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Evaluation of the screened Korringa-Kohn-Rostoker method for accurate and large-scale
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The recently proposed concept of a reference system with repulsive, nonoverlapping, spherical potentials as
a tool to transform the traditional Korringa-Kohn-RostokiiKR) method into a first-principles tight-binding
method was investigated numerically. The tests included density-of-states calculations for free space and
self-consistent full-potential total-energy calculations for Al, Cu, and Pd. It was found that the densities of
states are accurate for energies up to about 3 Ry and that the results for total energies, lattice constants, and
bulk moduli excellently agree with the ones obtained by the traditional KKR method. Supercell calculations
with up to 500 atoms per unit cell were also done and show that the screened KKR method is advantageous for
large-scale density-functional calculationS0163-182697)01315-5

I. INTRODUCTION Green-function formulation, which is used in this paper, is
particularly simple and allows a physically transparent deter-
With the power of modern computers the ability to predictmination of the screening parameters, which are universal in
and explain materials properties from first principles bythe sense that they do not depend on the geometric arrange-
density-functional electronic-structure calculations has im-ment of the spheres. They depend only on energy, the height
proved enormously. For this progress the development of the potentials, and the radius of the spheres. It was
numerical methods and algorithms, however, was at least Zemonstrated®°that the screening transformation can be

important as the computer power. The search for efficient!Sed to obtain exponentially localized, screened structure
methods, particularly for ones where the computational eféonstants and it was speculatetf**that the screened KKR

fort scales linearly with the system size, has recently re_method is well suited to treat large systems. In these systems

ceived much attentior-:* Most of these methods are tai- most of the computational effort involves operations with

lored to calculate total energies and forces. They gain theimatrices that are sparse since the_screened structure constants
can be neglected beyond short distances.

efficiency at the expense of approximations and their range In this paper | want to show that the screened KKR
.Of vali_dity.must carefully be studietf. Here I. want_to .report method is very accurate and that it can easily be used for
investigations for a recently developed tight-bindifi@B)  |51ge systems. As illustrative examples | consider free space
version of the traditional multiple-scattering method and ©Othe empty-lattice tegtas a difficult system for any TB de-
make evident that this version is well suited for large syS-scription and self-consistent full-potential total-energy calcu-
tems, particularly for metallic ones. The transformation intoations for Al, Cu, and Pd within the local-density approxi-
the tight-binding form does not rely on approximations andmation of density-functional theory. To demonstrate the
the resulting screened KKR method has a wide range of apisefulness of the method for large systems | also calculated
plicability. _ N _ total energies in supercell geometry with up to 500 atoms per
The multiple-scattering method, originally applied by unit cell and investigated how well the calculations perform
Lord Rayleigh® for sound waves and formulated by on a massively parallel computer like the Intel Paragon
Korringal® Kohn and Rostokér for the solution of the XP/S.
Schralinger equation, has rarely been used for systems with
more than a few inequivalent atoms. The problem was
mainly the computational complexity caused by long-ranged

structure constants, which strongly depend on wave vector The Kohn-Sham equations of density-functional theory
and energy. It was showfhthat these difficulties disappear if are usually solved by a choice of basis functions and appli-
one applies an exact screening transformation with suitabl¥stion of the Rayleigh-Ritz variational principle. Here | use
chosen screening parameters. These screening parameters @f@tiple-scattering theory as an elegant alternative. This

energy dependent, but otherwise similar to the screeningheory can be formulated in terms of Green functions, which
constants of the TB-linear-muffin-tin-orbital methdTwo  gre defined as solutions of

different techniques for a straightforward determination of

such screening parameters have been developed recently. ) ) ,

One techniqu¥ uses wave function expansions based on [=Vi+V(n)—E]G(r,r',E)=—4(r—r") @
unitary spherical waves defined as solutions for a hard sphere

solid. The other techniqdi2applies a Green-function formu- with the appropriate boundary conditio@r,r’,E)—0 for
lation based on the concept of a reference system with con— or r’—o. (I use atomic unitgi?/2m=1.) HereV(r)
stant repulsive potentials inside nonoverlapping spheres. Thdenotes the density-functional effective potential &the

Il. THEORY
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energy. The Green functions for two different potentialscated full-potential KKR treatment because of the faceted

V(r) andV'(r) are connected by a Dyson equation shape of the cell. Although such calculations are now com-

monly assumed to be possiBfE?®the question of angular

momentum convergence is still under debate.

The reference system recently suggested by Zetled 1°

" " v " does not suffer from these problems. It avoids the difficulties
X[V =VirIG(r,r', B)dr”,  (2) of a full-potential KKR treatment by the choice of muffin-tin

which can be verified by applying the operator potentials, which are easily implemented into existing KKR

—V2+V'(r)—E on both sides of2). The underlying prin- computer programs, and does not require higher angular mo-

ciple for the screening transformation is the freedom in thementa than the standard KKR method. The only added work
choice of the reference potenti!(r). In the original KKR ~ COnsists in the determination of the structural Green-function

method the reference system is free space. This has the aghatrix eIementSB'L'f,n ’(E) for the reference system. Whereas

vantages that the reference potentid(r) vanishes and that
the reference Green function is analytically known as

G(r,r’,E):G’(r,r’,E)Jrf G'(r,r",E)

the eIementSBE’L”,”,(E) for free space are analytically known

as sums over combinations of Hankel functions and spherical
GOr,r" ,E)=—(4m|r—r'])"texp(iEY?r—r’]), (3)  harmonics, the elemen@"] (E) for an arbitrary reference

where superscript 0 refers to free space. On the other hand,ﬁﬁ?ig a;cr)?mcalculated numerically. The equation to be solved

is well known that the free-electron band structure is respon-

sible for the singularities in the KKR structure constants,

which are difficult to evaluate because of their complicated

wave vector and energy dependencies. , , L
These difficulties can be removed by a reference system, +> > G (E)t)r (E)GL.. (E), (6)

in which all bands are shifted to higher energies. The choice n” L

of a constant repulsive potential in all space would simplywhich is similar to (5) with the simplification that the

move the zero of the energy scale and allow us to do the-matrix t° of free space vanishes and that thenatrix

density-functional calculations at negative energies, foquf,(E):t;n(E) 8.+ is diagonal in the angular-momentum

which according td3) the Green function decays exponen-ngices as a consequence of the nonoverlapping spherical

tially. '_I'his simple choice,_ however, _Ieads to difficulties if potentials in the reference system. The matrix elements
one wishes to apply multiple-scattering theory to solve the_;

integral equation(2) with the help of linear algebraic equa- CiL' (E) represent the TB parameters in the screened KKR

Gl (E)=G" (E)

tions given by(5) below. method and decay exponentially with the distance between

In multiple-scattering theory the Green function can beR" and R" if the reference potentials are repulsive enough
writter?® in cell centered coordinates such as and the energies are not too highlt is important that the

exponential decay allows us to restrict the sum avein (6)
G(r+R"r'+R" ,E)=6"" G4(r+R",r' +R",E) to a finite number of sites arourR" . It is also useful that
(6) can be solved independently for each sitand for each
+ 2 RE(f'E)GEE;(E)RE:(f"E), energyE. Thus the solution is suitable for massively parallel
L’ computing and the effort to obtain the TB parameters

(4) Gr,_'[‘,'"(E) scales linearly with the number of sitesin the
whereR" denotes the centers of atomic and possibly emptfyStem' for which one wishes to calculate the electronic
cells andr the vectors within the celld. = (¢/,m) stands for structure. . -
the angular momentum numbers anB'(r,E) and For the numerical accuracy and efficiency of the screened
G (r+R% (' +RNE) are wave functions aLnd, the Green KKR method, an interesting question is how many sités

s ' ' must be taken into account if6) and how the necessary

fu;_ctr;on for a S('jnglti potent_ltr_:ll r;{enstr%t]ed t(t) thf Vcl)rc()snm cell, number of sites depends on the height of the repulsive po-
which surrounds the  posIton™. € struclural reen- tentials. It would be desirable to have TB parameters

. . nn’ .

function matrix element&, , ,(E) are determined by G[’C,”,(E), which decay fast enough so that only nearest or
, ) . perhaps next nearest neighbars of site n are needed to
Gl(E)=G[" (E)+> X G|V (E) determine these TB parameters by solviy In the subse-

n” L” guent solution of5) the short-ranged TB parameters lead to

. . Y sparse matrices for large systems since only nearby sites are
XX [t (E)—tim (E)IG (E), (5  coupled. If the sparsity is efficiently exploited, large-scale
L density-functional calculations within the screened KKR

wheret ,(E) andt;|",(E) are the usuat matrices for the method should become possible.

potentialsV(r) andV'(r) restricted to the cell aR". lIl. ACCURACY
The disadvantage of a constant repulsive potential in all 3
space is the difficult determination of the single-site quanti- A. Densities of states for free space
tiesR)(r,E) andt], ,(E). A potential, which is constant in- It is well known that the standard KKR method fulfills the

side an atomic cell and vanishes outside, requires a complempty-lattice test for the vanishing potentfaand gives the
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exact band structure and the exact density of st&@€xS) for
free space. If the TB parameters of the screened KKR

T
o)

method are obtained in real space by restricting the sum over E > [ 4_
n" in (6) to a finite cluster of sites, this approximation cannot =t 4 8
give the exact DOS. Nevertheless, the error can be expected S T 2 P

to be small if the TB parameters decay fast enough and if
enough sites are used ([6). To assess the size of the error, | 0
have solved6) for different numbers of sites with potentials T

of various height and used the obtained TB parameters to o [

calculate the DOS of free space using an empty fcc lattice 'n? L

with a lattice constant of 361.50 pm. or
For a periodic arrangement the solution(bf contrary to S T

(6) involves an infinite number of sites’ and was achieved o y |

by lattice Fourier transform and subsequent Brillouin-zone 0

(BZ) integration. The structural Green-function elements —
4 —~ ¢ i
G, (E) are easily Fourier transformed by Tsh
e T
’ , , 8 : 1‘»_
Gl (KE)=2 explikR™=ikR™)G[{ (), (7) 3 o ]
m O 1 1 1
: i 0 1 2 3
whereR™ andR* denote the translation vectors of the lattice Energy (Ry)
and the basis vectors in the unit cell. The atomic positions
are then given byr"=R"+R*. The sum(7) over all lattice FIG. 1. Density of state$DOS) for free space. Broken lines

translation vectors converges fast because the terms decafer to screened KKR calculations, solid lines to the exact result.
exponentially, whereas the standadcdspace structure con- (a) The numbers indicate the heigkin units of Ry of the 79
Stantstf‘,“’(k,E) usually require Ewald summatiofSFor repulsive potentials used to determine the TB parameteysthe

the BZ integrations | used a straightforward sampling on d'Umpers (;ntdlcdat;a how n::n)_'réepws've tpc;:ir:'alTsBOf hengh; 8 Ry
uniform grid and exploited the cubic symmetry of the grid were used fo determine the 15 parame éc.The parameters
. - - 26 . . were obtained with 79 repulsive potentials of 8 Ry height, but only
points as described by Bibl et al=° The direct sampling . : .
. o . the nearest-neighbor parameters were used in the DOS calculation.
naturally causes more noise than a sophisticated analytica

integration scheme like the tetrahedron method, in particulayyes are not shown in Fig. 1. The energy range where the
for higher energies. Nevertheless, the direct sampling Wag:reened KKR method is applicable becomes larger for
chosen because it was more advantageous for the large Syiyher potentials and the sudden breakdown arises when the

percells considered in Sec. IV. For the DOS calculations é'B € " (E) beai d lowlv th |
reduced the BZ sampling noise by a large number of 11 728 B Parameterss,; - (E) begin to decay so slowly that solv-

symmetry inequivalent points and by an artificial broadenind (6) in real space makes no sense. It is satisfying that
ing. The broadening reflects a finite temperatlir@and is accurate DOS values can be calculated almost up to energies
achieved by complex energies with an imaginary part ©f 3 Ry. Thus the screened KKR method works well not only
7kT=0.21 eV, which corresponds =800 K, the tem- for occupied, but also for unoccupied states provided that the

perature used in the self-consistent calculations in Sec. Il BENErdY is not too high. Consequently, meaningful compari-

| used repulsive potentials of 2, 4, and 8 Ry height within theS°NS of spectroscopic measurements like inverse photoemis-

muffin-tin spheres of the fcc lattice and clusters consisting of1oN: near-edge x-ray absorption, and magnetic x-ray dichro-

13, 19, 43, and 79 potentials at neighboring sites of the fctS™ with calculated densities of states and related quantities

lattice. With 16 angular momentum components, corre2'® possible within the screened KKR method. The close

sponding to” =3, the matrix dimensions if6) were 204 agreement of the results at lower energies for different
~ max ’ 1 . . .
304, 688, and 1264. For the solution of the linear equations peights indicates that no angular momentum convergence

used efficient computer cod®which are now available on Problems appear even for 8 Ry high potentials. _
a variety of computers. Figure 1b) shows the free space DOS calculated by using

The density of states was obtained from the Green funcgifferent numbers of repulsive potentials. The energy range

tion (4) by integrating the imaginary part @&(r,r,E) over where.the screeneq KKR m9th°d is applicable beqomes
the Wigner-Seitz cell of the fcc lattice. Figuréal shows the larger if more repulsive potentials are used. For energies up

results as a function of energy calculated with TB parameterl? @00ut 1 Ry the use of 13 or 19 repulsive potentials seems

obtained from a cluster with 79 repulsive potentials. Forl© P& enough. Only these energies appear in the self-

comparison the exact result is also shown. The curves folloOnsistent calculations of Sec. Il B. _ o
the familiar square root behavior except for a small broaden- For large-scale calculations, an interesting qugstlon 1S
ing nearE=0 as a consequence of the imaginary parEof Whether better nearest-neighbor TB parame®[3, (E)

The screened KKR results agree with the exact one for lowecan be obtained for use ib) if they are calculated with
energies, for higher energies they suddenly deviate and caepulsive potentials, which are not restricted to nearest-
also have unphysical, negative values. For still higher enemeighbor sites. Compared to the result in Figb)1for 13
gies, they may become positive again, but these meaninglegstentials an overall improvement is seen in Fi(g) lvhere
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Vosko, Wilk, and Nusaif! The fundamental quantity of

E l I density-functional theory, the electron density was deter-
o 107 E 2 mined from (4) by a complex-energy integral using a
e » finite-temperature contodr. The contour consisted of three
;3) 10 e o e &7 straight lines as described by Zeftwith eleven Gaussian
= s i ® 8 integration points and of five Matsubara frequencies starting
2 107 = N with u+i7kT. Hereu is the chemical potential andkT is
g 106 L——e s chosen as 0.21 eV, which corresponds to a temperature of
S e —° 800 K.
1o e Figure 2 displays total-energy differences between stan-
dard and screened KKR calculations for Al. The TB param-
Number of BZ points eters were determined from clusters with different numbers

, of repulsive potentials of 8 Ry height. The results as well as
FIG. 2. Total energy differences between screened and standagG,jjar results for Cu and Pd show little dependence on the
the ful il 7one. Crosses refer 10 19 repuisve potenials usedIMPeT Of points used for the BZ integration. This indepen-
: P P dence can be explained by the fact that the equivalen¢s of

for the determination of the TB parameters. Full squares, triangles . 0 ~O
and circles refer to 13, 43, and 55 potentials, open squares, trénd. 6) W;tg thz st?:ndard I:KR ;equatl[(')ﬁ _fd+tgltc? re- t
angles, and circles to 79, 153, and 225 potentials. mains valid under Fourier transformation. etailed accoun

of the total-energy differences is given in Table I. For TB

the nearest-neighbor TB parameters were obtained with 7Barameters determined fro6) with 153 or 225 repulsive
repulsive potentials. The energy range, where the screendtptentials, the total energies differ less thapRy from the
KKR method gives a reasonable DOS, increases, but somlues of standard KKR calculations. For 225 potentials of 2
small systematic deviations already appear for lower ener?’ 4 Ry height the total energies even agree within 0.1
gies. The reason for these discrepancies is not yet clear aftfRy- This means that total energies, for which the standard

requires further investigation beyond the scope of the preseftKR__values were calculated as—482.937 890 35,
oaper. = 3275.896 685 31, and-9871.014 493 09 Ry for Al, Cu,

and Pd, can be obtained with a relative precision of 0
This precision is very satisfactory and assures that both
screened and standard structure constants were calculated
In this section | want to assess the precision of the screerwith high accuracy. The close agreement withip Ry be-
ing transformation for self-consistent total-energy calculatween screened and standard KKR total energies also dem-
tions for Al, Cu, and Pd as typical examples for simple,onstrates that no angular momentum convergence problems
noble, and transition metals. The total energies were calcusccur if the components of the matrix of the reference
lated by a full-potential version of multiple-scattering system are neglected itb) and (6) beyond/,,,=3. The
theory’®? with /=3 as the highest angular momentum agreement also establishes that the screening transformation
for wave functionst matrices, and structural Green-function accurately works in the complex energy plane, whereas the
elements and with’',,,,=6 for charge densities and poten- DOS results in Sec. Ill A could only prove the validity of the
tials. Integrations over Wigner-Seitz cells were done by usscreening transformation for real energies. The total energies
ing shape truncation functiodS The calculations were non- do not much depend on the height of the potentials and con-
relativistic and the exchange-correlation potential ofsiderably improve if 55 instead of 43 repulsive potentials are
Ceperley and AldéP was applied in the parametrization of used to determine the TB parameters. The inclusion of all

B. Total energies for Al, Cu, and Pd

TABLE |. Total-energy differenceAE between standard and screened KKR calculations. The first row
contains the number of repulsive potentials of helghthich were used to determine the TB parameter. The
BZ integrations were done with 891 symmetry inequivalent points corresponding to 37 288 points in the full

zZone.
No. of potentials 13 19 43 55 79 153 225
\4 AE
(Ry) (mRy) (mRy) (mRy) (1Ry) (1Ry) (1Ry) (1Ry)
Al 2 6.39 0.99 0.08 —15.2 6.3 —0.27 0.05
4 -0.19 —0.19 0.53 37.3 10.8 0.52 0.11
8 -2.88 —0.98 1.24 57.7 26.2 1.14 0.53
Cu 2 -0.48 2.28 0.32 64 -139 —-067 —0.03
4 —3.38 0.62 0.28 -20.5 0.0 -0.07 0.06
8 —3.89 0.55 0.51 —24.0 -10 0.11 0.34
Pd 2 —0.66 0.93 0.55 14.4 1.1 -0.18 0.06
4 —1.84 0.59 0.63 -3.0 -1.9 —-0.03 0.11
8 -1.77 1.10 1.07 8.8 0.6 0.25 0.33
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uniform BZ sampling by using 2736 points instead of 891.
The larger number changes the lattice constants by less than
0.02% and the bulk moduli by less than 0.5%. The results in
Table Il clearly show that nearest-neighbor TB parameters
are enough if one wishes to calculate lattice constants with
pm accuracy and bulk moduli with GPa accuracy.

Contrary to the total energy other electronic properties are
not protected by density-functional stationary properties and
one may expect that they cannot be calculated with similar

—-9871.005

-9871.010

Energy (Ry)

—-9871.015

| 1 |09 | 1
380 390 400 accuracy. This is indeed true as Table Il shows where
Lattice constant (pm) angular-momentum decomposed charges are given. With TB

parameters obtained from 13 repulsive potentials the error is
FIG. 3. Total energies for Pd as a function of the lattice con-of the order of 102 and from 19 repulsive potentials of the
stant. The BZ integrations were done with 891 symmetry inequivaprder of 10 3 electrons. The latter value seems to be accu-
lent points. Dashed, dotted, and solid lines refer to 13, 19, and 5p5te enough for practical purposes. With enough repulsive
potentials of 8 Ry height which were used to determine the TBpotentials, of course, the standard and screened KKR results
par_am_eters. The standard KKR result is indistinguishable from th%gree much better. Table 1l shows deviations of several
solid line. 10~ electrons for 79 repulsive potentials and | found that
nly the last digit of the charges deviates from the results of
tandard KKR calculations if | used 153 or 225 repulsive
X . Potentials to determine the TB parameters.
If moderate mRy accuracy is wanted, nearest-neighbo Concluding this section | want to point out that different

couplings(13 siteg are enough ir(6) and (5) for the deter- 4 niities converge differently with respect to the number of
mination of TB parameters and structural Green-function elye isive potentials used to determine the TB parameters.
ements. This short coupling range is a property in the repuly o energies, lattice constants, and bulk moduli were easily
sive referenqe system .alc')ne.. In this respect the screen lculated with a high accuracy, angular momentum decom-
KKR method is clearly distinguished from maS(N) meth- ;64 charges were moderately more difficult to obtain, and

. . _11 . .
ods suggested in the literature!! for which the coupling g calculations at higher energies demanded rather accu-
range in the studied materials should be short and is eX=io TR parameters.

ploited. For metallic systems with longer-ranged couplings
the screened KKR method is thus particularly useful.

It is important to investigate how the total-energy errors IV. SUITABILITY FOR LARGE-SCALE CALCULATIONS
given in Table | affect derived quantities like lattice con- . . L :
stants and bulk moduli. For that purpose | calculated the total The ma|n com_p_utatl_onarll tasks con5|nst in the calculation of
energies for seven lattice constants and fitted the results toSingle-site quantities |Ik§2|_(r/, E) andt;, ,(E) and of the
Birch-Murnaghan equation of stdtein the form structural Green-function§||',(E). The single-site quanti-
ties can be calculated independently for each site with

E — E 4—9m O(N) operations. Her®&\ denotes the number of sites in the
tot™ &, Cma : ®) system, for which one wishes to calculate the electronic
structure. The direct solution df) for nonsparse matrices
wherea is the lattice constant ang}, are the fitting param- requiresO(N®) operations and dominates the computational
eters. Figure 3 shows for Pd that the fits are nearly perfeatffort for large systems.
and similarly good fits were also found for Al and Cu. No  The screened KKR method applies rather sparse matrices
differences of the fitted curves with the calculated points carG', particularly if only nearest-neighbor couplings are used,
be seen. From the derivatives (8) with respect toa, |  which according to Sec. Ill B yield good values for total
obtained the numerical values for the lattice constants andnergies, lattice constants, and bulk moduli. Substantial sav-
bulk moduli given in Table Il. | checked the adequacy of theings of computer time and storage can be expectg)ifs

second neighbors in the 110 directions is thus important i
accurate TB parameter are required.

4

TABLE 1l. Lattice constantsa and bulk moduliB, for Al, Cu, and Pd determined by standard and
screened KKR calculations. The potentials used to obtain the TB parameters were 8 Ry high. The BZ
integrations were done with 891 symmetry inequivalent points corresponding to 37 288 points in the full

zone.
No. of Al Cu Pd

potentials a (pm) B, (GPa a (pm) B, (GP3 a (pm) B, (GPa
13 402.22 80.69 358.52 165.41 393.97 178.33
19 401.08 80.64 358.02 170.83 393.97 179.48
43 400.96 81.21 358.18 168.91 394.02 180.22
79 400.93 81.49 358.20 169.68 394.16 178.82

Standard 400.93 81.47 358.20 169.63 394.16 178.78
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TABLE Ill. Amount of s, p, andd charge within the Wigner-Seitz unit cell for Al, Cu, and Pd determined
by standard and screened KKR calculations. The potentials used to obtain the TB parameters were 8 Ry high.
The BZ integrations were done with 891 symmetry inequivalent points corresponding to 37 288 points in the

full zone.
No. of potentials 13 19 79 Standard
Al S 1.146521 1.141920 1.140812 1.140898
p 1.443042 1.433167 1.432605 1.432586
d 0.394480 0.404844 0.405439 0.405372
Cu S 0.683831 0.679906 0.679554 0.679516
p 0.707896 0.711790 0.710796 0.710803
d 9.554109 9.552431 9.553584 9.553614
Pd S 0.553231 0.552433 0.550710 0.550706
p 0.576841 0.577796 0.578144 0.578099
d 8.757122 8.756274 8.758072 8.758135
solved by sparse matrix techniqués’ For problems like For the supercell calculations | applied a potential taken

surfaces, interfaces, and thin films the two-dimensional perifrom standard KKR calculations obtained with 11 726 sym-
odicity allows us to remove two of the three space dimen-smetry inequivalent BZ sampling points. Because the density-
sions and direct solution methods f(8) with O(N) com-  functional total energy is stationary with respect to the po-
plexity exist. AnO(N) algorithm was recently implemented tential taken as a trial quantify, one expects that self-
to develop a slab program and is the subject of a separatonsistency is not needed for accurate total energies. |
paper’® For general three-dimensional problems the decichecked the effect of self-consistency and found that the total
sion, whether direct or iterative solution methods should beenergies do not change, at least for the larger numbers of BZ
preferred, is not trivial. Available standard algorithms, in points, which were the target of my investigation. For the
particular, the iterative ones, often require positive definite-calculations | solved only5) in supercell geometry with the
ness of the matrices, where@s$ is not even Hermitian, and atoms being on fcc lattice positions with the experimental fcc
these algorithms usually do not exploit the block-sparsdattice constants given by 404.96, 361.50, and 388.98 pm for
structure of G'. The search for good algorithms, perhapsAl, Cu, and Pd. The supercell electronic density is thus iden-
using physically based ideas like the recursion technique, tical for all atoms and was used to calculate the total energy,
remains a subject of future research and is beyond the scope particular its Coulomb part, in fcc geometry. In this way
of the present paper. For the large-scale calculations déhe supercell size effect on the solution (8§, which is in-
scribed below it was my purpose to demonstrate that thefluenced by the number of BZ points, was clearly separated
can already be done by the screened KKR method withourom size effects on Poisson’s equation which were not con-
the use of sparsity. sidered.
Chetty et al*® suggest and show that the product of the
numberK of BZ points and the numbeN of atoms per
A. Supercell total energies supercell is the quantity, which decides the accuracy of su-

The application of the standard KKR method to large unitpercell calculations. The calculated screened KKR total en-
cells has been prevented in the past by the complicated stru@—rg]'eS for. Cu are shown in Fig. 4 where the results are plot-
ture constants and the difficult search for zeros of the KKRSS 85 d|ﬁ¢renges from the converged result which was
determinant, which are necessary to obtain the band stru@Ptained withN=4 and 4960 symmetry inequivalent sam-

ture. This process requireé®(N%) operations. The Green-

function formulation of Sec. Il with complex-energy integra- = 1073 L T 7
tion allows us to determine the electronic density without the E e L N
knowledge of the band structure. In this formulation only v

linear equations must be solved and the operation count is & 10-5 | -
reduced taD(N?®), but in the standard KKR method the com- K

plicated structure constants remain. Contrary to that the = 107 |- -
screened KKR method applies a simple Fourier transf@gim 5

to calculate the necessary matrices from the TB parameters. E 1077 = 7
This is the main simplification, which | exploited for the Wg-s L L
calculations with 4, 32, 108, 256, and 500 atoms per super- 1¢ 10
cell. My interest was to investigate how many points in the N K

Brillouin zone one needs to obtain total energies with an

accuracy of severgkRy per atom. Chettet al* argue that FIG. 4. Screened KKR total energies for Cu as function of the

such accuracies are required if supercells with about 10@roduct of the numbeN of atoms in the supercell and of the num-
atoms are used, for instance, to determine vacancy formatiaser K of sampling points in the Brillouin zone. The energies are
energies with a precision of 0.01 eV. given as differences from the converged resultNid¢— .
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pling points corresponding t& =216 000. The TB param- TABLE IV. Computing rates in units of f0floating point op-
eters were obtained from 79 repulsive potentials of 4 Ryerations per second for various numbafsf atoms in the super-
height and the largest system treated was a supercell witggll. The number of processopsused on the Intel Paragon is given

500 atoms and 10 symmetry inequivalent sampling pointd" the last column.
corresponding taK=216. The total energies for different

sizes of the supercell and identical values MK always IBM CRAY Intel P

agreed better than 16 Ry indicating that no numerical in- 3, 0.186 1.03 0.38 16

stabilities occurred in the algorithms used for the large-scalggg 0.217 1.39 2.40 81

calculations. From a computing point of view the screened,g 153 295 64

KKR method uses only standard linear algebra softwareg 156 4.90 100

Thus it is more simply applied than the sophisticated itera-

tive techniques which Chettgt al*° used to save computer

time and storage. Table IV shows that the workstation delivers up to 82% of its

peak rate of 0.264 Gflops and the vector computer up to 87%

B. Computational aspects of its peak rate of 1.8 Gflops.

Whereas mos©O(N) techniques suggested recehify
suffer from a large calculational overhead if less than about
100 inequivalent atoms are treated, the screened KKR Since fast vector computers are expensive, an interesting
method becomes competitive with the standard KKR methodjuestion is whether cheaper massively parallel computers
already for small systems. This is true not only for layeredcan efficiently be applied to solu®). In the Green-function
systems as discussed by Zellet al*® and Wildberger formulation of the KKR method several parallelization strat-
et al,*® but also for general three-dimensional systems. If theegies are possible. A simple strategy distributes the work
possible sparsity of the matri®" is not used, the screened according to the complex-energy integration mesh points.
KKR method differs from the standard one only in the evalu-Already for the standard KKR method this energy parallel-
ation of structure constants. Identical tasks calculate thézation performs weff in spite of the complicated determi-
single-sitet matrices and wave functions, obtain the densitynation of the structure constants. For the screened KKR
from the structural Green-function elements and determingnethod almost perfect performance can be expected. For
the potential from the density by Poisson’s equationlarge systems this strategy has two disadvantages. Large
Whereas the standard structure constants are obtained B{orage memories are necessary on the processors and not
Ewald summations, the screened structure constants are ofore than about 20 processors can be used because not more
tained by a simple Fourier transfor¥) from thek indepen- ~ energy mesh points are usually required to determine the
dent TB parameter§ |/ (E). Thus the work for eactk ﬁ:igggn;e%egs(;%é?ei?I;t(r:gtneSISten;fc?,I?I?t'lgnf' T{;}erefo;el !
point is smaller in the screened KKR method. For instance,., 9 : gy, which distributes the matrix
to obtain a specifieghRy precision for the total energies of G and solves each linear systeéﬁ).wnh the participation of

all processors. Because of the simple Fourier transf@im

Sec. Il B, | used 1.6 s of computing time per BZ point with o p . ; .
the standard KKR method and only 0.08 s with the screeneH1e distributed parts dB" were straightforwardly obtained in
parallel. The combined use of all processors to s@hyavas

one (on a workstation IBM RS/6000 model 3¢TThe k . .
independent overhead is 27 s for the standard method af Cégt?]tsi\?g“:bsléandard software packdgevhich recently

oo 0T Dot o1 oo ot cpuive, FIUIE § ShOWS the peecup, wrich | cblained for varous
B parameter ; =P supercell sizes and a number of processors. The calculations
potentials if group theory is utilized to exploit the cubic sym-

metry of the cluster. This means that the screened KKR caf-Or 108 atoms covered the widest range from four to 81

culations for a fcc unit cell wittoneinequivalent atom were

already faster for more than about 1&@oints. 100 —
The large supercell calculations were possible by mainly - .

three reasons. The matrix dimensions given by 16 times the .

number of atomsfor / ,.,=3) are economic, efficient linear

equation solver*? exist on a variety of computers, and

powerful vector and parallel computers like the CRAY T90

and the Intel Paragon XP/S 10 were available. | applied the

supercomputers mainly because of the large memory needed

to store the full structural Green-function mat@ for 256

or 500 atoms, whereas | could treat supercells with up to 108

atoms on a workstation. The efficiency of the available linear 0 50 100

equation solvers can be judged from the computing rates Number of nodes

given in Table IV, which were estimated using an operation

count of &° wheren denotes the dimension of the complex  FIG. 5. Speedup as function of the number of nodes for 108

matrices. The measured operation counts on the CRAY T9@toms per supercelisolid line). The square and the dashed and

agreed with the estimated ones within one percent indicatingotted lines refer to 500, 256, and 32 atoms assuming that the

that the time to calculate the matrix elements is negligible computing time scales with the cube of the number of atoms.

C. Parallel computing

Speedup
T I L) T L) T I

0 . '.I LA N N L R B B B |
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processors. A single processor had not enough memory arimilk moduli and the lattice constants could be determined
thus the speedup values are scaled by arbitrarily assumingveithin 1 GPa and 0.1 pm. Comparable accuracy can be ex-
speedup of four for four processors. For 256 and 500 atompected for similar quantities like other elastic constants, pho-
even four processors could not be used. For these supercealbn properties, and determinations of geometrical arrange-
sizes the computing time necessary on four processors wasents.
estimated by scaling the time measured for 108 atoms with The screened KKR method introduces little computational
the cube of the number of atoms, essentially in agreemerdverhead compared to the standard KKR method and situa-
with the operation counts given by the CRAY T90. tions exist where the screened KKR method is faster even for
Figure 5 shows a satisfactory speedup, for instance morene atom per unit cell. The effort to implement the screening
than 50% efficiency was achieved with 81 processors for 108&ansformation into existing KKR computer programs is
atoms, 90% efficiency with 64 processors for 256 atoms, andmall and the computations mainly require solutions of linear
95% efficiency with 100 processors for 500 atoms. For aalgebraic equations, for which efficient standard software ex-
fixed number of atoms the speedup saturated with the nunists. Due to the economic matrix dimensions the screened
ber of processors, whereas a simultaneous increase of tl&R method is suitable for large-scale calculations on work-
numbers of processors and atoms was highly efficient. | wardgtations and on supercomputers. Parallelization is simply
to point out that both strategies, distributing the matrix andpossible with respect to the complex-energy integration mesh
parallelizing the complex-energy points, can be applied topoints. For each mesh point further parallelization is possible
gether. For that reason several hundred processors can fug the single-site quantities and for the solution of large
expected to be useful for screened KKR calculation. | alsdinear equations.
want to remark that the calculation of the single-site quanti- It can be expected that the screened KKR method rou-
ties can also be doubly parallelized with respect to sites antinely allows large-scale density-functional calculations in
energy mesh points. the future if the sparsity of the matrices can efficiently be
exploited. For layered systems good algorithms vitgN)
V. SUMMARY complexity already exist. Compared to other recently sug-
gestedO(N) methods the screened KKR method is directly

| have investigated the screened KKR method based ofppjicable for metallic systems and for density-of-states cal-
the concept of a reference system with repulsive, NONOVerey|ations, which can be compared to spectroscopic experi-

lapping, spherical potentials as a tool for TB electronic-ments like inverse photoemission, near-edge x-ray absorp-
structure calculations. The calculated results for densities ofyp and magnetic x-ray dichroism.

states, angular momentum decomposed charges, total ener-
gies, lattice constants, and bulk moduli demonstrate that the
screened KKR method is very accurate. The TB parameters
can be calculated in real space using a finite cluster of repul-
sive potentials. The results for densities of states improve It is a pleasure to thank P. H. Dederichs for many helpful
with cluster size and potential height. If the potentials arediscussion. The work has benefited from collaborations
chosen high enough, for instance, higher than 2 Ry, thevithin the HCM Network Contract No.
height has minor consequences for angular momentum dé&RBCHRXCT930369 and the TMR Network Contract No.
composed charges and little effect on total energies, latticEMRX-CT96-0089. Part of the calculations were done on
constants, and bulk moduli. With nearest-neighbor TB pathe CRAY T90 and Intel Paragon XP/S 10 computers of the
rameters, obtained from only 13 repulsive potentials, thé=orschungszentrum lich.
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