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Tunneling zero-bias anomaly in the quasiballistic regime
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~Received 11 December 1996!

We study the tunneling density of states~DOS! of the interacting electron gas beyond the diffusive limit. A
strong correction to the DOS persists even at electron energies exceeding the inverse transport relaxation time,
which could not be expected from the well-known Altshuler-Aronov-Lee~AAL ! theory. This correction origi-
nates from the interference between the electron waves scattered by an impurity and by the Friedel oscillation
this impurity creates. Account for such processes also revises the AAL formula for the DOS in the diffusive
limit. @S0163-1829~97!09615-X#
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Zero-bias anomaly in tunneling conductance is a gen
phenomenon observed in a great variety of physical syste
One well-known type of zero-bias tunneling anomaly is th
caused by the scattering of electrons on Kondo impuri
positioned in the vicinity of the tunneling barrier.1 However,
the zero-bias anomaly was also observed2 in systems con-
taining no Kondo impurities at all. Namely, in experimen
with disordered conductors the differential tunneling cond
tance is suppressed at small biases. This effect appears
quite universal: it shows up in all dimensions, it is pr
nounced both in metals and semiconductors, and it depe
only on the strength of disorder in the system. The zero-b
anomaly in differential conductance in the absence of Kon
impurities was puzzling for years until it was discovered3,4

by Altshuler, Aronov, and Lee~AAL ! that this phenomenon
is due to the interaction between the itinerant electrons
disordered conductor. Conductance of a point tunnel con
is proportional to the local tunneling density of electr
states~DOS!. AAL showed that the electron-electron inte
action in the presence of disorder results in a negative
rection to DOS, which is singular at the Fermi energy. In
case of tunneling into a two-dimensional conductor, the A
result,dnAAL , for such a correction reads

dnAAL ~e!

n0
5

A

EFt
ln~ ueut/\!. ~1!

HereEF is the Fermi energy,t is transport relaxation time
the parameterA.0 depends on details of the electro
electron interaction,n05m/p\2 is the free-electron densit
of states (m is the electron mass!, and energye is measured
from the Fermi level. Correction~1! is inversely proportional
to t and diverges if the electron energy approaches the Fe
level, e→0. The AAL theory assumes the diffusive motio
of electrons, which constrains the electron energy to the
terval e,\/t. Clearly, in the case of a strong disorde
EFt;\, this condition is not restrictive. However, in clean
samples~e.g., heterostructures with tunable density of tw
dimensional electron gas5! the energy domaine.\/t be-
comes accessible, while the region of applicability of Eq.~1!
shrinks.

The behavior of the density of statesdn(e) in the ballistic
regime,e*\/t, has not been addressed in the literature
our knowledge. The main purpose of this paper is to sh
550163-1829/97/55~15!/9322~4!/$10.00
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that interaction does lead to a significant correction to
DOS even for these large electron energies. This correc
arises from the interference of scattering on an impurity a
on the Friedel oscillation it creates. Account for such p
cesses also revises the original AAL formula for the DOS
the diffusive limit, adding a nonsingular but large contrib
tion to Eq.~1!.

Electron density of states for energies larger than the
verse transport relaxation time is associated with the elec
dynamics on a time scale shorter thant. During such a small
time an electron does not experience a large number of s
tering events, i.e., the scattering on disorder potential can
treated in the lowest order of the perturbation theory, in c
trast to the diffusive limit. This approximation accounts on
for the trajectories of electrons that were scattered only
one impurity. We will show that the logarithmically diver
gent correction to the density of states appears in this
proximation already.

We start with the most instructive case of the finite-ran
interaction potential, and we calculate the correction to
one-particle DOS in the quasiballistic limit due to a sing
short-range scatterer. Consider an impurity at the origin;
potentialU imp(r ) induces a modulation of electron densi
around the impurity. In the Born approximation, one can fi
the oscillating correction,dn(r )5n(r )2n0, to the electron
densityn(r )5(e l,0uc l(r )u2:

dn~r !52
n0g

2p

sin~2kFr !

r 2
. ~2!

Here r is the distance from the impurity,kF is the Fermi
wave vector,g5*U imp(r )dr , and n0 is the density of the
electron gas in the absence of impurities. The single-elec
wave functionc l(r ) satisfies the Schro¨dinger equation for
noninteracting electrons, Ĥ0c l5(e1EF)c l , where
Ĥ052(\2/2m)¹21U imp(r ). The oscillating contribution,
Eq. ~2!, is known as a Friedel oscillation.6

In the presence of interactionV(r2r 8) between electrons
density oscillation~2! gives rise to an additional term in th
Hamiltonian,ĤHF. In the coordinate representation,ĤHF has
the form ~see, e.g., Ref. 7!

HHF~r1 ,r2!5VH~r1!d~r12r2!2VF~r1 ,r2!, ~3a!
9322 © 1997 The American Physical Society



th
i

a

ro

r

on

er
r
y

ex
is
ec
t-
c
in

e
q

ac

es

d

Eq.

cor-
for

l

en-
, re-

uld

pu-

ged

ng

tly

n,

e

he
g
ed
ip,

n
-
ck
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VH~r !5E V~r2r 8!dn~r 8!dr 8, ~3b!

VF~r1 ,r2!5V~r12r2!
dr~r1 ,r2!

2
. ~3c!

HereVH andVF are the Hartree and the exchange~Fock!
energies, respectively,dr(r1 ,r2) is the perturbation of the
density matrixr(r1 ,r2)5(e l,0c l* (r2)c l(r1) by the impu-
rity. Only the electrons with the same spin participate in
exchange interaction, which is reflected by the factor 1/2
Eq. ~3c!. The Hartree-Fock energy~3b!, ~3c! oscillates as a
function of distance from the impurity in the same manner
dn(r ) does.

The local density of states,n(e,r )52(2/p)ImGe
R(r ,r ),

is related to the retarded Green function of the elect
Ĝe
R5@e2Ĥ1 i0#21, whereĤ5Ĥ01ĤHF. Let us find now

the correction to this Green’s function,dGe
R(r ,r ), due to a

coherent process, which includes a scattering on the impu
potential itself, and a scattering on the potential~3! formed
by the Friedel oscillation. In the lowest-order perturbati
theory approximation we get

dGe
R~r ,r !52gHGe

R~r ,0!E Ge
R~0,r1!VH~r1!Ge

R~r1 ,r !dr1

2Ge
R~r ,0!E Ge

R~0,r1!VF~r1 ,r2!

3Ge
R~r2 ,r !dr1dr2J . ~4!

The Green functionGe
R(r ,r 8) for a free electron at large

distances,kFur2r 8u@1, and small energies,e!EF , is

Ge
R~r ,r 8!5

meip/4

\2A2pkFur2r 8u
ei ~kF1e/\vF!ur2r8u ~5!

in two dimensions;e is measured from the Fermi energy.
Below we will be interested in the density of states av

aged over the spatial scales much larger than the Fe
wavelengthlF[2p/kF . Therefore, we should retain onl
those corrections,dn(e,r ), that are smooth functions ofr .
Let us show now, using the Hartree contribution as an
ample, that Eq.~4! indeed yields such a correction. Th
contribution corresponds to the following process. The el
tron starts motion at the pointr , then experiences two sca
terings, first on the impurity potential in the origin and se
ond on the potential formed by the Friedel oscillation
point r1, and finally returns to pointr ; see Fig. 1. Motion
along this closed contour is represented in Eq.~4! by the
productGe

R(r ,0)Ge
R(0,r1)Ge

R(r1 ,r )}exp@if(r ,r1)#, where

f~r ,r1!5~r1r 11ur12r u!~kF1e/\vF! ~6!

is the geometric phase acquired by the electron. Ther
another strongly oscillating factor in the integrand of E
~4!—the scattering potentialVH(r1)}sin(2kFr1). Obviously,
the result of integration is determined by the domain in sp
where the total phase of the integrand,f(r ,r1)22kFr 1, is a
slow function ofr1. The corresponding electron trajectori
are those close to the straight line; see trajectoryA in Fig. 1.
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At r 1.r , Eq. ~6! yields the total phase of the integran
2(e/\vF)r 1. Remarkably, this phase does not depend onr .
As a result, the Hartree correction to the Green function,
~4!, becomes anonoscillating function of r . Similar argu-
ments can be applied to the evaluation of the exchange
rection to the Green function. The resulting expression
the interaction correction to the local DOS is

dn~e,r !'2
@V~0!22V~2kF!#n0

4g2

8kF
2r 2

~7!

if the distance from the impurity lies within the interva
max$lF ,d%&r&\vF /e, drops rapidly (}1/r 3) at r*\vF /e,
and saturates atr&max$lF ,d%. Hered is the characteristic
spatial scale of the interaction potential, andV(0) and
V(2kF) are the Fourier components of the interaction pot
tial appearing from the exchange and the Hartree terms
spectively.

In order to find the averaged density of states, one sho
sum up contributions of the type given by Eq.~7! from all
the impurities and then average over pointr where the cor-
rection is measured. Introducing the concentration of im
rities ni and using\/t52pn0nig

2, we arrive at the follow-
ing expression for the interaction correction to the avera
DOS in the quasiballistic (e@\/t) limit:

dn~e!

n0
[2

^dn~e,r !&
n0

5
@V~0!22V~2kF!#n0\

4pEFt
lnU e

D U,
~8!

with D5min$EF ,\vF /d%.
In principle, the correction may be of any sign dependi

on the relation betweenV(0) andV(2kF). However, in any
realistic system the interelectron interaction is sufficien
smooth,d*lF , andV(0)@V(2kF). Therefore, in the fol-
lowing we will concentrate on the exchange contributio
which dominates in the correction to the DOS.

The derivation of Eq.~8! is valid for energiese exceeding
\/t, which is the high-energy cutoff in the AAL theory; se
Eq. ~1!. The quasiballistic formula~8! at the boundary of the
region of its applicability,e;\/t, does not match AAL’s
result ~1!. The reason for this mismatch is the choice of t
high-energy cutoff. Physically, AAL cutoff means takin
into account only that part of the Friedel oscillation form
by the electron states within a narrow energy str

FIG. 1. Two typical trajectories (A, B) of an electron scattered
by an impurity (I ) and by the corresponding Friedel oscillatio
~concentric arcs!. The correctiondn(r ) is dominated by the trajec
tories of the typeA, for which the electron is almost scattered ba
at I and r1.
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2\/t&«,0, below the Fermi level. This cutoff was dic
tated by the range of applicability of the diffusion approx
mation for the electron dynamics AAL used.3,4 On the other
hand, our analysis leading to Eq.~8! shows that electron
states within a much wider strip,2D&«,0, are important
for the correction. As it turns out, this wider strip is impo
tant for the calculation of the DOS ate&\/t as well. To
show this and to remedy the mismatch, below we calcu
the DOS without using the diffusion approximation.

We are interested in the spatially averaged density
states, which makes it possible to use the standard6 diagram-
matic techniques. The correction to the averaged one-par
density of states has the form

dn~e,T!52
2

p
ImE dp

~2p!2
dG~ i en→e1 i0,p!, ~9!

where en is the fermionic Matsubara frequency,T is the
temperature.~For brevity we omit the Planck constant in a
the intermediate formulas.! We will calculate the correction
to the electron propagator,dG( i en ,p), to first order in the
screened electron-electron interactionVsc( iV l ,Q). In the
metallic regime (EFt@1) the exchange contribution to th
propagator is

dG~ i en ,p!52@G~ i en ,p!#2T(
V l

E dQ

~2p!2
u„en~V l2en!…

3@G~ iV l ,Q!#2Vsc~ iV l ,Q!

3G~ i en2V l ,p2Q!. ~10!

Here G( i en ,p)5@ i en2jp1( i /2t)sgnen#
21 is the electron

Green’s function in the dirty conductor,V l is the bosonic
Matsubara frequency, andG is the standardly defined~see,
e.g., Ref. 6, p. 634! vertex function calculated in the ladder4,6

approximation. As long as we are developing theory ap
cable for any relation between electron energy and\/t, we
cannot use the usual diffusion form for the vertex functio
The formula valid for an arbitrary momentumQ and energy
V l transfer is

G~ iV l ,Q!5S 12
1/t

A~ uV l u11/t!21~vFQ!2
D 21

. ~11!

Note that in the limitV l ,vFQ!t21, Eq. ~11! reduces to the
standard diffusion4 expression. On the other hand, the on
scatterering case studied in the first part of the paper co
sponds to the quasiballistic limit,V l ,vFQ@t21, of Eq.~11!.
In this limit one should expand Eq.~11! up to the first order
in 1/t.

Calculation of the interaction correction to the DOS co
sists now of substitution of Eq.~10! into Eq.~9! and straight-
forward integration with account for Eq.~11!.

The case of a finite-range electron-electron interaction
especially simple because we can replaceVsc( iV l ,Q) in Eq.
~10! by the Fourier component of the unscreened interac
potentialV(Q). In this case the correction coincides with th
exchange term in formula~8!. It means that the formula fo
the exchange correction to the DOS,

dn~e!
5
V~0!n0\

lnU e U, ~12!

n0 4pEFt D
te

f

le

i-

.

-
e-

-
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n

is valid for the energies both larger and smaller than\/t.
For the long-range Coulomb interaction, screeni

should be taken into account,Vsc( iV l ,Q)5V(Q)/
@11V(Q)P( iV l ,Q)#. Here the polarization operator in th
random phase6 approximation is

P~ iV l ,Q!5n0S 12
G~ iV l ,Q!uV l u

A~ uV l u11/t!21~vFQ!2
D . ~13!

Straightforward evaluation of Eqs.~9! and ~10! with ac-
count of Eqs.~11! and ~13! yields

dn~e,T!

n0
52

1

8pEFtEē

DdV

V
lnF D2

VAV21~1/t!2
G , ~14!

whereaB5\2k/me2 is the Bohr radius,k is the dielectric
constant,ē[max$ueu,T%, and the cutoff energyD is given
now byD5\vF /aB .

The correction to the one-particle DOS, Eq.~14!, is our
main quantitative result. The diffusive and the quasiballis
asymptotic behavior of the correction is easily found.

In the diffusive limit,e!\/t, the exchange correction t
the one-particle DOS has the form

dn~ ē !

n0
52

\

16pEFt H lnS ēaB
4

\D2t D ln~ ēt/\!12@ ln~tD/\!#2J ,
~15!

whereD5vF
2t/2 is the diffusion coefficient. The first term o

the sum in Eq.~15! is the result of the Altshuler-Aronov-Lee
theory.3 The second, new, term is not singular. This part
the correction represents the contribution of electrons dee
the Fermi sea, with energies below the ‘‘\/t strip.’’

In the quasiballistic limit,e@\/t, exchange correction to
the one-particle DOS is

dn~ ē !

n0
52

\

8pEFt
@ ln~ ē/D!#2. ~16!

The leading term in the energy dependence of the correc
is }(lnē )2 at any relation betweenē andt. In the crossover
region, the correction is given by

dn~ ē !

n0
52

\

8pEFt
$@ ln~ ē/D!#21 f ~ ēt !%. ~17!

Here f (x)5(21/2)@ ln(x)#21Li2(2x2), where Li2(x) is a
second-order polylogarithm function.8 Asymptotes of the
function f (x), f (x→`)50 and f (x→0)52(1/2)@ ln(x)#2,
enable one to obtain from Eq.~17! the limits ~16! and ~15!,
respectively.

The density of states Eq.~14! describes adequately th
electron tunneling without the lateral momentum conser
tion, such as tunneling through an inhomogeneous bar
However, the electron-electron interaction affects the tunn
ing through a homogeneous barrier as well. We will consi
below tunneling between two identical quantum wells, a
suming~in accordance with the experiments5! the lateral mo-
mentum conservation in the course of tunneling. We w
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find that the interaction correction to the conductance a
has a logarithmic zero-bias anomaly.

In the absence of disorder and of the electron-elect
interaction, the conservation of in-plane momentum impl
that an electron can tunnel only at zero bias. Disorder al
smears this singularity, leading to theI -V characteristic9

I 0~V!5G0

eV~\/ts!
2

~eV!21~\/ts!
2 , ~18!

with the width given by the inverse quantum lifetime of ele
trons in the wells, 1/ts . HereV is the bias applied to the
contact, andG0 is the zero-bias conductance.

Electron-electron interaction adds a singular at zero b
negative logarithmic correction to the tunneling current:

dI ~V!

I 0~V!
'

\

pEFt
ln~d/aB!ln~eV/D!. ~19!

HereeV[max$eV,T% is assumed to satisfy10 the conditions
eV!\/ts , vF /AaBd, andd is the separation between well
The upper cutoff for the correction isD5\vF /aB , and by
no means\/t. In the absence of interaction, Eq.~18! would
lead to a peak in the differential conductancedI/dV at zero
s.

ls-

v.
o

n
s
e

-

s,

bias. The negative diverging correction~19! splits this peak
into two. The separation between the maxima of these
subpeaks is

eVsp5
\

ts
A ln~d/aB!

8pEFt/\
. ~20!

The subpeaks should be resolved at sufficiently low temp
tures,T&eVsp. An estimate forVsp for the data of Turner
et al. 5 givesVsp'0.05 mV. It is important that Eqs.~19! and
~20! are valid at any relation betweeneV, eVsp, and the
energy\/t.

In summary, we studied the tunneling density of states
interacting two-dimensional electron gas beyond the dif
sive limit. A significant interaction-induced suppression
the density of states persists at electron energies even la
than the inverse transport relaxation time, which could not
expected from the well-known Altshuler-Aronov-Le
theory.3 The AAL formula for the density of states at low
energies is also revised, and an additional nonsingular, h
ever large, contribution was found.

Discussions with B.L. Altshuler and A.I. Larkin are ac
knowledged with gratitude. This work was supported
NSF Grant DMR-9423244.
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