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Polaronic enhancement in the ground-state energy of an electron bound to a Coulomb impurity
in a parabolic quantum dot

Soma Mukhopadhyay and Ashok Chatterjee
School of Physics, University of Hyderabad, Hyderabad 500 046, India

~Received 10 September 1996; revised manuscript received 8 November 1996!

Using the Feynman-Haken variational path-integral formalism we obtain the polaronic correction to the
ground-state energy of an electron bound to a positive Coulomb impurity in a polar semiconductor quantum
dot with parabolic confinement in both two and three dimensions. We perform calculations for the entire range
of the electron-phonon coupling constant and the Coulomb binding parameter and for arbitrary confinement
length. We apply our results to several semiconductor quantum dots and show that the quantum-dot enhance-
ment in the polaronic correction in some of these dots can be very large.@S0163-1829~97!05615-4#
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Ultralow-dimensional structures with quantum confin
ment in all the spatial directions are commonly referred to
quantum dots~see Ref. 1 for a review!. With the recent de-
velopments in nanofabrication technology quantum dots
be realized in both two- and three-dimensional systems
can be made as small as a few nanometers in size. Intere
the subject of quantum dots is primarily twofold. First, t
issues involved at the nanoscales are of fundamental im
tance because of the full quantum nature of the problem
thus have an intrinsic appeal. Secondly and probably m
importantly the quantum-dot structures have tremendous
tentiality of finding applications in microelectronic devic
technology because of their considerable design flexib
and very many novel physical effects.2–6

Recently much effort has also been directed towards
ploring the polaronic properties of several semiconduc
quantum dots.7–14 It has been observed in this connecti
that the polaronic effects can be very large in these dot
their sizes are reduced to a few nanometers. More rece
the related problem of an optical polaron bound to a C
lomb impurity in a quantum dot has also been considere
the presence of a magnetic field.15,16 Imperfections being a
rule rather than an exception, such an impurity-bound
laron problem17,18is obviously more realistic and is therefo
of much practical importance. In the present paper we p
port to study the bound polaron problem in a quantum do
the absence of a magnetic field and for the entire range o
electron-phonon coupling constant, the Coulomb binding
rameter, and the confinement strength. We employ
Haken method18–21 of using the Feynman path-integral fo
malism to obtain the ground-state~GS! energy of a bound
polaron in a symmetric quantum dot with parabolic confin
ment in both two and three dimensions. We make
N-dimensional~ND! formulation and obtain results for bot
two- and three-dimensional dots as special cases. For
sake of mathematical simplicity we neglect the size qua
zation of phonons and model the relevant phonon mode
the corresponding bulk modes.

The Hamiltonian for a bound polaron in a parabolic qua
tum dot can be written as
550163-1829/97/55~15!/9279~3!/$10.00
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where all vectors areN dimensional,rW8 is the position vector
of the electron andm is its Bloch effective mass,vpi is the
frequency of the confining potential in thei th direction,v0 is
the longitudinal-optical-~LO! phonon frequency which is as
sumed to be dispersionless,bqW

†(bqW) is the creation~annihila-

tion! operator of a LO phonon of wave vectorqW , andjqW 8
8 is

the electron-phonon interaction coefficient. We shall use
Feynman units in which the energy is scaled by\v0, length
by r 0 wherer 05q0

21, q0 being an inverse length defined b
\2q0

2/m5\v0, i.e., q05(mv0 /\)
1/2, volume by r 0

N , and
wave vector byq0. Such scalings are equivalent to settin
\5m5v051. In these units, the Hamiltonian~1! reads
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where

v i5
vpi

v0
, b̃5S e2

\v0e`
D Y S \

mv0
D 1/2,

jq5jq8
8 /\v0 . ~3!

For jq we use the prescription of Peeterset al.22 According
to that prescription,jq is given by

ujqu25
G„~N21!/2…2N2~3/2!p~N21!/2

VNq
N21 a. ~4!
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To eliminate the impurity-phonon interaction we now app
the transformation,bqW 5 b̃qW2jq . The Hamiltonian~2! then
becomes

H52
1
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2(i51

N

v i
2xi

22
b

r
1(

qW
bqW
†
bqW

1(
qW

$jq~e
2 iqW •rWbqW

†
1H.c.%, ~5!

where b5b̃2A2a. The above Hamiltonian withou
phonons corresponds to the impurity problem in a parab
quantum dot which has been studied by Zhuet al.23 by using
an exact method. However, for polar semiconductor quan
dots the electron–optical-phonon interaction is expected
have sizable effects on the electronic properties and there
the bound polaronic Hamiltonian~5! seems to be a bette
starting point. The transformation function relevant for t
determination of the GS energy of the Hamiltonian~5! is
given by the path integeral24,25

K00~rWb ,tb ;rWa ,ta!5E DrW~ t !eS, ~6!

where the index 00 refers to the transition from a ze
phonon state to a zero-phonon state andS is a nonlocal clas-
sical action given by

S5E S 2
1

2
rẆ 22

1

2( v i
2xi

21
b

r Ddt
1
1

2(qW
E E dt dsujqu2exp$ iqW •@rW~ t !2rW~s!#%

3exp$2ut2su%, ~7!

which is, however, not path integrable. Following the Hak
method we therefore choose an effective trail action

Seff5E
ta

tb
Leffdt5E

ta

tbF2
1

2
rẆ 22Veff~rW !Gdt, ~8!

whereVeff(rW) is an effective potential which should be fair
close to the actual potential occurring inS and which should
be exactly soluble. We shall specify the choice ofVeff later.
If F j ,eff

ND andEj ,eff
ND are, respectively, the eigenfunctions a

eigenvalues of the quantum mechanical HamiltonianHeff
corresponding to the classical LagrangianLeff , then the
Feynman variational theorem yields
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whereEFH
ND is the Feynman-Haken variational energy whi

is an upper bound to the exact polaron GS energyE0,exact
ND .

Taking Veff5
1
2m4r 2 and assumingv15v25•••vN5v we

finally obtain for a symmetric quantum dot
ic
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where Z51/m2 and l is the dimensionless confineme
length given byl5 l 0 /r 051/Av. Equation ~10! has to be
minimized numerically with respect toZ to obtain the varia-
tional Feynman-Haken GS energy for specific values ofN.

In the absence of the electron-phonon interaction the
ergy of an impurity atom in a quantum dot can be writt
from Eq. ~10! as

EFH
ND~a50!5

N

4Z8
1

N
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b

1
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whereZ8 has to be obtained from the equation

N
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2
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bZ81/22

N

4
50 . ~12!

The polaronic correction is then defined as

DE5EFH
ND2EFH

ND~a50!, ~13!

which we obtain for bothN52 andN53. As expected, in
both 2D and 3D dots the polaronic effects are found to
more pronounced for larger values ofa andb.

In Figs. 1 and 2 we show the plot of2DE as a function
of l 0 for a few selected quantum dots of polar semiconde
tors such as InSb, GaAs, CdTe, CdSe, and CdS. The mat
parameters used in the calculation are given in Table I. F
ure 1 gives the behavior for the 3D dots while that for the
dots is shown in Fig. 2. Clearly for the same material and
the same value of the confinement length, the polaronic
fect is stronger in a 2D dot than in a 3D dot. It is also cle
that the polaronic effects exhibited by some of the dots

FIG. 1. Polaronic corrections,2DE ~in meV! to the GS energy
of an electron in InSb, GaAs, CdTe, CdSe, and CdS quantum
with parabolic confinement in 3D, as a function of the confinem
length l 0 ~in angstroms!.
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quite pronounced below a few nanometers. As the confi
ment length increases, the polaronic effect is, howev
found to diminish significantly in both 2D and 3D dots ov
a small range of the confinement length after whichDE var-
ies rather slowly with the confinement length approach
asymptotically to the bulk limit.

In conclusion, we have studied the effect of electro
optical-phonon interaction on the motion of an electr
bound to a positive Coulomb impurity in a symmetric po
semiconductor quantum dot with parabolic confinement

FIG. 2. Polaronic corrections,2DE ~in meV! to the GS energy
of an electron in InSb, GaAs, CdTe, CdSe, and CdS quantum
with parabolic confinement in 2D as a function of the confinem
length l 0 ~in angstroms!.
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both two and three dimensions. We have employed
Feynman-Haken path-integral formalism which is known
yield quite accurate results for the polaron problems to
tain the polaronic correction to GS energy of the impuri
bound electron for the entire range of the electron-phon
coupling constanta and the Coulomb binding parameterb
and for arbitrary confinement length. We observe that
polaronic corrections are more pronounced in a 2D dot t
in a 3D dot of the same material for all values of the co
finement length. We consider a few selected polar semic
ductor quantum dots and demonstrate that the polaronic
rections increase as the confinement length decreases in
2D and 3D dots and may become very large in some of th
dots if the dot sizes are reduced below a few nanometers.
have, however, neglected in this work the effect of inter
tion of the electron with the interface phonons for the sake
mathematical simplicity. This probably restricts the validi
of our results to dots of sizes larger than about 2 nm.

One of the authors~S.M.! wishes to thank the University
Grants Commission, India, for financial support.

TABLE I. Material parameters for GaAs, CdS, CdSe, CdTe, a
InSb ~taken from Ref. 26!.

m \v0

~in units of bare ~in meV! a b
electronic mass!

GaAs 0.066 36.7 0.068 0.5447
CdS 0.155 38.26 0.527 1.225
CdSe 0.130 26.576 0.460 1.238
CdTe 0.091 20.84 0.315 1.064
InSb 0.0138 24.46 0.022 0.2184
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