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Many-body effects in the one-dimensional electron gas with short-range interaction

A. Gold
Laboratoire de Physique des Solides, Universite´ Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France

~Received 3 February 1995; revised manuscript received 11 October 1996!

We discuss interaction effects for the one-dimensional electron gas with a repulsived-function interaction
potential by using the random-phase approximationand a local-field correction. Analytical results for the
local-field correction of charge-density fluctuations and spin-density fluctuations are obtained. The ground-
state energy is found to be in better agreement with the exact result than the ground-state energy calculated
within the random-phase approximation. We calculate the pair-correlation functions for electrons with parallel
and antiparallel spins and the paramagnetic susceptibility. The energies of the collective density modesvd(q)
and the collective spin modesvs(q) are calculated and compared with the energy of the electron-hole exci-
tationsveh6(q): vd(q→0).veh6(q→0).vs(q→0). The critical exponents for the long-distance behavior
of correlation functions are found to be described by local-field corrections. We compare our results for the
critical exponents with recent results obtained by bosonization techniques and the conformal field theory.
@S0163-1829~97!04415-9#
on
as
e
im

-
n
lf
s

tro

e
in

c

fo

e
-

ra
sy
ir
e
ga
us
t
rg
ica
-
.
f
re

en

of
lts

n-

FC
n-

ep-
r-
ua-
ge

tter
b-
tter
els
e

-
nc-
ob-
LS
ed
on
e
ia-

to

ibe
ons
ent
uss
c.
I. INTRODUCTION

In connection with the long-range Coulomb interacti
potential for the interacting electron gas the random-ph
approximation ~RPA!, a mean-field theory describes th
ground-state energy and the excitation spectrum in the l
of weak coupling, e.g., for a small RPA parameterr s ~high
electron density!.1 Deviations from the RPA can be de
scribed within the concept of the local-field correctio
~LFC!.2 This concept was successfully used in a se
consistent calculation for electron gases by Singwi, To
Land, and Sjo¨lander~STLS!.3

The ground-state energy of a one-dimensional elec
gas with a repulsived-function interaction potential4 can be
calculated exactly.5 In the following we use the RPA as th
mean-field theory. The RPA becomes wrong for a large
teraction potential. We will show that the RPA can be im
proved by the so-called LFC representing many-body effe
beyond the mean-field theory.

In two recent papers we considered many-body effects
a Bose condensate6 and an electron gas7 with long-range
Coulomb interaction by using an analytical form of th
static-structure factor~SSF!. It was shown that with increas
ing valley degeneracy the correlation energy increases.8 The
one-dimensional Bose condensate with short-range inte
tion, where exchange effects are not present, is a model
tem, where analytical results for the LFC and the pa
correlation function can be obtained.9 Exchange effects hav
to be taken into account for a one-dimensional electron
with short-range interaction. In this paper we show that,
ing an analytical form of the SSF,6,7,9one obtains transparen
analytical results for the LFC and the ground-state ene
By comparing our results with exact results and numer
results within the STLS approach,5 we show that the analyti
cal form of the SSF is indeed a very good approximation

The effect of a finite valley degeneracy in the case o
short-range interaction is studied. In quantum wire structu
made from GaAs/AlxGa12xAs, the valley degeneracygv51.
However, it was shown in experiment that the valley deg
550163-1829/97/55~15!/9470~12!/$10.00
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eracy in wire structures based on SixGe12x is gv52.10 This
motivates our study of the valley degeneracy. The study
the limit gv→` is motivated by recent experimental resu
concerning the collective modes of a Bose condensate,11 and
theoretical work concerning the possibility of a Bose co
densation in one dimension.12

Spin fluctuations can be treated by introducing the L
for the spin susceptibility, and result in a Stoner-like e
hancement factor. The Lobo, Singwi, and Tosi~LST!
approach13 uses the concept of the LFC for the spin susc
tibility for the electron gas with long-range Coulomb inte
action. We use our analytical approach for density fluct
tions in order to treat spin fluctuations for a short-ran
interaction potential.

In recent years intense activity in condensed-ma
theory was directed toward the Luttinger liquid and the Hu
bard model in one dimension, in order to understand be
correlation effects. For a review, see Ref. 14. Both mod
can be solved exactly.15 More recent methods to calculat
many-body effects are bosonization techniques16 and the
conformal field theory.17 For the Hubbard model, critical ex
ponents for the long-distance behavior of correlation fu
tions have been calculated. Using the analytical results
tained in this paper, it is pointed out that the theory of ST
and LST allows us to make contact with recently develop
approaches. By studying the pair-correlation functi
g(z→`), we derive critical exponents for our model, and w
compare and discuss similarities and differences with d
grammatic~weak-coupling! results,18 exact results,15 results
obtained by bosonization techniques,16 and the conformal
field theory.17 Doing this we supply arguments about how
relate the ‘‘older’’ many-body theory~using the concept of
the LFC! with more ‘‘recent’’ work in this field ~using
bosonization techniques and conformal field theory!.

The paper is organized as follows. In Sec. II we descr
the model. Our theory and the results for charge fluctuati
are derived and discussed in Sec. III. In Sec. IV we pres
the theory and the results for spin fluctuations. We disc
our theory in connection with other theoretical work in Se
9470 © 1997 The American Physical Society
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55 9471MANY-BODY EFFECTS IN THE ONE-DIMENSIONAL . . .
V. We explain the relevance of the local-field correction
connection with critical exponents in Sec. VI. We comme
on some experimental work in Sec. VII. The conclusion
presented in Sec. VIII.

II. MODEL

We study a one-dimensional electron model with kine
energy, characterized by an effective massm, and interaction
energy characterized by the potentialV0 . The interaction po-
tential between two particles atr 1 and r 2 is given by
V(r 1 ,r 2)5V0d(r 12r 2). In the Fourier space the interactio
potential is independent of the wave numberq and expressed
asV(q)5V0 . The electron densityn and the electron mas
define, together withV0 , the relevant dimensionless param
eterg for the strength of the interaction as

g5mV0 /n5pCp/2gv . ~1!

The parameterCp was introduced before.5,19 gv is the
valley degeneracy. The electron density defines the Fe
wave numberkF via n52gvkF/p. We express all results a
functions ofg. The parameterg depends onn andV0 , andg
is small for large density and~or! small V0 . Our results,
which we derive in the following, depend ong andgv or Cp
and gv . V05h2b/pm characterizes the interaction of ele
trons with scattering lengthb. h is Planck’s constant. In the
following, we useh52p.

III. CHARGE FLUCTUATIONS

A. Theory

For a short-range interaction potential the LFC is indep
dent of the wave number,5 and the dynamic density respon
functionX(q,v) is given by

X~q,v!5
X0~q,v!

11V0@12G~g!#X0~q,v!
. ~2!

X0(q,v) is the Lindhard function of the one-dimension
free electron gas.G(g) is the LFC for density fluctuations
and was discussed before.5,19 Collective modes are define
by poles of the response functions: 1/X„q,vd(q)…50 de-
scribes the collective modesvd(q) for density (d) excita-
tions ~zero sound!.

Within the STLS approach, the LFC is given by5

GSTLS5
1

pn E
0

`

dq@12S~q!#. ~3!

In the following we useG(g)5GSTLS. S(q) is the SSF and,
following the arguments given in Refs. 6, 7, and 9, we u
the analytical expression

S~q!5
1

@1/S0~q!214n2g@12G~g!#/q2#1/2
. ~4!

S0(q) is the SSF of the noninteracting electron gas. T
factor containingg[12G(g)] represents the contribution o
the collective modes to the SSF. Equation~4! takes into ac-
count one-particle excitations and sound modes w
S(q→0)}q. The SSF in Eq.~4! corresponds to ageneral-
izedFeynman-Bijl form, where one-particle excitationsand
t

i

-

e

e

h

collective excitations are taken into account. If one-parti
excitations are not present, as for a Bose condensate w
S0(q)51, one obtains the Feynman-Bijl form.2 The detailed
form of the SSF reflects the structure 1/X0(q,v)
1V0[12G(g)] in X(q,v). Equations~3! and ~4! can be
solved analytically by usingS0(q<2kF)5q/2kF and
S0(q.2kF)51 for the one-dimensional free-electron gas

With S0(q)51 we obtain the SSF of the Bose gas, whe
the expression is exact. This model was studied before,
analytical results for the LFC have been obtained.9 For an
electron gas, exchange effects have to be taken into acc
via S0(q). Equation ~4! for an electron gas represents a
approximation, and this approximation allows us to der
analytical results for the LFC. The validity range can only
judged after comparison with results where this approxim
tion has not been performed as in Ref. 5. It should be no
that this approximation was also used in Ref. 7 for an el
tron gas with long-range Coulomb interaction, where ex
results are not available. It is one of the issues of this pa
to show that the analytical expression for the SSF is a g
approximation.

With Eqs.~3! and ~4!, we find

G~g!5
1

2gv

118gv
2g@12G~g!#/p2

@114gv
2g@12G~g!#/p2#1/2

. ~5!

Equation~5! represents a cubic equation forG(g). An ex-
plicit solution of the cubic equation will not be given in th
paper. However, it is not difficult to obtain numerical resu
for the relevant solution of the cubic equation wi
1/2gv<G(g)<1. For a large valley degeneracygv→`,
only the terms in Eq.~5! containinggv survive, and we find
G(g)52†g@12G~g!#‡1/2/p, which is the result for a Bose
condensate in one dimension:9 this equation corresponds to
quadratic equation for the LFC. Forgv→` the kinetic and
exchange energies vanish, and the only energy which s
finite, the limit gv→`, is the correlation energy. This limi
was discussed in detail for a long-range interaction poten
in Ref. 8.

The lowest-order result is obtained by settingG(g)50 on
the right-hand side of Eq.~5!. This is the RPA for the LFC.
We find

GRPA~g!5
1

2gv

118gv
2g/p2

@114gv
2g/p2#1/2

. ~6!

The first term in Eq.~6! with GRPA~g50!5GHFA51/2gv rep-
resents the exchange term or the Hartree-Fock approxima
~HFA! of the LFC. The asymptotic law for weak coupling
written as

G~g→0!5
1

2gv
F11~121/2gv!

6gv
2

p2 g1O~g2!G . ~7!

The term linear ing represents correlation effects. The e
pressions given in Eqs.~6! and ~7! strongly overestimate
correlation effects. For strong coupling~g→`!, we find

G~g→`!512p2d/8g, ~8!

With d5121/g v
21(112/g v

2)1/2. For gv51 we obtain
d51.73, and forgv5` we obtain the result of the Bos
condensate, whered52.9 G(g) versusg according to Eq.
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9472 55A. GOLD
~5!, and the LFC within the RPA and HFA are shown in F
1. Note the small regime of validity of the LFC in the RP
and HFA. In general we findGHFA,G(g),GRPA~g!.

B. Pair-correlation function

The pair-correlation functiong(z), the probability for
finding two electrons at distancez, is given by the SSF,1 and
is expressed as

g~g,z!512
1

pn E
0

`

dq cos~qz!@12S~q!#. ~9!

For z50, one obtains3 g(g,z50)512G(g). For g→0 we
find g(g,z50)5121/2gv2(3gv23/2)g/p2, and forgv51
a negative pair correlation is found forg.p2/353.3. This
shows that the weak-coupling result for the LFC overe
mates correlation effects. Forg→` we derive
g(g,z50)5p2d/8g. In charged Coulomb systems, for
large RPA parameter~strong coupling!, one finds the un-
physical resultg(0),0.3 For an electron gas with contac
interaction we findg(0).0 for an arbitrary strength of the
interaction.

g(g,z50) versusg is shown in Fig. 2 forgv51 as the
dashed line. Numerical results for this model within the la
der approximation19 are shown by the solid line. The ground
state energy calculated within the ladder approximation
very near to the exact result. It becomes evident from Fig
that the LFC within the STLS approach is not exact; ho
ever, it describes the main effects due to interactions. M
important is the fact that the results of the STLS approa
using the analytical form of the SSF and shown as the das
line in Fig. 2, are nearly identical to the results using a n
merically determined SSF,5,9 shown as solid dots in Fig. 2.

C. Ground-state energy

The interaction energyeint~g! is given in terms of the SSF
Within the STLS approach one findseint~g!5n2g[1
2G(g)]/2m. We note that the term linear ing represents the
Hartree term. The second part represents the interaction

FIG. 1. Local-field correctionG(g) vs interaction strengthg ~or
Cp! according to Eq.~5!. The asymptotic results~the RPA and HFA
for the LFC! are shown as dotted and dashed lines, respective
i-
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ergy due to exchange and correlation effects. We concl
that eint(g)}gg(g,z50). For g→`, we find
eint(g)/(n

2/2m)5p2d/8.
The contribution of the interaction energy to the groun

state energy per particle is expressed as

e int5E
0

g

dl
e int~l!

l
. ~10!

The contribution of the kinetic energy to the ground-sta
energy per particle is given byeF/35(p2/12g v

2)n2/2m, and
the ground-state energye0 is written as

e05
n2

2m F p2

12gv
2 1E

0

g

dl@12G~l!#G , ~11!

and the total energy isetot5ne0 . Within the RPA for the
LFC @see Eq.~6!#, the total energy is given by

e tot
eFkF

5
2gv
3p

1
8gv

3

p3 g2
2

3p F12F12
8gv

2

p2 gG
3F11

4gv
2

p2 gG1/2G . ~12!

With Eq. ~12!, for g!1 we derive the weak-coupling resu
as

e05
n2

2m F p2

12gv
2 1g2

g

2gv
2
18gv
24p2 g21

5gv
3

3p4 g3

1O~gv
2k23gk!G , ~13!

with k.3. We mention that the Hartree energyeH can be
written aseH5nV0/25n2g/2m. The first, second, and third
terms in Eq.~13! represent the kinetic, Hartree, and exchan
energy, respectively. The terms with2g2 and1g3 represent
the first corrections due to correlation effects.

The exact strong coupling result forg→` was calculated
in Ref. 20 ase05n2(p2/3)/2m, which is the ground-state

FIG. 2. Pair-correlation functiong(g,z50) vs interaction
strengthg ~or Cp! as the dashed line. The solid line represents
ladder approximation~Ref. 19!. The solid dots are numerical resul
within the STLS approach~Refs. 5 and 19!. The dotted lines repre-
sent the RPA and the HFA.



la
g
i
a

ar
th

e
-

ou
x

l-

it

-

in
li-
with
old
n
with

tate
tic
de-

ar-
We
ion
rre-

the
ith

In

.

ge
the
n-
acy
gies.
ries
the
rgy,

is-
-

cy
ults
n is
h a
at

e
ar

p

as

55 9473MANY-BODY EFFECTS IN THE ONE-DIMENSIONAL . . .
energy of a Bose condensate.21 With g(g→`,z50)}1/g it
becomes clear that the ground-state energy as calcu
within the STLS approach, diverges for large couplin
e0}ln g and we conclude that the STLS approach is not
agreement with the exact result. A similar conclusion w
derived for the Bose condensate in one dimension.9

The total energyetot versusg is shown in Fig. 3 in differ-
ent approximations. Exact results according to Ref. 5
shown as the solid line. From Fig. 3 it becomes clear that
RPA and HFA have only a very small validity range:g,1.
The finite LFC within the STLS approach strongly increas
the validity range of the theory:g,10. The comparison be
tween the numerical result of the STLS approach5 and our
result, using an analytical form of the SSF, shows that
analytical expression for the SSF is a very powerful appro
mation.

D. Density susceptibility

With X0(q)5X0(q,v50), the static density susceptibi
ity X(q)5X(q,v50) is given by

X~q!5
X0~q!

11V0@12G~g!#X0~q!
. ~14!

rF is the density of states of the free-electron gas w
X0(q→0)5rF5n/2eF and one finds V0X0(q→0)
54g v

2g/p2. For the density susceptibility in the long
wavelength limit, we obtain

X~q→0!/rF5
1

114gv
2g@12G~g!#/p2 . ~15!

For small coupling, we find X(q→0/rF51
24g v

2g(121/2gv)/p
2. For large coupling, we obtain

X(q→0)/rF51/[11g v
2d/2].

FIG. 3. Total energyetot ~normalized toeFkF! vs interaction
strengthg ~or Cp) according to Eq.~11! as the dashed line. Th
solid line is the exact result according to Ref. 5. The solid dots
numerical results within the STLS approach~Ref. 5!. The HFA and
RPA for the LFC are shown as the dotted and dashed lines, res
tively.
ted
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E. Valley degeneracy

The valley degeneracy is a very important parameter
semiconductors.22 For instance, the conduction band of si
con shows a valley degeneracy of 6. Wire systems made
a SixGe12x/Si heterostructure are characterized by a twof
valley degeneracy.10 For the long-range Coulomb interactio
we have shown recently that exchange effects decrease
increasing valley degeneracy! while correlation effects in-
crease with increasing valley degeneracy.8 This effect if also
present for a short-range potential. From the ground-s
energy calculated in the RPA, we conclude that the kine
and exchange energies decrease with increasing valley
generacy, while the~absolute value of! correlation terms in-
crease with increasing valley degeneracy. Note that the H
tree energy is independent of the valley degeneracy.
mention that our equations for the LFC, the pair-correlat
function, and the ground-state energy approach the co
sponding values for a Bose condenste ifgv becomes large.

In Fig. 4 we show the pair-correlation function versusg
for different valley degeneracies. Due to the decrease of
exchange term the pair-correlation function increases w
increasing valley degeneracy ifg,2. For largeg the pair-
correlation function is determined by correlation effects.
this caseg(g,z50) is given byd, and for large valley de-
generacyd approaches the valued52 for a Bose condensate

The ground-state energye0 versus coupling parameterg is
shown in Fig. 5 for different valley degeneracies. For lar
valley degeneracy we obtain the ground-state energy of
Bose condensate.9 For small coupling the ground-state e
ergy decreases strongly with increasing valley degener
due to the decrease of the kinetic and exchange ener
Note that for large coupling the ground-state energy va
weakly with the valley degeneracy due to the fact that
ground-state energy is determined by the correlation ene
which is determined byd andd depends only weakly ongv .

In Ref. 22 the valley-occupancy phase transition was d
cussed: for small~large! r s the ground-state energy of a two
dimensional electron gas withgv52 is smaller~larger! than
for gv51. This behavior should lead to a valley-occupan
phase transition at a critical RPA parameter. From our res
shown in Fig. 5, we conclude that such a phase transitio
not expected to occur in one-dimensional systems wit
short-range interaction potential. We find th

e

ec-

FIG. 4. Pair-correlation functiong(g,z50) vs interaction
strengthg for different valley degeneracies. The HFA is shown
the dotted line. The valley degeneracy 1/gv50 corresponds to the
Bose condensate~Ref. 9!.
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9474 55A. GOLD
e0(gv51).e0(gv52).e0(gv54), and a crossing of the
ground-state energy for different valley degeneracy is abs
However, we observe in Fig. 5 that such a valley-occupa
phase transition is expected if the ground-state energy is
culated within the HFA. We conclude that the HFA cann
be used to obtain information about the existence of
phase transition. For a long-range Coulomb interaction s
a valley-occupancy phase transition could exist, as discu
recently.23

IV. SPIN FLUCTUATIONS

A. Theory

The dynamic spin response functionXs(q,v) is written as

Xs~q,v!5
X0~q,v!

12V0Gs~g!X0~q,v!
. ~16!

Gs(g) is the LFC for spin fluctuations.XM(q,v)
5g 0

2m B
2Xs(q,v) is the generalized magnetic susceptibilit

and g0mB is the magnetic moment of an electro
1/Xs(q,vs(q))50 defines the collective modesvs(q) for
spin (s) excitations.

We apply the LST approach,13 and the LFC is given by

GLST5
1

pn E
0

`

dq@12Ss~q!#. ~17!

In the following we useGs(g)5GLST . Ss(q) is the SSF for
spin fluctuations, and we use the analytical expression

Ss~q!5
1

@1/S0~q!224n2gGs~g!/q2#1/2
. ~18!

Note the minus sign in Eq.~18!, which represents the minu
sign in Eq. ~16!. For small wave numbers one find
Ss(q→0)}q. We mention thatSs(q) is given by the fre-
quency integral overXs(q,v), which cannot be calculate
analytically. We shall show that the pair-correlation functi
for parallel spinsg↑↑(g,z50), given byGs(g) andG(g), is
very small, which implies that our analytical results f
Gs(g), by usingSs(q), fulfill the conditiong↑↑(g,z50)50
in a very good approximation.

FIG. 5. Ground-state energye0 vs interaction strengthg. The
solid lines represent the results according to the STLS for va
degeneracygv51, 2, and 4. The dashed line corresponds to
calculation for a Bose condensate (gv5`) ~Ref. 9!. The dotted
lines represent the result in the HFA forgv51 and 2.
nt.
y
al-
t
is
h
ed

Equation~17! can be solved analytically, and we find

Gs~g!5
1

2gv

128gv
2gGs~g!/p2

@124gv
2gGs~g!/p2#1/2

. ~19!

Equation ~19! represents a cubic equation forGs(g). We
obtain numerical results for the relevant solution of the cu
equation with 0<Gs(g)<1/2gv . From Eq.~19!, it becomes
clear that the parameter for weak coupling isgvg!1 ~and
not g!, and the valley degeneracy is an important parame
of the system: we note thatGs(g50)51/2gv5Gs, HFA, and
gv is an independent parameter besidesg.

The first-order approximation~FOA! for the LFC is ob-
tained by using the zero-order resultGs,HFA51/2gv on the
right-hand side of Eq.~19!, and we obtain

Gs,FOA~g!5
1

2gv

124gvg/p
2

@122gvg/p
2#1/2

. ~20!

The asymptotic law for weak coupling is written as

Gs~g→0!5
1

2gv
F12

3gv
p2 g1O~g2!G . ~21!

The term linear ing represents correlation effects. Howeve
the expressions given in Eqs.~20! and ~21! strongly overes-
timate correlation effects. For strong coupling we find

Gs~g→`!5p2/8gv
2g. ~22!

From this behavior it becomes clear thatGs(g)50 for
gv→`. Forgv51 we showGs(g) versusg according to Eq.
~19! in Fig. 6 together with the asymptotic results accordi
to Eqs.~21! and~22!: the asymptotic laws have a small rang
of validity.

B. Pair-correlation function

The pair-correlation functiongs(g,z), the probability for
finding two electrons at distancez, is given by the SSF, and
is expressed as

gs~g,z!5
1

pn E
0

`

dq cos~qz!@12Ss~q!#. ~23!

With Eq. ~17! one obtainsgs(g,z50)5Gs(g). For g→0,
with Eq. ~21!, we derive gs(g,z50)5[123gvg/p

2

y
r

FIG. 6. Local-field correctionGs(g) vs interaction strengthg
according to Eq.~19!. The asymptotic results according to Eqs.~21!
and ~22! are shown as dashed and dash-dotted lines, respectiv
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1O(g2)]/2gv, and a negative value forgs(g,z50) is found
for g.p2/3gv , which shows that the weak-coupling resu
for the LFC strongly overestimates correlation effects. F
g→`, we obtaings(g,z50)5p2/8g v

2g.
G(g) and Gs(g) define the pair-correlation function

g(g,z) andgs(g,z), respectively. We note that

g↑↑~g,z!5g~g,z!2gs~g,z! ~24a!

and

g↑↓~g,z!5g~g,z!1gs~g,z!. ~24b!

g↑↑(g,z) is the pair-correlation function for parallel spin
and the Pauli principle impliesg↑↑(g,z50)512G(g)
2Gs(g)[0: this behavior reflects the exchange hole
g↑↑(g,z). g↑↓(g,z) is the pair-correlation function for anti
parallel spins and for weak coupling, the HFA implie
g↑↓(g→0,z50)512G(g)1Gs(g)51, while for strong
coupling the repulsion effects lead tog↑↓(g→`,z50)50:
this behavior reflects the ‘‘Coulomb’’ hole~the interaction
hole! in g↑↓(g→`,z).

Numerical results forg↑↑(g,z50) andg↑↓(g,z50) ver-
susg are shown in Fig. 7 forgv51. g↑↑(g,z50),0.04 is
slightly positive, which is an artifact of the approach use
g↑↓(g,z50) decreases with increasing coupling: see Fig
In charged Coulomb systems in three dimensions and f
RPA parameterr s between 1,r s,6 the ~unphysical! result
g↑↑(0)'20.07 was reported.13 For an electron gas in
one dimension with contact interaction, we fin
0,g↑↑(g,z50),0.04 for an arbitrary strength of the inte
action. We believe that this small value forg↑↑(g,z50) is
an important indication that the STLS and LST approa
work reasonably well for short-range potentials.

From our analytical results for g(g,z50) and
gs(g,z50), for weak coupling we derive

g↑↑~g→0,z50!512
1

gv
1

3

p2 @12gv#g1
gv
2p4 @10gv

2

18gv213#g21O~g3! ~25a!

and

g↑↓~g→0,z50!512
3

p2 gvg1O~g2!, ~25b!

FIG. 7. Pair-correlation functiong↑↑(g,z50) andg↑↓(g,z50)
vs interaction strengthg according to Eq.~24!. The asymptotic
results forg↑↓(g,z50) according to Eqs.~25b! and ~26b!, respec-
tively, are shown as dashed and dash-dotted lines, respectivel
r

.
.
a

h

which corresponds tog↑↑(g→0,z50)50.0257g2 and
g↑↓(g→0,z50)5120.304g for gv51. For strong coupling
we find

g↑↑~g→`,z50!5
p2

8g
@122/gv

21~112/gv
2!1/2#

~26a!

and

g↑↓~g→`,z50!5
p2

8g
@11~112/gv

2!1/2#, ~26b!

which corresponds tog↑↑(g→`,z50)50.903/g and
g↑↑(g→`,z50)53.37/g for gv51. Numerical results for
g↑↑(g,z) andg↑↓(g,z) versusz are shown in Fig. 8 forg51,
5, and 10. The exchange hole and the Coulomb hole ca
clearly seen. The strength of the interaction only modifies
pair-correlation functiong↑↓(g,z) for zkF,1.5. g↑↑(g,z) is
nearly insensitive to the strength of the interaction. Mo
detailed results forg↑↑(g,z→`) andg↑↓(g,z→`) are given
in Sec. VI.

C. Paramagnetic spin susceptibility

The static paramagnetic spin susceptibilityXs(q)
5Xs(q,v50) is given by

Xs~q!5
X0~q!

12V0Gs~g!X0~q!
. ~27!

For the spin susceptibility in the long-wavelength limit, w
obtain

Xs~q→0!/rF5
1

124gv
2gGs~g!/p2 . ~28!

For small coupling ~g→0! we derive Xs(q→0)/rF
5112gvg/p

222g v
2g2/p4. The termg2 represents correla

tion effects and reduces the spin susceptibility. For la

FIG. 8. Pair-correlation functionsg↑↑(g,z) andg↑↓(g,z) vs dis-
tancez according to Eq.~24! for g51, 5, and 10 as solid, dashed
and dash-dotted lines, respectively.
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coupling ~g→`! we obtainXs(q→0)/rF52. Note that the
strong-coupling behavior is independent of the valley deg
eracy, while for weak coupling the exchange term increa
with increasing valley degeneracy.

Numerical results for the paramagnetic spin susceptib
versusg are shown in Fig. 9 together with the asympto
results. We mention that, with increasing valley degenera
Xs(q→0) increases; however, the dependence is small.

D. Density waves and spin waves

The dispersion of the collective modes is given by t
poles of the response functions. With the LFC the dispers
of the collective modes for density fluctuationsvd(q), and
for spin fluctuationsvs(q) is expressed as

vd,s~q!

eF
52

uqu
kF

FB1~q!2Ad,s~q!2B2~q!2

Ad,s~q!21 G1/2, ~29!

with

Ad~q!5exp†p2uqu/„2kFgv
2g@12G~g!#…‡ ~30a!

and

As~q!5exp@2p2uqu/„2kFgv
2gGs~g!…#. ~30b!

Equation~29! was first derived in Ref. 19 for density mode
Note that B6(q)516uqu/2kF describes the electron-hol
~eh! spectrum viav6eh/eF52uquuB6(q)u/kF . The electron-
hole spectrumveh is characterized byv2eh<veh<v1eh. For
small wave numbers one findsv1eh5v2eh52eFuqu/kF}uqu,
and collective modes with the dispersion of a sound mo
vd,s(q→0)}uqu.

The dispersion for the collective modes versus wave nu
ber is shown in Fig. 10 forg510 and for~a! small wave
numbers 0,q,0.5kF , wherevs(q),veh6(q),vd(q), and
~b! large wave numbersq'2kF , where vs(q) for
1.97,q/kF,2.03 is overdamped but reappears f
q,1.97kF andq.2.03kF . This behavior can be understoo
as follows: for q52kF we find B152 and B250 and
vd,s /eF58Ad,s

1/2 /@Ad,s21#1/2. For spin waves the paramete
As(q) is characterized by 0,As(q),1, and spin modes ar
overdamped: vs(2kF)/eF5 iG, with G58As(2kF)

1/2/@1
2As(2kF)]

1/2. We suggest that such a behavior can be s
in experiment. Forg→0 As(2kF) is exponentially small. The
wave numbersq1 and q2 , wherevs(q1,uqu'2kF,q2) is
imaginary, are given by uq1,2u/2kF5162 exp†2p2/
@2g v

2gGs(g)#‡. For g→0 we obtain uq1,2u52kF@1
62 exp(2p2/gvg)], and for g→` we derive uq1,2u

FIG. 9. Paramagnetic spin susceptibilityXs(q→0) vs interac-
tion strengthg according to Eq.~28! for gv51 and 2. The dashed
and dash-dotted lines correspond to the asymptotic results.
n-
s

y

y,

n

e:

-

r

n

52kF[160.0366]. For density waves@not shown in Fig.
10~b!# the parameterAd fulfills Ad(q).1 and no anomalies
are seen forq'2kF .

In the long-wavelength limit the collective modes are w
defined. We find the analytical results

vd~q→0!

veh6~q→0!
5F11

4gv
2

p2 g@12G~g!#G1/2 ~31a!

and

vs~q→0!

veh6~q→0!
5F12

4gv
2

p2 gGs~g!G1/2. ~31b!

For weak coupling we obtainvd(q→0)/veh6(q→0)
5[112gvg(2gv21)/p2] 1/2.1 andvs(q→0)/veh6(q→0)
5@122gvg/p

2] 1/2,1: for g→0 the energies for the two col
lective modes approach the energy of the electron-hole e
tations. Forgv51 we findvd(q→0)5(vF1V0/2p)q and
vs(q→0)5(vF2V0/2p)q, and vF is the Fermi velocity.
This result is in agreement with the ‘‘g-ology’’ method.18

For strong coupling we obtainvd(q→0)/veh6(q→0)
5@11g v

2d/2]1/2.1 and vs(q→0)/veh6(q→0)5 1
2
1/2,1,

and we conclude that in the strong-coupling limit the colle
tive modes are well defined. Our results can be summar
by vs(q→0),veh6(q→0),vd(q→0). For weak coupling
we obtain vd(q→0)/vs(q→0)5112g v

2g/p2, and for
strong coupling vd(q→0)/vs(q→0)5[21dg v

2] 1/2. Nu-
merical results for vd(q→0)/veh6(q→0) and
vs(q→0)/veh6(q→0) versusg are shown in Fig. 11 for
gv51. With increasingg the different modes become we
separated in energy: this is called spin-charge separation

FIG. 10. vd(q), vs(q), and veh6(q) vs wave numberq for
g510 according to Eqs.~29! and ~30! for ~a! q<0.5kF and ~b!
1.9kF<q<2.1kF . The shaded area represents the electron-hole
citation spectrum.
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55 9477MANY-BODY EFFECTS IN THE ONE-DIMENSIONAL . . .
With increasing valley degeneracyvd(q→0)/veh6(q
→0! increases strongly, whilevs(q→0)/veh6(q→0) de-
creases. However, the dependence on the valley degen
is less pronounced for the spin modes if compared to
density modes. This is due to the fact that even forgv→`
the relationvs(q→0)/veh6(q→0).0.707 applies.

V. DISCUSSION: THEORY

A. STLS and LST approaches

In this paper many-body effects for density and spin c
relations have been discussed within the concept of the L
for the one-dimensional electron gas with a short-range
teraction potential. The methods of STLS~Ref. 3! and LST
~Ref. 13! have been used. It is known2,3,13,19that these meth-
ods are not exact. However, it is generally accepted
these methods give qualitatively correct results even for
termediate coupling. The comparison of the ground-state
ergy calculated within the STLS approach with exact resu5

showed that the weak-coupling limit is exact, and reasona
agreement was found for intermediate coupling.

For a Bose gas it was found that the ground-state ene
within the RPA for the LFC@which corresponds to Eq.~12!
for 1/gv50# gives wrong results forg.2,20 while the col-
lective density modes calculated within the same approxi
tion are in good agreement with exact results forg,10.24

For the Bose gas and 1/g50, one can show that the soun
velocity calculated within the STLS approach is a facto
lower than the exact result. It was noted before that to re
the strong-coupling regime the parameterg must be large,
g.37.20 We believe that similar results apply to the electr
gas, where, however, exact results for the density modes
not available in the literature. We expect that our quasia
lytical results within the STLS and LST approaches a
quantitatively correct forg,10, and can be used to estima
many-body effects. Forg.10, qualitative aspects of many
body effects can be deduced from our results. The ST
approach was used25 to calculate the ground-state energy
the Hubbard model, and was found to be in good agreem
with exact results.

In general, the LFCG(q,v) is a function of the wave
numberq and of the frequencyv. In the STLS approach the
frequency dependence is neglected, and it was shown
GSTLS(q)5G(q,v→`).19 One motivation for the presen
paper was~i! to obtain analytical results which can be us
by experimenters to estimate the importance of many-b
effects, and~ii ! to test the analytical form of the SSF. Ou

FIG. 11. Long-wavelength limit ofvd(q→0)/veh6(q→0) and
vs(q→0)/veh6(q→0) vs interaction strengthg according to Eq.
~31!.
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results concerning the valley degeneracy represent a ge
alization of the STLS and LST approaches. The model o
short-range interaction potential leads, with the analyti
form of the SSF, toanalytical results concerning the densit
response function and the spin response function, and t
results depend in a nontrivial way on the strength param
g and the valley degeneracygv .

A similar form of the SSF for charge fluctuations wa
discussed before in connection with a two-dimensional e
tron gas.26 The analytical form of the SSF was recently a
plied to an electron gas with long-range Coulom
interaction.27 The nonanalytical contribution of correlatio
effects to the ground-state energy in three- and tw
dimensional electron gases was obtained, in good agreem
with results from the literature.

The STLS and LST approaches do not fulfill the com
pressibility sum rule.2,5 A theory fulfilling this sum rule and
containing the frequency dependence of the LFC w
formulated28 for a three-dimensional electron gas with lon
range Coulomb interaction. It is clear that the present
proach should be generalized following the approach of R
28. We believe, however, that within such a more gene
approach only numerical results can be obtained.

B. Strong-coupling limit: g˜`

While our theory is a weak-coupling theory, and exact
g→0, it is interesting to note that reasonable results are
tained for g→`. For instance, forgv51 we obtain the
strong-coupling limit for the SSF for charge fluctuations
S(q,2kF)50.366q/kF and S(q.2kF)51/(113.46k F

2/
q2)1/2. For spin fluctuations we findSs(q,2kF)50.707q/kF
and Ss(q.2kF)51/(122k F

2/q2)1/2. We note S(q,2kF)
andSs(q,2kF) are linear inq, andSs(q52kF) exhibits a
peak atq52kF .

Our strong-coupling results forg→` and gv51 are
shown in Fig. 12 together with recent numerical results29 for
the spin-spin correlation function of the Hubbard model
the strong-coupling limitU/t5103, wheret is the parameter
for the kinetic energy andU the parameter for the interac

FIG. 12. Static-structure factor for charge fluctuationsS(q) and
spin fluctuationsSs(q) vs wave numberq in the strong-coupling
limit g→`. The solid dots are numerical results for the Hubba
model ~Ref. 29!.
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9478 55A. GOLD
tion. The peak value which we find for spin fluctuatio
[Ss(q52kF)51.41] is smaller than in the Hubbard mod
[Ss(q52kF)'1.8].29,30 The comparison with the Hubbar
model and the fact thatSs(q52kF) is finite for g→` indi-
cates thatGs(g)}1/g. We believe that the numerical differ
ences seen in Fig. 12 are due to differences in the mod
We mention that an increase of theprefactor in the strong-
coupling result in Eq.~22! by 35% would increase our pea
value to 1.8. It is astonishing, due to the appearance o
minus sign in Eq.~16!, that within our theorySs(q) exists in
the limit g→`. We also note that forq→0 we find very
good agreement between our resultSs(q,2kF)50.707q/kF
and the numerical results; see Fig. 12: this is not trivial
causeSs(q,2kF) is determined byS0(q) ~factor 4! and
Gs(g→`) ~factor22!.

For the collective modes we find, forg→`,

vd~q→0!51.35vFq ~32a!

and

vs~q→0!50.71vFq. ~32b!

Within the Hubbard model one obtains forU/t→`
vd(q→0)52tq and for a quarter-filled band with band
filling parameternb50.5 and withvF52t sin(pnb/2) one
findsvF521/2t andvd(q→0)521/2vFq.

31,32This is in good
agreement with our result. For the Hubbard model
strong-coupling result is given byvs(q→0)/q}t2/U, which
means thatvs(q→0)/q5p21/2(t/U)vF ,

33,31and the energy
of the spin modes goes to zero forU/t→`. This is in dis-
agreement with our result and might be due to the differ
models.

C. Comparison with the Hubbard model

The Luttinger liquid and the Hubbard model in one d
mension can be solved exactly.15,34,35 It is difficult to com-
pare our results with results for the spin susceptibility,36 the
density susceptibility,37 the spin-spin correlation
function,29,30 spin-density waves,31,33density waves,31,32and
correlation functions16,17,38obtained for the Hubbard mode
the Hubbard model is a lattice model with a length scalea,
and all wave numbers are restricted to 0<q<p/a. Our
model is a continuum model with 0<q,`. Therefore, for
the spin-spin correlation function@see Fig. 12#, a real com-
parison forq.2kF is impossible. Moreover, the dispersio
relation for the kinetic energy within the two models is d
ferent, which makes a correct identification of the parame
difficult. Within bosonization techniques16 and the conformal
field theory,17 an additional approximation is used: lineariz
tion of the kinetic energy at the Fermi energy. We work w
a parabolic dispersion relation. It was argued that the o
dimensional interacting fermion problem withnonlineardis-
persion can be treated in terms of the RPA with a L
included.39 This argument shows that the LFC is an impo
tant issue in order to study many-body effects in syste
with parabolic dispersion.

For small wave numbers we find the following relation

vd~q!/vFq5@rF /X~q!#1/2 ~33a!

and
ls.

a

-

e

t

rs

e-

s

vs~q!/vFq5@rF /Xs~q!#1/2. ~33b!

This behavior is a consequence ofX0(q,v→`)}q2/v2, and
the structure of our response functions as given in Eq.~2! for
X(q,v), and in Eq.~16! for Xs(q,v). Within the Hubbard
model similar results to those in Eq.~33! have been obtained
as approximating results for density waves and spin wa
using sum-rule arguments:40 it is fair to say that for the Hub-
bard model in the weak-coupling limit the collective mod
are well described by an equation equivalent to Eq.~33!.
However, it is clear from Ref. 40, that, for the Hubba
model, Eq.~33! is only valid at weak coupling. An exac
relation exists betweenvd(q) andX(q),

17 and also between
vs(q) andXs(q).

31,32

D. Overdamped spin modes atq'2kF

A recent Monte Carlo simulation for the one-dimension
Hubbard model41 showed, in the case of doping, collectiv
density and spin excitations in qualitative agreement w
our results. It was found that atq'2kF the energy of the
spin mode becomes very small. This result is in qualitat
agreement with our calculation: see Fig. 10~b!. The over-
damping of the spin mode nearq52kF was not seen due to
accuracy problems of 10% near this wave number. In fa
Eq. ~29! describes analytically the dispersion of spin wav

For small wave numbers it was reported41 that the sound
velocity vn of the density mode is larger than the sou
velocity vs of the spin mode (vn/vs51.5). This is in quali-
tative agreement with our results. Forgv51 we find
1,vn/vs,1.93 for 0,g,`. The behaviorvn/vs.1 is
called the spin charge separation in the current literature
the lattice model the one-particle excitations have been
scribed as cosinelike bands,41 while in our model the disper-
sion is parabolic. We conclude that the excitation spectr
in the doped Hubbard model shows features similar to th
of the excitation spectrum in our model.

VI. CRITICAL EXPONENTS
AND THE LOCAL-FIELD CORRECTION

A. Long-distance behavior ofg„g,z…

In a recent paper9 about the LFC of a Bose condensat
we showed that the pair-correlation function is given by t
LFC via

g~g,z→`!512p/2~znp!2g1/2@12G~g!#1/2. ~34a!

Following the arguments given in Ref. 16, we write

g~g,z→`!512K~g!/~pnz!2, ~34b!

and this relation holds for electron (E) with K(g)5KE(g)
and for bosons (B) with K(g)5KB(g) in one dimension.
The critical coefficientK(g) determines the long-distanc
decay of correlation functions in one dimensional system
Sometimes one usesKr ~Ref. 32! or h ~Ref. 16! in the lit-
erature instead ofK(g). We conclude that for the Bose con
densate and with the concept of a LFC, the relation

KB~g!5p/@2g1/2@12G~g!#1/2# ~35a!
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holds. If we used the STLS resultG(g)52g1/2@1
2G(g)] 1/2/p ~Ref. 9! with G(g)52g[(11p2/g)1/2

21]/p2 we find

KB~g!51/G~g!. ~35b!

This is a quite remarkable result: many-body effects
scribed by the LFC determine the long-distance behavio
correlation functions described byK(g). We note that for a
Bose gas in one dimensionG(g→0)52g1/2/p and
G(g→`)512p2/4g,9 and it follows that KB(g→0)
5p/2g1/2 andKB(g→`)511p2/4g. For a Bose conden
sate,KB(g)→` diverges forg→0.16

B. Electron gas

In generalK(g) is calculated by renormalization-grou
techniques or via the conformal field theory. For long-ran
interaction many-body effects are described by the LF
which can be calculated within the STLS approach. Our
servation described above indicates~i! thatK(g) is given by
the LFC, and this closes the theoretical gap between th
two approaches; and~ii ! that the STLS and LST approache
can be used to obtain estimates for the LFC’s and determ
therefore, the critical coefficients.

For the Hubbard model some critical exponents have b
calculated within the conformal field theory:17,32,42,43

0.5<h<1 for the density-density correlation function
1<g<2 for the spin-spin correlation function, 0<a<1/8 for
the momentum-distribution function, and 2<b<4 for 4kF
oscillations in the density-density correlation function. The
critical exponents depend on the interaction strength (U/t)
and the band-filling parameternb .

In order to calculateKE(g) for the one-dimensional elec
tron gas, we have to calculateg(g,z→`). For the free-
electron gas we obtain the exact result

gHFA~z!512
gv

~pnz!2
@12cos~2kFz!#, ~36!

with gHFA(z50)5121/2gv . With Eq. ~9! we find

g~g,z→`!512
KE~g!

~znp!2 F12
KE~g2!

gv
2 cos~2kFz!

1O~1/z2!G , ~37!

with

KE~g!5
gv

@114gv
2g@12G~g!#/p2#1/2

. ~38!

KE(g) determines the long-distance decay of the pa
correlation function. We note thatg(g,z)}^n(z)n(0)& de-
scribes the density-density correlation function. Forg50 we
find KE(g50)5gv , and Eq.~37! becomes identical to Eq
~36!. We note that we did not find the 4kF oscillations dis-
cussed recently in the literature for the Hubbard model.16,32

In the weak-coupling limit we find KE(g→0)5gv/
@114g v

2g[121/2gv]/p
2] 1/2, and for strong couplingKE(g

→`)5gv/[11g v
2d/2]1/2. For gv51 we derive the weak-

coupling result asKE(g→0)51/[112g/p2] 1/2'12g/p2
-
f

e
,
-

se

e,

n

e

-

512V0/2pvF) and the strong-coupling result a
KE(g→`)51/[111.73/2]1/250.73. For the Hubbard mode
one finds KE(U/t→0)512U/pvF and KE(U/t→`)
50.5.32

With KE(g) the singularity in the momentum distributio
function is written as17,32,42

n~k!50.52const sgn~k2kF!uk2kFua, ~39!

with a5[KE(g)/gv1gv/KE(g)22]/4. The density of states
ther~e! near the Fermi energy is expressedr(e)'ue2eFua.
For gv51 we find in the weak-coupling limita5g2/4p2 and
within the strong-coupling limit we obtaina50.025. We
conclude that 0<a<0.025, while in the Hubbard mode
0<a<0.125.

For the spin correlations one has to calcula
gs(g,z→`). For the free-electron gas we obtain the exa
result

gs,HFA~z!5
gv

~pnz!2
@12cos~2kFz!#, ~40!

with gs,HFA(z50)51/2gv . With Eq. ~23!, we find

gs~g,z→`!5
KE,s~g!

~znp!2 F12
KE,s~g!2

gv
2 cos~2kFz!

1O~1/z2!G , ~41!

with

KE,s~g!5
gv

@124gv
2gGs~g!/p2#1/2

. ~42!

Note, that it isGs(g) which determinesKE,s(g). From our
results forGs(g) we findKE,s(g→0)5gv/[122gvg/p]

1/2

andKE,s(g→`)521/2gv .
It is easy to calculate the behaviors ofg↑↓(g,z→`) and

g↑↑(g,z→`), which are determined by KE,↑↓(g)
5[KE(g)1KE,s(g)]/2 andKE,↑↑(g)5[KE(g)2KE,s(g)]/2,
respectively. Forgv51 the weak-coupling results are give
by KE,↑↓(g→0)5113g2/p4 and KE,↑↑(g→0)52g/p2,
while for strong coupling we deriveKE,↑↓(g→`)51.073
andKE,↑↑(g→`)520.34.

VII. DISCUSSION: EXPERIMENTS

It was shown that for quantum wires based on dop
GaAs, the energy ordering of the elementary excitations
lows vd(q).veh6(q).vs(q) with vd(q)'2.5veh6(q) and
vs(q)'0.8veh6(q) for 0.037<q/kF<0.11.44 Our results
are in qualitative agreement with these experimental fi
ings: see Fig. 10~a!. In our calculations we neglected th
long-range character of the interaction potential~the Cou-
lomb interaction5,45!, which is present in these structure
Therefore, only qualitative agreement of our theory with t
experimental results reported in Ref. 44 can be expected.
recent paper,46 it was shown that in quasi-one-dimension
systems, based on doped GaAs, the spin-density excita
show a linear dispersion withvs(q)'veh6(q), which is in
agreement with our theory ifg is small.

Interacting electron gases are often discussed within
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mean-field approach forX(q,v), which corresponds toG(g)
50, and the Stoner approach forXs(q,v),

47 which corre-
sponds toGs,HFA51/2gv : many-body effects are neglecte
for the density susceptibility, and overestimated for the s
susceptibility. For instance, if the HFA is used forXs(q) to
estimate many-body effects for the paramagnetic spin
ceptibility, one obtainsXs(q→0)/rF51.81 for g54 and
gv51, while the LST approach givesXs(q→0)/rF51.50;
see Fig. 9. If, in experiment,Xs(q→0)/rF51.5 is measured
we deduce from the HFA forXs(q→0)/rF the value
g52.46 while the full LST approach impliesg54; see Fig.
9. These estimates demonstrate the power of our appro
We expect that our results are interesting for experimen
working with one-dimensional systems as realized in orga
materials, and for experimenters working with artificial on
dimensional systems made with GaAs/AlxGa12xAs hetero-
structures.

VIII. CONCLUSION

In this paper we discussed many-body effects for a o
dimensional electron gas with short-range interaction via
random-phase approximation and the concept of the lo
field correctionG(g). The comparison of our results by u
ing an analytical expression for the SSF with the STLS
proach, where numerical results for the SSF are used, sh
that the analytical form of the SSF is a good approximat
of the real SSF. This implies that the generalized Feynm
Bijl approach for the SSF could be useful for model pote
tials which cannot be solved exactly, as for instance in s
tems with dimension larger than one.
us
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With the analytical results given in this paper for th
local-field correctionG(g), the pair-correlation function, and
the ground-state energy of a one-dimensional electron
with a short-range interaction we have demonstrated: H
tree, exchange and correlation effects depend in a non-tr
way on the strength parameterg and the valley degenerac
gv . We also discussed spin correlations with the concep
the local-field correctionGs(g). The analytical results for
the paramagnetic susceptibility and the collective modes
scribe spin correlations in a one-dimensional electron
with short-range interaction.

It was shown that local-field corrections describe the cr
cal exponents of the long-distance behavior of the dens
density and the spin-spin correlation functions. This obs
vation gives some insight into the ‘‘theoretical’’ gap betwe
conformal field theories and the renormalization group
the one hand, and the concept of a local-field correction
the other hand.

Our results show that the excitation spectrum in o
model~one-particle excitations, density excitations, and s
excitations! is similar to the excitation spectrum of the dope
Hubbard model. We found that spin waves become ov
damped atq'2kF .
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