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Dispersion of electrostatic surface plasmons

W. L. Schaich
Physics Department, Indiana University, Bloomington, Indiana 47405

~Received 21 October 1996!

Calculations of the surface plasmon dispersion are presented for a series of models with the same bulk
density, but different surface conditions. The results extend out to surface wave vectors as large as 0.3 times
the Fermi wave vector and are generally nonlinear in shape.@S0163-1829~97!04315-4#
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There has recently been considerable progress in un
standing surface collective modes on metals. Experiment
theory have been successfully applied to simple metal
clearly establish the existence and dispersion of surf
plasmons.1–4 Much of the conceptual and computation
progress is due to thed-parameter formalism, whose utilit
in the context of metal surfaces was developed
Feibelman.5 As applied to systems where band structure
fects may be ignored, this approach derives the initial disp
sion of the~monopole! surface plasmon in the electrostat
limit as5–7
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2@11Qd~vs!1•••#, ~1!

wherevB
254pnBe

2/m is the bulk plasmon frequency,Q is
the mode’s wave vector parallel to the surface, and thd
parameter is to be found from

d~vs!5E dxxdr~x;Q50;vs!Y E dxdr~x;Q50,vs!,

~2!

with dr(x;Q50,vs) the induced density profile due to
weak, spatially uniform electric field applied along the su
face normal at frequencyvs . Thus both the sign and mag
nitude of the initial dispersion withQ are set byd(vs),
which historically has been the focus of attention.

In writing Eqs.~1! and~2! we have assumed that the bu
metal, where the electron density tends tonB , lies towards
positive x. The location ofx50 is where the equilibrium
electron density would stop if there were no allowance
tunneling out into vacuum or for Friedel oscillations ba
into the interior. With these choices one can see that if
centroid ofdr lies ‘‘outside’’ the metal~in x,0) then the
surface plasmon will initially disperse downward withQ.
Conversely, if the centroid lies inside, the initial dispersion
upward.

The recent experiments on simple metals clearly sh
that the initial dispersion is downward, and calculations
the bestmodels of a neutral jellium surface are consiste
with these observations. We emphasizebesthere because th
value ofd is known to be quite sensitive to subtle changes
the model description. For instance, for a simple hydro
namic or infinite barrier model, Red(vs) is strongly
positive.8,9

In this paper we examine whether this model sensitiv
of the surface plasmon dispersion persists when one con
550163-1829/97/55~15!/9379~4!/$10.00
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ers higher-Q values, beyond the range where Eq.~1! applies.
At the same time we investigate how quickly higher-ord
terms inQ become important in Eq.~1!. The theoretical
derivations that lead to Eq.~1! discard such corrections a
several stages without making quantitative estimates of t
size,5–7,10–12so our specific calculations should allow mo
explicit constraints on the validity limit of Eq.~1!.

The scheme we use to determine the surface plasmon
ergy at a givenQ is to look for a peak in the imaginary pa
of the reflection amplitude as a function of frequency. Sin
we consider onlyQ@vB /c, wherec is the speed of light, we
can use electrostatics rather than electrodynamics to des
the reflection process. With an applied potential of the fo
wAe

2Qxei (Q•X2vt), where the two-dimensional vectorsX
and Q lie in the surface plane, the reflection amplitud
r (Q,v) is defined by

r5
2p

Q E dxe2Qxdr~x;Q,v!/wA , ~3!

where dr is the ~linearly! induced charge density. In tur
dr is formally determined by

dr~x;Q,v!/wA5E dx8x~x,x8;Q,v!e2Qx8, ~4!

where the density response functionx for the interacting
electrons will be calculated using a mean-field approxim
tion from the analogous quantityx0 for noninteracting elec-
trons. This requires the solution of the integral equation

x~x,x8!5x0~x,x8!

1E dx̄E dx̄8x0~x,x̄!veff~ x̄,x̄8!x~ x̄8,x8!. ~5!

The effective interaction that appears here in general
separate contributions from a direct Hartree term and from
local-density functional approximation~LDA ! for exchange
and correlation effects:

veff~x,x8;Q,v!5
2p

Q
e2Qux2x8u1vxc~x!d~x2x8!, ~6!

where

vxc~x!5
]2@nexc~n!#

e2]n2 U
n5n0~x!

, ~7!
9379 © 1997 The American Physical Society
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with exc the exchange-correlation energy per electron fo
uniform electron gas of densityn andn0(x) the ground-state
density profile of our semi-infinite system. For a se
consistent calculation the sameexc must be used in determin
ing n0(x), via a Lang-Kohn calculation of the ground state

13

We refer to the full implementation of the above scheme a
LDA calculation. If the second term in Eq.~6! is omitted in
the solution of Eq.~5!, then we label the results as RP
~random-phase approximation!.

A summary of our numerical results is given in Fig. 1. A
the calculations have been done for systems with a com
bulk density, described by anr s parameter equal to 2.16, an
use a smallad hoc damping determined by replacin
v→v1 ig with g/vB50.01. The choice of these paramete
is based on an experimental system realized in a study o
asymmetric parabolic quantum well.14 The r s value is close
to that for Al. At one extreme the solid curve gives the d
persion according to a~single-step! hydrodynamic model for
which an analytic solution is possible:15

vs
25

vB
21b2Q2

2
1
1

2
~2vB

2b2Q21b4Q4!1/2. ~8!

Here the spatial dispersion parameterb25 3
5vF

2 with vF the
Fermi velocity. The dispersion is always upward and nea
linear. At the other extreme is a LDA calculation for a ne
tral jellium model using the Wigner approximation forexc .
Its dispersion is initially downward, then flattens out, a
rises thereafter. The same qualitative features are seen i
earlier calculations for specific alkali metals.2,3 In between

FIG. 1. Surface plasma frequencyvs versus surface wave vecto
Q. The former is normalized by the bulk plasmon frequencyvB and
the latter by the Fermi wave vectorkF . The solid curve is from a
hydrodynamic calculation. The diamonds are from infinite barr
calculations, done in either real space~open diamonds! or Fourier
space~filled diamonds!. The circles and triangles are from calcul
tions for non-neutral and neutral jellium models, respective
Within these models the open~filled! symbols plot RPA~LDA !
results. At smallQ we show the initial slope of the surface plasm
as calculated fromd parameter theory. The thin solid line is for th
infinite barrier model. The long-dashed lines are RPA results
self-consistent barriers, while the short-dashed lines are LDA
sults for the same barriers. For the non-neutral jellium model
also show a fit to Eq.~9! determined by minimizing the mean
square deviation over the wholeQ range.
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these two extremes appear the results from alternate t
ments or models of the surface. Note that in all cases
have ignored the possible existence of additional~multipole!
surface plasmons.

Our first calculations were done for an infinite barri
model within which considerable analytic progress can
made.16 For this case we set up two independent codes,
working in real space2,3,17,18 and one in Fourier space.19,20

Each calculates a RPA response and as shown in Fig. 1,
agree very well, down toQ/kF50.025. This is a useful com
parison because asQ/kF→0 one needs in the real-spac
code to contend with long-ranged Coulomb interactio
whose influence is only suppressed by factors ofe2Qx. We
have incorporated several numerical tricks suggested
Liebsch21 to improve the accuracy of our real-space codes
Q/kF→0. In particular we formally impose a bulk cutoff a
xc only for the induced densitydr. Thus, when calculating
dr for x,xc we include throughx0 the effect of the applied
and induced potential in bothx,xc andx.xc . WhenQ is
strictly zero such difficulties can be avoided by subtract
methods since the total induced charge and asymptotic
tentials are known exactly.17,18 Indeed theQ50 calculation
of thed parameter, which controls the initial dispersion, c
readily be done with either a real-space or Fourier-sp
code.20 For more sophisticated models, the Fourier-space
proach becomes much more difficult to evaluate,12,19 while
the real-space approach is scarcely changed. We hence
only the latter method for further calculations.

For the neutral jellium model the two lowest dispersio
in Fig. 1 compare LDA and RPA results. There is no qua
tative difference between them. The predictedvs in RPA is
for anyQ higher than in LDA. Except for the smallest plo
tedQ values, we used the same real-space cutoffs and m
sizes as for the infinite barrier model. To get converg
results below Q/kF50.05 we used a bulk cutoff o
kFxc540 beyond the jellium edge and a step size
kFDx50.1, which together lead~when one allows for the
vacuum tail! to a matrix of dimension 521 to be inverted
solve Eq.~5!. Thed parameters are found from a real-spa
code that incorporates not only subtraction methods but
the sum rule17 that relates the dipole moment required in E
~2! to an integral whose range is limited tox,0, i.e., to
induced densities ‘‘outside’’ the bulk of the metal.

The remaining results in Fig. 1 are for a different se
consistent surface barrier, the so-called parabolic bar
model for an embedded~or non-neutral! jellium.22,23 Physi-
cally such a system is created when the positive backgro
charge density~still spatially constant! extends far beyond
the range of the neutralizing electrons. The potential-ene
barrier confining the electrons then no longer saturates wi
finite work function, but instead rises indefinitely. We aga
use the Wigner approximation forexc to calculate the self-
consistent ground state and determine the response fro
real-space code. Although the equilibrium density profile
only slightly different from that of neutral jellium, the re
sponse properties are quite distinct.14,22–27 The results for
vs lie roughly midway between those for the neutral jelliu
and infinite barrier models, with the RPA frequencies alwa
above the LDA. Since thed parameter for the LDA respons
of a parabolic barrier model is identically zero,25 the surface
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plasmon in this case must begin with a quadratic dispers
For curiosity we show in Fig. 1 how well our results can
represented by

vs5
vB

A2
~11aQ2!. ~9!

This functional form allows a good fit.
Now compare the results for different model surfaces.

small Q where thed parameter controls the initial slope
there are considerable differences. ForQ/kF*0.2 there are
still significant differences in the size ofvs , but the group
velocity dvs /dQ is always positive and nearly model ind
pendent. Note too that in thisQ range the sign of Red is no
longer relevant for predicting or understanding whethervs is
above or belowvB /A2.

Figure 1 summarizes mode locations, but gives no inf
mation about excitation efficiency or lifetimes. These aspe
also differ considerably between the various surface mo
and can be illustrated by examining the whole surface sp
tral function 2Imr (Q,v), which is often called
Img(Q,v).28 Figure 2 shows several cases plotted at fix
Q versusv. The peak locations for such curves have be
collected in Fig. 1, but the peak height and width are also
interest. The local optics curve is based on

r5
12e

11e
, ~10!

with e512vB
2/(v1 ig)2. It has no spatial dispersion an

appears the same at anyQ. All the other cases depend o
Q to varying degrees. The extra broadening~beyond that due
to g) grows with increasing incoherent coupling of the su
face plasmon to electron-hole excitations, i.e., with incre
ing Landau damping. The hydrodynamic model allows
Landau damping at all, while the infinite barrier and pa
bolic barrier models have very little and the neutral jelliu
model much more. These trends correlate well with the c
responding imaginary part of thed parameter atvs .

We have only shown2Imr over a limited range of fre-
quency, where the surface plasmon peak dominates. T
are additional, weak structures outside this range. At
frequencies such structure comes from direct excitation
ev
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electron-hole pairs. It is absent in the local optics and hydr
dynamic model and is largest for the neutral jellium mode
which alone has a finite work function~which is equal to
0.35vB). For neutral jellium the structure is a shoulder i
2Imr at the level of 1.0 forv/vB'0.3. For the infinite or
parabolic barrier models the analogous structure is roug
10 times smaller. At higher frequencies there is a small stru
ture in all but the local optics case asv increases pastvB
and bulk plasmons can be excited. This extra peak is alwa
less than 0.2 in height for the parameters used here. Fina
for Q/kF50.2, we do not see any structure that would imp
the existence of a multipole mode. Only for neutral jellium
does Imd show a~weak! multipole peak for our choice of
r s and this structure is probably lost in the tail of the broa
monopole surface plasmon atQ/kF50.2.

Part of the calculations were done on the Cray Resear
Inc. Y-MP C90 system at the Pittsburgh Superconductin
Center, Pittsburgh. We are grateful to Ansgar Liebsch f
several helpful suggestions.

FIG. 2. Surface spectral function2Imr (Q,v) versus frequency
v at fixed wave vector parallel to the surfaceQ. The magnitude of
Q is Q/kF50.2. The different model predictions are plotted on
common scale. The local optics result omits spatial dispersion a
peaks atvB /A2 for anyQ. IBM, PBM, and NJM stand respectively
for infinite barrier, parabolic barrier, and neutral jellium models.
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