SSF of the noninteracting electron gas. Thecorelation effects. For strong coupliig—<<), we find

factor containingy[1 — G(y)] represents the contribution of _q_ 2

the collective modes to the SSF. Equatidi takes into ac- Cly—e)=1=m"5l8y, ®)
count one-particle excitations and sound modes withwWith §=1—1/g%+(1+2/g?) For g,=1 we obtain
S(g—0)xq. The SSF in Eq(4) corresponds to general- 6=1.73, and forg,=« we obtain the result of the Bose
ized Feynman-Bijl form, where one-particle excitatioasd  condensate, wheré=2° G(y) versusy according to Eq.

1/2
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FIG. 1. !_ocal-field correctio(y) vs interaction strengtly (or FIG. 2. Pair-correlation functiong(y,z=0) vs interaction
Cp) according to Eq(5). The asymptotic resulighe RPA and HFA strengthy (or C,,) as the dashed line. The solid line represents the

for the LFQ are shown as dotted and dashed lines, respectively. ladder approximatiofRef. 19. The solid dots are numerical results

within the STLS approactRefs. 5 and 19 The dotted lines repre-
(5), and the LFC within the RPA and HFA are shown in Fig. sent the RPA and the HFA.

1. Note the small regime of validity of the LFC in the RPA

and HFA. In general we fin@® za<G(7y) <Ggpa(?). ergy due to exchange and correlation effects. We conclude
that 6in£(7)°‘79(27’,2:0)- For vy—o, we find
B. Pair-correlation function &n( y)/(n"/2m) = 7°518.

The contribution of the interaction energy to the ground-

The pair-correlation functiorg(z), the probability for  state energy per particle is expressed as
finding two electrons at distanae is given by the SSEand

is expressed as Y o €in(N)
Eint: d)\' )\
0

(10

1 » — S
2)=1— — f dg cosazn1— _ 9 The contribution of the kinetic energy to the ground-state
9(7.2) mn Jo %9 daz1=S(@)] ® energy per particle is given bgr/3=(7°/129%)n?/2m, and
the ground-state energy is written as
For z=0, one obtainsg(y,z=0)=1—G(y). For y—0 we
find g(y,z=0)=1-1/2g, — (39, — 3/2)y/ =%, and forg, =1 L
a negative pair correlation is found far>m%/3=3.3. This %" 2m
shows that the weak-coupling result for the LFC overesti- . -
mates correlation effe?:ts.g Fory—o we derive and the total energy ig=neo. W.'th".] the RPA for the
g(y,2=0)=25/8y. In charged Coulomb systems, for a -FC [se€ Ea(6)]. the total energy is given by
large RPA parametefstrong coupling, one finds the un- ot 20, 893 2 { [1 895 }
- Y

2 772

1297

+fydx[1—e(>\)]} (11)
0

physical resultg(0)<0.2 For an electron gas with contact

= 3V a2_ 2
interaction we findg(0)>0 for an arbitrary strength of the €eke 3w m 37 77
interaction. 2 12
g('y,Z.= 0) versusy is shown in Fig. 2 forgv=_1 as the X[ 1+ — y} (12
dashed line. Numerical results for this model within the lad- ™

der approximatiot? are shown by the solid line. The ground- with Eq. (12), for y<1 we derive the weak-coupling result
state energy calculated within the ladder approximation igs

very near to the exact result. It becomes evident from Fig. 2

that the LFC within the STLS approach is not exact; how- n?
ever, it describes the main effects due to interactions. Most €7 om
important is the fact that the results of the STLS approach,

using the analytical form of the SSF and shown as the dashed o3 K
line in Fig. 2, are nearly identical to the results using a nu- +0(9," 7Y
merically determined SSF° shown as solid dots in Fig. 2.

2 3
G y 18, , 99, ,
12277 29, 24n2 Y " 3%7

: (13

with k>3. We mention that the Hartree energy can be

written asey=nVy/2=n?y/2m. The first, second, and third

terms in Eq(13) represent the kinetic, Hartree, and exchange
The interaction energy,,.(y) is given in terms of the SSF. energy, respectively. The terms withy? and +y° represent

Within the STLS approach one finds,(y)=n?y[1 the first corrections due to correlation effects.

—G(y)]/2m. We note that the term linear imrepresents the The exact strong coupling result fer—~o was calculated

Hartree term. The second part represents the interaction ein Ref. 20 ase,=n?(w?/3)/2m, which is the ground-state

C. Ground-state energy
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“0 2 A 6 FIG. 4. Pair-correlation functiong(y,z=0) vs interaction
Cp strengthvy for different valley degeneracies. The HFA is shown as

the dotted line. The valley degeneracy#0 corresponds to the

FIG. 3. Total energyey: (normalized toegkg) vs interaction Bose condensatiRef. 9.

strengthy (or C,;) according to Eq(11) as the dashed line. The
solid line is the exact result according to Ref. 5. The solid dots are E. Valley degeneracy

numerical results within the STLS approadkef. 5. The HFA and The valley degeneracy is a very important parameter in
RPA for the LFC are shown as the dotted and dashed lines, respegamiconductor® For instance, the conduction band of sili-
tively. con shows a valley degeneracy of 6. Wire systems made with
a SiGe, _,/Si heterostructure are characterized by a twofold
energy of a Bose condensaleWith g(y—=,z=0)x1/y it  valley degenerac}f For the long-range Coulomb interaction
becomes clear that the ground-state energy as calculatege have shown recently that exchange effects decrease with
within the STLS approach, diverges for large coupling:increasing valley degeneracyhile correlation effects in-
€xIn y and we conclude that the STLS approach is not increase with increasing valley degenerfdhis effect if also
agreement with the exact result. A similar conclusion waspresent for a short-range potential. From the ground-state
derived for the Bose condensate in one dimen8ion. energy calculated in the RPA, we conclude that the kinetic
The total energy,; versusy is shown in Fig. 3 in differ- and exchange energies decrease with increasing valley de-
ent approximations. Exact results according to Ref. 5 argeneracy, while théabsolute value ofcorrelation terms in-
shown as the solid line. From Fig. 3 it becomes clear that therease with increasing valley degeneracy. Note that the Har-
RPA and HFA have only a very small validity range<<1.  tree energy is independent of the valley degeneracy. We
The finite LFC within the STLS approach strongly increasesmention that our equations for the LFC, the pair-correlation
the validity range of the theoryy<<10. The comparison be- function, and the ground-state energy approach the corre-
tween the numerical result of the STLS approaahd our  sponding values for a Bose condenstejfbecomes large.
result, using an analytical form of the SSF, shows that our In Fig. 4 we show the pair-correlation function versus
analytical expression for the SSF is a very powerful approxifor different valley degeneracies. Due to the decrease of the
mation. exchange term the pair-correlation function increases with
increasing valley degeneracy #<2. For largey the pair-
correlation function is determined by correlation effects. In
this caseg(vy,z=0) is given by, and for large valley de-
With Xo(q) =X,(q,w=0), the static density susceptibil- generacys approaches the valug=2 for a Bose condensate.
ity X(q)=X(q,0=0) is given by The ground-state energy versus coupling parameteiis
shown in Fig. 5 for different valley degeneracies. For large
valley degeneracy we obtain the ground-state energy of the
X(q)= Xo(q) 14 Bose condensateFor small coupling the ground-state en-
(@= 1+Vo[1-G(y)]Xo(a) (14) ergy decreases strongly with increasing valley degeneracy
due to the decrease of the kinetic and exchange energies.
pr is the density of states of the free-electron gas withNote that for large coupling the ground-state energy varies
Xo(g—0)=pe=n/2eg and one finds VyXy(q—0)  weakly with the valley degeneracy due to the fact that the
=4g2y/7®. For the density susceptibility in the long- ground-state energy is determined by the correlation energy,
wavelength limit, we obtain which is determined by and 6 depends only weakly og, .
In Ref. 22 the valley-occupancy phase transition was dis-
cussed: for smalllarge r¢ the ground-state energy of a two-
1 (15 dimensional electron gas withy, =2 is smaller(largep than
1+4957[1_G(7,)]/772' for g,=1. This behavior should lead to a valley-occupancy
phase transition at a critical RPA parameter. From our results
For small coupling, we find X(q—0/pg=1 shown in Fig. 5, we conclude that such a phase transition is
—4g2y(1—1/2g,)/w*. For large coupling, we obtain not expected to occur in one-dimensional systems with a
X(q—0)/pe=1/[1+g?25/2]. short-range  interaction potential. We find that

D. Density susceptibility

X(q—0)/pg=
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FIG. 6. Local-field correctiorGg(y) vs interaction strengthy
FIG. 5. Ground-state energg vs interaction strengthy. The  according to Eq(19). The asymptotic results according to E¢gl)
solid lines represent the results according to the STLS for valleyand (22) are shown as dashed and dash-dotted lines, respectively.
degeneracyy,=1, 2, and 4. The dashed line corresponds to our
calculation for a Bose condensatg, &) (Ref. 9. The dotted Equation(17) can be solved analytically, and we find
lines represent the result in the HFA fgg=1 and 2.
1 1-8g;yGy(y)/w?
€0(9,=1)>e€(9,=2)>€4(g,=4), and a crossing of the Gs( V=55 PEETE R 19
. . 29, [1-49;,yGs(y)/ 7]
ground-state energy for different valley degeneracy is absent.
However, we observe in Fig. 5 that such a valley-occupancyquation (19) represents a cubic equation f@y(y). We
phase transition is expected if the ground-state energy is capbtain numerical results for the relevant solution of the cubic
culated within the HFA. We conclude that the HFA cannotequation with 8= G4(y)<1/2g, . From Eq.(19), it becomes
be used to obtain information about the existence of thiglear that the parameter for weak couplinggisy<<1 (and
phase transition. For a long-range Coulomb interaction suchot y), and the valley degeneracy is an important parameter
a valley-occupancy phase transition could exist, as discusseaf the system: we note th&@y(y=0)=1/29,=Gg nea and

recently®® g, is an independent parameter besiges
The first-order approximatiofFOA) for the LFC is ob-
IV. SPIN FLUCTUATIONS tained by using the zero-order res@t ra=1/2g, on the
right-hand side of Eq(19), and we obtain
A. Theory
2
The dynamic spin response functi¥g(q, ) is written as _ i 1-4g,ylm
Gs.ron(y) 29, [1-2g, /732" (20
XO(qvw) . . . .
Xs(q,w)= T-Vo6.7) %o @) (16)  The asymptotic law for weak coupling is written as
—V0oVs o\,
G((y) is the LFC for spin fluctuations.Xy(q,®) S P )
=g3u2X«(q,w) is the generalized magnetic susceptibility, Co(y=0) 29, 1= 27 yTO)|. (2Y)
i‘g?(gogezq)')sz :)hedeﬁn;]aegsnﬁglg leoergteiz\:\et ”?(f)dg (qe)lef((:)trron. The term linear iny represents correlation effects. However,
spir? (s,) esxcitations s the expressions given in EqR0) and(21) strongly overes-
We apply the LéT approadi,and the LFC is given by timate correlation effects. For strong coupling we find
Gy(y—»)=m28g%y. (22

1 o
Crst=—1 fo da[1-S4(q)]. 17

From this behavior it becomes clear th@(y)=0 for
g,— . Forg,=1 we showG(y) versusy according to Eq.
(19) in Fig. 6 together with the asymptotic results according
to Egs.(21) and(22): the asymptotic laws have a small range
of validity.

In the following we useG4(y) =G, s7- Si(q) is the SSF for
spin fluctuations, and we use the analytical expression

1
. 18
[1/Se(q)*—4n?yGs(7)/g°]"* (19 B. Pair-correlation function
Note the minus sign in Eq18), which represents the minus  The pair-correlation functio(y,z), the probability for

sign in Eq. (16). For small wave numbers one finds finding two electrons at distanee is given by the SSF, and
Si(q—0)=*q. We mention thatS¢(q) is given by the fre- s expressed as

guency integral oveX¢(q,w), which cannot be calculated

analytically. We shall show that the pair-correlation function 1 (=

for parallel spingy;(y,z=0), given byG¢(y) andG(y), is 9s(7.2)= Py fo dg cogq2)[1-S(q)]. (23)
very small, which implies that our analytical results for

Gs(7), by usingS(q), fulfill the conditiong;(y,z=0)=0  With Eq. (17) one obtainsgs(y,z=0)=G4(y). For y—0,
in a very good approximation. with Eq. (21, we derive gs(y,z=0)=[l—3gvy/772

Sy(a)=
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FIG. 7. Pair-correlation functiog,(y,z=0) andg;,(y,z=0)
vs interaction strengthy according to Eq.24). The asymptotic
results forg; (y,z=0) according to Eqs.25b) and(26b), respec-
tively, are shown as dashed and dash-dotted lines, respectively. ' |
0

+0(y?]/2g,, and a negative value fg,(y,z=0) is found

for y> 772/3gv, which shows that the weak-coupling result

for the LFC strongly overestimates correlation effects. For

y—, we obtaingy(y,z=0)= 772/89 fy. FIG. 8. Pair-correlation functiong;(v,2) andgw(y,z_) vs dis-
G(y) and G(y) define the pair-correlation functions tancez according _to Eq(24) for_ y=1, 5, and 10 as solid, dashed,

9(v,2) andgy(y,z), respectively. We note that and dash-dotted lines, respectively.

Zk[:

7)= Z)— z 24 which corresponds togﬁ(y—>0,z=0)=0.0257y2 and
911(»2)=9(7.2)~0:(7.2) (243 g;,(y—0,2=0)=1-0.304y for g,=1. For strong coupling
and we find
911(7.2)=9(7.2) +947.2). (24b) ?

T o2 2,1/
gﬁ(y—>oo,z—0)—8 [1-2/g>+(1+2/g>)*?]
g:1(7,2) is the pair-correlation function for parallel spins, Y (263
and the Pauli principle impliesg;;(y,z=0)=1—-G(7)

—G4(y)=0: this behavior reflects the exchange hole inand
9:1(7,2). 9;,(v,2) is the pair-correlation function for anti- 2
parallel spins and for weak coupling, the HFA implies 0= 2\
9;(y—02=0)=1—G(y)+G¢(y)=1, while for strong 91, (y=2,2=0) 8y[1+(1+2/g”) 7. (26
coupling the repulsion effects lead g (y—,z=0)=0:
this behavior reflects the “Coulomb” holé&he interaction
hole) in g (y—=,2).

Numerical results fog,,(y,z=0) andg, (y,z=0) ver-

which corresponds tog;(y—«,z=0)=0.903/ and
g¢1(y—,z=0)=3.37/y for g,=1. Numerical results for
g:1(v,2) andg; (y,2) versusz are shown in Fig. 8 foy=1,

5, and 10. The exchange hole and the Coulomb hole can be

2:;3%'&@053?“0\\/';” \l\?h::c Ir?.is? ;?]ggr:ﬂfg'cggf( ?H(Za:aO)To%c?: lIJSse 4 clearly seen. The strength of the interaction only modifies the
ghtly p ' pp ‘pair-correlation functiory, (y,z) for zk-<1.5.9;,(7y,2) is

IgnTlég;g;eg)gg&;erﬁzesy‘;‘g:n?%e;sgg gl?rl: g::gl% nzegn';'%r?gear_ly insensitive to the strength of the interaction. More
RPA parameter ; between Xr <6 the (unphysical result inetéaélgd\;lesults fog;(7,2—) andg; (,2—) are given
g;1(0)~—-0.07 was reporteﬂs For an electron gas in o

one dimension with contact interaction, we find o o
0<g;(y,2=0)<0.04 for an arbitrary strength of the inter- C. Paramagnetic spin susceptibility

action. We believe that this small value fgy,(y,z=0) is The static paramagnetic spin susceptibilit{,(q)

an important indication that the STLS and LST approach=Xq,w=0) is given by

work reasonably well for short-range potentials.

From our analytical results forg(y,z=0) and _ Xo(q)
0<(y,z=0), for weak coupling we derive Xs(a)= 1—VoGy(v)Xo(q) (27)
1 3 o ) For the spin susceptibility in the long-wavelength limit, we
911(7H0,2=0)=1—g—v+?[1—9U]7+ 2774[1090 obtain
+8g,—13]y*+0(»? 2 !
89, —13]y*+0(»%) (253 X(q—0)/pp= (28)

1-4g2yGy(y)/m*
and

For small coupling (y—0) we derive X{(q—0)/pg
=1+2g,y/ m*—2g92y?l=*. The termy? represents correla-

3
= = —_—— 2
91, (y—02=0)=1 w? 9,7+ 00y, (250 tion effects and reduces the spin susceptibility. For large
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FIG. 9. Paramagnetic spin susceptibildg(q—0) vs interac-
tion strengthy according to Eq(28) for g,=1 and 2. The dashed
and dash-dotted lines correspond to the asymptotic results. 0 |

02
coupling (y—) we obtainX4(q—0)/p=2. Note that the X
strong-coupling behavior is independent of the valley degen- Weh
eracy, while for weak coupling the exchange term increases
with increasing valley degeneracy. {L)" O} o -
Numerical results for the paramagnetic spin susceptibility 3

versusy are shown in Fig. 9 together with the asymptotic
results. We mention that, with increasing valley degeneracy, (b)
Xs(g—0) increases; however, the dependence is small. 0 5 >

19 { |

D. Density waves and spin waves a’kg

we Ws

The dispersion of the collective modes is given by the
poles of the response functions. With the LFC the dispersion " 'C: 10- @4(d), @), and wen.(q) vs wave numben for

. . . v=10 according to Eqgs(29) and (30) for (a) g<0.5¢ and (b)
of the. collectlve_ modes fc.)r density fluctuationg(a), and 1.Kr=<g=<2.Xkg . The shaded area represents the electron-hole ex-
for spin fluctuationsw¢(q) is expressed as

citation spectrum.
2 27172
©a.5(4) =2|kil B.+(4)Aas(@)~B-(a) , (29 =2ke[1+0.0366]. For density wavefot shown in Fig.
€F F Ags(@)—1 10(b)] the parameteA fulfills Ay(q)>1 and no anomalies
with are seen fog~2kg.
In the long-wavelength limit the collective modes are well
Ag(q)=exd7?ql/(2keg?y[1—-G(y)])] (308  defined. We find the analytical results

and

0u(0=0) [\ A9 o )]T’Z 313
ALa)=exd — 70l (2keg27Gs(7)]. (30 wens(a—0) |7 MY
Equation(29) was first derived in Ref. 19 for density modes. and
Note thatB.(q)=1=|q|/2k describes the electron-hole
(eh spectrum Viaw. ofe-=2|q||B. (q)|/Ke . The electron- w<(q—0) 4g? v2
hole spectrumog, is characterized by_ o< wer=w_ . FOr e (4—0) 1= —= vGs(v) (31b

small wave numbers one finds, .= w_.=2€¢|q|/ke=|q],
and collective modes with the dispersion of a sound modeFor weak coupling we obtainwy(q— 0)/wen.(q—0)
w4 5(q—0)=|q]. =[1+29,7(29,~1)/7?]"2>1 andw(q—0)/wen-(q—0)

The dispersion for the collective modes versus wave num=[1—2g, y/ %] ¥2<1: for y—0 the energies for the two col-
ber is shown in Fig. 10 fory=10 and for(a) small wave lective modes approach the energy of the electron-hole exci-
numbers 6<0<<0.5kg, wherewg(q) <wen-(0) <wgy(g), and  tations. Forg,=1 we find wy(q—0)=(ve+Vy/27)q and
(b) large wave numbersq~2k:, where w¢(q) for  w(q—0)=(ve—V,/2m)q, andvg is the Fermi velocity.
1.97<q/ke<2.03 is overdamped but reappears forThis result is in agreement with the “g-ology” methdg.
0<1.9%kg andg>2.0XKg. This behavior can be understood  For strong coupling we obtaimwy(q— 0)/wen-(q—0)
as follows: forq=2kz we find B, =2 andB_=0 and =[1+g26/2]¥*>>1 and w(q— 0)/we.(q—0)=31Y2<1,
wd,S/eFZSA(ﬁ{ﬁ/[Ad,S— 1]*2. For spin waves the parameter and we conclude that in the strong-coupling limit the collec-
A.(q) is characterized by €A,(q)<1, and spin modes are tive modes are well defined. Our results can be summarized
overdamped: wy(2kg)/eg=iT", with T=8A(2ke)¥[1 by wy(g—0)<wen(q—0)<wy(g—0). For weak coupling
—A(2ke)]Y2 We suggest that such a behavior can be seewe obtain wy(q—0)/wy(q—0)=1+2g2y/7? and for
in experiment. Foly—0 Ay(2k) is exponentially small. The strong coupling wq(q—0)/ws(q—0)=[2+ 6g2]Y% Nu-
wave numbersy; andq,, wherewy(q,;<|q|~2ke<q,) is merical results for wy(q—0)/wen.(q—0) and
imaginary, are given by |gyJ/2ke=1*x2 exf—7°/  ©s(q—0)/we,:(q—0) versusy are shown in Fig. 11 for
[205yGg(y)]l. For y—0 we obtain |gyJ=2keg[1 g,=1. With increasingy the different modes become well
+2 exp(—7°/g,y)], and for y—o we derive |gy.4 separated in energy: this is called spin-charge separation.
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FIG. 11. Long-wavelength limit ofvy(q— 0)/wen-(g—0) and 2
ws(q—0)/wen-(q—0) vs interaction strengtly according to Eq.
(3D). 0 | I | |
0 08 16 24 32 &
With increasing valley degeneracwy(g— 0)/wgn(q arke

—0) increases strongly, whilev,(q— 0)/wen-(gq—0) de-
creases. However, the depend_ence on th_e valley degeneraCyFIG. 12. Static-structure factor for charge fluctuati®fg) and
is less pronounced for the spin modes if compared to th%pin fluctuationsSy(q) vs wave numbeq in the strong-coupling

density modes. This is due to the fact that evendpr-> |imjit 5. The solid dots are numerical results for the Hubbard
the relationwy(q— 0)/wen-(q—0)>0.707 applies. model (Ref. 29.

V. DISCUSSION: THEORY results concerning the valley degeneracy represent a gener-

alization of the STLS and LST approaches. The model of a
short-range interaction potential leads, with the analytical
In this paper many-body effects for density and spin corform of the SSF, t@nalytical results concerning the density
relations have been discussed within the concept of the LF@sponse function and the spin response function, and these
for the one-dimensional electron gas with a short-range infesults depend in a nontrivial way on the strength parameter
teraction potential. The methods of STI(Ref. 3 and LST  y and the valley degeneragy, .
(Ref. 13 have been used. It is kno#w#*>°that these meth- A similar form of the SSF for charge fluctuations was
ods are not exact. However, it is generally accepted thadiscussed before in connection with a two-dimensional elec-
these methods give qualitatively correct results even for intron gas>® The analytical form of the SSF was recently ap-
termediate coupling. The comparison of the ground-state erplied to an electron gas with long-range Coulomb
ergy calculated within the STLS approach with exact re3ultsinteraction?” The nonanalytical contribution of correlation
showed that the weak-coupling limit is exact, and reasonableffects to the ground-state energy in three- and two-
agreement was found for intermediate coupling. dimensional electron gases was obtained, in good agreement

For a Bose gas it was found that the ground-state energwith results from the literature.
within the RPA for the LFQwhich corresponds to Eq12) The STLS and LST approaches do not fulfill the com-
for 1/g,=0] gives wrong results fory>2,? while the col-  pressibility sum rulé:® A theory fulfilling this sum rule and
lective density modes calculated within the same approximaeontaining the frequency dependence of the LFC was
tion are in good agreement with exact results fer102*  formulated® for a three-dimensional electron gas with long-
For the Bose gas and 10, one can show that the sound range Coulomb interaction. It is clear that the present ap-
velocity calculated within the STLS approach is a factor 2proach should be generalized following the approach of Ref.
lower than the exact result. It was noted before that to reacB8. We believe, however, that within such a more general
the strong-coupling regime the parametemust be large, approach only numerical results can be obtained.
¥>372° We believe that similar results apply to the electron
gas, where, however, exact results for the density modes are
not available in the literature. We expect that our quasiana-
lytical results within the STLS and LST approaches are While our theory is a weak-coupling theory, and exact for
guantitatively correct fory<<10, and can be used to estimate y—0, it is interesting to note that reasonable results are ob-
many-body effects. Fo>10, qualitative aspects of many- tained for y—o. For instance, forg,=1 we obtain the
body effects can be deduced from our results. The STLStrong-coupling limit for the SSF for charge fluctuations as
approach was usédto calculate the ground-state energy of S(q<2kg)=0.366G1/ke and S(q>2kg)=1/(1+3.46«2/
the Hubbard model, and was found to be in good agreememt®)*2. For spin fluctuations we fin8,(q< 2kg)=0.70%/ks
with exact results. and Sy(g>2kg)=1/(1—2k2/g®)Y%. We note S(q<2kg)

In general, the LFOG(q,w) is a function of the wave and S,(q<2kg) are linear ing, and S;(q=2kg) exhibits a
numberq and of the frequencw. In the STLS approach the peak atq=2kg.
frequency dependence is neglected, and it was shown that Our strong-coupling results foy—o and g,=1 are
Gsm.5(9)=G(q,—=).1® One motivation for the present shown in Fig. 12 together with recent numerical re<titsr
paper wagi) to obtain analytical results which can be usedthe spin-spin correlation function of the Hubbard model in
by experimenters to estimate the importance of many-bodshe strong-coupling limitJ/t=10°, wheret is the parameter
effects, and(ii) to test the analytical form of the SSF. Our for the kinetic energy andl the parameter for the interac-

A. STLS and LST approaches

B. Strong-coupling limit: y—»
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tion. The peak value which we find for spin fluctuations ws(Q)/UFq=[PF/Xs(Q)]1/2- (33b
[S(g=2kg)=1.41] is smaller than in the Hubbard model

[S(q=2kg)~1.8]2>% The comparison with the Hubbard This behavior is a consequenceXf(q, w— »)*q?/ »?, and
model and the fact the,(gq=2kg) is finite for y—« indi-  the structure of our response functions as given in(Bgfor
cates thatG,(y)«1/y. We believe that the numerical differ- X(q,w), and in Eq.(16) for X(q,). Within the Hubbard
ences seen in Fig. 12 are due to differences in the modelsiodel similar results to those in E(®3) have been obtained
We mention that an increase of tpeefactorin the strong- as approximating results for density waves and spin waves
coupling result in Eq(22) by 35% would increase our peak using sum-rule argument§it is fair to say that for the Hub-
value to 1.8. It is astonishing, due to the appearance of hard model in the weak-coupling limit the collective modes
minus sign in Eq(16), that within our theony5,(q) exists in  are well described by an equation equivalent to E3f).
the limit y—. We also note that fog—0 we find very  However, it is clear from Ref. 40, that, for the Hubbard
good agreement between our ressifq<<2kg)=0.70%/ke model, Eq.(33) is only valid at weak coupling. An exact
and the numerical results; see Fig. 12: this is not trivial beselation exists betweem4(q) andX(q),!” and also between
causeSy(q<2kg) is determined bySy(q) (factor 4 and  w(q) andX4(q).3%?

G (y— ) (factor —2).

For the collective modes we find, far—o, D. Overdamped spin modes atj~ 2k

w4q(q—0)=1.3w¢q (32a A recent Monte Carlo simulation for the one-dimensional
Hubbard modéf showed, in the case of doping, collective
and density and spin excitations in qualitative agreement with
our results. It was found that at~2kg the energy of the
05(q—0)=0.7lveq. (32b) spin mode becomes very small. This result is in qualitative

Within the Hubbard model one obtains fod/t—s oo agreement with our calculation: see Fig.(10 The over-
w4(q—0)=2tq and for a quarter-filed band with band- damping of the spin mode nege 2k_F was not seen due to
filing parametern,=0.5 and withug=2t sin(wn,/2) one accuracy prob_lems of 1Q% near thl_s wave numbe_r. In fact,
findsve=2"% and wd(qH0)=21’Zqu.31*32This is in good Eq. (29) describes analyt|call_y the dispersion of spin waves.
agreement with our result. For the Hubbard model the For small wave numbers it was reportethat the sound
strong-coupling result is given by (q— 0)/q=t%U, which veloc!ty v, of the d_ensny mode is larger ?he.m _the sqund
means thato(q—0)/q= m2Y4(t/U)v **3'and the energy vel_ocny v, of the spin mode ,/vs=1.5). This is in qqall—

of the spin modes goes to zero foft—. This is in dis- t@tive agreement with our results. Fag,=1 we find

agreement with our result and might be due to the differenf <vn/vs<1.93 for O<y<w. The behaviorv,/v>1 is
models. called the spin charge separation in the current literature. In

the lattice model the one-particle excitations have been de-
scribed as cosinelike ban#fsyhile in our model the disper-
sion is parabolic. We conclude that the excitation spectrum

The Luttinger liquid and the Hubbard model in one di- in the doped Hubbard model shows features similar to those
mension can be solved exactf?*3*1t is difficult to com-  of the excitation spectrum in our model.
pare our results with results for the spin susceptibifityhe
density  susceptibility/ the spin-spin  correlation
function?%2° spin-density waved!3density waves!*?and
correlation function¥1”*8obtained for the Hubbard model:
the Hubbard model is a lattice model with a length segle A. Long-distance behavior ofg(y,2)
and all wave numbers are restricted te<@<m/a. Our
model is a continuum model with<0gq<o. Therefore, for
the spin-spin correlation functiosee Fig. 12, a real com-
parison forg>2kg is impossible. Moreover, the dispersion
relation for the kinetic energy within the two models is dif-
ferent, which makes a correct identification of the parameters
difficult. Within bosonization techniqué&$and the conformal
field theory!” an additional approximation is used: lineariza-
tion of the kinetic energy at the Fermi energy. We work with
a parabolic dispersion relation. It was argued that the one-
dimensional interacting fermion problem wittonlineardis-
persion can be treated in terms of the RPA with a LFC
included® This argument shows that the LFC is an impor-
tant issue in order to study many-body effects in system
with parabolic dispersion.

For small wave numbers we find the following relations:

C. Comparison with the Hubbard model

VI. CRITICAL EXPONENTS
AND THE LOCAL-FIELD CORRECTION

In a recent papérabout the LFC of a Bose condensate,
we showed that the pair-correlation function is given by the
C via

d(y,z—%)=1-m/2(znm)*y"1-G(y)]*. (343
Following the arguments given in Ref. 16, we write

9(y,z—»)=1-K(y)/(mnz)? (34b)

and this relation holds for electrorE} with K(y)=Kg(y)

and for bosons §) with K(y)=Kg(vy) in one dimension.
The critical coefficientK(y) determines the long-distance
%jecay of correlation functions in one dimensional systems.
Sometimes one usd§, (Ref. 32 or 7 (Ref. 16 in the lit-
erature instead df(y). We conclude that for the Bose con-

wg(@Iveq=[pe/X(q)]¥2 (333 densate and with the concept of a LFC, the relation

and Ke(y)=m/[2y"11-G(y)]*] (353
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holds. If we used the STLS resulG(y)=2yY41 =1-Vy2mvg) and the strong-coupling result as
-G(MY¥7 (Ref. 9 with G(y)=2y[(1+7%y)? Kg(y—o)=1/[1+1.73/2]'?=0.73. For the Hubbard model
—1]/7* we find one 3f2inds Ke(U/t—0)=1-U/mvg and Kg(U/t—ox)

Ke(y)=1/G(y). (35b) With Kg(y) the singularity in the momentum distribution

i ; i 132,42
This is a quite remarkable result: many-body effects delunction is written a¥

scribed by the LFC determine the long-distance behavior of —0E_ _ ke |a

correlation functions described b§(vy). We note that for a n(k)=0.5-const sgtk—ke)|k—ke|, (39
Bose gas in one dimensiorG(y—0)=2y"47 and with a=[Kg(¥)/g,+9,/Ke(y)—2]/4. The density of states
G(y—»)=1—m?/4y° and it follows that Kg(y—0) thep(e) near the Fermi energy is expresged)~|e— e|“.
=729 and Kg(y— ) =1+ w%/4y. For a Bose conden- Forg,=1 we find in the weak-coupling limit=y*/47* and

sate,Kg(y)—o diverges fory—0.1° within the strong-coupling limit we obtaimv=0.025. We
conclude that &«=<0.025, while in the Hubbard model
B. Electron gas 0=a=0.125.

] o For the spin correlations one has to calculate
In .generaIK(.y) is calculated _by renormalization-group 9<(y,z—). For the free-electron gas we obtain the exact
techniques or via the conformal field theory. For long-range.qq it

interaction many-body effects are described by the LFC,

which can be calculated within the STLS approach. Our ob- g,

servation described above indicatésthatK (y) is given by Os HFA(Z) = (mn2)? [1—cog2ke2)], (40

the LFC, and this closes the theoretical gap between these

two approaches; an@i) that the STLS and LST approaches with gs yra(z=0)=1/2g, . With Eq. (23), we find

can be used to obtain estimates for the LFC’s and determine,

therefore, the critical coefficients. ~ Kes(y)
For the Hubbard model some critical exponents have been 9s(y,2—)= (znmr)?

calculated within the conformal field theoty324243

0.5=#=<1 for the density-density correlation function,

1=<y=<2 for the spin-spin correlation function=Gx=1/8 for

the momentum-distribution function, andsB<4 for 4kg )

oscillations in the density-density correlation function. TheseWith

critical exponents depend on the interaction strengtiit)

and the band-filling paramete, . Keo(y)= 5 9 _ (42)
In order to calculaté () for the one-dimensional elec- ' [1-497yGy(y)/m*]H2

tron gas, we have to calculagyy,z—). For the free-

electron gas we obtain the exact result

K 2
1- E’;(ZY) cog 2kgz)

v

+0(1/12%) |, (41)

Note, that it isG4(y) which determinesKg (). From our
results forGy(y) we find Kg ((y—0)=g,/[1—2g, /7]
andKg o(y—»)=2"

OHea(Z)=1— iz [1—codq2kez)], (36 It is easy to calculaﬁe the behaviors @f| (y,z— ) and
(mn2) g1(y,z—»), which are determined by Kg; (%)
with gyea(z=0)=1—1/2g, . With Eq. (9) we find =[Ke(y) +Kg o(7)]/12 andKg ;1 (y) =[Ke(y) —Kg, o(9)]/2,
respectively. Fog,=1 the weak-coupling results are given
Ke(y) Ke(¥?) by Kg ) (y—0)=1+3"/7* and K¢ ;;(y—0)=—y/=?,
g(y,z—2)=1~ a2 |17 T g cog 2kg2) while for strong coupling we deriv&e ;| (y—)=1.073
andKg ;4 (y—=)=—0.34.
+O(1/22) ! (37) VII. DISCUSSION: EXPERIMENTS
with It was shown that for quantum wires based on doped
GaAs, the energy ordering of the elementary excitations fol-
Ky G g oS ed0)>0u()>04(a) with w(6)=2 50 () and
[1+4g2y[1—G(y)]/72] 2 ws(q)=~0.8wen(q) for 0.037<q/kg=<0.117" Our results

are in qualitative agreement with these experimental find-
Ke(y) determines the long-distance decay of the pairings: see Fig. 1@. In our calculations we neglected the
correlation function. We note tha(y,z)=(n(z)n(0)) de- long-range character of the interaction potentifle Cou-
scribes the density-density correlation function. FerO we  lomb interactioR®, which is present in these structures.
find Kg(y=0)=g,, and Eq.(37) becomes identical to Eq. Therefore, only qualitative agreement of our theory with the
(36). We note that we did not find thekd oscillations dis- experimental results reported in Ref. 44 can be expected. In a
cussed recently in the literature for the Hubbard md@ét. recent papef® it was shown that in quasi-one-dimensional
In the weak-coupling limit we findKg(y—0)=g,/  systems, based on doped GaAs, the spin-density excitations
[1+4g2y[1—1/29,]/ w3 Y2 and for strong couplindg(y  show a linear dispersion withg(q) ~wen-(q), Which is in
—)=g,/[1+928/2]Y°. For g,=1 we derive the weak- agreement with our theory if is small.
coupling result asKg(y—0)=1/[1+2y/ 72 Y?~1— y/ 2 Interacting electron gases are often discussed within the
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mean-field approach fof(q, ), which corresponds tG( y) With the analytical results given in this paper for the
=0, and the Stoner approach far(q,®),*” which corre- local-field correctiorG(y), the pair-correlation function, and
sponds toGg yea=1/2g, : many-body effects are neglected the ground-state energy of a one-dimensional electron gas
for the density susceptibility, and overestimated for the spirwith a short-range interaction we have demonstrated: Har-
susceptibility. For instance, if the HFA is used %g(d) o tree, exchange and correlation effects depend in a non-trivial
estimate many-body effects for the paramagnetic spin susyay on the strength parametgrand the valley degeneracy
ceptibility, one obtainsX(q—0)/pe=1.81 for y=4 and g e also discussed spin correlations with the concept of
g9,=1, while the LST approach give$(q—0)/pp=1.50;  the |ocal-field correctiorG4(y). The analytical results for
see Fig. 9. If, in experimenX(q—0)/pg=1.5 is measured, he paramagnetic susceptibility and the collective modes de-

we deduce_ from the HFA fOI‘XS(QﬁO)-/pF the Va".Je scribe spin correlations in a one-dimensional electron gas
y=2.46 while the full LST approach implieg=4; see Fig. \f\{ith short-range interaction
ch. '

9. These estimates demonstrate the power of our approa It was shown that local-field corrections describe the criti-

We expect that our results are interesting for experimenters : . .
; : . . . ; .Cal exponents of the long-distance behavior of the density-
working with one-dimensional systems as realized in organic

materials, and for experimenters working with artificial one-dens‘Ity and the spin-spin correlation functions. This obser-

dimensional systems made with GaAs/B& As hetero- vation gives some insight into the “theoretical” gap between
structures. o conformal field theories and the renormalization group on

the one hand, and the concept of a local-field correction on
the other hand.
Our results show that the excitation spectrum in our
In this paper we discussed many-body effects for a onemodel(one-particle excitations, density excitations, and spin
dimensional electron gas with short-range interaction via thexcitations is similar to the excitation spectrum of the doped
random-phase approximation and the concept of the locakbubbard model. We found that spin waves become over-
field correctionG(y). The comparison of our results by us- damped aty~ 2k .
ing an analytical expression for the SSF with the STLS ap-
proach, where numerical results for the SSF are used, shows
that the analytical form of the SSF is a good approximation ACKNOWLEDGMENTS
of the real SSF. This implies that the generalized Feynman-
Bijl approach for the SSF could be useful for model poten- The “Laboratoire de Physique des Solides” is a “Lab-
tials which cannot be solved exactly, as for instance in syseratoire associau Centre National de la Recherche Scienti-
tems with dimension larger than one. fique (CNRS.”
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