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Dispersion of electrostatic surface plasmons
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Calculations of the surface plasmon dispersion are presented for a series of models with the same bulk
density, but different surface conditions. The results extend out to surface wave vectors as large as 0.3 times
the Fermi wave vector and are generally nonlinear in shig#163-18207)04315-4

There has recently been considerable progress in undeers higherQ values, beyond the range where EL). applies.
standing surface collective modes on metals. Experiment andlt the same time we investigate how quickly higher-order
theory have been successfully applied to simple metals teerms in Q become important in Eq(l). The theoretical
clearly establish the existence and dispersion of surfacderivations that lead to Eq1) discard such corrections at
plasmongd™ Much of the conceptual and computational several stages without making quantitative estimates of their
progress is due to theé-parameter formalism, whose utility size>~"1%-1?so our specific calculations should allow more
in the context of metal surfaces was developed byexplicit constraints on the validity limit of Eq1).

Feibelmar?. As applied to systems where band structure ef- The scheme we use to determine the surface plasmon en-
fects may be ignored, this approach derives the initial disperergy at a giverQ is to look for a peak in the imaginary part
sion of the(monopol¢ surface plasmon in the electrostatic of the reflection amplitude as a function of frequency. Since
limit as>~’ we consider onlyQ> wg/c, wherec is the speed of light, we
1 can use electrostatics rather than electrodynamics to describe
2_1 2 o the reflection process. With an applied potential of the form
0s=5 gl 1+ Qd(wg)+-- -], @) ppe” QXD \where the two-dimensional vectob$
and Q lie in the surface plane, the reflection amplitude

2_ 20 i :
wherewg=4mnge“/m is the bulk plasmon frequency is r(Q,w) is defined by

the mode’s wave vector parallel to the surface, anddhe
parameter is to be found from

2
r= EJ’ dxe" 6p(x;Q, w)/ @a, ©)
d(ws) deXép(X,Q O’wS)/ f dxop(x:Q=0ws), where 8p is the (linearly) induced charge density. In turn
op is formally determined by
with 6p(x;Q=0,ws) the induced density profile due to a
weak, spatially uniform electric field applied along the sur- 5P(X;Q,w)/¢A=f dx’x(x,x’;Q,w)e*QX', ()
face normal at frequency,. Thus both the sign and mag-
nitude of the initial dispersion withQ are set byd(w,),
which historically has been the focus of attention.

In writing Egs.(1) and(2) we have assumed that the bulk
metal, where the electron density tendsntp, lies towards
positive x. The location ofx=0 is where the equilibrium
electron density would stop if there were no allowance for — y(x,x’)= yo(x,x")
tunneling out into vacuum or for Friedel oscillations back
into the interior. With these choices one can see that if the +f dﬁ Xy o(X X0 (XX X (X X'). (5)
centroid of 5p lies “outside” the metal(in x<<0) then the XoU% A Vel 4 R JXAR LR )
surface plasmon will initially disperse downward wi.

where the density response functignfor the interacting
electrons will be calculated using a mean-field approxima-
tion from the analogous quantity, for noninteracting elec-
trons. This requires the solution of the integral equation

Conversely, if the centroid lies inside, the initial dispersion isThe effective Interaction that appears here in general has
upward. separate qontrlbutl_ons from a dllrecF Hartree term and from a
The recent experiments on simple metals clearly Shov\llocal-densny functlona! approximatiof.DA) for exchange
that the initial dispersion is downward, and calculations onand correlation effects:
the bestmodels of a neutral jellium surface are consistent 20
with these observations. We emphadiesthere because the Ve XX 1Q,0)= —e P X4y (x)8(x—x'), (6)
value ofd is known to be quite sensitive to subtle changes in Q
the model description. For instance, for a simple hydrodyyyhere

namic or infinite barrier model, Rws) is strongly

positive®*° Fne(n)]
In this paper we examine whether this model sensitivity Ve X)= gz , )
of the surface plasmon dispersion persists when one consid- n=no(x)
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0.90 i . these two extremes appear the results from alternate treat-
ments or models of the surface. Note that in all cases we
have ignored the possible existence of additignalltipole)
surface plasmons.

Our first calculations were done for an infinite barrier
model within which considerable analytic progress can be
made’® For this case we set up two independent codes, one
working in real space®'’*®and one in Fourier spacé?°
Each calculates a RPA response and as shown in Fig. 1, they
agree very well, down t@/kg=0.025. This is a useful com-
parison because a®/kg—0 one needs in the real-space
code to contend with long-ranged Coulomb interactions
065 o o2 o0 whose influence is only suppressed by factorgeo?*. We

Q/k, have incorporated several numerical tricks suggested by
Liebsct! to improve the accuracy of our real-space codes as

FIG. 1. Surface plasma frequenay versus surface wave vector Q/kg—0. In particular we formally impose a bulk cutoff at
Q. The former is normalized by the bulk plasmon frequemgyand  x_ only for the induced densityp. Thus, when calculating
Lhed'ager by the 'Izerlmti' wath?hve(cjt_kr:. Tge solidf curve fi_s _Iro'g‘ a  sp for x<x, we include throughy, the effect of the applied

roaynamic calculation. € dlamonas are from Infinite barrier H : H H
czlculai/ions, done in either real spa@pen diamondsor Fourier anq induced pOtem.la.l n pobk1<xc andx>.x°' WhenQ is .

strictly zero such difficulties can be avoided by subtraction

space(filled diamonds$. The circles and triangles are from calcula- . . .
tions for non-neutral and neutral jellium models, respectively.memOdS since the total induced charge and asymptotic po-

Within these models the opefiilled) symbols plot RPA(LDA)  tentials are known exgctl’;].'lslndeed theQ=0 calculation
results. At smalQ we show the initial slope of the surface plasmon Of thed parameter, which controls the initial dispersion, can
as calculated frond parameter theory. The thin solid line is for the readily be done with either a real-space or Fourier-space
infinite barrier model. The long-dashed lines are RPA results focode® For more sophisticated models, the Fourier-space ap-
self-consistent barriers, while the short-dashed lines are LDA reproach becomes much more difficult to evaluﬁtég, while
sults for the same barriers. For the non-neutral jellium model wethe real-space approach is scarcely changed. We hence use
also show a fit to Eq(9) determined by minimizing the mean- only the latter method for further calculations.
square deviation over the who@ range. For the neutral jellium model the two lowest dispersions
in Fig. 1 compare LDA and RPA results. There is no quali-
with €, the exchange-correlation energy per electron for gatjve difference between them. The predictedin RPA is
uniform electron gas of density andny(X) the ground-state for any Q higher than in LDA. Except for the smallest plot-
density profile of our semi-infinite system. For a self- tedQ values, we used the same real-space cutoffs and mesh
consistent calculation the sarag must be used in determin- sjzes as for the infinite barrier model. To get convergent

ing no(x), via a Lang-Kohn calculation of the ground state. results below Q/k.=0.05 we used a bulk cutoff of
We refer to the full implementation of the above scheme as &:x.=40 beyond the jelium edge and a step size of
LDA calculation. If the second term in E¢6) is omitted in keAx=0.1, which together leadwhen one allows for the
the solution of Eq.(5), then we label the results as RPA yacuum tai) to a matrix of dimension 521 to be inverted to
(random-phase approximation - solve Eq.(5). Thed parameters are found from a real-space
A summary of our numerical results is given in Fig. 1. All code that incorporates not only subtraction methods but also
the calculations have been done for systems with a commoghe sum ruld’ that relates the dipole moment required in Eq.
bulk density, described by an parameter equal to 2.16, and (2) to an integral whose range is limited $0<0, i.e., to
use a smallad hoc damping determined by replacing jnduced densities “outside” the bulk of the metal.
w— w+iy With y/wg=0.01. The choice of these parameters  The remaining results in Fig. 1 are for a different self-
is based on an experimental system realized in a study of &bnsistent surface barrier, the so-called parabolic barrier
asymmetric parabolic quantum wéfiTher value is close  model for an embeddetbr non-neutral jellium.222% physi-
to that for Al. At one extreme the solid curve gives the dis-cally such a system is created when the positive background
persion according to esingle-step hydrodynamic model for  charge densitystill spatially constantextends far beyond
which an analytic solution is possibie: the range of the neutralizing electrons. The potential-energy
2 oo barrier confining the electrons then no longer saturates with a
2:‘05+ﬁ Q +£(2w2,82Q2+,34Q4)1/2 ®) finite work function, but instead rises indefinitely. We again
s 2 278 ' use the Wigner approximation fa,. to calculate the self-
consistent ground state and determine the response from a
Here the spatial dispersion parame,t&rzéuﬁ with vg the  real-space code. Although the equilibrium density profile is
Fermi velocity. The dispersion is always upward and nearlyonly slightly different from that of neutral jellium, the re-
linear. At the other extreme is a LDA calculation for a neu-sponse properties are quite distift??~2’ The results for
tral jellium model using the Wigner approximation fey.. ws lie roughly midway between those for the neutral jellium
Its dispersion is initially downward, then flattens out, andand infinite barrier models, with the RPA frequencies always
rises thereafter. The same qualitative features are seen in tAbove the LDA. Since thd parameter for the LDA response
earlier calculations for specific alkali metdl8.In between of a parabolic barrier model is identically zetbthe surface
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plasmon in this case must begin with a quadratic dispersion.

For curiosity we show in Fig. 1 how well our results can be ~ * | —— local optics
—— hydrodynamics
represented by wh A
---- pbm-lda
_%s 2 o5 [
ws—E(HaQ ). 9

This functional form allows a good fit.
Now compare the results for different model surfaces. At ' ¢
small Q where thed parameter controls the initial slope,

-Im(r)

there are considerable differences. Edik-=0.2 there are 10
still significant differences in the size @, but the group

velocity dws/dQ is always positive and nearly model inde- 5F
pendent. Note too that in thi@ range the sign of Rkis no

longer relevant for predicting or understanding whethgis o
above or belowwg/+/2.

Figure 1 summarizes mode locations, but gives no infor-
mation about excitation efficiency or lifetimes. These aspects FIG. 2. Surface spectral functionlmr (Q, ) versus frequency
also differ considerably between the various surface models at fixed wave vector parallel to the surfa@e The magnitude of
and can be illustrated by examining the whole surface sped® is Q/kg=0.2. The different model predictions are plotted on a
tral function —Imr(Q,w), which is often called common scale. The local optics result omits spatial dispersion and
Img(Q,w).?® Figure 2 shows several cases plotted at fixedpeaks atwg/+/2 for anyQ. IBM, PBM, and NJM stand respectively
Q versusw. The peak locations for such curves have beerfor infinite barrier, parabolic barrier, and neutral jellium models.
collected in Fig. 1, but the peak height and width are also o
interest. The local optics curve is based on

felectron-hole pairs. It is absent in the local optics and hydro-

dynamic model and is largest for the neutral jellium model,

1—e which alone has a finite work functiofwhich is equal to

= , (100  0-35wg). For neutral jellium the structure is a shoulder in
l1+e —Imr at the level of 1.0 forw/wg~0.3. For the infinite or

parabolic barrier models the analogous structure is roughly

. _ _ 2 . 2 B - .
with e=1-wg/(w+i). It has no spatial dispersion and 10 times smaller. At higher frequencies there is a small struc-
appears the same at a@ All the other cases depend On re in all but the local optics case asincreases pasbg

Q to varying degrees. The extra broadenibgyond that due  anq pulk plasmons can be excited. This extra peak is always
to y) grows with increasing incoherent coupling of the sur-jess than 0.2 in height for the parameters used here. Finally,
face plasmon to electron-hole excitations, i.e., with increassy, Q/ke=0.2, we do not see any structure that would imply
ing Landau damping. The hydrodynamic model allows noe existence of a multipole mode. Only for neutral jellium
Landau damping at all, while the infinite barrier and para-qoes |ng show a(weak multipole peak for our choice of

bolic barrier models have very little and the neut_ral jellium r. and this structure is probably lost in the tail of the broad
model much more. These trends correlate well with the Cormonopole surface plasmon @/ke=0.2.

responding imaginary part of thet parameter atog.

We have only shown-Imr over a limited range of fre- Part of the calculations were done on the Cray Research,
guency, where the surface plasmon peak dominates. Thetec. Y-MP C90 system at the Pittsburgh Superconducting
are additional, weak structures outside this range. At lowCenter, Pittsburgh. We are grateful to Ansgar Liebsch for
frequencies such structure comes from direct excitation ofeveral helpful suggestions.
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