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Multifractal analysis of the metal-insulator transition in anisotropic systems
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We study the Anderson model of localization with anisotropic hopping in three dimensions for weakly
coupled chains and weakly coupled planes. The eigenstates of the Hamiltonian, as computed by Lanczos
diagonalization for systems of sizes up to’ 46how multifractal behavior at the metal-insulator transition even
for strong anisotropy. The critical disorder strenifth determined from the system-size dependence of the
singularity spectra is in a reasonable agreement with a recent study using transfer-matrix methods. But the
respective spectrum &V, deviates from the “characteristic spectrum” determined for the isotropic system.
This indicates a quantitative difference of the multifractal properties of states of the anisotropic as compared to
the isotropic system. Further, we calculate the Kubo conductivity for given anisotropies by exact diagonaliza-
tion. Already for small system sizes of only *18ites we observe a rapidly decreasing conductivity in the
directions with reduced hopping if the coupling becomes wedi&f163-18207)08415-4

. INTRODUCTION successfully! A characteristic spectrum{a) was shown
to determine the mobility edge independent of the micro-

It is well known that the three dimension@D) isotropic  scopic details of the sampté.Around its maximumj .(a)
Anderson model exhibits a metal-insulator transitiiT):  agrees well with an analytical result of Weghebased on a
Increasing the disorder of the random potential site energiegonlineare-model calculation. Near the critical disorder
causes the wave functions to localiz€here exists a mobil- W, characteristic changes 6€«) were observed when the
ity edge in the energy-disorder diagram that separates esystem size was increasttiThese distinguish the localized
tended from localized eigenstates. In order to determin@nd the extended character of the states and therefore allow
these critical disorder#/.(E) accurately, the transfer-matrix Us to determine the transition directly from multifractal prop-
method (TMM) together with the one-parameter finite-size erties of eigenstates.
scaling hypothesis applied to quasi-1D bars has been used It is our aim in the present work to use and extend these
with much success in the pdst Recently, theanisotropic ~ concepts for the case of anisotropic hopping. In Sec. Il we
Anderson model has received much attention in connectiofntroduce our notation and define the anisotropies of weakly
with the anisotropic transport properties of the higheu-  coupled planes and weakly coupled chains. We next recall
prates and a possible contradiction to the scaling theory dhe concepts and methods of the multifractal analysis em-
localization was mentionetisupported by a diagrammatic ployed in the sequel. Using the hypothesis of a characteristic
analysis‘? However, recent TMM studiés® show that the singularity spectrum, we estimate the critical disorders in
one-parameter scaling theory is still valid and further that arSec. IV B. To check the validity of the hypothesis we analyze
MIT exists even for strong hopping anisotropy The values  the system-size dependence of the multifractal properties and
of the critical disorder in the band center were found to fol-compare our results with TMM dafe. For completeness, we
low a power lawW,.x(1— y)? independent of the orienta- also study the conductivity of small samples of anisotropic
tion of the quasi-1D bar3 was argued to be independent of Systems in Sec. V. We discuss our results in Sec. VI.
the strength of the anisotropy.

Here, we shall study the problem of Anderson localization ||, ANDERSON MODEL WITH ANISOTROPIC HOPPING
by a different method: we focus our attention directly on the S
eigenfunctions of the Hamiltonian. In an infinite system the The Anderson Hamiltonian is given‘as
wave functions are expected to be localized on the insulating
side and extended on the metallic side even arbitrarily close _ o\ NT
to the transition. As first suggested by AdRithe fractal H_Z E‘|I><'|+gj tili )l @D
nature of the critical eigenstates can connect these discrepant
characteristics. Indeed, large fluctuations of the wave funcHere, the site$=(x,y,z) form a regular cubic lattice of size
tions have been observed numerically that dominate — alN® and the potential energies are as usual taken to be
least at small length scales — the character of the states ami@ndomly distributed in the intervdl—W/2,+W/2]. The
invalidate the simple notions of exponentially localized ortransfer integralg;; are restricted to nearest neighbors and
homogeneously extended states. Approaching the transitiodepend only on the spatial direction, gpcan either b,
these fluctuations increase and at the critical disorder they,, ort,. We set the energy scale by normalizing the largest
are expected to occur on all length scales. It has beet; to 1.
showrt! that such wave functions are multifractal entities. I~ Following Ref. 8 we study two possibilities of anisotropic
order to characterize the eigenstates of the isotropic Andetransport: (i) weakly coupled planeswith t,=t,=1,
son model, the singularity spectrufi{e) has been used t,=1—7y and (ii) weakly coupled chains with
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ty=t,=1-1y, t,=1. Here the parameter<[0,1] describes ity amplitude of eigenstates. Considering the normalized
the strength of the anisotropy. Hence, fpr=0 we recover qth moments of the box probabilityu;(q,8)=ul(8)/

the isotropic 3D case angl=1 corresponds tt indepen- 3, u7(4) it is possible to fing’ a parametric expression of
dent planes oiN2 independent chains. The direction with f(«) such that

normal (reduced transfer integral is called the paralligler-
pendiculay direction.

The Lanczos algorithrit which is well suited for the di- a(@)=lim X ui(q,8)Inwm(1,6)/Ins,
agonalization of sparse matrices, allows us to solve the ei- 80 !
genvalue equatioMV(E)=EWY(E) for system sizes up to )
N= 72, yielding eigenvalues and eigenvectors in a requested f(q)=lim > wi(q,8)hu(q,8)/In 5. 2

energy range. We use state-of-the-art workstations and a par- =01

allel computer with 128 PowerPC processors. It takes aboq;Ve plot the sums in Eq2) versus I and observe multi-

11 hours to diagonalize the Anderson Hamiltonian Withya o) hehavior if and only if the data may be well fitted by

N=48 on the parallel machine using eight processors. Thgtraight lines. The slope from the linear regression procedure
workstations need about 35 hours for the same Calculatlorhsed in the fit givest and . Note, that a check of the

Since we also have to perform a statistical averaging ovef,q ity is important, since the numerical procedure gives an

different disorder configurations, we have restricted the sysf(a) curve for nearly every distribution of the physical vari-

tematic investigations to sizes uphb=48. In order to allow o6 1t without the mentioned linearity it does not indicate
a direct comparison with the results of Refs. 7-9, we reSt”CFnultifractality

Eu_r Osnf\ldy to 'the" stat'es' mhthe center ofbthe band fSLk“Cthhat In general,f(a) is a non-negative, convex function with
=0. Numerically this is the worst case because of the highy _, ~"_, Z' '~ _." "The maximum of f(a) at

density of states there, which requires a very large tridiago&(qZO)an equals the dimension of the support, i.e., the

nal matrix in the Lanczos algorithm to determine the eigen'fractal dimensiorD; of the subset of points, where the in-
values. vestigated quantity is not zero. For our wave functions
D;=D=3 because they are nowhere exactly zero. The
Ill. MULTIFRACTAL ANALYSIS whole f(a) curve is below the bisectdi(«)=a except at

E | idel din ohysi h a(g=1)=aq, where both curves touch. Fg=1 the rela-
ractal measures are widely used in physics 1o charactef,, f(aq1) = ay is fulfilled. «; equals the entropy dimension

1ze (;)bJeCtS ?UCh%ﬁ%Sigp.?LCOlatmg clusters, rap_dorp V\t/alks, ? information dimension and one can show that the corre-
random surfaces. e common geometric featuré o sponding seSal contains the entire measufe.

such point sets is the self-similarity: Parts of the set are simi- - . .

lar to the whole, at least in a statistical sense. However, for There are two limits that will be Important f_or the later
fluctuating physical quantities such as the probability ampli-"t€rpretation of our results. ConsideDadimensional sup-
tude of an eigenstat® (E) of the Anderson model, the ap- port. (i) A uniform d_|str|but|on is represented by the single
propriate concept is given by the multifractal measures: 10Nt f(a:E):D in the singularity spectrum, because
the mentioned fluctuations are statistically the same on eve i(5)_°c(|‘5) for every point of the supporl(.u) With in-
length scale, i.e., if all the moments of the investigated quan_reasmg localization the spectrum becomes wider and an ex-

tity are self-similar, the object iGtatistically self-affine and ~ 'émely localized distribution with measure 1 at one point
is called a multifractal. and O elsewhere has a spectrum that consists of two points

A characteristic property of multifractals is their singular- ©NY: f(¢=0)=0 andf(a=9)=D. This is because the box
ity spectrumf («).® Let us briefly describe an algorithm to @round the maximum has contents 1 for edcBoa is O for
determine this quantity, based on the standard box—counting‘_'S single point while all other points hayg=6"=0. In
procedure: We consider a volunk® in our D-dimensional ~ F19- 1 we show two typical singularity spectra of 3D wave

space that contains the support of the physical variable, i.efinctions corresponding to a localized and an extended wave
all points where the variable is defined. We cover it with afunction. The tendency towards the two limiting cases can be

number of “boxes” of linear size = 6L. The actual shape S€€N for these two examples already: Th_e extended _state has

of the boxes is not important, they may be spheres as welp Narrowf(a) curve close tof(3)=3 while the localized

Next, we determine the contenjs(8) of each boxi by  Wave function is represented by a very wide spectrum with

summing or integrating the investigated quantity over thd@rger o and smallera;.

part of the support inside the box. For a self-affine object one

finds a power-law dependencgi(d)=4é“ in the limit IV. CALCULATION OF CRITICAL DISORDERS  W,(y)

5—0. The so-defined singularity strength is assigned to

each point of the support. The subs®t that contains all

points with the same value at is a fractal with fractal As has been shown in Refs. 8 and 9 by the TMM, the

dimensionf(a) defined byK(a,8)* 6 f(®), Here,K(«,8)  anisotropic Anderson model still exhibits a MIT for all

is the number of boxes that cov8f,. A multifractal object >0 in the band centdE=0 and, by the general arguments

consists of alinfinite) number of subset§, with different  given above, we expect the wave functions at the transition

fractal dimensions. point to be multifractals just as in the isotropic case. As a
In the present work we shall use an equivalent but nucheck we have computed various eigenstates close to the

merically more convenient algorithm to compute the singu-propose® critical disordersw, for system sizes up to

larity spectrum. Our physical quantity is again the probabil-N=48. In Fig. 2 we show the data for the linear regression of

A. Existence of multifractal eigenstates
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FIG. 1. Singularity spectra of a localized(=1) and an ex- FIG. 3. W,(y) for weakly coupled planes as obtained from the
tended W=25) state of an isotropic system witN=48. The  “characteristic spectrum” Q) and from the system-size depen-
circles (O) mark f(«ag) and the squared{) mark f(ay). dence (\). The thin solid lines represent the two power-law fits to

the (O) data. The thick dashed line is the result of Ref. 8. The thick

a typical state withV~W,. Even for very strong anisotro- solid line is a combination of the isotropic resulRef. 4

pies y=0.99 we find that the sums in E(R) plotted versus W.=16.3 and th Ref — 0.25 that fits th dat
Ind are linear. Therefore, we do find multifractal behavior Ofwéll -3 and the exponeriRef. § 5=0. atfits the £) data
the wave functions close to the critical disorder for the an-

isotropic Anderson model. o edge independent of the microscopic details of the system
Every singularity spectrum is characteristic only for thegych as the probability distribution of the site energies. The
particular configuration of the site energies. But for a 9IVeNegion close to the maximum df(«) is described well by

set of parameterfW,E, y} the differentf(a) curves fluctu-  o\"anavtical result of WegnErfrom the 2+ & expansion of
ate around one singularity spectrum. In order to suppres,

these statistical fluctuations we average the spectra obtaing’]de nonlinearor model, i.e.,
from three to eight eigenstates closeBe-0 for 12 realiza- e (D—a 2 =1 (4—qa)?
tions of the random site energies. The averaged spectrum is f (4)=p— _(_+1 +0(e%) ~ 3— ———
thus characteristic for the set of parametéve,E,y} and 4\ ¢ 4

will be used in the next sections to compute the critical dis- Q)

orderW, as a function of the anisotropy.

As a hypothesis we shall now assume that this characteristic
spectrum determines the transition even in the case of aniso-
tropic hopping. This hypothesis is certainly valid in the limit
v—0 but needs further support for larger anisotropies.

In the isotropic case aeharacteristic singularity spectrum We find that for each anisotropy there exists a corre-
fo() was found previousff at all points of the mobility spondingW;_such that the eigenstates are characterized by

B. Estimation of W, from comparison
with the characteristic spectrum

, : f.. ldentifying Wc=WfC gives us an estimate for the de-

. | pendence of the critical disorder. Note that since the singu-
ng 257 larity spectrum should be independent of the system size at
T the transition point, it is sufficient to investigate small sys-

50 |
2 tems. We have used systems Wik 24 for the results pre-
w, sented in this section.
g 75t
[i-: 1. Weakly coupled planes

00 ’ : Assuming the validity off. we find a crossover between
s B0 W two power laws in they dependence of the critical disorder
= W,=55(1— )% for y=0.9 andW,=16.8(1— )% for
:gf v=<0.9 as can be seen in Fig. 3. This does not agree with the
= 50 . results of Ref. 8, wher@=0.25 has been calculated within
= the self-consistent theory of localization and where the single
= power lawW,=15.4(1— v)°25 has been deduced from the
W 50 . . ‘ 4 TMM data.

-3.0 -2.0 -1.0
In & 2. Weakly coupled chains

FIG. 2. Linear regression data for the evaluation of E). In Fig. 4 the results folV,(y) for weakly coupled chains

determining «(q) and f(q) for weakly coupled planes with are shown. Using. we find W,=17.6(1— y)®"* which is
y=0.9,N=48,W=9, andq=-2 (0),—1 (0),0(¢),1(A),2(+).  very similar to the TMM dathW,=16.19(1— y)°5'% The
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FIG. 4. W,(y) for weakly coupled chains as obtained from the ~ FIG. 5. Singularity spectra for weakly coupled planes at
characteristic spectrurf©) and from the system-size dependence Y= 0.8 for the two system sizé¢=18 (=) andN=42 (- —). The
(A). The thin solid line is a power-law fit to th®) data, the thick Symbols distinguishvV=8 (O),10 (A),12 (1) and indicatea(q)
dashed line is the result of Ref. 9. The thick solid line is the com-and f(q) for g=—2,-1,0,1,2 (from right to lef). The error bars
bination of the isotropic resulRef. 4 W,=16.3 and the exponent result from the linear regressidaf. Fig. 2 and the average over the
(Ref. 8 B=0.5. different eigenstate¢cf. Sec. IVA). The thick dotted line is the

characteristic spectrurfy, .
difference becomes significant only for very large=0.9.
The exponenB=0.611 was obtained from a fit of the TMM 1. Weakly coupled planes
data over the whole range. For largey the authors of Ref.

10K - ' We show in Fig. 5 an example of weakly coupled planes
9 get3=0.5. This is consistent with the result of Ref. 8.

with v=0.8. The above described different behaviors of the
o ) spectra can be seen. At=8, a larger system size results in
C. Estimation of W, from the system-size dependence a narrowerf(a) curve that is characteristic for extended
We have shown in the last section, that the assumption d§tates. On the other hand, the increase in the system size for
the characteristid, leads to large differences in the esti- W=12 yields a widening of the spectrum indicating local-
mates of W, between the TMM resulf§ and our results ized states. The singularity spectrum =10 is least ef-
based on the multifractal analysis. Thus we will now use dected by the change of the system size and we thus conclude
more direct method to estimat,(y) from the multifractal @ critical disordefW,(y=0.8)=10+1. Considering the er-
properties of the eigenstates. From the isotropic case it ior bars, thef(a) curve for W, equals the characteristic
known'? that multifractal behavior is found not only directly spectrumf of the isotropic case. For moderate anisotropies
at the critical disorde,, but also close to the transition. The y=0.8 this confirms the hypothesis of a characteritic
reason is the finite sample size that is much smaller than the Visual observation of the system-size dependence of the
characteristic length scales of the states clos&/to In this  f(a) curves is not well suited for a systematic search for the
range the exponential decay or uniformly extended charactdransition. A better method is to focus attention to special
of the wave function is masked by large fluctuations and it ispoints of the spectra such as the positigyof the maximum
not obvious to which side of the MIT a given state belongs.and the information dimensioD ;= «;. An increase of the
Due to the relatively small sample size the system is vergystem size causes a decreasipgand an increasing; for
sensitive to its boundary. Correspondingly, a characteristiextended states and the opposite tendency for localized
change in the singularity spectrum is observed when the systates*?! as described in Sec. lll. A constant behavior of
tem size is increased. This change can be evaluated to disp and a; versus system size indicatéé.. Following Ref.
tinguish the localized or extended character of the wavel4 we have parametrized the system-size dependence by
function. For an extended state thigx) curve becomes nar- 1/In(N), which has been found to give a nearly linear behav-
rower and the maximum position is shifted towards smalleiior of «y and «,, thus distinguishing their tendencies more
values ofa, approaching the value 3. The opposite behaviorclearly!*?1??In Fig. 6 we find a constant behavior at the
is found for a localized state. Thus the spectra tend towardsame value of the disorder for both quantities and we con-
the extreme cases discussed in Sec. lll. Indeed we expectlude W (y=0.96)=8.0+0.5.
these limiting cases, namel(3)=3 for the metallic side, For very weakly coupled planes we get significantly
and f(0)=0 and f(»)=3 for the insulating side, to be larger values oW, than in Sec. IVB. The new values are
reached for infinitely large system size for any disorder ex<lose to, but slightly larger than the TMM détas can be
ceptW,. Only directly at the transition, the wave functions seen in Fig. 3. Our data followV,= 16.3(1— y)%% which
are multifractal, the fluctuations are the same on all lengtlconfirms the exponent=0.25, which was derived
scales, andf(a) is independent of the system size. This analytically® We therefore conclude that, is no longer
makes it feasible to determine the critical disorder by anacharacteristic for the eigenstates at the MIT for weakly
lyzing the system-size dependence of the singulariticoupled planes withy=0.8. In our present analysis we find
spectrat* wider singularity spectra, which is a sign of a tendency to-
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100 F " ' ] procedure for the multifractal analysis cannot appropriately
' T measure this fractal, because most box sizes exceed the num-
ber of planes on which the wave functions are concentrated.

A
- 75} ° A , Therefore it is possible that the deviationsvéf_from W, in
S W—' Fig. 3 are an artefact of the analysis.
*

500 . 2. Weakly coupled chains

‘ - ‘ The results for théV.(y) dependence of weakly coupled

LO\H\\&\O chains are shown in Fig. 4. They are in reasonable agreement
20 ’”Taﬂ\g\ﬁ\a’ with the TMM data’ although we cannot reproduce the

. N exponerit 3=0.5. The differences betweah, andeC are
e 151 WW“ not as large as in the other case and the multifractal proper-
W ties of the critical states are therefore similar to those of the
W isotropic system.
10 + . ‘ .
"0.25 0.30 0.35 0.40
1/In(N) V. CONDUCTIVITY IN SMALL ANISOTROPIC SYSTEMS

FIG. 6. N dependence of, anda, for weakly coupled planes  1Ne transport properties are determined by the localiza-
with y=0.96 andW=5.5(0),6.5(0),7.5(*),8.5(0),9.5(A),10.5  tion properties of the states. At=0 localized states cannot
(+). contribute to charge transfer and we have insulating behav-

ior. On the other hand, extended states yield metallic behav-
wards localization. An eigenstate at the transition for verylor. The Kubo formula following from Fermi's golden rule
strong anisotropy = 0.99 is shown in Fig. 7. The probability provides a connection of the electrical conductivity and the
amplitude is concentrated to a few planes perpendicular tglectronic statesn).
the direction with reduced transfer. This coincides with the Let us consider an electrical ac field with frequency
observation that the localization length is smaller by a factow=7%E in the x direction on a sample with volume®. We
1— v in the perpendicular direction compared with the par-assume a half-filled band &t=0 such that all states with
allel one® In the mentioned planes the wave function looksE<O are occupied while all others are unoccupied. A con-
like a fractal with holes and islands of different sizes, veryfiguration average because of the random site energies is
similar to the critical eigenstates of the isotropic system. Itdenoted by )c . Neglecting prefactors the real partof the
may well be that the cubic boxes used in the box-countingeonductivity is given b

o(E)~( 2 [n|x|n"YPEpy S(E—Epy) ) , E#O0.
n,n’ c

4

HereE,, =E, —E, denotes the energy difference between
an occupied and an unoccupied state.

In order to compute this quantity it is necessary to know
all eigenvalues and all eigenstates. We use the standard
Householder algorithm to diagonalize the Hamiltonidn
We average over 90—150 configurations to suppress the large
statistical fluctuations ofr. This limits the treatable linear
system size tbN=12. As a consequence we encounter strong
finite-size effects folW=4. The small number of eigenener-
gies in the ordered limit is not smeared out sufficiently by the
disorder to vyield a smooth density of states
p(E)=1IN3%(=,8(E—E,))c as shown in Fig. 8 foW=1
and y=0.9. We also note that the density of states for larger
disorder values angi=0.9 agrees with that of the respective
1D or 2D system within the uncertainty due to fluctuations.

FIG. 7. Wave function close to the MIT for very weakly H.owever, the transport behav_ior of the states is gompletely
coupled planes withy=0.99,N=48, andW=4.5. Every site with  different: In 1D and 2D there is no MITW,=0) while 3D
probability | W;|? larger than the averagd~2 is shown as a box SyStems exhibit an MIT even for very strong anisotropy as
with volume| W |2N. The 764 cubes with¥;|?N> 1000 are plot- Shown in Sec. IV. o
ted in white with black edges. The gray scale distinguishes between Because the characteristic length scales of the wave func-
different slices of the system along thexis. The thick solid lineis  tions exceed the system size it is a priori not clear whether
the logarithm of the summed probability amplitude for each planethe localization behavior of the states has any measurable
perpendicular to the axis. Again only values abov&l~3 are influence on the computed conductivity. Suppose there is no
shown. such influence, then the matrix elemertgx|n’) are all
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FIG. 8. Density of states for weakly couplég) chains andb) E E

planes withy=0.9 andN=12. The data foW=5 and 15 agree
with that of uncoupled chains or planes within the statistical fluc- FIG. 10. Conductivityc for N=12 and various anisotropieg
tuations. The peak structure fe¥=1 is due to the small system and disordersV for weakly coupledc) and(d) chains anda) and
size. (b) planes for thga) and(c) parallel and(b) and(d) perpendicular
directions. The perpendicular conductivity fpr=0.9 andW=15 is
equal and the conductivity is given by tieweighted joint negligible, while the parall_el conduct?vity foy=0.9 andW=1
density of statesoy(E)=(ZnyEny S(E—Enn))c. We exceeds the range of the diagrésee Fig. 9.
compareo and o, for weakly coupled planes with, e.g., ] )
W=1 andy=0.9 in Fig. 9. The peak structure for this small tions are concentrated to a few chains or planes as shown in
disorder is again a finite-size effect reflecting the peaks of 19- 7- Consequently, the conductivity is drastically reduced
p(E). The positions of the minima af(E) are the same as N the perpendicular direction. For=0.9 the maximum of
expected from the joint density of states but the minima are’ IS reached at small energies because the most extended
much more pronounced. The reason for this behavior is thgigenstates appear in the band center. This causésrtia)
strong localization of the states for energies with |pgg) ~ Peak forW=1. For strong disorde#/=15 all eigenstates are
similar to the localization in the band tails; the latter causestrongly localized and the perpendicular conductivity is neg-
the decrease of at higher energies. Thus despite the smallligible. For the parallel conductivity we find an increase if
system size the conductivity is highly influenced by localiza-the anisotropy becomes stronger. Here, the transport is not
tion effects. handicapped by the anisotropic localization of the wave
In Fig. 10 we present the conductivity computed for thefunctions. The increase is relatively small for the planes and
two nonequivalent directions: paralldfigs. 1Ga) and 1Gc)]  considerable for the chains. A good argument to explain this
and perpendiculafFigs. 1Gb) and 1@d)] to the planes and difference is the form of the density of states that yields a

chains, respectively. For strong anisotropy the wave funchigher amount of possible transitions for the energies around
the position of the maximum o#(E) for the chains. The

parallel conductivity atW= 15 is relatively small but consid-

A | erable in a large energy range that reflects the disorder-
008 i\ 5 widened energy band. We note that the conductivities for a
'l v ———— very strong anisotropy=0.99 are nearly equal to those of
i M o v=0.9 in the parallel direction and again negligible in the
006 A l\ perpendicular direction.
i/ \
© 0.04 Yy \‘ 1 VI. CONCLUSIONS
\ . . .
WA In the present work we have studied the localization be-
0.02 ‘\\ i havior of eigenfunctions and transport properties of the
’ ‘i Anderson model with anisotropic hopping. As expected from
\\ the general argument for the fractal nature of wave functions
0.00 ‘ ‘ b at the metal-insulator transition, multifractal eigenstates were
' 40 6.0 8.0 found even for strong anisotropy. The multifractal descrip-

tion holds not only directly at the transition but also close to
FIG. 9. Comparison of ande, in weakly coupled planes with it due to the small system sizes considered. As a first esti-
W=1, y=0.9, andN=12. o, has been scaled to the same maxi- Mate for the critical disordew, we determinedV;_where

mum value asr. the states show the characteristic singularity spectrum
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f.(a) that indicates the MIT in the isotropic case. But espe-eigenvectors of the Hamiltonian are needed. Nevertheless we
cially for weakly coupled planes the computed anisotropyobserve a rapidly decreasing conductivity in the direction
dependence of the critical disorder differs remarkably fromwith smaller hopping integral if the anisotropy becomes
the TMM results? We also analyzed the system-size depenstronger. This is a pure localization effect. For the used small
dences of the singularity spectra to determine the MIT. Thesystem sizeN=12 it is surprising that this can be observed,
observed W,(y) agree reasonably well with the TMM pecause the characteristic length scales are much larger for
data®® Therefore we conclude that the “characteristic specearly all of the states. Another interesting fact is that the
trum” is no longer valid if the anisotropy becomes strong. density of states for an anisotropy=0.9 is already nearly

This is surprising becausie was independent of the micro- identical with that of the corresponding lower-dimensional
scopic details of the isotropic system for the 3D case. Theystem.

spectrum atW, for weakly coupled planes is wider than
f.. This coincides with the observed concentration of the
probability amplitude to only a few planes perpendicular to ACKNOWLEDGMENTS
the direction with reduced hopping for large anisotropy.
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