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Multifractal analysis of the metal-insulator transition in anisotropic systems

Frank Milde, Rudolf A. Ro¨mer, and Michael Schreiber
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We study the Anderson model of localization with anisotropic hopping in three dimensions for weakly
coupled chains and weakly coupled planes. The eigenstates of the Hamiltonian, as computed by Lanczos
diagonalization for systems of sizes up to 483, show multifractal behavior at the metal-insulator transition even
for strong anisotropy. The critical disorder strengthWc determined from the system-size dependence of the
singularity spectra is in a reasonable agreement with a recent study using transfer-matrix methods. But the
respective spectrum atWc deviates from the ‘‘characteristic spectrum’’ determined for the isotropic system.
This indicates a quantitative difference of the multifractal properties of states of the anisotropic as compared to
the isotropic system. Further, we calculate the Kubo conductivity for given anisotropies by exact diagonaliza-
tion. Already for small system sizes of only 123 sites we observe a rapidly decreasing conductivity in the
directions with reduced hopping if the coupling becomes weaker.@S0163-1829~97!08415-4#
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I. INTRODUCTION

It is well known that the three dimensional~3D! isotropic
Anderson model exhibits a metal-insulator transition~MIT !:
Increasing the disorder of the random potential site ener
causes the wave functions to localize.1 There exists a mobil-
ity edge in the energy-disorder diagram that separates
tended from localized eigenstates. In order to determ
these critical disordersWc(E) accurately, the transfer-matri
method~TMM ! together with the one-parameter finite-si
scaling hypothesis applied to quasi-1D bars has been
with much success in the past.2–4 Recently, theanisotropic
Anderson model has received much attention in connec
with the anisotropic transport properties of the high-Tc cu-
prates and a possible contradiction to the scaling theor
localization was mentioned,5 supported by a diagrammati
analysis.6 However, recent TMM studies7–9 show that the
one-parameter scaling theory is still valid and further that
MIT exists even for strong hopping anisotropyg. The values
of the critical disorder in the band center were found to f
low a power lawWc}(12g)b independent of the orienta
tion of the quasi-1D bar.b was argued to be independent
the strength of the anisotropy.

Here, we shall study the problem of Anderson localizat
by a different method: we focus our attention directly on t
eigenfunctions of the Hamiltonian. In an infinite system t
wave functions are expected to be localized on the insula
side and extended on the metallic side even arbitrarily cl
to the transition. As first suggested by Aoki,10 the fractal
nature of the critical eigenstates can connect these discre
characteristics. Indeed, large fluctuations of the wave fu
tions have been observed numerically that dominate —
least at small length scales — the character of the states
invalidate the simple notions of exponentially localized
homogeneously extended states. Approaching the transi
these fluctuations increase and at the critical disorder t
are expected to occur on all length scales. It has b
shown11 that such wave functions are multifractal entities.
order to characterize the eigenstates of the isotropic An
son model, the singularity spectrumf (a) has been used
550163-1829/97/55~15!/9463~7!/$10.00
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successfully.11 A characteristic spectrum fc(a) was shown
to determine the mobility edge independent of the mic
scopic details of the sample.12 Around its maximum,f c(a)
agrees well with an analytical result of Wegner13 based on a
nonlinear-s-model calculation. Near the critical disorde
Wc , characteristic changes off (a) were observed when th
system size was increased.14 These distinguish the localize
and the extended character of the states and therefore a
us to determine the transition directly from multifractal pro
erties of eigenstates.

It is our aim in the present work to use and extend th
concepts for the case of anisotropic hopping. In Sec. II
introduce our notation and define the anisotropies of wea
coupled planes and weakly coupled chains. We next re
the concepts and methods of the multifractal analysis e
ployed in the sequel. Using the hypothesis of a character
singularity spectrum, we estimate the critical disorders
Sec. IVB. To check the validity of the hypothesis we analy
the system-size dependence of the multifractal properties
compare our results with TMM data.8,9 For completeness, we
also study the conductivity of small samples of anisotro
systems in Sec. V. We discuss our results in Sec. VI.

II. ANDERSON MODEL WITH ANISOTROPIC HOPPING

The Anderson Hamiltonian is given as1

H5(
i

e i u i &^ i u1(
iÞ j

t i j u i &^ j u. ~1!

Here, the sitesi5(x,y,z) form a regular cubic lattice of size
N3 and the potential energiese i are as usual taken to b
randomly distributed in the interval@2W/2,1W/2#. The
transfer integralst i j are restricted to nearest neighbors a
depend only on the spatial direction, sot i j can either betx ,
ty , or tz . We set the energy scale by normalizing the larg
t i j to 1.

Following Ref. 8 we study two possibilities of anisotrop
transport: ~i! weakly coupled planeswith tx5ty51,
tz512g and ~ii ! weakly coupled chains with
9463 © 1997 The American Physical Society
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9464 55FRANK MILDE, RUDOLF A. RÖMER, AND MICHAEL SCHREIBER
tx5ty512g, tz51. Here the parametergP@0,1# describes
the strength of the anisotropy. Hence, forg50 we recover
the isotropic 3D case andg51 corresponds toN indepen-
dent planes orN2 independent chains. The direction wi
normal ~reduced! transfer integral is called the parallel~per-
pendicular! direction.

The Lanczos algorithm,15 which is well suited for the di-
agonalization of sparse matrices, allows us to solve the
genvalue equationHC(E)5EC(E) for system sizes up to
N572, yielding eigenvalues and eigenvectors in a reque
energy range. We use state-of-the-art workstations and a
allel computer with 128 PowerPC processors. It takes ab
11 hours to diagonalize the Anderson Hamiltonian w
N548 on the parallel machine using eight processors.
workstations need about 35 hours for the same calculat
Since we also have to perform a statistical averaging o
different disorder configurations, we have restricted the s
tematic investigations to sizes up toN548. In order to allow
a direct comparison with the results of Refs. 7–9, we rest
our study to the states in the center of the band such
E50. Numerically this is the worst case because of the h
density of states there, which requires a very large tridia
nal matrix in the Lanczos algorithm to determine the eig
values.

III. MULTIFRACTAL ANALYSIS

Fractal measures are widely used in physics to charac
ize objects such as percolating clusters, random walks,
random surfaces.16–18 The common geometric feature o
such point sets is the self-similarity: Parts of the set are s
lar to the whole, at least in a statistical sense. However,
fluctuating physical quantities such as the probability am
tude of an eigenstateC(E) of the Anderson model, the ap
propriate concept is given by the multifractal measures
the mentioned fluctuations are statistically the same on e
length scale, i.e., if all the moments of the investigated qu
tity are self-similar, the object is~statistically! self-affine and
is called a multifractal.

A characteristic property of multifractals is their singula
ity spectrumf (a).18 Let us briefly describe an algorithm t
determine this quantity, based on the standard box-coun
procedure: We consider a volumeLD in our D-dimensional
space that contains the support of the physical variable,
all points where the variable is defined. We cover it with
number of ‘‘boxes’’ of linear sizer5dL. The actual shape
of the boxes is not important, they may be spheres as w
Next, we determine the contentsm i(d) of each boxi by
summing or integrating the investigated quantity over
part of the support inside the box. For a self-affine object o
finds a power-law dependencem i(d)}da i in the limit
d→0. The so-defined singularity strengtha i is assigned to
each point of the support. The subsetSa that contains all
points with the same value ofa is a fractal with fractal
dimensionf (a) defined byK(a,d)}d2 f (a). Here,K(a,d)
is the number of boxes that coverSa . A multifractal object
consists of a~infinite! number of subsetsSa with different
fractal dimensions.

In the present work we shall use an equivalent but
merically more convenient algorithm to compute the sing
larity spectrum. Our physical quantity is again the probab
i-
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ity amplitude of eigenstates. Considering the normaliz
qth moments of the box probabilitym i(q,d)5m i

q(d)/
(kmk

q(d) it is possible to find19 a parametric expression o
f (a) such that

a~q!5 lim
d→0

(
i

m i~q,d!lnm i~1,d!/ lnd,

f ~q!5 lim
d→0

(
i

m i~q,d!lnm i~q,d!/ ln d. ~2!

We plot the sums in Eq.~2! versus lnd and observe multi-
fractal behavior if and only if the data may be well fitted b
straight lines. The slope from the linear regression proced
used in the fit givesf and a. Note, that a check of the
linearity is important, since the numerical procedure gives
f (a) curve for nearly every distribution of the physical var
able, but without the mentioned linearity it does not indica
multifractality.

In general,f (a) is a non-negative, convex function wit
0,amin<a<amax,`. The maximum of f (a) at
a(q50)[a0 equals the dimension of the support, i.e., t
fractal dimensionDf of the subset of points, where the in
vestigated quantity is not zero. For our wave functio
Df5D53 because they are nowhere exactly zero. T
whole f (a) curve is below the bisectorf (a)5a except at
a(q51)[a1, where both curves touch. Forq51 the rela-
tion f (a1)5a1 is fulfilled. a1 equals the entropy dimensio
or information dimension and one can show that the co
sponding setSa1

contains the entire measure.18

There are two limits that will be important for the late
interpretation of our results. Consider aD-dimensional sup-
port. ~i! A uniform distribution is represented by the sing
point f (a5D)5D in the singularity spectrum, becaus
m i(d)}(Ld)D for every point of the support.~ii ! With in-
creasing localization the spectrum becomes wider and an
tremely localized distribution with measure 1 at one po
and 0 elsewhere has a spectrum that consists of two po
only: f (a50)50 andf (a5`)5D. This is because the bo
around the maximum has contents 1 for eachd, soa is 0 for
this single point while all other points havem i}d`50. In
Fig. 1 we show two typical singularity spectra of 3D wav
functions corresponding to a localized and an extended w
function. The tendency towards the two limiting cases can
seen for these two examples already: The extended state
a narrow f (a) curve close tof (3)53 while the localized
wave function is represented by a very wide spectrum w
largera0 and smallera1.

IV. CALCULATION OF CRITICAL DISORDERS Wc„g…

A. Existence of multifractal eigenstates

As has been shown in Refs. 8 and 9 by the TMM, t
anisotropic Anderson model still exhibits a MIT for a
g.0 in the band centerE50 and, by the general argumen
given above, we expect the wave functions at the transi
point to be multifractals just as in the isotropic case. As
check we have computed various eigenstates close to
proposed8,9 critical disordersWc for system sizes up to
N548. In Fig. 2 we show the data for the linear regression
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55 9465MULTIFRACTAL ANALYSIS OF THE METAL - . . .
a typical state withW'Wc . Even for very strong anisotro
piesg50.99 we find that the sums in Eq.~2! plotted versus
lnd are linear. Therefore, we do find multifractal behavior
the wave functions close to the critical disorder for the a
isotropic Anderson model.

Every singularity spectrum is characteristic only for t
particular configuration of the site energies. But for a giv
set of parameters$W,E,g% the differentf (a) curves fluctu-
ate around one singularity spectrum. In order to suppr
these statistical fluctuations we average the spectra obta
from three to eight eigenstates close toE50 for 12 realiza-
tions of the random site energies. The averaged spectru
thus characteristic for the set of parameters$W,E,g% and
will be used in the next sections to compute the critical d
orderWc as a function of the anisotropyg.

B. Estimation of Wc from comparison
with the characteristic spectrum

In the isotropic case acharacteristic singularity spectrum
f c(a) was found previously20 at all points of the mobility

FIG. 1. Singularity spectra of a localized (W51) and an ex-
tended (W525) state of an isotropic system withN548. The
circles (s) mark f (a0) and the squares (h) mark f (a1).

FIG. 2. Linear regression data for the evaluation of Eq.~2!
determining a(q) and f (q) for weakly coupled planes with
g50.9,N548,W59, andq522 ~s!,21 ~h!,0 ~L!,1 ~n!,2 ~1!.
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edge independent of the microscopic details of the sys
such as the probability distribution of the site energies. T
region close to the maximum off c(a) is described well by
an analytical result of Wegner13 from the 21« expansion of
the nonlinears model, i.e.,

f c~a!5D2
«

4 SD2a

«
11D 21O~«4! '

«51

32
~42a!2

4
.

~3!

As a hypothesis we shall now assume that this character
spectrum determines the transition even in the case of an
tropic hopping. This hypothesis is certainly valid in the lim
g→0 but needs further support for larger anisotropies.

We find that for each anisotropyg there exists a corre
spondingWfc

such that the eigenstates are characterized

f c . IdentifyingWc5Wfc
gives us an estimate for theg de-

pendence of the critical disorder. Note that since the sin
larity spectrum should be independent of the system siz
the transition point, it is sufficient to investigate small sy
tems. We have used systems withN524 for the results pre-
sented in this section.

1. Weakly coupled planes

Assuming the validity off c we find a crossover betwee
two power laws in theg dependence of the critical disorde
Wc555(12g)0.86 for g>0.9 andWc516.8(12g)0.35 for
g<0.9 as can be seen in Fig. 3. This does not agree with
results of Ref. 8, whereb50.25 has been calculated withi
the self-consistent theory of localization and where the sin
power lawWc515.4(12g)0.25 has been deduced from th
TMM data.

2. Weakly coupled chains

In Fig. 4 the results forWc(g) for weakly coupled chains
are shown. Usingf c we findWc517.6(12g)0.74, which is
very similar to the TMM data9 Wc516.19(12g)0.611. The

FIG. 3.Wc(g) for weakly coupled planes as obtained from t
‘‘characteristic spectrum’’ (s) and from the system-size depen
dence (n). The thin solid lines represent the two power-law fits
the (s) data. The thick dashed line is the result of Ref. 8. The th
solid line is a combination of the isotropic result~Ref. 4!
Wc516.3 and the exponent~Ref. 8! b50.25 that fits the (n) data
well.
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9466 55FRANK MILDE, RUDOLF A. RÖMER, AND MICHAEL SCHREIBER
difference becomes significant only for very largeg*0.9.
The exponentb50.611 was obtained from a fit of the TMM
data over the wholeg range. For largeg the authors of Ref.
9 getb50.5. This is consistent with the result of Ref. 8.

C. Estimation of Wc from the system-size dependence

We have shown in the last section, that the assumptio
the characteristicf c leads to large differences in the es
mates ofWc between the TMM results8,9 and our results
based on the multifractal analysis. Thus we will now use
more direct method to estimateWc(g) from the multifractal
properties of the eigenstates. From the isotropic case
known12 that multifractal behavior is found not only directl
at the critical disorderWc but also close to the transition. Th
reason is the finite sample size that is much smaller than
characteristic length scales of the states close toWc . In this
range the exponential decay or uniformly extended chara
of the wave function is masked by large fluctuations and i
not obvious to which side of the MIT a given state belon
Due to the relatively small sample size the system is v
sensitive to its boundary. Correspondingly, a characteri
change in the singularity spectrum is observed when the
tem size is increased. This change can be evaluated to
tinguish the localized or extended character of the w
function. For an extended state thef (a) curve becomes nar
rower and the maximum position is shifted towards sma
values ofa, approaching the value 3. The opposite behav
is found for a localized state. Thus the spectra tend towa
the extreme cases discussed in Sec. III. Indeed we ex
these limiting cases, namelyf (3)53 for the metallic side,
and f (0)50 and f (`)53 for the insulating side, to be
reached for infinitely large system size for any disorder
ceptWc . Only directly at the transition, the wave function
are multifractal, the fluctuations are the same on all len
scales, andf (a) is independent of the system size. Th
makes it feasible to determine the critical disorder by a
lyzing the system-size dependence of the singula
spectra.14

FIG. 4.Wc(g) for weakly coupled chains as obtained from t
characteristic spectrum~s! and from the system-size dependen
~n!. The thin solid line is a power-law fit to the~s! data, the thick
dashed line is the result of Ref. 9. The thick solid line is the co
bination of the isotropic result~Ref. 4! Wc516.3 and the exponen
~Ref. 8! b50.5.
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1. Weakly coupled planes

We show in Fig. 5 an example of weakly coupled plan
with g50.8. The above described different behaviors of
spectra can be seen. ForW58, a larger system size results
a narrower f (a) curve that is characteristic for extende
states. On the other hand, the increase in the system siz
W512 yields a widening of the spectrum indicating loca
ized states. The singularity spectrum forW510 is least ef-
fected by the change of the system size and we thus conc
a critical disorderWc(g50.8)51061. Considering the er-
ror bars, thef (a) curve forWc equals the characteristi
spectrumf c of the isotropic case. For moderate anisotrop
g&0.8 this confirms the hypothesis of a characteristicf c .

Visual observation of the system-size dependence of
f (a) curves is not well suited for a systematic search for
transition. A better method is to focus attention to spec
points of the spectra such as the positiona0 of the maximum
and the information dimensionD15a1. An increase of the
system size causes a decreasinga0 and an increasinga1 for
extended states and the opposite tendency for local
states14,21 as described in Sec. III. A constant behavior
a0 anda1 versus system size indicatesWc . Following Ref.
14 we have parametrized the system-size dependenc
1/ln(N), which has been found to give a nearly linear beha
ior of a0 anda1, thus distinguishing their tendencies mo
clearly.14,21,22 In Fig. 6 we find a constant behavior at th
same value of the disorder for both quantities and we c
cludeWc(g50.96)58.060.5.

For very weakly coupled planes we get significan
larger values ofWc than in Sec. IVB. The new values ar
close to, but slightly larger than the TMM data8 as can be
seen in Fig. 3. Our data followWc516.3(12g)0.25 which
confirms the exponentb50.25, which was derived
analytically.8 We therefore conclude thatf c is no longer
characteristic for the eigenstates at the MIT for wea
coupled planes withg*0.8. In our present analysis we fin
wider singularity spectra, which is a sign of a tendency

-

FIG. 5. Singularity spectra for weakly coupled planes
g50.8 for the two system sizesN518 (2) andN542 (22). The
symbols distinguishW58 ~s!,10 ~n!,12 ~h! and indicatea(q)
and f (q) for q522,21,0,1,2 ~from right to left!. The error bars
result from the linear regression~cf. Fig. 2! and the average over th
different eigenstates~cf. Sec. IVA!. The thick dotted line is the
characteristic spectrumf c .
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wards localization. An eigenstate at the transition for ve
strong anisotropyg50.99 is shown in Fig. 7. The probabilit
amplitude is concentrated to a few planes perpendicula
the direction with reduced transfer. This coincides with t
observation that the localization length is smaller by a fac
12g in the perpendicular direction compared with the p
allel one.8 In the mentioned planes the wave function loo
like a fractal with holes and islands of different sizes, ve
similar to the critical eigenstates of the isotropic system
may well be that the cubic boxes used in the box-count

FIG. 6. N dependence ofa0 anda1 for weakly coupled planes
with g50.96 andW55.5 ~s!,6.5 ~h!,7.5 ~* !,8.5 ~L!,9.5 ~n!,10.5
~1!.

FIG. 7. Wave function close to the MIT for very weakl
coupled planes withg50.99,N548, andW54.5. Every site with
probability uC i u2 larger than the averageN23 is shown as a box
with volumeuC i u2N. The 764 cubes withuC i u2N.A1000 are plot-
ted in white with black edges. The gray scale distinguishes betw
different slices of the system along thex axis. The thick solid line is
the logarithm of the summed probability amplitude for each pla
perpendicular to thez axis. Again only values aboveN23 are
shown.
y

to
e
r
-

It
g

procedure for the multifractal analysis cannot appropriat
measure this fractal, because most box sizes exceed the
ber of planes on which the wave functions are concentra
Therefore it is possible that the deviations ofWfc

fromWc in
Fig. 3 are an artefact of the analysis.

2. Weakly coupled chains

The results for theWc(g) dependence of weakly couple
chains are shown in Fig. 4. They are in reasonable agreem
with the TMM data,9 although we cannot reproduce th
exponent8 b50.5. The differences betweenWc andWfc

are
not as large as in the other case and the multifractal pro
ties of the critical states are therefore similar to those of
isotropic system.

V. CONDUCTIVITY IN SMALL ANISOTROPIC SYSTEMS

The transport properties are determined by the local
tion properties of the states. AtT50 localized states canno
contribute to charge transfer and we have insulating beh
ior. On the other hand, extended states yield metallic beh
ior. The Kubo formula following from Fermi’s golden rule
provides a connection of the electrical conductivity and
electronic statesun&.

Let us consider an electrical ac field with frequen
v5\E in the x direction on a sample with volumeN3. We
assume a half-filled band atT50 such that all states with
E<0 are occupied while all others are unoccupied. A co
figuration average because of the random site energie
denoted bŷ &C . Neglecting prefactors the real parts of the
conductivity is given by23

s~E!;K (
n,n8

z^nuxun8& z2Enn8d~E2Enn8!L
C

, EÞ0.

~4!

HereEnn85En82En denotes the energy difference betwe
an occupied and an unoccupied state.

In order to compute this quantity it is necessary to kn
all eigenvalues and all eigenstates. We use the stan
Householder algorithm to diagonalize the Hamiltonian~1!.
We average over 90–150 configurations to suppress the l
statistical fluctuations ofs. This limits the treatable linea
system size toN512. As a consequence we encounter stro
finite-size effects forW<4. The small number of eigenene
gies in the ordered limit is not smeared out sufficiently by t
disorder to yield a smooth density of stat
r(E)51/N3^(nd(E2En)&C as shown in Fig. 8 forW51
andg50.9. We also note that the density of states for lar
disorder values andg>0.9 agrees with that of the respectiv
1D or 2D system within the uncertainty due to fluctuation
However, the transport behavior of the states is comple
different: In 1D and 2D there is no MIT (Wc50) while 3D
systems exhibit an MIT even for very strong anisotropy
shown in Sec. IV.

Because the characteristic length scales of the wave fu
tions exceed the system size it is a priori not clear whet
the localization behavior of the states has any measur
influence on the computed conductivity. Suppose there is
such influence, then the matrix elements^nuxun8& are all

en

e
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equal and the conductivity is given by theE-weighted joint
density of statessu(E)5^(nn8Enn8d(E2Enn8)&C . We
compares and su for weakly coupled planes with, e.g
W51 andg50.9 in Fig. 9. The peak structure for this sma
disorder is again a finite-size effect reflecting the peaks
r(E). The positions of the minima ofs(E) are the same a
expected from the joint density of states but the minima
much more pronounced. The reason for this behavior is
strong localization of the states for energies with lowr(E)
similar to the localization in the band tails; the latter cau
the decrease ofs at higher energies. Thus despite the sm
system size the conductivity is highly influenced by localiz
tion effects.

In Fig. 10 we present the conductivity computed for t
two nonequivalent directions: parallel@Figs. 10~a! and 10~c!#
and perpendicular@Figs. 10~b! and 10~d!# to the planes and
chains, respectively. For strong anisotropy the wave fu

FIG. 8. Density of states for weakly coupled~a! chains and~b!
planes withg50.9 andN512. The data forW55 and 15 agree
with that of uncoupled chains or planes within the statistical fl
tuations. The peak structure forW51 is due to the small system
size.

FIG. 9. Comparison ofs andsu in weakly coupled planes with
W51, g50.9, andN512. su has been scaled to the same ma
mum value ass.
f

e
e

s
ll
-

-

tions are concentrated to a few chains or planes as show
Fig. 7. Consequently, the conductivity is drastically reduc
in the perpendicular direction. Forg50.9 the maximum of
s is reached at small energies because the most exte
eigenstates appear in the band center. This causes the~small!
peak forW51. For strong disorderW515 all eigenstates are
strongly localized and the perpendicular conductivity is ne
ligible. For the parallel conductivity we find an increase
the anisotropy becomes stronger. Here, the transport is
handicapped by the anisotropic localization of the wa
functions. The increase is relatively small for the planes a
considerable for the chains. A good argument to explain
difference is the form of the density of states that yields
higher amount of possible transitions for the energies aro
the position of the maximum ofs(E) for the chains. The
parallel conductivity atW515 is relatively small but consid
erable in a large energy range that reflects the disor
widened energy band. We note that the conductivities fo
very strong anisotropyg50.99 are nearly equal to those o
g50.9 in the parallel direction and again negligible in th
perpendicular direction.

VI. CONCLUSIONS

In the present work we have studied the localization
havior of eigenfunctions and transport properties of
Anderson model with anisotropic hopping. As expected fro
the general argument for the fractal nature of wave functi
at the metal-insulator transition, multifractal eigenstates w
found even for strong anisotropy. The multifractal descr
tion holds not only directly at the transition but also close
it due to the small system sizes considered. As a first e
mate for the critical disorderWc we determinedWfc

where
the states show the characteristic singularity spectr

- FIG. 10. Conductivitys for N512 and various anisotropiesg
and disordersW for weakly coupled~c! and~d! chains and~a! and
~b! planes for the~a! and~c! parallel and~b! and~d! perpendicular
directions. The perpendicular conductivity forg50.9 andW515 is
negligible, while the parallel conductivity forg50.9 andW51
exceeds the range of the diagram~see Fig. 9!.
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f c(a) that indicates the MIT in the isotropic case. But esp
cially for weakly coupled planes the computed anisotro
dependence of the critical disorder differs remarkably fr
the TMM results.8 We also analyzed the system-size dep
dences of the singularity spectra to determine the MIT. T
observedWc(g) agree reasonably well with the TMM
data.8,9 Therefore we conclude that the ‘‘characteristic sp
trum’’ is no longer valid if the anisotropy becomes stron
This is surprising becausef c was independent of the micro
scopic details of the isotropic system for the 3D case. T
spectrum atWc for weakly coupled planes is wider tha
f c . This coincides with the observed concentration of
probability amplitude to only a few planes perpendicular
the direction with reduced hopping for large anisotropy.

We have also studied the ac conductivity of small ani
tropic samples using Kubo’s formula. In this case the tre
able system sizes are very small because all eigenvalues
r,

ys

is,

hy
-
y

-
e

-
.

e

e

-
t-
nd

eigenvectors of the Hamiltonian are needed. Nevertheles
observe a rapidly decreasing conductivity in the direct
with smaller hopping integral if the anisotropy becom
stronger. This is a pure localization effect. For the used sm
system sizeN512 it is surprising that this can be observe
because the characteristic length scales are much large
nearly all of the states. Another interesting fact is that
density of states for an anisotropyg50.9 is already nearly
identical with that of the corresponding lower-dimension
system.
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