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Nonanalytic behavior of the spin susceptibility in clean Fermi systems
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The wave vector and temperature-dependent static spin susceptibility,xs(Q,T), of clean interacting Fermi
systems is considered in dimensions 1<d<3. We show that at zero temperaturexs is a nonanalytic function
of uQu, with the leading nonanalyticity beinguQud21 for 1,d,3, andQ2lnuQu for d53. For the homogeneous
spin susceptibility we find a nonanalytic temperature dependenceTd21 for 1,d,3. We give qualitative
mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to
second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant
ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative
results for one-dimensional systems, as well as for the temperature dependence ofxs(Q50) in d53.
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I. INTRODUCTION

It is well known that in fluids—that is, in interacting
many-body systems—there are long-range correlations
tween the particles. For example, in classical fluids in th
mal equilibrium there are dynamical long-range correlatio
that manifest themselves as long-time tails, or power-
decay of equilibrium time correlation functions at larg
times.1,2 In frequency space, the analogous effects
nonanalyticities at zero frequency. In an intuitive physic
picture, these correlations can be understood as memor
fects: the particles ‘‘remember’’ previous collisions, an
therefore so-called ring collision events, where after a co
sion the two involved particles move away and later rec
lide, play a special role for the dynamics of the fluid. Tec
nically, the long-time tails can be described in terms
mode-mode coupling theories. The salient point is that w
any quantities whose correlations constitute soft, or gapl
modes~due to conservation laws, or for other reasons!, prod-
ucts of these quantities have the same property.3 In the equa-
tions of motion that govern the behavior of time correlati
functions this leads to convolutions of soft propagato
which in turn results in nonanalytic frequency dependenc
For phase-space reasons, the strength of the effect incre
with decreasing dimensionality: while in three-dimension
~3D! classical fluids the long-time tails provide just a corre
tion to the asymptotic hydrodynamic description of the s
tem, in 2D fluids they are strong enough to destr
hydrodynamics.1,4

A natural question to ask is whether such long-range c
relations also occur in position space. Indeed, in class
fluids in nonequilibrium steady-state effects occur that m
be considered as the spatial analogs of long-time tails, bu
thermal equilibrium this is not the case.1,2 This changes,
550163-1829/97/55~15!/9452~11!/$10.00
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however, if we consider quantum fluids. The quantum nat
of a system has two major implications as far as statist
mechanics is concerned. First, temperature enters, apart
occupation numbers, through Matsubara frequencies, w
means that the system’s behavior as a function of temp
ture will in general be the same as its behavior as a func
of frequency, at least at asymptotically low temperatur
Second, and more importantly, in quantum statistical m
chanics statics and dynamics are coupled and need to
considered together. This raises the question of whether
quantum fluid there might be long-range spatial correlatio
even in equilibrium.

From studies of systems with quenched disorder, ther
evidence that the answer to this question is affirmative.
us consider interacting fermions in an environment of sta
scatterers. In dimensionsd.2, and for a sufficiently small
scatterer density, the relevant soft modes in such a sys
are diffusive, so frequencyV, or temperatureT, scales like
the square of the wave vectorQ, V;T;Q2. Via mode-
mode coupling effects that are analogous to those prese
classical fluids, dynamical long-range correlations lead
long-time tails in equilibrium time correlation functions. Fo
instance, the electrical conductivity as a function of fr
quency behaves likeV (d22)/2 at smallV in d.2.5 The dy-
namical spin susceptibilityxs(Q,V) shows no analogous
long-time tail atQ50 for reasons related to spin conserv
tion. However, from the above arguments about the coup
of statics and dynamics in quantum statistical mechanics
the scaling of frequency with wave number, one would e
pect thestatic spin susceptibility,xs(Q,V50) at T50, to
show a related nonanalyticity atQ50, namely,
xs;uQud22. This is indeed the case, as can be seen m
easily from perturbative calculations.6 Schematically, the
9452 © 1997 The American Physical Society
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55 9453NONANALYTIC BEHAVIOR OF THE SPIN . . .
coupling of two diffusive modes leads to contributions
xs of the type

E dqE dv
1

v1q2
1

v1V1~q1Q!2
, ~1.1!

which leads to the above behavior. One can then inv
renormalization-group arguments to show that this is ind
the leading small-Q behavior ofxs . Similarly, at finite tem-
perature the homogeneous susceptibility behaves
xs(Q50,V50);T(d22)/2. This has interesting conse
quences for itinerant magnetism in such systems, as has
recently discussed.6–8

Somewhat surprisingly, the situation is much less clea
clean Fermi systems. Here the soft modes are density
spin density fluctuations, as well as more general parti
hole excitations. All of these have a linear dispersion re
tion, i.e.,V;uQu. The form of the dispersion relation doe
not affect the basic physical arguments for nonanalytic
quency and wave-number dependences given above.
might thus expect the spin susceptibility to have mode-m
coupling contributions of a type analogous to those show
Eq. ~1.1!, but with ballistic instead of diffusive modes:

E dqE dv
1

v1uqu
1

v1V1uq1Qu
, ~1.2!

which leads toxs(Q,V50);const1uQud21 in generic di-
mensions atT50. In d53, one would expect aQ2lnuQu
behavior, as convolution integrals tend to yield logarithms
special dimensions. Such a behavior ofxs would have pro-
found consequences for the critical behavior of itinerant f
romagnets, as has been pointed out recently.9 It is therefore
of importance to unambiguously determine whether or
the above mode-mode coupling arguments do indeed c
over from disordered to clean systems.

Before we start this task, let us discuss the available
formation concerning long-range correlations in clean Fe
systems. The specific heat is known to be a nonanalytic fu
tion of temperature, viz.,CV /T;T2lnT in d53. This is a
consequence of a nonanalytic correction to the linear dis
sion relation of the quasiparticles in Fermi-liquid theor
namely,De(p);(p2pF)

3lnup2pFu.
10 Such a nonanalyticity

signal the presence of a long-range effective interaction
tween the quasiparticles, and in general it will lead
nonanalytic behavior of both thermodynamic quantities a
time correlation functions. TheT2lnT term in the specific-
heat coefficient is an example of such an effect. Ind52 the
behavior isCV /T;T,11 which is consistent with the behav
ior CV /T;Td21 in generic dimensions that one would e
pect from the above arguments. It was natural to look
similar effects in other quantities, in particular in the sp
susceptibility. These investigations concentrated on the t
perature dependence ofxs , and several authors indeed r
ported to have found aT2lnT term in the homogeneous stat
spin susceptibility. However, other investigations did n
find such a contribution.12 The resulting confusion has bee
discussed by Carneiro and Pethick.13 These authors use
Fermi-liquid theory to show that, whileT2lnT terms do in-
deed appear in intermediate stages of the calculation ofxs as
well as ofCV , they cancel in the former.
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This somewhat surprising result casts some doubt on
general physical picture painted above, which suggests
qualitative equivalence of disordered and clean systems
respect to the presence of long-range correlations, and re
ing nonanalyticities in both the statics and the dynamics
quantum systems. On the other hand, a failure of this gen
picture would be hard to understand from several points
view. For instance, ind51 the instability of the Fermi liquid
with respect to the Luttinger liquid is well known to manife
itself in perturbation theory forxs by means of logarithmic
singularities.14,15This is precisely what one obtains from th
mode-mode coupling integral, Eq.~1.2!. By continuity one
therefore expectsxs(Q50,T);Td21, and xs(Q,T50)
;uQud21, at least ind511e. Unless the physics change
qualitatively betweend511e andd53, this should still be
true in higher dimensions. Also, the corrections to Land
theory we are discussing here can be cast in the languag
the renormalization group. In this framework, the Ferm
liquid ground state is described as a stable fixed point,16 and
the effects we are interested in manifest themselves a
irrelevant operator that leads to corrections to scaling n
this fixed point.17 In a system whereQ, V, andT all have a
scale dimension of unity, this operator should appear
uQud21, Vd21, etc., dependences in various correlation fun
tions. From a general scaling point of view it would be ha
to understand if this were not the case, except for the po
bility that the prefactors of some nonanalyticities might a
cidentally vanish in certain dimensions.

It is the purpose of the present paper to clarify this co
fusing point. We will show that the above general physic
picture does indeed hold true, and that it is not violated
the previously found absence of aT2lnT term in xs in
d53, which is accidental. The remainder of this paper
organized as follows. In Sec. II we define our model. In S
III we perform an explicit perturbative calculation to seco
order in the electron-electron interaction. This confirms b
our qualitative arguments, and the results of Ref. 13.
explain why there is no contradiction between these resu
and we also make contact with established perturbative
sults ind51. In Sec. IVA we discuss our result in the ligh
of mode-mode coupling arguments that are an elaboratio
those given above. In Sec. IVB we make contact w
renormalization-group ideas, and argue that the functio
forms of the nonanalyticities derived in Sec. III by means
perturbation theory are asymptotically exact. In Sec. IVC
discuss the physical consequences of our results.

II. MODEL, AND THEORETICAL FRAMEWORK

A. The model

Let us consider a system of clean fermions governed
an action18

S52E dx(
s

c̄s~x!
]

]t
cs~x!1S01Sint . ~2.1a!

Here we use a four-vector notation,x[(x,t), and
*dx[*dx*0

bdt. x denotes position,t imaginary time,
b51/T, and we choose units such that\5kB51. s is the
spin label.S0 describes free fermions with chemical potent
m,
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S05E dx(
s

c̄s~x!@D/2m1m#cs~x!, ~2.1b!

with D the Laplace operator, andm the fermion mass.Sint
describes a two-particle, spin-independent interaction,

Sint52
1

2E dx1dx2 (
s1 ,s2

v~x12x2!

3c̄s1
~x1!c̄s2

~x2!cs2
~x2!cs1

~x1!. ~2.1c!

The interaction potentialv(x) will be specified in Sec. II B
below.

We now Fourier transform to wave vectorsk and fermi-
onic Matsubara frequenciesvn52pT(n11/2). Later we
will also encounter bosonic Matsubara frequencies, wh
we denote byVn52pTn. Using again a four-vector nota
tion, k[(k,vn), (k[T( ivn

*dk/(2p)d, we can write

S05(
s

(
k

c̄s~k!@ ivn2k2/2m1m#cs~k!, ~2.2a!

Sint5
2T

2 (
s1 ,s2

(
$ki %

dk11k2 ,k31k4
v~k22k3!

3c̄s1
~k1!c̄s2

~k2!cs2
~k3!cs1

~k4!. ~2.2b!

For the long-wavelength, low-frequency processes we
be interested in, only the scattering of particles and ho
close to the Fermi surface is important. It is customary a
convenient to divide these processes into three classes:19 ~1!
small-angle scattering,~2! large-angle scattering, and~3!
2kF scattering. These classes are also referred to as
particle-hole channel for classes~1! and~2!, and the particle-
particle or Cooper channel for class~3!, respectively. The
corresponding scattering processes are schematically
picted in Fig. 1. For our purposes it is convenient to ma

FIG. 1. Typical small-angle ~1!, large-angle ~2!, and
2kF-scattering processes~3! near the Fermi surface ind52.
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the phase-space decomposition that is inherent to this cla
fication explicit by writing the interaction part of the action

Sint5Sint
~1!1Sint

~2!1Sint
~3!, ~2.3a!

where

Sint
~1!5

2T

2 (
s1 ,s2

(
k,p

( 8
q

v~q!c̄s1
~k!

3c̄s2
~p1q!cs2

~p!cs1
~k1q!, ~2.3b!

Sint
~2!5

2T

2 (
s1 ,s2

(
k,p

( 8
q

v~p2k!c̄s1
~k!c̄s2

~p1q!

3cs2
~k1q!cs1

~p!, ~2.3c!

Sint
~3!5

2T

2 (
s1Þs2

(
k,p

( 8
q

v~k1p!c̄s1
~k!c̄s2

~2k1q!

3cs2
~p1q!cs1

~2p!. ~2.3d!

Here the prime on theq summation indicates that only mo
menta up to some cutoff momentumL are integrated over
This restriction is necessary to avoid double counting, si
each of the three expressions, Eqs.~2.3b!–~2.3d!, represents
all of Sint if all wave vectors are summed over. The lon
wavelength physics we are interested in will not depend
L.

The above phase-space decomposition is correct in
mensionsd>2. In d51, the Fermi surfaces collapse on
two Fermi points, and the processes we called above la
angle scattering and 2kF scattering become indistinguish
able. The three independent scattering processes are us
chosen as the ones shown in Fig. 2, and the correspon
coupling interaction potentials are denoted byg1, g2, and
g4.

15 Inspection shows that the action written in Eqs.~2.3!
counts each of these processes twice. IfSint

(3) is dropped, then
the g4 process is still counted twice. However, it is know
that g4 does not contribute to the logarithmic terms we a
interested in.15 For our purposes it therefore is sufficient
just drop the particle-particle channel when we are dea
with d51.

FIG. 2. The three independent scattering processes near
Fermi surface with interaction amplitudesg1, g2, andg4 in d51.
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B. Simplifications of the model

The effective interaction potentials that appear in E
~2.3b!–~2.3d! are all given by the basic potentialv, taken at
different momenta.Sint

(1) contains the direct scattering contr
bution, or v(q), with q the restricted momentum. Ifv is
chosen to be a bare Coulomb interaction, then this lead
singularities in perturbation theory inv that indicate the need
for infinite resummations to incorporate screening. For s
plicity, we assume that this procedure has already been
ried out, and takev to be a statically screened Coulom
interaction. For effects that arise from small values ofuqu it is
then sufficient to replace v(q) by the number
G1[v(q→0).20 In Eqs. ~2.3c! and ~2.3d! the moduli ofk
andp are equal tokF for the dominant scattering processe
and one usually expands these coupling constants in L
endre polynomials on the Fermi surface. While all of t
terms in this expansion contribute to the processes we w
to study, we note that the coefficients in the angular mom
tum expansion are independent coupling constants. In o
to establish the existence of a nonanalytic term inxs(Q), it
therefore is sufficient to establish its existence in a particu
angular momentum channel. For simplicity we choose
zero angular momentum channel,l50. We then have three
coupling constants in our theory, namely,G1, G2, andG3,
which arev(k2p) andv(k1p), respectively, averaged ove
the Fermi surface. Instead ofG1 andG2 one often uses the
particle-hole spin singlet and spin triplet interaction amp
tudesGs andG t that are linear combinations ofG1 andG2.
They are related to the Fermi-liquid parametersF0

s andF0
a by

Gs5G12G2/25
1

2NF

F0
s

11F0
s , ~2.4a!

G t5G2/25
21

2NF

F0
a

11F0
a , ~2.4b!

whereNF is the density of states at the Fermi level. O
simplified model is tantamount to taking onlyF0

s andF0
a into

account instead of the complete sets of Landau parame
As explained above, this is sufficient for our purposes.
also define the Cooper channel amplitude,

Gc5G3/2, ~2.4c!

and again we keep only thel50 channel. The particle
particle channel is neglected in Landau theory.

Our model is now defined as Eqs.~2.2! and ~2.3!, with
v(q), v(p2k), and v(k1p) replaced byG1, G2, and G3,
respectively. We thus have three different interaction ve
ces, which are shown in Fig. 3. In the following section w
will calculate xs in perturbation theory with respect to th
interaction amplitudesG1, G2, andG3.

III. PERTURBATION THEORY

A. Contributions to second order in the interaction

We now proceed to calculate the spin susceptibilityxs in
perturbation theory with respect to the electron-electron
teraction. This can be done by means of stand
methods.21,22,19We will be interested only in contribution
that lead to a nonanalytic wave-number dependence.
.

to

-
ar-

,
g-

nt
n-
er

r
e

-

r

rs.
e

i-

-
d

is

easy to see that no nonanalytic behavior can occur at
order in the interaction. At second-order, there is also a la
number of diagrams for which this is true, and others van
due to charge neutrality.20 There remain seven topologicall
different second-order diagrams, all shown in Fig. 4, th
need to be considered. We thus write

xs~Q!52x0~Q!1(
i51

7

x~ i !1~analytic contributions!,

~3.1!

wherex0 denotes the Lindhard function, and the correcti
terms are labeled according to the diagrams in Fig. 4. H

FIG. 3. The three interaction vertices with coupling consta
G1, G2, andG3.

FIG. 4. Second order diagrams that contribute to the nonana
behavior ofxs . The solid vertical line denotes the external sp
vertexs.
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and in the remainder of this section we use again the fo
vector notation of Sec. II, soQ[(Q,Vn), etc.

These diagrams can be expressed in terms of integ
over electronic Green’s functions, or bare electron propa
tors, that can be read off Eq.~2.2a!,

Gk[Gk~ ivn!5
1

ivn2k2/2m1m
. ~3.2!

In terms of theGk , we find

x~1!524G1G2(
s

s2( 8
q

J1
~4!~q,Q!J~2!~q!, ~3.3a!

x~2!522G1G2(
s

s2( 8
q

$@J~3!~q,Q!#2

1J2
~4!~q,Q!J~2!~q!%, ~3.3b!

x~3!522G1G2(
s

s2( 8
q

J~3!~q,Q!J~3!~2q,2Q!,

~3.3c!

x~4!5~G3!
2 (

s1 ,s2
s1s2~12ds1s2

!( 8
q

I 1
~3!~q,Q!I 2

~3!~q,Q!,

~3.3d!

x~5!5~G3!
2 (

s1 ,s2
s1s2~12ds1s2

!( 8
q

I 2
~4!~q,Q!I ~2!~q!,

~3.3e!

x~6!52 (
s1 ,s2

s1
2( 8

q
@~G1!

2J1
~4!~q,Q!1~G2!

2

3J1
~4!~2q,Q!#J~2!~2q!12~G3!

2

3 (
s1 ,s2

s1s2~12ds1s2
!( 8

q
I 1

~4!~q,Q!I ~2!~q!,

~3.3f!

x~7!5 (
s1 ,s2

s1
2( 8

q
$~G1!

2J2
~4!~q,Q!J~2!~q!1~G2!

2

3@J~3!~2q,Q!#2%2x~4!. ~3.3g!

Here q is a bosonic frequency-momentum integration va
able. In Eqs.~3.3!, the following multiplication factors have
been taken into account. In diagram~1! of Fig. 4, either one
of the interaction lines can be aG1; the other one is then
necessarily aG2. This leads to a multiplication factor of 2
and another factor of 2 comes from the existence of
equivalent symmetric diagram. In diagram~2!, again either
one of the two interaction lines can be aG1, with the other
line then being aG2, but here the two expressions one o
tains are not identical. Again, there is an overall symme
factor of 2. The same holds for diagram~3!, but without the
overall symmetry factor. Diagrams~4! and ~5! can be real-
ized only withG3, and they carry no multiplication factors
In diagrams~6! and ~7!, both interaction lines must be th
same, and diagram~6! carries an extra symmetry factor o
2. The spin structures represent the fact that the interac
r-

ls
a-

-

n

-
y

on

cannot flip the spin, and that the external vertex carrie
factor ofs. The functions in the integrands of Eqs.~3.3! are
defined as

J~2!~q!5(
k
GkGk2q , ~3.4a!

J~3!~q,Q!5(
k
GkGk2qGk2Q , ~3.4b!

J1
~4!~q,Q!5(

k
~Gk!

2Gk2qGk2Q , ~3.4c!

J2
~4!~q,Q!5(

k
GkGk2qGk2QGk2q2Q , ~3.4d!

I ~2!~q!5(
k
GkG2k1q , ~3.4e!

I 1
~3!~q,Q!5(

k
G2kGk1qG2k2Q , ~3.4f!

I 2
~3!~q,Q!5(

k
GkG2k1qG2k1q2Q , ~3.4g!

I 1
~4!~q,Q!5(

k
~Gk!

2G2k1qGk2Q , ~3.4h!

I 2
~4!~q,Q!5(

k
GkG2k1qGk1QG2k1q2Q . ~3.4i!

The information we are interested in is contained in E
~3.1!–~3.4! in terms of integrals. The remaining task is
perform these integrals. While it is easy to see by pow
counting that all of the above contributions toxs do indeed
scale likeQd21 for 1,d,3, and likeO(1) andO(Q2) with
logarithmic corrections ind51 andd53, respectively, we
have found it impossible to analytically perform the integra
in general, i.e., for a finite external wave number in arbitra
dimensionsd. However, for a perturbative confirmation o
the expected nonanalyticity such a general analysis is
necessary. Rather, it is sufficient to explicitly obtain the pr
actors of the logarithmic singularities ind51 andd53. If
they are not zero, then by combining this with power cou
ing and the expected continuity ofxs as a function ofd, it
follows that the prefactor of theQd21 nonanalyticity does
not vanish for generic values ofd either. For the temperatur
dependence atQ50 the integrals can be done in arbitra
d, see Sec. III E below.

In Secs. III B–IIID we therefore analyze the above int
grals ind51 andd53. In doing so, we treat the particle
hole and particle-particle channel contributions separat
since they have quite different structures. We also anticip
that we will be interested only in the static spin susceptib
ity, so Q5(0,Q). In d51, we write Q for the one-
dimensional vector, i.e., a real number that can be eit
positive or negative.
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B. d51

Let us first considerd51. We do this mainly to make
contact with established results in the literature. As explai
above, the particle-particle channel must not be taken
account ind51, so we putG350. Since we are interested i
a logarithm that results from an infrared singularity, it su
fices to calculate the integrands in the limit of small freque
cies and wave numbers. Be performing the integrals in E
~3.4a!–~3.4d! one obtains, withQ5(0,Q) andq5(Vn ,q),

J~2!~q!5
2NF

11~Vn /vFq!2
, ~3.5a!

J~3!~q,Q!5NFF iVnq/Q

Vn
21~vFq!2

1
iVn~Q2q!/Q

Vn
21@vF~Q2q!#2G ,

~3.5b!

J1
~4!~q,Q!5NFF qQ ~vFq!22Vn

2

@Vn
21~vFq!2#2

2
q/Q

Vn
21~vFq!2

1
q2/Q2

Vn
21~vFq!2

2
~Q2q!2/Q2

Vn
21@vF~Q2q!#2

G ,
~3.5c!

J2
~4!~q,Q!5NFF2

2q2/Q2

Vn
21~vFq!2

1
~q2Q!2/Q2

Vn
21@vF~q2Q!#2

1
~q1Q!2/Q2

Vn
21@vF~q1Q!#2G . ~3.5d!

Inserting this into Eqs.~3.3!, performing the final integrals
and collecting the results one obtains, apart from anal
terms,

xs~Q!52NF24NF~G tNF!2ln~2kF /uQu!. ~3.6!

This result agrees with the well-known one to this order
G t .

14 One would expect that the lnuQu gets replaced by a
lnV or lnT if one works atQ50 and finiteV or T, respec-
tively. Explicit calculations confirm this. Of course th
physical content of this perturbative result is limited, sin
the ground state is not a Fermi liquid.23 For later reference
we also mention that, to logarithmic accuracy, it is not n
essary to keepQ nonzero in the above calculation. If on
works atQ50 and determines the prefactor of the resulti
logarithmic divergence, then one obtains the same resu
above.

C. Particle-hole channel ind53

In d53, both the particle-hole and the particle-partic
channel contribute to the terms we are interested in. S
the structures of the integrals in the two channels are q
different, we first consider the particle-particle channel.
d53, the logarithm appears only atO(Q2). KeepingQ ex-
plicitly in the integrals to that order would be hard. Howev
as was pointed out in the preceding subsection, to loga
mic accuracy this is not necessary. Rather, we can just
pand inQ. The prefactor of theQ2 term will then be loga-
rithmically divergent, and the prefactor of the divergen
will be the same as that of theQ2lnuQu term whose presenc
d
to

-
s.

ic

-

as

ce
te

,
h-
x-

is signaled by the divergence. By expanding Eqs.~3.4b!–
~3.4d! toO(Q2), and dropping the uninteresting contributio
to the homogeneousxs , we can express all logarithmic con
tributions toxs in terms of two integrals,

J15( 8
q (

k
S k•Q̂
m

D 2~Gk1q!
5Gk(

p
GpGp2q

5SNFvF
24

D 2(
q

1

~vFuqu!3
, ~3.7a!

J25
1

4( 8
q (

k
S k•Q̂
m

D 2~Gk!
4Gk2q(

p
~Gp!

2Gp1q52J1 ,

~3.7b!

where we have kept only the most divergent term. We fi

x~1!528G1G2Q
2J1 , ~3.8a!

x~2!524G1G2Q
2~J11J2!50, ~3.8b!

x~3!528G1G2Q
2J2 , ~3.8c!

x~6!58~G1
21G2

2!Q2J1 , ~3.8d!

x~7!58Q2~2G1
2J12G2

2J2!. ~3.8e!

Here we have used the fact that the structure (J(3))2 that
appears inx (2), x (3), and x (7), if expanded to orderQ2,
yields two terms, one of which gets canceled by parts of
other. The remaining contribution can be expressed in te
of J2.

We see that in the skeleton diagrams,x (1)–x (3), self-
energy contributions and vertex corrections cancel e
other. However, in the insertion diagrams,x (6) andx (7), the
same cancellation is effective only in the spin singlet ch
nel, while in the spin triplet channel the two diagrams a
up. Interpreting the logarithmic divergence inJ1 as a lnuQu as
explained above, we obtain for the particle-hole channel c
tribution toxs ,

xs
p-h52NF12NF~G tNF!2

4

9S Q

2kF
D 2ln~2kF /uQu!. ~3.9!

D. Particle-particle channel in d53

We now turn our attention to the particle-particle chann
As can be seen from Sec. II A, diagrams~4!–~7! in Fig. 4
contribute. From Eqs.~3.3d! and ~3.3g! it follows that the
particle-particle channel contributions of diagrams~4! and
~7! cancel each other, so we are left withx (5) and x (6).
Expanding the functionsI 1

(4) andI 2
(4) , Eqs.~3.4h! and~3.4i!,

to orderQ2 and doing the integrals, one finds that the lead
logarithmic contributions to bothx (5) and x (6) can be ex-
pressed in terms of a single integral,

I5( 8
q (

k
S k•Q̂
m

D 2~Gk!
5G2k1q(

p
GpG2p1q .

~3.10!
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Inspection of the integrand shows that the leading div
gency inI is a logarithm squared, in contrast to the partic
hole channel, where the leading term is a simple logarith
The reason is that(pGpG2p1q contains a term; lnuqu for
q→0, which is just the usual BCS-type logarithm that
characteristic of the particle-particle channel. It also depe
on an ultraviolet cutoff, since(pGpG2p1q does not exist in
d53 if the integration is extended to infinity. In conjunctio
with the other factor in the integrand ofI , which is an alge-
braic function, this gives the leading behavior:

I;E dqlnuqu E
0

`

dv
q223~v/vF!2

@q21~v/vF!2#3
. ~3.11!

While this diverges like (ln0)2 by power counting, the pref
actor of the divergency turns out to be zero since the
quency integral in Eq.~3.11! vanishes. This leads to the fo
lowing conclusion for the particle-particle chann
contribution toxs :

xs
p-p52NF12NF~GcNF!2$03@ ln~2kF /uQu!#2

1O@ ln~2kF /uQu!#%. ~3.12!

Our method of expanding in powers ofQ, and extracting
the prefactor of the ensuing singularity, works only for t
leading nonanalytic contribution. With this method, ther
fore, the result that is expressed in Eq.~3.12! is all we can
achieve. In order to determine the prefactor of the ne
leading lnuQu term, one would have to keep a nonzero ext
nal wave number explicitly. As pointed out before in th
context of the particle-particle channel, this would be ve
difficult. However, for our purposes this is not really nece
sary. We know that the interaction amplitudes in the partic
hole and particle-particle channels, respectively, are indep
dent. Therefore, the particle-particle channel contribut
cannot in general cancel the nonzero contribution from
particle-hole channel that we found in Sec. IIIC. What w
have established is that the particle-particle channel is
more singular than the particle-hole channel, and for sh
ing that the leading nonanalyticity inxs is lnuQu with a non-
zero prefactor this is sufficient.

It should be pointed out that low-order perturbation theo
probably overestimates the importance of the partic
particle channel. Usually, singularities in the particle-parti
channel are logarithmically weaker than those in the parti
hole channel, since a BCS-type ladder resummation cha
a lnx singularity into a lnlnx, and axy singularity into a
xy/ lnx. We expect this mechanism to work in the prese
problem, so the particle-particle channel singularities
probably in fact asymptotically negligible compared to t
particle-hole channel ones. We also note that so far we h
not really established that higher-order terms in the pertu
tion expansion cannot lead to stronger singularities than
ones we found at second order in the interaction amplitud
This point will be further discussed in Sec. IV below.

E. Temperature dependence ofxs„Q50…

In the last two subsections we have established thatxs in
d53 at T50 does indeed have a nonanalytic contributi
proportional toQ2lnuQu. As we pointed out in the Introduc
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tion, in a Fermi liquid the wave number scales like frequen
or temperature, and one would therefore naively expec
T2lnT contribution to the homogeneousxs at T.0. This
raises the question of whether our results are compatible
those of Carneiro and Pethick,13 who did not find such a
contribution. In order to clarify this, let us calculat
xs(Q50,T) explicitly within our formalism. For the reason
explained in Sec. IIID we restrict ourselves to the partic
hole channel, as did Ref. 13.

To this end, we putQ50 in Eqs.~3.4a!–~3.4d!, and con-
sider the temperature dependence ofx (1)–x (3), x (6), and
x (7). The relevant integrals are of the structure,

E dqq2T(
iVn

f ~q,iVn!g~q,iVn!, ~3.13!

which are most conveniently done by using the spectral r
resentation for the causal functionsf (q,iVn) and
g(q,iVn).

22 Simple considerations show that there is
T2lnT term if both f andg are algebraic functions; only if a
least one of them possesses a branch cut can such a no
lyticity arise. This immediately rules outx (3), and the first
and second contribution tox (2) and x (7), respectively, as
sources for aT2lnT. The reason is that an explicit calculatio
of J(3)(q,Q50), Eq. ~3.4b!, in the limit of smallq shows
that the only singularities in this function are poles. T
same is true forJ1

(4)(q,Q50) and J2
(4)(q,Q50), but

J(2)(q), which is minus the Lindhard function, has a bran
cut, and so all of the remaining terms potentially go li
T2lnT.

Since again we are aiming only at logarithmic accura
we can replaceJ1

(4)(q,Q50) and J2
(4)(q,Q50) by low-

frequency, long-wavelength expressions for whi
J2
(4)(q,Q50)522J1

(4)(q,Q50). The contributions from
x (1) andx (2) therefore cancel@remember that diagrams~1!
and~2! in Fig. 4 carry multiplication factors 4 and 2, respe
tively#. The contributions fromx (6) and x (7) can both be
expressed in terms of an integral

J5E dqq2T(
iVn

J1
~4!~q,Q50!J~2!~q!. ~3.14!

In doing this integral one may encounter individual term
that go likeT2lnT, but all of those terms cancel, and th
leadingT dependence ofJ is T2. There hence isno T2lnT
contribution toxs in d53.

This result agrees with the conclusion of Ref. 13, whi
reached it on the basis of Fermi-liquid theory. We disagr
however, with the assertion of that reference that within
framework of microscopic perturbation theory the absence
theT2lnT is due to cancellations between vertex correctio
and self-energies, and is hence a consequence of gaug
variance. What we find instead is that, for all diagrams
Fig. 4, theT2lnT terms vanish individually. This is consisten
with the result of Ref. 24. These authors calculatedxs in
paramagnon approximation, which in our language cor
sponds to taking onlyx (6) andx (7) into account, plus infinite
resummations that contribute to higher orders in the inter
tion amplitudes. They reported the absence ofT2lnT terms in
their calculation, rather than their cancellation between
two diagrams.
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This absence of the expected nonanalyticT dependence in
d53 is somewhat accidental. This can be seen from
one-dimensional case, where, as pointed out in Sec. I
there is a lnT contribution to the homogeneous spin susc
tibility. The technical reason is that ind51, integrands
whose only singularities are poles do contribute to
T2lnT terms. Consequently, ind51 T and Q are inter-
changeable in the logarithmic terms, while ind53 they are
not. Furthermore, the same types of integrals that lead
lnT term ind51 also contribute to aTd21 nonanalyticity in
1,d,3. In these dimensions we therefore expect to find

xs
p-h~Q50!52NF12NF~G tNF!2cd~T/4eF!d21,

~3.15!

with cd a d-dependent, positive number.
We also mention that the absence of aT2lnT term in the

self-energy diagrams ind53 does not contradict the pres
ence of such a term in the specific-heat coefficient. The
lation between the specific heat and the Green’s functio
intricate,22 and the resulting integrals have a different stru
ture from the ones that determinexs .

IV. DISCUSSION

A. Our results in a mode-mode coupling theory context

In this section we give a more detailed look at the mo
mode coupling arguments that were presented in the In
duction. We also stress some analogies between classica
quantum fluids, and discuss some important differences
tween clean and disordered systems.

Let us consider four distinct systems:~1! a classical Lor-
entz model~i.e., a classical particle moving in a spatial
random array of scatterers25!, ~2! a classical fluid,~3! a Fermi
liquid with static impurities, and~4! a clean Fermi liquid.
These systems represent classical and quantum fluids
and without quenched disorder, respectively. As pointed
in the Introduction, dynamical correlations are ultimately
sponsible for all of the effects discussed in this paper. Ho
ever, in classical systems they do not manifest themselve
static equilibrium properties, while in quantum systems th
do. In order to discuss the analogies between classical
quantum systems, let us therefore digress and conside
equilibrium time correlation function. A convenient choice
the current-current correlation function, whose Fourier tra
form determines the frequency-dependent diffusivityD(V).
In both of the classical systems,~1! and ~2!, this correlation
function exhibits a long-time tail, soD(V) is nonanalytic at
V50. ForV→0 one finds for the classical Lorentz mode

D~V!/D~0!511aiV1b~ iV!d/2, ~4.1a!

while for the classical real fluid one finds

D~V!/D~0!512b8~ iV!~d22!/2. ~4.1b!

The coefficientsb and b8 in Eqs. ~4.1! are positive. The
long-time tail in the real fluid is stronger than the one in t
Lorentz gas because the former has more soft modes. M
importantly, the static scatterers in the Lorentz gas lead
sign of the effect that is different from the one in the re
fluid. All of these features can be understood in terms of
e
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number and the nature of the soft modes in these systems2 In
disordered Fermi liquids5 one has

D~V!/D~0!511b9~ iV!~d22!/2, ~4.1c!

with b9.0. Here the sign is the same as in the classi
Lorentz model, which is due to the quenched disorder
either system. The strength of the long-time tail, however
equal to that in the classical real fluid. As mentioned in S
I, the coupling of statics and dynamics in quantum statisti
mechanics leads to a related nonanalyticity in the static s
susceptibility of a disordered Fermi liquid, namely,

xs~Q!/xs~0!512cuQud22, ~4.2!

with c.0.
On the basis of these results, it is possible to predict b

the strength of the singularity, and the sign of the prefac
in theQ dependence ofxs in a clean Fermi liquid, which is
what we are mainly concerned with in this paper. In order
do so, let us recall the origin of the nonanalyticity in th
classical fluid, Eq.~4.1b!. The density excitation spectrum
i.e., the dynamical structure factor as measured in a lig
scattering experiment, in a classical fluid consists of th
main features: the Brillouin peaks that describe emission
absorption of sound waves, and the Rayleigh peak that
scribes heat diffusion. For our purposes, we focus on
former. In the density-density Kubo correlation functio
C(k,v) @whose spectrum is in a classical system simply p
portional to the structure factorS(k,v)#, they manifest them-
selves as simple poles,3

C~k,v!;
1

v2vk1 igk2/2
1

1

v1vk2 igk2/2

[C1~k,v!1C2~k,v!, ~4.3!

wherev is the speed of sound, andg is the sound attenuation
constant. Now let us consider the simplest possible mo
mode coupling process that contributes to Eq.~4.1b!,
namely, one where a current mode decays into two so
modes that later recombine; see Fig. 5. Consider a pro
where one of the internal sound propagators is aC1 , and the
other aC2 . At zero external wave number, this leads to
convolution integral,

FIG. 5. Mode-mode coupling process describing the decay
current mode~dashed line! into two sound modes~solid lines!.
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E dvE dkC1~k,v!C2~2k,2v1V!

;E dk
1

V1 igk2
;V~d22!/2. ~4.4a!

Note that by this mechanism the long-time tail in a syst
whose low-lying modes have a linear dispersion become
strong as the one in a system with diffusive modes. In c
trast, if both of the sound propagators areC1 or C2 , one
obtains a weaker singularity,

E dVE dkC1~k,v!C1~2k,2v1V!

;E dk
1

V22vk1 i0
;V~d21!. ~4.4b!

Now let us consider the corresponding quantum system,
the clean Fermi liquid. Again, the low-lying modes~i.e.,
particle-hole excitations! have a linear dispersion. Howeve
at zero temperature the structure factor and the Kubo fu
tion are no longer proportional to one another. Rather,
fluctuation dissipation theorem shows that they are related
a Bose distribution function that eliminates the pole
v5ck from the structure factor. This is simply a cons
quence of the fact that at zero temperature there are no
citations that could get destroyed in a scattering proc
Consequently, the process described by Eq.~4.4a! is not
available in this system, and one is left with the weak
singularity of Eq.~4.4b!. Since the diffusion coefficient is
infinite atT50 in a clean system, we look instead at the s
susceptibility as a function ofQ. Q scales likeV, so we
expect a singularity of the formuQud21, as opposed to the
uQud22 in a disordered Fermi liquid, Eq.~4.2!. The sign of
the prefactor is determined by whether or not the sys
contains quenched disorder. It should therefore be oppo
to the sign in the dirty case. We thus expect for the wa
number dependence of the spin susceptibility in a cl
Fermi liquid,

xs~Q!/xs~0!511c8uQud21, ~4.5!

with c8.0. This is precisely what we found in Sec. III b
means of perturbation theory. Notice that the mode-m
coupling arguments suggest that the sign of the prefa
c8 will be positive, regardless of the interaction strength,
is the sign of the long-time tail in a classical fluid. We w
come back to this point in Sec. IVC below.

B. Our results in a renormalization-group context

Another useful way to look at our results is from
renormalization-group point of view. The Fermi-liqui
ground state of interacting fermion systems ind.1 has re-
cently been identified with a stable fixed point
renormalization-group treatments of both a basic ferm
theory,16 and a bosonized version of that theory.26 The insta-
bility of the Fermi liquid ind51 is reflected by an infinite
number of marginal operators whose scale dimensions
proportional to d21, i.e., they all become relevant i
d,1, and are irrelevant ind.1. In the present context, th
Fermi-liquid nature of the ground state ind.1 is reflected
as
-
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by the fact that the homogeneous spin susceptibility is fin
in perturbation theory. The nonanalytic corrections at fin
wave number that we are interested in correspond to
leading correction to scaling in the vicinity of the Ferm
liquid fixed point, i.e., to an irrelevant operator with respe
to that fixed point. Among the irrelevant operators, there th
must be one whose scale dimension determines the lea
wave-number dependence of the spin susceptibility.

An identification of this operator within the framework o
a renormalization-group analysis would not only provide a
other derivation of our result, but would also establish th
the behavior we have found in perturbation theory con
tutes the leadingQ dependence toall orders in the interac-
tion amplitudes. This program has not been carried out
although preliminary results are encouraging.17 This will
provide a connection between the mode-mode coupling
guments presented in the previous subsection
renormalization-group arguments that will be analogous t
corresponding connection in classical fluids that has b
known to exist for some time.4

In this context it should also be mentioned that there is
universal agreement that the ground state of a weakly in
acting Fermi system ind.1 is a Fermi liquid. It has been
proposed that there exists a relevant operator that make
Fermi-liquid fixed point unstable, and leads to a non-Ferm
liquid ground state.27 In order to destroy the Fermi liquid in
d dimensions, this would require a long-range effective
teraction that falls off more slowly than 1/r d at large dis-
tances. While we do find an effective long-range interact
between the spin degrees of freedom, it falls off li
1/r 2d21, and hence leaves the Fermi-liquid fixed point inta
The same conclusion was reached in Ref. 11 from study
the specific heat ind52.

C. Summary, and physical consequences of our result

We finally turn to a summary of our results, and to
discussion of their physical consequences. By means of
plicit perturbative calculations to second order in the int
action, we have found that the wave-number-dependent
susceptibility ind53 has the form

xs~Q!/xs~Q50!511c3~Q/2kF!2ln~2kF /uQu!1O~Q2!.
~4.6a!

We have calculated the particle-hole channel contribution
the constantc3, and have found it to be positive. More ge
erally, it follows from our analysis that ind-dimensional
systems, the spin susceptibility has a nonanalyticity of
form

xs~Q!/xs~Q50!511cd~ uQu/2kF!d211O~Q2!,
~4.6b!

where the particle-hole channel contribution tocd is again
positive.

A very remarkable feature of Eqs.~4.6! is the sign of the
leadingQ dependence: Ford<3, xs increaseswith increas-
ing uQu like uQud21. For any physical system for which thi
were the true asymptotic behavior at smallQ, this would
have remarkable consequences for the zero-tempera
phase transition from the paramagnetic to the ferromagn
state as a function of the exchange coupling. One possib
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55 9461NONANALYTIC BEHAVIOR OF THE SPIN . . .
is that the ground state of the system will not be ferrom
netic, irrespective of the strength of the spin triplet intera
tion, since the functional form ofxs leads to the instability of
any homogeneously magnetized ground state.28 Instead, with
increasing interaction strength, the system would underg
transition from a paramagnetic Fermi liquid to some oth
type of magnetically ordered state, most likely a spin den
wave. While there seems to be no observational evidence
this, let us point out that ind53 the effect is only logarith-
mic, and would hence manifest itself only as a phase tra
tion at exponentially small temperatures, and exponenti
large length scales, that might well be unobservable.
d<2, on the other hand, there is no long-range Heisenb
ferromagnetic order at finite temperatures, and the sug
tion seems less exotic. Furthermore, any finite concentra
of quenched impurities will reverse the sign of the lead
nonanalyticity, and thus make a ferromagnetic ground s
possible again.

Another possibility is that the zero-temperatu
paramagnet-to-ferromagnet transition is of first order. It h
been shown in Ref. 9 that the nonanalyticity inxs(Q) leads
to a similar nonanalyticity in the magnetic equation of sta
which takes the form

tm2vdm
d1um35h, ~4.7!

with m the magnetization,h the external magnetic field, an
u.0 a positive coefficient. If the soft mode mechanism d
cussed above is the only mechanism that leads to nonan
ticities, then the sign of the remaining coefficientv in Eq.
~4.7! should be the same as that ofcd in Eq. ~4.6b!, i.e.,
vd.0. This would imply a first-order transition fo
1,d,3. In this case the length scale that in the previo
paragraph would have been attributed to a spin density w
would instead be related to the critical radius for nucleat
at the first-order phase transition. Further work will be ne
essary to decide between these possibilities.

The conclusion that there is no continuous ze
temperature paramagnet-to-ferromagnet transition is ines
able for any system with a particle-hole channel interact
that is sufficiently weak for our perturbative treatment to
directly applicable. An important question is now whether
not it holds more generally for systems whose interacti
are in general not weak. There are four obvious mechani
by which the sign of the leadingQ dependence ofxs could
be switched from positive to negative:~1! higher-order con-
tributions could lead to a sign ofcd for realistic interaction
strengths that is different from the one for weak interactio
or ~2! they might lead to a stronger singularity with a neg
tive prefactor that constitutes the true long-wavelen
asymptotic behavior, or~3! the particle-particle channel con
ck

J.
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tribution might have a negative sign that overcompensa
the positive contribution from the particle-hole channel,
~4! the higher angular momentum channels that we negle
might lead to a different sign. At this point, none of the
possibilities can be ruled out mathematically. However, fro
a physical point of view none is very likely to occur. As w
have explained in Sec. IVA, both the functional form and t
sign of the nonanalyticity found in perturbation theory are
agreement with what one would expect on the basis o
suggestive analogy with classical fluids. Also, t
renormalization-group arguments sketched in Sec. IV
make it appear likely that Eqs.~4.6! constitute the actua
asymptotic small-Q behavior of xs , although an actua
renormalization-group proof of this is still missing. Th
makes the first two possibilities appear unlikely. The th
possibility is unappealing for two reasons. First, the effect
interaction in the particle-particle channel is typically mu
weaker than the one in the particle-hole channel. The rea
is the characteristic ladder resummation that occurs in
particle-particle channel if one goes to higher orders in p
turbation theory. This leads to an effective interaction of t
‘‘Coulomb pseudopotential’’ type that is much weaker~typi-
cally by a factor of 5–10! than what low-order perturbation
theory seems to suggest.29 Second, that same resummatio
weakens any singularity~cf. the discussion at the end of Se
IIID !, which probably makes the particle-particle chann
singularity subleading. Finally, the higher angular mome
tum Fermi-liquid parameters are usually substantia
smaller than the ones atl50, which makes possibility~4!
unlikely, except possibly in particular systems.

If the sign of the nonanalyticity is, for some reason, neg
tive at the coupling strength necessary for a ferromagn
transition to occur, at least in some systems, then in th
systems the quantum phase transition from a paramagne
ferromagnet at zero temperature as a function of the inte
tion strength will be a conventional continuous quantu
phase transition with an interesting critical behavior. This
because the nonanalyticity inxs leads to an effective long
range interaction between spin fluctuations, which in tu
leads to critical behavior that is not mean-field-like, yet e
actly solvable. This has been discussed recently in so
detail.9
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