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Laughlin liquid to charge-density-wave transition at high Landau levels
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We compare the energies of the Laughlin liquid and a charge density wave in a weak magnetic field for the
upper Landau-level filling factorsN:% and é The charge-density-wave period has been optimized and was
found to be=3.3R., whereR; is the cyclotron radius. We conclude that the optimal charge density wave is
lower in energy than the Laughlin liquid for the Landau-level numbées2 at vN=% and forN=3 at
vN:%. This implies that the-;,1 guantum Hall plateaus cannot be observedMer2, in agreement with the
experiment[S0163-182€07)03916-7

The fractional guantum Hall effe¢FQHE) was first dis-  which corresponds to the separatie3.3R.; between nearest
covered at the lowest Landau levél ).>? This remarkable bubbles.
phenomenon occurring at certain unique values of the filling Our goal is to identify the LL indeN at which the tran-
factorv=3,%, ... has been associated with the formation ofsition from the Laughlin liquid to the CDW occurs. We show
a uniform incompressible quantum state, or the Laughlirthat for, e.g., the} FQHE state, this transition indeed takes
liquid.® The traditional alternative to the Laughlin liquid is a Place atN=2.
charge density wavéCDW), which does not exhibit the At small N the quasiclassical picture is too crude, and we
FQHE. The FQHE occurs because the Laughlin liquid ishave to describe the bubble phase by a trial wave function.
lower in energy than the optimal CDW, which at the lowest TO elucidate its structure, we will construct such a wave
LL (LL index N=0) has the same spacial periodicity as thefunction in several steps. First, we define the wave function

Wigner crystaft of a single bubble withV electrons at théowestLL:
Later, the FQHE was observed at the next (LL index M Pk

N=1) and then studied theoreticafly’ Except for the first Voird=11 (z—z)x exp( - iz) : ©)

of these works, the exact diagonalization of small systems i<j : =1 4l

(typically with six particle3 was used. Since already at
N=1 the FQHE energy gap is rather small, it has been sug-

gested in these works thatldt>1 the FQHE is absenf. To @ e o o y
prove this statement, however, it is imperative to increase the |_
system size to keep it larger than the cyclotron raddys o o o o x
which is the characteristic spread of electron wave functions.

Such a calculation does not appear to be feasible at present. )

Another method, used by MacDonald and Girvis,to com- 33R ‘ L

pare the energies of trial liquid and crystalline states. Mac- it

Donald and Girvin proposed the following wave function for
the liquid state at thé&lth LL:

(ahN
JNT

Herea;r is theinter-LL ladder operator, raising thigh elec-
tron to the next LL, and¥?) is the Laughlin state at the
lowest LL.

Although the failure of the Laughlin liquid to be the
ground state aN>1 has been conjecturéd® until recently
no alternative candidate has been proposed. Indeed, at
N=2 the 3 Laughlin liquid is still lower in energy than the
conventional Wigner crystalRecently such a candidate was
identified as the “bubble” phas¥, or the state where the
guiding centers of the cyclotron orbits fill the large domains
(bubbles forming a triangular latticgFig. 1(a)]. A quasiclas-

(b

[wty=11 —=vD). M

FIG. 1. The quasiclassical image of the bubble ph&seTop
view. The bubbleddark circles are the places where the accumu-
lation of the guiding centers occurd) The enlarged view of one

- . . . ] X bubble. The dark region shows the guiding center density
sical image of a single bubble is shown in Figb)l The v(x,y)/2712, while the toroidal figure illustrates the charge density

optilmal number of electrons in a bubble was estimated tQjis¢ributionp,(x,y) around the bubbléhalf of the charge density is
b removed. This charge density is created by electrons moving in the

- cyclotron orbits centered inside the bubble. One such cyclotron or-
M=3wyN, (2 bit is shown by the arc.

0163-1829/97/54.5)/93264)/$10.00 55 9326 © 1997 The American Physical Society



55 BRIEF REPORTS 9327

Here z;=x;+iy; is the complex coordinate of thgh elec- 20.04
tron, andl is the magnetic length. Second, we construct the
wave function of a bubble at thidth LL centered at point
R. This is achieved with the help of the magnetic translation
and inter-LL ladder operators, -0.06
g1 ed PR s @ :
g = ex s
KL UNT 12 oLk 55 -008}
K
whereb; is anintra-LL ladder operator. To finally obtain the
wave function of the CDW, we build an antisymmetric com-
bination of the bubbles centered at the triangular lattice sites 0.1}
R,
0.0 0.1 0.2 0.3 04 0.5
Veow=2 sgnP) L1 w{P(ry}. (5) Uy

HereP’s are the permutations of electrons between bubbles,. FIG. 2. The cohesive energy of the CDW as a funCt'o.m’@for
different numbers of electrons in a bube The calculations are

For the cas =1 .”"2 trial state c0|.nC|des with the ngner made forN=5 andr,= 2. The crosses mark the Laughlin liquid
crystal wave functiort® It can be easily seen thdtcpyy is of .

energies.
the Fock type, and that the overlap between the wave func-
tions of different bubblegfor M =3vyN) is negligible.

: ) Here e(q) takes into account the screening of the Coulomb
It proves to be useful for further calculations to introduce

interaction among the electrons at the upper LL by lower

the guiding center density LL's. It is given by
v(r=2ml2Y 8(r—R). (6) e(a)=1+v(a)I(q), ©)
|
. . _ 2 (—1n-m
The summation here is carried over the electrons at the con-  1I(q)= 12 > Fom(DFmn(@), (10)

= IXV m <n hog(N—m
sidered LL, andR;=r;+ (1/w)[2x V] is the guiding center mZN=n fiwe(n—m)

operator, withy; andw,, being the velocity of théth particle ~ Wherev(q)=2me’/«q is the Coulomb potential. This di-
and the cyclotron frequency, respectivéiyit can be shown €electric function tends to unity in the limitg—0 and

that for the state defined by E(h), g—, and reaches its largest value of+1/2Nr, at
q~R.!. Herer,=\2e? khvg is the gas parameter. Ac-
- A vk 9%\ 22, counting for the LL mixing by means of the dielectric func-
(v(@)=— Fum-2(a),  Fux=Lg "| =] "% tion was shown to be accurate provideg<l andNrg>1

(7) (Ref. 12. Moreover, the results obtained within the frame-
work of this model remain correct to the leading order in
whereA is the area of the system, ahﬁ,(x) is the Laguerre rg even forNrg<1. In the latter limite(q)=21, which is
polynomial. consistent with the fact that the LL mixing can be ignored
Now we would like to find the cohesive ener@f’’ of ~ completely.
our trial state. The calculation is quite similar to the case of Using Egs.(7) and(8), the cohesive energy for any given
the lowest LL? vy can be calculated numerically. The result is, of course,
different for different values oM (see Fig. 2 Therefore,
one has to findM corresponding to the lowest energy. The
8 energies of the CDW optimized in this way are summarized
in Tables | and Il. Notice that the energy unit used in the

(see Ref. 11 for detailsThe summation in Eq8) is carried tables,riw., differs from e?/ ! traditionally used in the
over the reciprocal vectors of the triangular lattice. TheCase of the lowest LL. The reason for this difference is that,

Hartree-Fock interaction potential=(q) is defined as fol- @t high LL’s, the relevant length scale is not the magnetic

2

1
CDW_
Econ =5~ > Uy
N gq#0

=(¢)) —<V(A?)>

lows (cf. Ref. 11: length| but the cyclotron radiu®k.= 2N+ 1l. Hence the
natural energy scale i®?kR;, which coincides with
Ur() = Up(G) — Ual(q), riw, up to a numerical factort
In Table | we present the results for the cdde,<1,
v(q) when the LL mixing can be ignored completely, i.e.,
uy(q)= MFNN(Q)’ e(q)=1. Table Il contains the results for the case= /2,

which corresponds to the practical range of electron densities
in GaAs heterostructures. One can see that the optimal num-
ber of electrons per bubble is the same both with and without
the screening, and is in perfect agreement with .

2 d’g’ iqg’!? ’
Uex(0) = 2771 f(zmzeqq un(a’).
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TABLE I. The cohesive energies of the Laughlin liqid,,and  Haldane pointed out in Ref. 1, the interaction of electrons
the CDW ESRW in the limit re—0. M is the optimal number of confined to a single LL is described by means of a discrete

electrons per bubble. The energy unitrigiw.. The energy per set of pseudopotentialé,, defined by
electron in the uniform uncorrelated st&&E" is provided for ref-

erence. Correlated crystB{)"'=—0.2473 o, . 1
il S Vir=5— | d?Qun(@)Fnl V20). (11)
1
UVNT— 3
N v EUEL ELNh : ECOW SE/ESDW In particular, the cohesive energy of the Laughlin liquid can
Cco co co

be written in the following form:

0 1 —0.0853 —0.082G1) —0.0733 —-11.9% "
1 1 —-0.1692 —0.18313) —0.1726 —6.1% L _VN
2 2 -01970 -0.19234) -0.2163  11.0% Econ= ?mzzl CmVim- (12
3 3  —02135 -0.20735  —0.2433 14.8% _ N _
4 4 02251 —022266) —0.2480 10.3% In this formulac,, are the coefficients in the expanston
5 5 —0.2341 -0.234G7) —0.2767 15.4% - 5\ om
Cm [ [ —r2412
h(n=2> | =] e (13)
VN:% m=1 m! 4|
v UEL L CbDw CDW . . . .
N M E Econ Econ SE/Econ for the density-density correlation functioh(r) of the
0 1 00396 —0.06381) 0.0622 2 7% Laughlin liquid at thelowestLL,
1 1 —0.0986 —0.211G4) —0.2043 —3.3% ALA M2
2 1 -01164 -0.24736) -0.2454  —0.75% h(r)= {p(NP(9)=(p)" (14)
3 2 -01267 -0.24588) —0.2811 12.6% (p)?
4 2 -01340 -024819)  —0.2990 17.0% The coefficients,,, have been found from a fit to our Monte
5 3 —0.1395 —0.25699) —0.3187 19.4%

Carlo data orh(r). Although the problem of finding such a
fit is a nontrivial one, we are unable to give the details here

The above results have been tested by the self—consisteﬁ?cause of space limitations. The results are summarized in
ables | and 1.

Hartree-Fock procedure, similar to that described in Ref. 4. At this point we can compare the energies of the Laughlin
i f he initial o . func- . A
Starting from the initial approximation given by wave func liquid and the CDW. As one can see, M0 and 1, the

tion (5), this procedure finds the optimal set©@f(q)) fora | 3 aniin liquid i -

) o _ : ghlin liquid is lower in energy. At larghl, however, the
given periodicity 05f the CDW. The obtained corrections arécp\y wins. The transition to the bubble state both with and
of the order of 10°r fiw., and do not affect the significant without screening takes place At=2 for vy=1 and at

digits displayed in Tables | and Il. We associate the COIMECN = 3 for = L. The difference in the energies of these two
tions with a slight nonorthogonality of the wave functions of states aNEZ an vy=1 is very small. For this reason we
= =4 i

different bubbles. : ; . .
X L . , attempted to improve the trial sta® further by introducing
Let us now discuss the Laughlin liquid at high LL’s. As the magnetophonon correlatiotfsThe optimal CDW at this
point has only one electron per unit cell, and so only few
modifications to the original method of Lam and Girtin
were necessary here. Our computations show that the differ-
ence between the energies of t@related Wigner crystal

TABLE Il. Same as Table |, but;= \/E which corresponds to
the electron density of 1:610"" cm™2 in GaAs-Al,Ga; _,As het-
erostructures. The energies are now given in the unifs«f.

=1 and the Laughlin quu_id.is sr_’naller than the numericql error
N v EUEL EL. oW SE/ESOW (see Table )l Henc? it is still unclear which phase is the
ground state ab=4z.
0 1 -0.1206 -—0.11591) -0.1037 —11.8% So far, we have considered a somewhat idealized system.
1 1 -0.1297 -0.15193) -—0.1424 —-6.7% In order to make contact with the experimental practice, we
2 2 —0.1136 —0.11413) —0.1188 4.0% will briefly discuss the effects of disorder and the firute-
3 3 —-0.1034 —0.09463) —0.1018 7.1% extent of the wave functions. In regard to the former, it is
4 4  —0.0965 —0.08243) —0.0896 8.0% rather clear that an external impurity potential will favor the
5 5 —0.0914 —0.07333) —0.0805 8.9% CDW state. Indeed, the CDW can lower its energy by ad-
justing to the external potential, while the incompressible
py= L N liquid state cannot’ We have also studied the effect
N v EUEL EL ECDW SE/ECDW of the finite z extent of the wave fun(_:tlons. Tq this end we
coh coh con used the Fang-Howard form fact®with the thickness pa-
0 1 —-0.0560 —0.09032) —0.0880 —2.6% rameterb as large aﬂaszEl. Qualitatively, the result is
1 1 -0.0765 —0.17277) —0.1692 -2.1% that the finitez extent diminishes the energy difference be-
2 1  —0.0677 -0.142@9 —0.1396 -1.7% tween the CDW and the Laughlin liquid. However, the tran-
3 2 —0.0618 -0.11399) —0.1202 5.2% sition point remains the same.
4 2  —0.0577 —0.09639) —0.1050 8.3% Finally, another comment is in order here. Although the
5 3  —0.0547 —0.08499) —0.0946 10.3% FQHE at the lowest LL has been unambiguously identified

with the formation of the Laughlin liquid, at higher LL's
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some other liquid state may exist. One can speculate, fdout remains of the order d&?.>1. Hence it is highly unlikely
example, that the tendency to form many electron groups ighat the CDW would be melted by the quantum fluctuations
generic for high LL's, and instead of the Laughlin liquid one at high LL's.

has a liquid of bubbles. A similar idea was put forward by In conclusion, we have compared the energies of the
Halperin®® to explain the FQHE at=£,2, etc., at the lowest Laughlin liquid and the CDW with the optimized period
LL. Despite the attractiveness of such an idea, we doubt the~R,) at the upper LL filling factors= % andi. We found
existence of either Laughlin or even more sophisticated ligthat the3 liquid state is unstable fdl=2, while the: state

uid states at high LL’s for the following reason. The liquid loses to the CDW atN=3. Our result implies that thé
state can be thought of as a CDW melted by the zero-poinjuantum Hall plateaus cannot be observed at filling factors
vibrations. For such a melting to occur, the amplitude ofy>4. This conclusion is in agreement with the existing ex-
these vibrations must be comparable to the lattice constaperimental datd. The difference between the energies of the
(the Lindemann criterion This amplitude is determined by CDW and the Laughlin liquid ail=2 andvy= % is so small

the magnetic barrier, since the interaction energy per electrothat more work is needed to distinguish them unambigu-
is smaller than the cyclotron gap. Hence it does not exceedusly.

the magnetic length. Now an important difference between

the low and high LL’'s becomes clear. At low LL’s the CDW

contains only one electron per unit cell, and the lattice con- The authors are grateful to B. I. Shklovskii for suggesting

stant decreases with increasing filling factor. At some valuehis problem to us and for numerous helpful comments. We
of vy it becomes of the order df and the crystal melts into also acknowledge discussions with J. T. Chalker, A. H. Mac-
the Laughlin liquid. At high LL’s, however, the lattice con- Donald, and R. Willett. This work is supported by the NSF

stant does not change much as one increases the LL fillinginder Grant No. DMR-9321417.
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