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Evaluation of the screened Korringa-Kohn-Rostoker method for accurate and large-scale
electronic-structure calculations

Rudolf Zeller
Institut für Festkörperforschung, Forschungszentrum Ju¨lich GmbH, D-52425 Ju¨lich, Federal Republic of Germany

~Received 11 November 1996!

The recently proposed concept of a reference system with repulsive, nonoverlapping, spherical potentials as
a tool to transform the traditional Korringa-Kohn-Rostoker~KKR! method into a first-principles tight-binding
method was investigated numerically. The tests included density-of-states calculations for free space and
self-consistent full-potential total-energy calculations for Al, Cu, and Pd. It was found that the densities of
states are accurate for energies up to about 3 Ry and that the results for total energies, lattice constants, and
bulk moduli excellently agree with the ones obtained by the traditional KKR method. Supercell calculations
with up to 500 atoms per unit cell were also done and show that the screened KKR method is advantageous for
large-scale density-functional calculations.@S0163-1829~97!01315-5#
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I. INTRODUCTION

With the power of modern computers the ability to pred
and explain materials properties from first principles
density-functional electronic-structure calculations has
proved enormously. For this progress the developmen
numerical methods and algorithms, however, was at leas
important as the computer power. The search for effici
methods, particularly for ones where the computational
fort scales linearly with the system size, has recently
ceived much attention.1–11 Most of these methods are ta
lored to calculate total energies and forces. They gain t
efficiency at the expense of approximations and their ra
of validity must carefully be studied.12 Here I want to report
investigations for a recently developed tight-binding~TB!
version of the traditional multiple-scattering method and
make evident that this version is well suited for large s
tems, particularly for metallic ones. The transformation in
the tight-binding form does not rely on approximations a
the resulting screened KKR method has a wide range of
plicability.

The multiple-scattering method, originally applied b
Lord Rayleigh13 for sound waves and formulated b
Korringa,14 Kohn and Rostoker15 for the solution of the
Schrödinger equation, has rarely been used for systems w
more than a few inequivalent atoms. The problem w
mainly the computational complexity caused by long-rang
structure constants, which strongly depend on wave ve
and energy. It was shown16 that these difficulties disappear
one applies an exact screening transformation with suita
chosen screening parameters. These screening paramete
energy dependent, but otherwise similar to the screen
constants of the TB-linear-muffin-tin-orbital method.17 Two
different techniques for a straightforward determination
such screening parameters have been developed rece
One technique18 uses wave function expansions based
unitary spherical waves defined as solutions for a hard sp
solid. The other technique19 applies a Green-function formu
lation based on the concept of a reference system with c
stant repulsive potentials inside nonoverlapping spheres.
550163-1829/97/55~15!/9400~9!/$10.00
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Green-function formulation, which is used in this paper,
particularly simple and allows a physically transparent de
mination of the screening parameters, which are universa
the sense that they do not depend on the geometric arra
ment of the spheres. They depend only on energy, the he
of the potentials, and the radius of the spheres. It w
demonstrated16,18,19that the screening transformation can
used to obtain exponentially localized, screened struc
constants and it was speculated16,18,19that the screened KKR
method is well suited to treat large systems. In these syst
most of the computational effort involves operations w
matrices that are sparse since the screened structure con
can be neglected beyond short distances.

In this paper I want to show that the screened KK
method is very accurate and that it can easily be used
large systems. As illustrative examples I consider free sp
~the empty-lattice test! as a difficult system for any TB de
scription and self-consistent full-potential total-energy calc
lations for Al, Cu, and Pd within the local-density approx
mation of density-functional theory. To demonstrate t
usefulness of the method for large systems I also calcula
total energies in supercell geometry with up to 500 atoms
unit cell and investigated how well the calculations perfo
on a massively parallel computer like the Intel Parag
XP/S.

II. THEORY

The Kohn-Sham equations of density-functional theo
are usually solved by a choice of basis functions and ap
cation of the Rayleigh-Ritz variational principle. Here I u
multiple-scattering theory as an elegant alternative. T
theory can be formulated in terms of Green functions, wh
are defined as solutions of

@2¹ r
21V~r !2E#G~r ,r 8,E!52d~r2r 8! ~1!

with the appropriate boundary conditionsG(r ,r 8,E)→0 for
r→` or r 8→`. ~I use atomic units\2/2m51.! HereV(r )
denotes the density-functional effective potential andE the
9400 © 1997 The American Physical Society
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energy. The Green functions for two different potentia
V(r ) andVr(r ) are connected by a Dyson equation

G~r ,r 8,E!5Gr~r ,r 8,E!1E Gr~r ,r 9,E!

3@V~r 9!2Vr~r 9!#G~r 9,r 8,E!dr 9, ~2!

which can be verified by applying the operat
2¹ r

21Vr(r )2E on both sides of~2!. The underlying prin-
ciple for the screening transformation is the freedom in
choice of the reference potentialVr(r ). In the original KKR
method the reference system is free space. This has the
vantages that the reference potentialV0(r ) vanishes and tha
the reference Green function is analytically known as

G0~r ,r 8,E!52~4pur2r 8u!21exp~ iE1/2ur2r 8u!, ~3!

where superscript 0 refers to free space. On the other han
is well known that the free-electron band structure is resp
sible for the singularities in the KKR structure constan
which are difficult to evaluate because of their complica
wave vector and energy dependencies.

These difficulties can be removed by a reference syst
in which all bands are shifted to higher energies. The cho
of a constant repulsive potential in all space would sim
move the zero of the energy scale and allow us to do
density-functional calculations at negative energies,
which according to~3! the Green function decays expone
tially. This simple choice, however, leads to difficulties
one wishes to apply multiple-scattering theory to solve
integral equation~2! with the help of linear algebraic equa
tions given by~5! below.

In multiple-scattering theory the Green function can
written20 in cell centered coordinates such as

G~r1Rn,r 81Rn8,E!5dnn8Gs~r1Rn,r 81Rn,E!

1(
LL8

RL
n~r ,E!GLL8

nn8 ~E!RL8
n8~r 8,E!,

~4!

whereRn denotes the centers of atomic and possibly em
cells andr the vectors within the cells.L5(l ,m) stands for
the angular momentum numbers andRL

n(r ,E) and
Gs(r1Rn,r 81Rn,E) are wave functions and the Gree
function for a single potential restricted to the Voronoi ce
which surrounds the positionRn. The structural Green

function matrix elementsGLL8
nn8 (E) are determined by

GLL8
nn8 ~E!5GLL8

r ,nn8~E!1(
n9

(
L9

GLL9
r ,nn9~E!

3(
L-

@ tL9L-
n9 ~E!2tL9L-

r ,n9 ~E!#GL-L8
n9n8 ~E! , ~5!

where tLL8
n (E) and tLL8

r ,n (E) are the usualt matrices for the
potentialsV(r ) andVr(r ) restricted to the cell atRn.

The disadvantage of a constant repulsive potential in
space is the difficult determination of the single-site qua
tiesRL

n(r ,E) and tLL8
n (E). A potential, which is constant in

side an atomic cell and vanishes outside, requires a com
e

ad-

, it
n-
,
d

,
e
y
e
r

e

y

,

ll
i-

li-

cated full-potential KKR treatment because of the face
shape of the cell. Although such calculations are now co
monly assumed to be possible,20–23 the question of angula
momentum convergence is still under debate.

The reference system recently suggested by Zelleret al.19

does not suffer from these problems. It avoids the difficult
of a full-potential KKR treatment by the choice of muffin-ti
potentials, which are easily implemented into existing KK
computer programs, and does not require higher angular
menta than the standard KKR method. The only added w
consists in the determination of the structural Green-funct

matrix elementsGLL8
r ,nn8(E) for the reference system. Wherea

the elementsGLL8
0,nn8(E) for free space are analytically know

as sums over combinations of Hankel functions and spher

harmonics, the elementsGLL8
r ,nn8(E) for an arbitrary reference

system are calculated numerically. The equation to be so
has the form

GLL8
r ,nn8~E!5GLL8

0,nn8~E!

1(
n9

(
L9

GLL9
0,nn9~E!t l 9

r ,n9~E!GL9L8
r ,n9n8~E!, ~6!

which is similar to ~5! with the simplification that the
t-matrix t0 of free space vanishes and that thet-matrix
tLL8
r ,n (E)5t l

r ,n(E)dLL8 is diagonal in the angular-momentum
indices as a consequence of the nonoverlapping sphe
potentials in the reference system. The matrix eleme

GLL8
r ,nn8(E) represent the TB parameters in the screened K

method and decay exponentially with the distance betw
Rn andRn8 if the reference potentials are repulsive enou
and the energies are not too high.19 It is important that the
exponential decay allows us to restrict the sum overn9 in ~6!

to a finite number of sites aroundRn8. It is also useful that
~6! can be solved independently for each siten and for each
energyE. Thus the solution is suitable for massively paral
computing and the effort to obtain the TB paramete

GLL8
r ,nn8(E) scales linearly with the number of sitesn in the

system, for which one wishes to calculate the electro
structure.

For the numerical accuracy and efficiency of the scree
KKR method, an interesting question is how many sitesn9
must be taken into account in~6! and how the necessar
number of sites depends on the height of the repulsive
tentials. It would be desirable to have TB paramet

GLL8
r ,nn8(E), which decay fast enough so that only nearest

perhaps next nearest neighborsn8 of site n are needed to
determine these TB parameters by solving~6!. In the subse-
quent solution of~5! the short-ranged TB parameters lead
sparse matrices for large systems since only nearby sites
coupled. If the sparsity is efficiently exploited, large-sca
density-functional calculations within the screened KK
method should become possible.

III. ACCURACY

A. Densities of states for free space

It is well known that the standard KKR method fulfills th
empty-lattice test for the vanishing potential24 and gives the
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9402 55RUDOLF ZELLER
exact band structure and the exact density of states~DOS! for
free space. If the TB parameters of the screened K
method are obtained in real space by restricting the sum
n9 in ~6! to a finite cluster of sites, this approximation cann
give the exact DOS. Nevertheless, the error can be expe
to be small if the TB parameters decay fast enough an
enough sites are used in~6!. To assess the size of the error
have solved~6! for different numbers of sites with potentia
of various height and used the obtained TB parameter
calculate the DOS of free space using an empty fcc lat
with a lattice constant of 361.50 pm.

For a periodic arrangement the solution of~5! contrary to
~6! involves an infinite number of sitesn9 and was achieved
by lattice Fourier transform and subsequent Brillouin-zo
~BZ! integration. The structural Green-function eleme

GLL8
r ,nn8(E) are easily Fourier transformed by

GLL8
r ,mm8~k,E!5(

m8
exp~ ikRm2 ikRm8!GLL8

r ,nn8~E!, ~7!

whereRm andRm denote the translation vectors of the latti
and the basis vectors in the unit cell. The atomic positio
are then given byRn5Rm1Rm. The sum~7! over all lattice
translation vectors converges fast because the terms d
exponentially, whereas the standardk space structure con

stantsGLL8
0,mm8(k,E) usually require Ewald summations.25 For

the BZ integrations I used a straightforward sampling o
uniform grid and exploited the cubic symmetry of the gr
points as described by Blo¨chl et al.26 The direct sampling
naturally causes more noise than a sophisticated analy
integration scheme like the tetrahedron method, in partic
for higher energies. Nevertheless, the direct sampling
chosen because it was more advantageous for the larg
percells considered in Sec. IV. For the DOS calculation
reduced the BZ sampling noise by a large number of 11
symmetry inequivalent points and by an artificial broade
ing. The broadening reflects a finite temperatureT and is
achieved by complex energiesE with an imaginary part
pkT50.21 eV, which corresponds toT5800 K, the tem-
perature used in the self-consistent calculations in Sec. II
I used repulsive potentials of 2, 4, and 8 Ry height within
muffin-tin spheres of the fcc lattice and clusters consisting
13, 19, 43, and 79 potentials at neighboring sites of the
lattice. With 16 angular momentum components, cor
sponding tol max53, the matrix dimensions in~6! were 204,
304, 688, and 1264. For the solution of the linear equatio
used efficient computer codes,27 which are now available on
a variety of computers.

The density of states was obtained from the Green fu
tion ~4! by integrating the imaginary part ofG(r ,r ,E) over
the Wigner-Seitz cell of the fcc lattice. Figure 1~a! shows the
results as a function of energy calculated with TB parame
obtained from a cluster with 79 repulsive potentials. F
comparison the exact result is also shown. The curves fol
the familiar square root behavior except for a small broad
ing nearE50 as a consequence of the imaginary part ofE.
The screened KKR results agree with the exact one for lo
energies, for higher energies they suddenly deviate and
also have unphysical, negative values. For still higher en
gies, they may become positive again, but these meaning
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values are not shown in Fig. 1. The energy range where
screened KKR method is applicable becomes larger
higher potentials and the sudden breakdown arises when

TB parametersGLL8
r ,nn8(E) begin to decay so slowly that solv

ing ~6! in real space makes no sense. It is satisfying t
accurate DOS values can be calculated almost up to ene
of 3 Ry. Thus the screened KKR method works well not on
for occupied, but also for unoccupied states provided that
energy is not too high. Consequently, meaningful comp
sons of spectroscopic measurements like inverse photoe
sion, near-edge x-ray absorption, and magnetic x-ray dich
ism with calculated densities of states and related quant
are possible within the screened KKR method. The clo
agreement of the results at lower energies for differ
heights indicates that no angular momentum converge
problems appear even for 8 Ry high potentials.

Figure 1~b! shows the free space DOS calculated by us
different numbers of repulsive potentials. The energy ran
where the screened KKR method is applicable becom
larger if more repulsive potentials are used. For energies
to about 1 Ry the use of 13 or 19 repulsive potentials see
to be enough. Only these energies appear in the s
consistent calculations of Sec. III B.

For large-scale calculations, an interesting question

whether better nearest-neighbor TB parametersGLL8
r ,nn8(E)

can be obtained for use in~5! if they are calculated with
repulsive potentials, which are not restricted to neare
neighbor sites. Compared to the result in Fig. 1~b! for 13
potentials an overall improvement is seen in Fig. 1~c! where

FIG. 1. Density of states~DOS! for free space. Broken lines
refer to screened KKR calculations, solid lines to the exact res
~a! The numbers indicate the height~in units of Ry! of the 79
repulsive potentials used to determine the TB parameters.~b! The
numbers indicate how many repulsive potentials of height 8
were used to determine the TB parameters.~c! The TB parameters
were obtained with 79 repulsive potentials of 8 Ry height, but o
the nearest-neighbor parameters were used in the DOS calcula
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the nearest-neighbor TB parameters were obtained with
repulsive potentials. The energy range, where the scree
KKR method gives a reasonable DOS, increases, but s
small systematic deviations already appear for lower en
gies. The reason for these discrepancies is not yet clear
requires further investigation beyond the scope of the pre
paper.

B. Total energies for Al, Cu, and Pd

In this section I want to assess the precision of the scre
ing transformation for self-consistent total-energy calcu
tions for Al, Cu, and Pd as typical examples for simp
noble, and transition metals. The total energies were ca
lated by a full-potential version of multiple-scatterin
theory20,28 with l max53 as the highest angular momentu
for wave functions,t matrices, and structural Green-functio
elements and withl max56 for charge densities and pote
tials. Integrations over Wigner-Seitz cells were done by
ing shape truncation functions.29 The calculations were non
relativistic and the exchange-correlation potential
Ceperley and Alder30 was applied in the parametrization o

FIG. 2. Total energy differences between screened and stan
KKR results for Al as function of the number of sampling points
the full Brillouin zone. Crosses refer to 19 repulsive potentials u
for the determination of the TB parameters. Full squares, triang
and circles refer to 13, 43, and 55 potentials, open squares
angles, and circles to 79, 153, and 225 potentials.
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Vosko, Wilk, and Nusair.31 The fundamental quantity o
density-functional theory, the electron density was det
mined from ~4! by a complex-energy integral32 using a
finite-temperature contour.33 The contour consisted of thre
straight lines as described by Zeller34 with eleven Gaussian
integration points and of five Matsubara frequencies star
with m1 ipkT. Herem is the chemical potential andpkT is
chosen as 0.21 eV, which corresponds to a temperatur
800 K.

Figure 2 displays total-energy differences between st
dard and screened KKR calculations for Al. The TB para
eters were determined from clusters with different numb
of repulsive potentials of 8 Ry height. The results as well
similar results for Cu and Pd show little dependence on
number of points used for the BZ integration. This indepe
dence can be explained by the fact that the equivalence o~5!
and ~6! with the standard KKR equationG5G01G0tG re-
mains valid under Fourier transformation. A detailed acco
of the total-energy differences is given in Table I. For T
parameters determined from~6! with 153 or 225 repulsive
potentials, the total energies differ less than 1mRy from the
values of standard KKR calculations. For 225 potentials o
or 4 Ry height the total energies even agree within
mRy. This means that total energies, for which the stand
KKR values were calculated as2482.937 890 35,
23275.896 685 31, and29871.014 493 09 Ry for Al, Cu,
and Pd, can be obtained with a relative precision of 10210.
This precision is very satisfactory and assures that b
screened and standard structure constants were calcu
with high accuracy. The close agreement within 1mRy be-
tween screened and standard KKR total energies also d
onstrates that no angular momentum convergence prob
occur if the components of thet matrix of the reference
system are neglected in~5! and ~6! beyond l max53. The
agreement also establishes that the screening transform
accurately works in the complex energy plane, whereas
DOS results in Sec. III A could only prove the validity of th
screening transformation for real energies. The total ener
do not much depend on the height of the potentials and c
siderably improve if 55 instead of 43 repulsive potentials
used to determine the TB parameters. The inclusion of

rd

d
s,
ri-
row
he
he full
TABLE I. Total-energy differencesDE between standard and screened KKR calculations. The first
contains the number of repulsive potentials of heightVr which were used to determine the TB parameter. T
BZ integrations were done with 891 symmetry inequivalent points corresponding to 37 288 points in t
zone.

No. of potentials 13 19 43 55 79 153 225

Vr DE
~Ry! ~mRy! ~mRy! ~mRy! (mRy! (mRy! (mRy! (mRy!

Al 2 6.39 0.99 0.08 215.2 6.3 20.27 0.05
4 20.19 20.19 0.53 37.3 10.8 0.52 0.11
8 22.88 20.98 1.24 57.7 26.2 1.14 0.53

Cu 2 20.48 2.28 0.32 6.4 213.9 20.67 20.03
4 23.38 0.62 0.28 220.5 0.0 20.07 0.06
8 23.89 0.55 0.51 224.0 21.0 0.11 0.34

Pd 2 20.66 0.93 0.55 14.4 1.1 20.18 0.06
4 21.84 0.59 0.63 23.0 21.9 20.03 0.11
8 21.77 1.10 1.07 8.8 0.6 0.25 0.33
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9404 55RUDOLF ZELLER
second neighbors in the 110 directions is thus importan
accurate TB parameter are required.

If moderate mRy accuracy is wanted, nearest-neigh
couplings~13 sites! are enough in~6! and ~5! for the deter-
mination of TB parameters and structural Green-function
ements. This short coupling range is a property in the rep
sive reference system alone. In this respect the scree
KKR method is clearly distinguished from mostO(N) meth-
ods suggested in the literature,1–11 for which the coupling
range in the studied materials should be short and is
ploited. For metallic systems with longer-ranged couplin
the screened KKR method is thus particularly useful.

It is important to investigate how the total-energy erro
given in Table I affect derived quantities like lattice co
stants and bulk moduli. For that purpose I calculated the t
energies for seven lattice constants and fitted the results
Birch-Murnaghan equation of state35 in the form

Etot5 (
m51

4

cma
422m, ~8!

wherea is the lattice constant andcm are the fitting param-
eters. Figure 3 shows for Pd that the fits are nearly per
and similarly good fits were also found for Al and Cu. N
differences of the fitted curves with the calculated points
be seen. From the derivatives of~8! with respect toa, I
obtained the numerical values for the lattice constants
bulk moduli given in Table II. I checked the adequacy of t

FIG. 3. Total energies for Pd as a function of the lattice co
stant. The BZ integrations were done with 891 symmetry inequ
lent points. Dashed, dotted, and solid lines refer to 13, 19, and
potentials of 8 Ry height which were used to determine the
parameters. The standard KKR result is indistinguishable from
solid line.
if

or
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uniform BZ sampling by using 2736 points instead of 89
The larger number changes the lattice constants by less
0.02% and the bulk moduli by less than 0.5%. The results
Table II clearly show that nearest-neighbor TB paramet
are enough if one wishes to calculate lattice constants w
pm accuracy and bulk moduli with GPa accuracy.

Contrary to the total energy other electronic properties
not protected by density-functional stationary properties a
one may expect that they cannot be calculated with sim
accuracy. This is indeed true as Table III shows wh
angular-momentum decomposed charges are given. With
parameters obtained from 13 repulsive potentials the erro
of the order of 1022 and from 19 repulsive potentials of th
order of 1023 electrons. The latter value seems to be ac
rate enough for practical purposes. With enough repuls
potentials, of course, the standard and screened KKR re
agree much better. Table III shows deviations of seve
1025 electrons for 79 repulsive potentials and I found th
only the last digit of the charges deviates from the results
standard KKR calculations if I used 153 or 225 repulsi
potentials to determine the TB parameters.

Concluding this section I want to point out that differe
quantities converge differently with respect to the number
repulsive potentials used to determine the TB paramet
Total energies, lattice constants, and bulk moduli were ea
calculated with a high accuracy, angular momentum deco
posed charges were moderately more difficult to obtain,
DOS calculations at higher energies demanded rather a
rate TB parameters.

IV. SUITABILITY FOR LARGE-SCALE CALCULATIONS

The main computational tasks consist in the calculation
single-site quantities likeRL

n(r ,E) and tLL8
n (E) and of the

structural Green-functionsGLL8
nn8 (E). The single-site quanti-

ties can be calculated independently for each site w
O(N) operations. HereN denotes the number of sites in th
system, for which one wishes to calculate the electro
structure. The direct solution of~5! for nonsparse matrice
requiresO(N3) operations and dominates the computatio
effort for large systems.

The screened KKR method applies rather sparse matr
Gr , particularly if only nearest-neighbor couplings are us
which according to Sec. III B yield good values for tot
energies, lattice constants, and bulk moduli. Substantial s
ings of computer time and storage can be expected if~5! is

-
-
5

e

nd
he BZ
e full
TABLE II. Lattice constantsa and bulk moduliB0 for Al, Cu, and Pd determined by standard a
screened KKR calculations. The potentials used to obtain the TB parameters were 8 Ry high. T
integrations were done with 891 symmetry inequivalent points corresponding to 37 288 points in th
zone.

No. of Al Cu Pd
potentials a ~pm! B0 ~GPa! a ~pm! B0 ~GPa! a ~pm! B0 ~GPa!

13 402.22 80.69 358.52 165.41 393.97 178.33
19 401.08 80.64 358.02 170.83 393.97 179.48
43 400.96 81.21 358.18 168.91 394.02 180.22
79 400.93 81.49 358.20 169.68 394.16 178.82
Standard 400.93 81.47 358.20 169.63 394.16 178.78
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TABLE III. Amount of s, p, andd charge within the Wigner-Seitz unit cell for Al, Cu, and Pd determin
by standard and screened KKR calculations. The potentials used to obtain the TB parameters were 8
The BZ integrations were done with 891 symmetry inequivalent points corresponding to 37 288 points
full zone.

No. of potentials 13 19 79 Standard

Al s 1.146521 1.141920 1.140812 1.140898
p 1.443042 1.433167 1.432605 1.432586
d 0.394480 0.404844 0.405439 0.405372

Cu s 0.683831 0.679906 0.679554 0.679516
p 0.707896 0.711790 0.710796 0.710803
d 9.554109 9.552431 9.553584 9.553614

Pd s 0.553231 0.552433 0.550710 0.550706
p 0.576841 0.577796 0.578144 0.578099
d 8.757122 8.756274 8.758072 8.758135
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solved by sparse matrix techniques.36,37 For problems like
surfaces, interfaces, and thin films the two-dimensional p
odicity allows us to remove two of the three space dim
sions and direct solution methods for~5! with O(N) com-
plexity exist. AnO(N) algorithm was recently implemente
to develop a slab program and is the subject of a sepa
paper.38 For general three-dimensional problems the de
sion, whether direct or iterative solution methods should
preferred, is not trivial. Available standard algorithms,
particular, the iterative ones, often require positive defin
ness of the matrices, whereasGr is not even Hermitian, and
these algorithms usually do not exploit the block-spa
structure ofGr . The search for good algorithms, perha
using physically based ideas like the recursion techniqu39

remains a subject of future research and is beyond the s
of the present paper. For the large-scale calculations
scribed below it was my purpose to demonstrate that t
can already be done by the screened KKR method with
the use of sparsity.

A. Supercell total energies

The application of the standard KKR method to large u
cells has been prevented in the past by the complicated s
ture constants and the difficult search for zeros of the K
determinant, which are necessary to obtain the band st
ture. This process requiresO(N4) operations. The Green
function formulation of Sec. II with complex-energy integr
tion allows us to determine the electronic density without
knowledge of the band structure. In this formulation on
linear equations must be solved and the operation coun
reduced toO(N3), but in the standard KKR method the com
plicated structure constants remain. Contrary to that
screened KKR method applies a simple Fourier transform~7!
to calculate the necessary matrices from the TB parame
This is the main simplification, which I exploited for th
calculations with 4, 32, 108, 256, and 500 atoms per su
cell. My interest was to investigate how many points in t
Brillouin zone one needs to obtain total energies with
accuracy of severalmRy per atom. Chettyet al.40 argue that
such accuracies are required if supercells with about
atoms are used, for instance, to determine vacancy forma
energies with a precision of 0.01 eV.
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For the supercell calculations I applied a potential tak
from standard KKR calculations obtained with 11 726 sy
metry inequivalent BZ sampling points. Because the dens
functional total energy is stationary with respect to the p
tential taken as a trial quantity,41 one expects that self
consistency is not needed for accurate total energie
checked the effect of self-consistency and found that the t
energies do not change, at least for the larger numbers o
points, which were the target of my investigation. For t
calculations I solved only~5! in supercell geometry with the
atoms being on fcc lattice positions with the experimental
lattice constants given by 404.96, 361.50, and 388.98 pm
Al, Cu, and Pd. The supercell electronic density is thus id
tical for all atoms and was used to calculate the total ene
in particular its Coulomb part, in fcc geometry. In this wa
the supercell size effect on the solution of~5!, which is in-
fluenced by the number of BZ points, was clearly separa
from size effects on Poisson’s equation which were not c
sidered.

Chetty et al.40 suggest and show that the product of t
numberK of BZ points and the numberN of atoms per
supercell is the quantity, which decides the accuracy of
percell calculations. The calculated screened KKR total
ergies for Cu are shown in Fig. 4 where the results are p
ted as differences from the converged result which w
obtained withN54 and 4960 symmetry inequivalent sam

FIG. 4. Screened KKR total energies for Cu as function of
product of the numberN of atoms in the supercell and of the num
ber K of sampling points in the Brillouin zone. The energies a
given as differences from the converged result forNK→`.
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pling points corresponding toK5216 000. The TB param
eters were obtained from 79 repulsive potentials of 4
height and the largest system treated was a supercell
500 atoms and 10 symmetry inequivalent sampling po
corresponding toK5216. The total energies for differen
sizes of the supercell and identical values ofNK always
agreed better than 1028 Ry indicating that no numerical in
stabilities occurred in the algorithms used for the large-sc
calculations. From a computing point of view the screen
KKR method uses only standard linear algebra softwa
Thus it is more simply applied than the sophisticated ite
tive techniques which Chettyet al.40 used to save compute
time and storage.

B. Computational aspects

Whereas mostO(N) techniques suggested recently1–11

suffer from a large calculational overhead if less than ab
100 inequivalent atoms are treated, the screened K
method becomes competitive with the standard KKR met
already for small systems. This is true not only for layer
systems as discussed by Zelleret al.19 and Wildberger
et al.,38 but also for general three-dimensional systems. If
possible sparsity of the matrixGr is not used, the screene
KKR method differs from the standard one only in the eva
ation of structure constants. Identical tasks calculate
single-sitet matrices and wave functions, obtain the dens
from the structural Green-function elements and determ
the potential from the density by Poisson’s equatio
Whereas the standard structure constants are obtaine
Ewald summations, the screened structure constants are
tained by a simple Fourier transform~7! from thek indepen-

dent TB parametersGLL8
r ,nn8(E). Thus the work for eachk

point is smaller in the screened KKR method. For instan
to obtain a specifiedmRy precision for the total energies o
Sec. III B, I used 1.6 s of computing time per BZ point wi
the standard KKR method and only 0.08 s with the scree
one ~on a workstation IBM RS/6000 model 3CT!. The k
independent overhead is 27 s for the standard method
260 s for the screened one. The latter time refers to
determination of TB parameters for a cluster of 79 repuls
potentials if group theory is utilized to exploit the cubic sym
metry of the cluster. This means that the screened KKR
culations for a fcc unit cell withone inequivalent atom were
already faster for more than about 150k points.

The large supercell calculations were possible by ma
three reasons. The matrix dimensions given by 16 times
number of atoms~for l max53) are economic, efficient linea
equation solvers27,42 exist on a variety of computers, an
powerful vector and parallel computers like the CRAY T
and the Intel Paragon XP/S 10 were available. I applied
supercomputers mainly because of the large memory ne
to store the full structural Green-function matrixGr for 256
or 500 atoms, whereas I could treat supercells with up to
atoms on a workstation. The efficiency of the available lin
equation solvers can be judged from the computing ra
given in Table IV, which were estimated using an operat
count of 8n3 wheren denotes the dimension of the comple
matrices. The measured operation counts on the CRAY
agreed with the estimated ones within one percent indica
that the time to calculate the matrix elements is negligib
y
ith
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Table IV shows that the workstation delivers up to 82% of
peak rate of 0.264 Gflops and the vector computer up to 8
of its peak rate of 1.8 Gflops.

C. Parallel computing

Since fast vector computers are expensive, an interes
question is whether cheaper massively parallel compu
can efficiently be applied to solve~5!. In the Green-function
formulation of the KKR method several parallelization stra
egies are possible. A simple strategy distributes the w
according to the complex-energy integration mesh poin
Already for the standard KKR method this energy parall
ization performs well43 in spite of the complicated determ
nation of the structure constants. For the screened K
method almost perfect performance can be expected.
large systems this strategy has two disadvantages. L
storage memories are necessary on the processors an
more than about 20 processors can be used because not
energy mesh points are usually required to determine
electronic density in self-consistent calculations. Therefo
investigated a different strategy, which distributes the ma
Gr and solves each linear system~5! with the participation of
all processors. Because of the simple Fourier transform~7!
the distributed parts ofGr were straightforwardly obtained in
parallel. The combined use of all processors to solve~5! was
facilitated by a standard software package,42 which recently
became available.

Figure 5 shows the speedup, which I obtained for vario
supercell sizes and a number of processors. The calcula
for 108 atoms covered the widest range from four to

TABLE IV. Computing rates in units of 109 floating point op-
erations per second for various numbersN of atoms in the super-
cell. The number of processorsp used on the Intel Paragon is give
in the last column.

N IBM CRAY Intel p

32 0.186 1.03 0.38 16
108 0.217 1.39 2.40 81
256 1.53 2.95 64
500 1.56 4.90 100

FIG. 5. Speedup as function of the number of nodes for 1
atoms per supercell~solid line!. The square and the dashed a
dotted lines refer to 500, 256, and 32 atoms assuming that
computing time scales with the cube of the number of atoms.
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processors. A single processor had not enough memory
thus the speedup values are scaled by arbitrarily assumi
speedup of four for four processors. For 256 and 500 ato
even four processors could not be used. For these supe
sizes the computing time necessary on four processors
estimated by scaling the time measured for 108 atoms w
the cube of the number of atoms, essentially in agreem
with the operation counts given by the CRAY T90.

Figure 5 shows a satisfactory speedup, for instance m
than 50% efficiency was achieved with 81 processors for
atoms, 90% efficiency with 64 processors for 256 atoms,
95% efficiency with 100 processors for 500 atoms. Fo
fixed number of atoms the speedup saturated with the n
ber of processors, whereas a simultaneous increase o
numbers of processors and atoms was highly efficient. I w
to point out that both strategies, distributing the matrix a
parallelizing the complex-energy points, can be applied
gether. For that reason several hundred processors ca
expected to be useful for screened KKR calculation. I a
want to remark that the calculation of the single-site qua
ties can also be doubly parallelized with respect to sites
energy mesh points.

V. SUMMARY

I have investigated the screened KKR method based
the concept of a reference system with repulsive, nono
lapping, spherical potentials as a tool for TB electron
structure calculations. The calculated results for densitie
states, angular momentum decomposed charges, total
gies, lattice constants, and bulk moduli demonstrate that
screened KKR method is very accurate. The TB parame
can be calculated in real space using a finite cluster of re
sive potentials. The results for densities of states impr
with cluster size and potential height. If the potentials a
chosen high enough, for instance, higher than 2 Ry,
height has minor consequences for angular momentum
composed charges and little effect on total energies, lat
constants, and bulk moduli. With nearest-neighbor TB
rameters, obtained from only 13 repulsive potentials,
.
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bulk moduli and the lattice constants could be determin
within 1 GPa and 0.1 pm. Comparable accuracy can be
pected for similar quantities like other elastic constants, p
non properties, and determinations of geometrical arran
ments.

The screened KKR method introduces little computatio
overhead compared to the standard KKR method and si
tions exist where the screened KKR method is faster even
one atom per unit cell. The effort to implement the screen
transformation into existing KKR computer programs
small and the computations mainly require solutions of lin
algebraic equations, for which efficient standard software
ists. Due to the economic matrix dimensions the scree
KKR method is suitable for large-scale calculations on wo
stations and on supercomputers. Parallelization is sim
possible with respect to the complex-energy integration m
points. For each mesh point further parallelization is poss
for the single-site quantities and for the solution of lar
linear equations.

It can be expected that the screened KKR method r
tinely allows large-scale density-functional calculations
the future if the sparsity of the matrices can efficiently
exploited. For layered systems good algorithms withO(N)
complexity already exist. Compared to other recently s
gestedO(N) methods the screened KKR method is direc
applicable for metallic systems and for density-of-states c
culations, which can be compared to spectroscopic exp
ments like inverse photoemission, near-edge x-ray abs
tion, and magnetic x-ray dichroism.
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