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Polaronic enhancement in the ground-state energy of an electron bound to a Coulomb impurity
in a parabolic quantum dot
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Using the Feynman-Haken variational path-integral formalism we obtain the polaronic correction to the
ground-state energy of an electron bound to a positive Coulomb impurity in a polar semiconductor quantum
dot with parabolic confinement in both two and three dimensions. We perform calculations for the entire range
of the electron-phonon coupling constant and the Coulomb binding parameter and for arbitrary confinement
length. We apply our results to several semiconductor quantum dots and show that the quantum-dot enhance-
ment in the polaronic correction in some of these dots can be very [80&63-18207)05615-4

Ultralow-dimensional structures with quantum confine- A2, 1 N e? e
ment in all the spatial directions are commonly referred to as H' = — 2—V;,+§mz wgixi’z——, +ﬁwoz b &,ba,
guantum dotgsee Ref. 1 for a review With the recent de- m =1 Eel q
velopments in nanofabrication technology quantum dots can R ~
be realized in both two- and three-dimensional systems and +2 [€q(e9 T =1)b ¢ THcl, (€]
can be made as small as a few nanometers in size. Interest in a

the subject of quantum dots is primarily twofold. First, the : : >, .
. ; ! where all vectors arbl dimensionaly’ is the position vector
issues involved at the nanoscales are of fundamental impor-

t b f the full ¢ X f th bl f the electron andh is its Bloch effective massy,,; is the
ance because of the ull quanium hature ot the problem an equency of the confining potential in téh direction,w is

f[hus have an intrinsic appeal. Secondly and probably MOrthe longitudinal-optical{LO) phonon frequency which is as-
importantly the quantum-dot structures have tremendous po-

. . Ty . _
tentiality of finding applications in microelectronic device sumed to be d|sper3|onlestsd(bq) Is the creatlor(anm’hlla-
technology because of their considerable design flexibilitytion) operator of a LO phonon of wave vectgr and&;, is
and very many novel physical effect& the electron-phonon interaction coefficient. We shall use the

Recently much effort has also been directed towards exFeynman units in which the energy is scaledfay,, length
ploring the polaronic properties of several semiconductoby r Whererozqal, go being an inverse length defined by
quantum dots=** It has been observed in this connection ,2q2/m=t w,, i.e., qo=(Mwo/%)*2 volume byrl, and
that the polaronic effects can be very large in these dots ifyave vector byg,. Such scalings are equivalent to setting
their sizes are reduced to a few nanometers. More recently,— m=,=1. In these units, the Hamiltonia) reads
the related problem of an optical polaron bound to a Cou-

lomb impurity in a quantum dot has also been considered in 1 1 N 'B
the presence of a magnetic fieft:® Imperfections being a H=— V22> 03¢~ +> b by
rule rather than an exception, such an impurity-bound po- 2 2{=1 r=5 9

laron problent’*8is obviously more realistic and is therefore )

of much practical importance. In the present paper we pur- +> {gq(e—iqf_l)'g T4 H.cl, )
port to study the bound polaron problem in a quantum dot in q d

the absence of a magnetic field and for the entire range of the

electron-phonon coupling constant, the Coulomb binding pawhere

rameter, and the confinement strength. We employ the

Haken methotf~2! of using the Feynman path-integral for- Loy o~ [ € ho\12

malism to obtain the ground-stat€S) energy of a bound 00" P hwges, Mo/

polaron in a symmetric quantum dot with parabolic confine-

ment in both two and three dimensions. We make an £=& ho 3)
N-dimensional(ND) formulation and obtain results for both a >aq 0

two- and three-dimensional dots as special cases. For t - 22 .
sake of mathematical simplicity we neglect the size quantiI]{aor £q We use the pre'scn'pt|on of Peetasal ™ According
zation of phonons and model the relevant phonon modes bT39 that prescriptiont, is given by
the corresponding bulk modes.

The Hamiltonian for a bound polaron in a parabolic quan- |§q|2:

tum dot can be written as

[((N—1)/2)2N~ 32 (N-172
VNqul

a. 4)
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To eliminate the impurity-phonon interaction we now apply 40.00
the transformationb; = bg—£,. The Hamiltonian(2) then ]
becomes ]
1 1 N B 30.00 —
H=—>Vvi+ 2 0 X2— =+, btba i
2" 2= roge ~ ] Cds
. .
+2 {£qe b+ H.c}, (5) E 20001
I N : CdSe
< 1

where ,8=,E— J2a. The above Hamiltonian without
phonons corresponds to the impurity problem in a parabolic 10.00 3

quantum dot which has been studied by ztal.?® by using ] Cate

an exact method. However, for polar semiconductor quantum ] CoAs

dots the electron—optical-phonon interaction is expected to ] In8b¥

have sizable effects on the electronic properties and therefore 0.00 Frrrrrrrrrrrrrrrr e R GRERERREAREEEEEEY

the bound polaronic Hamiltoniafb) seems to be a better 0.00 2000 40.00 - 0000 80.00 10000
starting point. The transformation function relevant for the o (A)

determination of the GS energy of the Hamiltoniés) is FIG. 1. Polaronic corrections; AE (in meV) to the GS energy
given by the path integer&l®® of an electron in InSbh, GaAs, CdTe, CdSe, and CdS quantum dots

with parabolic confinement in 3D, as a function of the confinement

> - -~ lengthl, (in angstroms
KOO(rb-tb;ra,ta):f Dr(t)es, (6)
where the index 00 refers to the transition from a zero- E’;‘,?z— £4 _F((N_l)/z) i
phonon state to a zero-phonon state &rid a nonlocal clas- 4z 4l T'(N/2) JZ

sical action given b
g y a7 T(N-1)/2) 1 ['(Z+1)

1., 1 s , (10
s (_ e Y ?)dt 2 TN JZrz+d)
where Z=1/u? and | is the dimensionless confinement
1 B - length given byl =1,/ry=1/Jw. Equation(10) h b
4 2 ) B gth given byl=1,/r, . Equation(10) has to be
* 2% f f dtds &g “exgliq-[r(t)—r(s)]} minimized numerically with respect {6 to obtain the varia-
tional Feynman-Haken GS energy for specific valuel of
Xexp{—|t—sl}, (7 In the absence of the electron-phonon interaction the en-
which is, however, not path integrable. Following the Haken®r9Y Of an impurity atom in a quantum dot can be written
method we therefore choose an effective trail action from Eq. (10) as

ND, s N ) I'(N—-1)/2) 1
dt, (8) EFH(a_O)_E+W - F(N/Z) \/?’

>

1 ) -
=5 12 Ver(1)

th tp
Seffz f Leffdtz f
ta t

a

11
WhereVeﬁ(F) is an effective potential which should be fairly
close to the actual potential occurring$and which should
be exactly soluble. We shall specify the choiceVgf; later. N 1 T((N=1)/2) N
If ®'g and E}'y are, respectively, the eigenfunctions and WZ’ZJF > Wﬁz'm— 270 (12
eigenvalues of the quantum mechanical Hamiltonkyy
corresponding to the classical Lagrangiags, then the The polaronic correction is then defined as

Feynman variational theorem yields

whereZ' has to be obtained from the equation

AE=EN}—ENY(a=0), (13
ND

ND
Eo exact Ern which we obtain for botiN=2 andN=3. As expected, in
1 1 B both 2D and 3D dots the polaronic effects are found to be
:< Q,Eﬁ ( - EV;2+ EZ wizxiz_?> ’®§15ﬁ> more pronounced for larger values @fand 8.
-2 2
g

In Figs. 1 and 2 we show the plot 6f AE as a function

|<‘D'ND ¢ e*‘d'q(I)ND \E of |, for a few selected quantum dots of polar semicondeuc_-
et oar ol (99 torssuchas InSh, GaAs, CdTe, CdSe, and CdS. The material

Ej e~ Eoert1 parameters used in the calculation are given in Table I. Fig-

yvhereEES is the Feynman-Haken variational energy which dots is shown in Fig. 2. Clearly for the same material and for
is an upper bound to the exact polaron GS end§.c:  the same value of the confinement length, the polaronic ef-

Taking Ves= 2 u%r? and assumingo;=w,=---on=w We  fect is stronger in a 2D dot than in a 3D dot. It is also clear
finally obtain for a symmetric quantum dot that the polaronic effects exhibited by some of the dots are

ure 1 gives the behavior for the 3D dots while that for the 2D
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TABLE I. Material parameters for GaAs, CdS, CdSe, CdTe, and
InSb (taken from Ref. 26

m g
60.00 3 (in units of bare  (in meV) a B
1 Cds electronic mass
] GaAs 0.066 36.7 0.068 0.5447
20.00 1 cds 0.155 38.26 0527  1.225
E CdSe CdSe 0.130 26.576 0.460 1.238
] CdTe 0.091 20.84 0.315 1.064

80.00 -

lat 1

—AE (meV)

InSh 0.0138 24.46 0.022 0.2184

20.00

CdTe

both two and three dimensions. We have employed the

1 1hsh GaAs Feynman-Haken path-integral formalism which is known to

0.00 Frrrrrrrrr e yield quite accurate results for the polaron problems to ob-
0.00 2000  40.00  60.00  80.00  100.00 tain the polaronic correction to GS energy of the impurity-
o (A) bound electron for the entire range of the electron-phonon

FIG. 2. Polaronic corrections; AE (in meV) to the GS energy ~ coupling constant and the Coulomb binding parametgr
of an electron in InSb, GaAs, CdTe, CdSe, and CdS guantum dot@nd for arbitrary confinement Iength. We observe that the
with parabolic confinement in 2D as a function of the confinementpolaronic corrections are more pronounced in a 2D dot than
lengthl, (in angstromg in a 3D dot of the same material for all values of the con-
finement length. We consider a few selected polar semicon-
. . ductor quantum dots and demonstrate that the polaronic cor-
quite pronounced below a few nanometers. As the confine-

. . ' rections increase as the confinement length decreases in both
ment length increases, the polaronic effect is, however

found to diminish significantly in both 2D and 3D dots over 2D af‘d 3D dOtS. and may become very large in some of these
) dots if the dot sizes are reduced below a few nanometers. We
a small range of the confinement length after whidh var-

ies rather slowly with the confinement lenath approachin have, however, neglected in this work the effect of interac-
. y . 9 PP %ion of the electron with the interface phonons for the sake of
asymptotically to the bulk limit.

d . mathematical simplicity. This probably restricts the validity
In conclusion, we have studied the effect of electron— :
. ; : : of our results to dots of sizes larger than about 2 nm.
optical-phonon interaction on the motion of an electron

bound to a positive Coulomb impurity in a symmetric polar  One of the author§S.M.) wishes to thank the University
semiconductor quantum dot with parabolic confinement inGrants Commission, India, for financial support.
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