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Tunneling zero-bias anomaly in the quasiballistic regime
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We study the tunneling density of stat@0S) of the interacting electron gas beyond the diffusive limit. A
strong correction to the DOS persists even at electron energies exceeding the inverse transport relaxation time,
which could not be expected from the well-known Altshuler-Aronov-L&AL ) theory. This correction origi-
nates from the interference between the electron waves scattered by an impurity and by the Friedel oscillation
this impurity creates. Account for such processes also revises the AAL formula for the DOS in the diffusive
limit. [S0163-18207)09615-X

Zero-bias anomaly in tunneling conductance is a generithat interaction does lead to a significant correction to the
phenomenon observed in a great variety of physical system®OS even for these large electron energies. This correction
One well-known type of zero-bias tunneling anomaly is thatarises from the interference of scattering on an impurity and
caused by the scattering of electrons on Kondo impuritie®n the Friedel oscillation it creates. Account for such pro-
positioned in the vicinity of the tunneling barrieHowever,  cesses also revises the original AAL formula for the DOS in
the zero-bias anomaly was also obsefvsystems con- the diffusive limit, adding a nonsingular but large contribu-
taining no Kondo impurities at all. Namely, in experimentstion to Eq.(1).
with disordered conductors the differential tunneling conduc- Electron density of states for energies larger than the in-
tance is suppressed at small biases. This effect appears to berse transport relaxation time is associated with the electron
quite universal: it shows up in all dimensions, it is pro- dynamics on a time scale shorter tharDuring such a small
nounced both in metals and semiconductors, and it dependsne an electron does not experience a large number of scat-
only on the strength of disorder in the system. The zero-biagering events, i.e., the scattering on disorder potential can be
anomaly in differential conductance in the absence of Konddreated in the lowest order of the perturbation theory, in con-
impurities was puzzling for years until it was discovet®d trast to the diffusive limit. This approximation accounts only
by Altshuler, Aronov, and Le€AAL ) that this phenomenon for the trajectories of electrons that were scattered only on
is due to the interaction between the itinerant electrons in @ne impurity. We will show that the logarithmically diver-
disordered conductor. Conductance of a point tunnel contagient correction to the density of states appears in this ap-
is proportional to the local tunneling density of electron proximation already.
states(DOS). AAL showed that the electron-electron inter-  We start with the most instructive case of the finite-range
action in the presence of disorder results in a negative colinteraction potential, and we calculate the correction to the
rection to DOS, which is singular at the Fermi energy. In theone-particle DOS in the quasiballistic limit due to a single
case of tunneling into a two-dimensional conductor, the AALshort-range scatterer. Consider an impurity at the origin; its

result, 5v"-, for such a correction reads potential U;y,,(r) induces a modulation of electron density
around the impurity. In the Born approximation, one can find
5™ (€) A I ” 1 the oscillating correctiongn(r)=n(r)—ng, to the electron
v B el ). @ densityn(r) ==, —olt1(r)[%
HereEr is the Fermi energyr is transport relaxation time, 109 SIN(2Ker)
the parameterA>0 depends on details of the electron- 5n(r)=—ET. 2

electron interactionyy=m/ 74?2 is the free-electron density

of states (n is the electron magsand energy is measured  perer s the distance from the impuritye is the Fermi
from the F_erm| Ie\{el. Correctiofl) is inversely proportional wave vector,g= U (r)dr, andn, is the density of the
to 7 and diverges if the electron energy approaches the FerMyiacron gas in the absence of impurities. The single-electron

level, e—~0. The AAL theory assumes the diffusive motion |\, e functiony(r) satisfies the Schdinger equation for

of electrons, which constrains the electron energy to the inﬁoninteractin electrons, Aoy =(e+ Eq) where
terval e<#/r. Clearly, in the case of a strong disorder, . ) 9 ) » Hoth €TEF o o
Eq7~7, this condition is not restrictive. However, in cleaner Ho= —(A/2m)V*+Uny(r). The oscillating contribution,

samples(e.g., heterostructures with tunable density of two-Ed- (2), is known as a Friedel oscillatidh.

dimensional electron g3sthe energy domaire>%/7 be- In the presence of interaction(r —r’) between electrons,
comes accessible, while the region of applicability of gg.  density oscﬂlimor(Z) gives rise to an additional term in the
shrinks. Hamiltonian,H . In the coordinate representatid,,- has

The behavior of the density of statés(e) in the ballistic ~ the form(see, e.g., Ref.)7
regime, ex#/7, has not been addressed in the literature to
our knowledge. The main purpose of this paper is to show Hup(r,r2)=Vu(ry)d(ri—ro)—Ve(ry,ro), (38
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VH(r)=J V(r=r')yén(r’)dr’, (3b)
S , s b ‘
VF(rlarz):V(rl—rz)w- (39 !

Here Vy and V¢ are the Hartree and the exchangeck
energies, respectivelyp(rq,r,) is the perturbation of the
density matriXp(rl,r2)=E€|<o¢|*(r2)1/1|(r1) by the impu-
rity. Only the electrons with the same spin participate in the
exchange interaction, which is reflected by the factor 1/2 in
Eq. (3¢). The Hartree-Fock energib), (3¢) oscillates as a FIG. 1. Two typical trajectoriesX, B) of an electron scattered

function of distance from the impurity in the same manner a®y an impurity () and by the corresponding Friedel oscillation
sn(r) does (concentric args The correctionv(r) is dominated by the trajec-

The local density of states;(e,r)= —(2/7T)ImG§(r,r), ;c;r;e:n%frthe typéA, for which the electron is almost scattered back
1.

is related to the retarded Green function of the electron

GE=[e—H+i0] %, whereH=Ho+Hye. Let us find now At r,>r, Eq. (6) yields the total phase of the integrand

the correction to this Green's functiodGJ(r,r), due to a  2(e/fvg)r,. Remarkably, this phase does not depend on

coherent process, which includes a scattering on the impuritgs a result, the Hartree correction to the Green function, Eq.

potential itself, and a scattering on the potent®l formed  (4), becomes aonoscillating function of r. Similar argu-

by the Friedel oscillation. In the lowest-order perturbationments can be applied to the evaluation of the exchange cor-

theory approximation we get rection to the Green function. The resulting expression for
the interaction correction to the local DOS is

R _ R R R
5Ge(r,r)—29[Ge(r,0)f G20, )Vy(rG(rq,r)dry ) [V(O)—2V(2kp)]v3g2

61/(6,[')% 8k'2:r2

(7
R R
GE(r,O)f CeOr)Velrara) if the distance from the impurity lies within the interval
maX\g ,d<r<tuvg/e, drops rapidly ¢1/r3) at r=hvel/e,
xG?(rz,r)drldrz]. (4)  and saturates at<maxXAr,d}. Hered is the characteristic
spatial scale of the interaction potential, aM{0) and
The Green functiorG?(r,r’) for a free electron at large V(2Kg) are the Fourier components of the interaction poten-

distanceskg|r—r’|>1, and small energieg<Eg, is tial appearing from the exchange and the Hartree terms, re-
spectively.
R md ™4 et eltop)lr 1| In order to find the averaged density of states, one should
GX(r,r')= Wme FTElvE (5  sum up contributions of the type given by Eg) from all

the impurities and then average over painwvhere the cor-
in two dimensionsg is measured from the Fermi energy.  rection is measured. Introducing the concentration of impu-
Below we will be interested in the density of states aver-fities n; and usingfi/ 7=2mvon;g?, we arrive at the follow-
aged over the spatial scales much larger than the Ferniifg expression for the interaction correction to the averaged
wavelengthar=2x/ke . Therefore, we should retain only DOS in the quasiballisticeg>7/7) limit:
those correctionsgv(e,r), that are smooth functions of

Let us show now, using the Hartree contribution as an ex- ov(e) __ (ov(er)) _ [V(O)_ZV(ZkF)]VOﬁm €
ample, that Eq.(4) indeed yields such a correction. This Vo Vg AmEpT Al
contribution corresponds to the following process. The elec- 8

tron starts motion at the poimt then experiences two scat- .. A= min{Ex fiv /d).
terings, first on the impurity potential in the origin and sec-

onq on the pc_)tential formed by _th(.a Fried(_el osciIIati_on inon the relation betwee¥(0) andV(2kg). However, in any
point rl,_and finally retuns to point; see Fig. 1. Motion o7 jigyic system the interelectron interaction is sufficiently
along thISR closedR contou; is represer)ted in &. by the smooth,d=\r, andV(0)>V(2ke). Therefore, in the fol-
productG/(r,0)G.(0r1)G(ry.r)xexfid(r,r1) ], where lowing we will concentrate on the exchange contribution,
©6) which dominates in the correction to the DOS.

The derivation of Eq(8) is valid for energieg exceeding
is the geometric phase acquired by the electron. There i/, which is the high-energy cutoff in the AAL theory; see
another strongly oscillating factor in the integrand of Eq.Eg. (1). The quasiballistic formulé8) at the boundary of the
(4)—the scattering potentialy(rq)ocsin(er4). Obviously, region of its applicability,e~7%/7, does not match AAL’s
the result of integration is determined by the domain in spaceesult(1). The reason for this mismatch is the choice of the
where the total phase of the integramflr,r;) —2kgr,, isa  high-energy cutoff. Physically, AAL cutoff means taking
slow function ofr,. The corresponding electron trajectories into account only that part of the Friedel oscillation formed
are those close to the straight line; see trajectoiy Fig. 1. by the electron states within a narrow energy strip,

In principle, the correction may be of any sign depending

d(r,r)=(r+r,+|r;—r)(Ke+ elfivg)
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—hlT<e<0, below the Fermi level. This cutoff was dic- is valid for the energies both larger and smaller tham.

tated by the range of applicability of the diffusion approxi- For the long-range Coulomb interaction, screening
mation for the electron dynamics AAL uséd.On the other should be taken into accountV¢{iQ,,Q)=V(Q)/
hand, our analysis leading to E@) shows that electron [1+V(Q)II(iQ);,Q)]. Here the polarization operator in the
states within a much wider strip; A<e<O0, are important random phageapproximation is

for the correction. As it turns out, this wider strip is impor-

tant for the calculation of the DOS at<#/r as well. To

show this and to remedy the mismatch, below we calculate IiQ,,Q)= Vo( 1-
the DOS without using the diffusion approximation.

We are interested in the spatially averaged density of ) ) _
states, which makes it possible to use the starfcdiedyram- Straightforward evaluation of Eq¢9) and (10) with ac-
matic techniques. The correction to the averaged one-particgount of Egs(11) and(13) yields
density of states has the form

I'([iQ,Q)|Q
V(I Q|+ 1m)?+ (0EQ)?

) . (13

, . Sv(e,T) 1 ﬁdﬂ | A2 ] 10
= — —_— n —,
5v(e,T):—;|mJ#mueﬁeﬂo,m, 9) o 8mErT)e Q | QJO2+(1/7)

where ¢, is the fermionic Matsubara frequency, is the whereag=%2x/mée” is the Bohr radius is the dielectric

temperature(For brevity we omit the Planck constant in all constant,e_z max]|€,T}, and the cutoff energy is given
the intermediate formulasWe will calculate the correction NOW byA=five/ag.

to the electron propagatosG(ie,,p), to first order in the The correction to the one-particle DOS, Hg4), is our
screened electron-electron interactidh(iQ,,Q). In the Main quantitative result. The diffusive and the quasiballistic

metallic regime Er7>1) the exchange contribution to the @Symptotic behavior of the correction is easily found.
propagator is In the diffusive limit, e<#/ 7, the exchange correction to

the one-particle DOS has the form

. | 6Q _
36ier p)=~[Glien PITE | ablen(@-ed) s 1

Vo - 16’7TE|:’T

@l
In(thT)In(eT/ﬁ)+2[In(TA/ﬁ)]2 ,

X[T(iQ,Q1*VediQ1,Q)

. (15
XG(ien—Q,p—Q). (10 > e . ,
) } ) L whereD =v¢7/2 is the diffusion coefficient. The first term of
Here G(ien,p) =[ien—£p+ (i/27)Sgre,] ~ is the election  he sum in Eq(15) is the result of the Altshuler-Aronov-Lee
Green's function in the dirty conductof), is the bosonic  theory?® The second, new, term is not singular. This part of
Matsubara frequency, anld is the standardly definetsee,  the correction represents the contribution of electrons deep in
e.g., Ref. 6, p. 63avertex function calculated in the ladd€r  the Fermi sea, with energies below thé/# strip.”
approximation. As long as we are developing theory appli- | the quasiballistic limite>#/7, exchange correction to
cable for any relation between electron energy and we  the one-particle DOS is
cannot use the usual diffusion form for the vertex function.

The formula valid for an arbitrary momentu@ and energy sv(e)

Q, transfer is [In(elA)]. (16)

vo a 8wERT
-1
(12) The leading term in the energy dependence of the correction
is = (Ine)? at any relation betweea and . In the crossover
region, the correction is given by

17
V([ +17)2+ (vEQ)?
Note that in the limitQ), ,uQ<7"1, Eq.(11) reduces to the

riQ,,Q=(1

standard diffusioh expression. On the other hand, the one- Sv(e)

scatterering case studied in the first part of the paper corre- =— {[|n(UA)]2+f(e_T)}_ (17)
sponds to the quasiballistic limi€), ,v Q> 71, of Eq.(11). Yo 8mEgT

In this limit one should expand E@l1) up to the first order

Here f(x)=(—1/2)[IN(X)J>+Li,(—x?), where Li(x) is a
second-order polylogarithm functiéhAsymptotes of the
function f(x), f(x—»)=0 and f(x—0)=—(1/2)[In(x)]%,

in 1/7.
Calculation of the interaction correction to the DOS con-

sists now of substitution of Eq10) into Eq.(9) and straight- . )
forward integration with account for Egll). ?Q;beliuc\)/g?yto obtain from EqL7) the limits (16) and(15),

es T:Sa(ﬁasgn?f |2 gggg:gg%\(,aee!gﬁtrrzn]g?tg nclgr;t(iar:aé:tmn > The density of states Eq14) describes adequately the
P y Pi€ PIEGEI21 %) INEA.  gjactron tunneling without the lateral momentum conserva-
(10) by the Fourier component of the unscreened interactiory

g : : L . tion, such as tunneling through an inhomogeneous barrier.
potentialV(Q). 'F‘ this case the correction coincides with the However, the electron-electron interaction affects the tunnel-
exchange term in formuléB). It means that the formula for

the exchanae correction to the DOS ing through a homogeneous barrier as well. We will consider
9 ’ below tunneling between two identical quantum wells, as-
suming(in accordance with the experime?)tshe lateral mo-

o V(0)voh g . .
vie) _VIO)wof, , (12)  mentum conservation in the course of tunneling. We will

vo  AmEgT

€
A
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find that the interaction correction to the conductance alsdias. The negative diverging correcti¢h9) splits this peak

has a logarithmic zero-bias anomaly.

into two. The separation between the maxima of these two

In the absence of disorder and of the electron-electrosubpeaks is

interaction, the conservation of in-plane momentum implies
that an electron can tunnel only at zero bias. Disorder alone

smears this singularity, leading to the/ characteristit

eV(h/1g)?

lo(V)= GOW- (18

with the width given by the inverse quantum lifetime of elec-

trons in the wells, M. HereV is the bias applied to the
contact, ands, is the zero-bias conductance.

Electron-electron interaction adds a singular at zero bia

negative logarithmic correction to the tunneling current:

SI(V)

ToV) = 7E.n(d/ag)in(eV/A).

(19

HereeV=maxeV,T} is assumed to satisfy the conditions
eV<flrs, ve/Jagd, andd is the separation between wells.
The upper cutoff for the correction 8=#%vg/ag, and by
no meandi/ . In the absence of interaction, E4.8) would
lead to a peak in the differential conductartiédV at zero

f

eVSp: T_
s

/In(d/ag)

8mwERT/h’ (20)
The subpeaks should be resolved at sufficiently low tempera-
tures, T<eVy,. An estimate forV, for the data of Turner
etal.® givesVg~0.05 mV. It is important that Eq$19) and
(20) are valid at any relation betweeaV, eV, and the
energyfhi/ .

In summary, we studied the tunneling density of states of
interacting two-dimensional electron gas beyond the diffu-

Sive limit. A significant interaction-induced suppression of

the density of states persists at electron energies even larger
than the inverse transport relaxation time, which could not be
expected from the well-known Altshuler-Aronov-Lee
theory® The AAL formula for the density of states at low
energies is also revised, and an additional nonsingular, how-
ever large, contribution was found.
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