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Comparison of models for Raman spectra of Si nanocrystals
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Within the framework of a partial-density approach, the confinement of vibrations in spherical Si nanocrys-
tals is studied and the Raman frequency shifts of Si spheres with different sizes are derived based on the
Raman spectra obtained by a bond-polarizability model. The results obtained by the bond-polarizability model
are compared with those by the phenomenological model developed by RithtiefSolid State Commun.

39, 625(1981)]. [S0163-182607)01312-X

The recent observation of strong visible photolumines-free approach could give a good description of the vibra-
cence at room temperature from low dimensional Si nanotional properties for crystal 418
structures has created a different possibility for the applica- Since there is a large number of atoms involved in the
tions of Si in optoelectronic devices. These Si nanostructuregalculations of Si nanocrystals, in order to reduce the amount
include porous Si(Refs. 1 and 2 and Si nanometer-size of computation, the following assumptions are made. It is not
particles>* unreasonable to assume that Si atoms are located at their

Raman spectroscopy, which is a sensitive probe to thdiamond .Iatti_ce sites and no relaxation exists,' sinpe x-ray
local atomic arrangements and vibrations, has been used fhlaracterizations have found that the relaxation is rather
characterize porous $Refs. 5-8 and Si nanostructurés, small® The force constants in Si nanocrystals are taken to be

To characterize and interpret the Raman spectra of semicoffl€ Same as those in the bulk for similar reason. We do not

ductor nanostructures, a phenomenological phononL_Jse hydrogen atoms to saturate the dangling bonds, as is

confinement mod&X has been widely used. This model usually done in the electronic calculatiolisn order to re-

originally proposed by Richter, Wang, and Eyhereafter " duce the number of atoms involved. This is due to the fact
this model is referred to as the RWL moyetas been found that the very small atomic mass of hydrogen makes the fre-

. o ) quency of the Si-H vibrations much higher than that of Si-Si
to be useful for accounting for the peak-position shift, broadyjy ations. I hydrogen atoms are used, they would behave
ening, and asymmetry of bands observed in nanocrystallin

(58 5 02 a3 _ SImost like massless atoms, which have very little effect on
Si>™" Ge*, and GaAs:” The key part of the model is the gj.gj viprations. The final results are nearly unaffected

phonon weighting function. In most cases a Gaussian is Useghether the hydrogen atoms are introduced or not.

as the weighting functio™.” The form of weighting func- We first briefly describe the RWL model. The vibrational
tions has been chosen somewhat arbitrarily, without physicakave function of a phonon in an infinite crystal can be writ-
justifications. To our knowledge, there are few microscopicten as®(qq,r), whereq, is the wave vector or the momen-
calculations on the vibrational properties in Si nanocrystalstum of the phonon. In the off-resonant condition, only the
Only recently, Raman spectra of Si nanocrystals were studsptical phonons withg,=0 are Raman active in the one
ied by Shef by using a Keating-type potentifl.The Ra-  phonon scattering process. For nanocrystals the momentum
man spectra and Raman frequency shifts due to the effect ofill no longer be a good quantum number owing to the fact
size for Si spheres and columns were investigated by ththat the phonons are localized. This can be described by a
present authors based on a partial-density apprach. weighting functionwW(r,L) for the phonon amplitude, where

In the present work, the confinement of vibrations in SiL is the size of nanocrystals. The weighting function here is
spherical nanocrystals and Raman frequency shifts of Sgimilar to the envelope function in the electronic structures.
spheres with different sizes are investigated based on H can be viewed as a measure of the confinement of vibra-
partial-density approacH. The results obtained are com- tions in nanocrystals. The vibrational wave function in a
pared with those by the RWL model in order to test thenanocrystal can then be approximated®y
validity of the model.

A partial density approach is adopted to calculate the
force constants in crystal Si. Within the framework of this
approach, the ion-ion interaction contribution is calculated
conventionally by the Ewald method, while the electronicThe phonon wave functions in a nanocrystal can be ex-
related part is obtained by a pseudopotential calculation witlpressed as a superposition of the eigenfunctions found for the
the help of linear-response theory. The detailed descriptiogorresponding infinite crystal. Therefore, phonons out of an
of the approach can be found elsewhEr@his parameter- interval of g wave vectors centered aroung=_0 will con-

W(qo,r)=W(r,L)®(qo.r). @
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tribute to the Raman spectra. The first-order Raman spectrufibn modej with wave vectorg~0 is a sum of the contribu-
of a nanocrystall (), can be calculated BYy** tions from each bond in the whole system

(@) f - dg vl gy
2 2 ' . -
[o= (@] +(T'o/2) Aay,(j= 2 Aayilja), (10
where w(q) is the phonon dispersion curve of the infinite

crystal andl'y is the natural linewidth. Equatio(®) repre-  where Aw,,,(i]jq) is the differential polarizability of the
sents a weighted integration of phonon Lorentzians angith bond in the system considered.

C(q) is the Fourier coefficients of the vibrational weighting  The polarizability of the whole system is calculated as a

function expanded in a Fourier integral, sum of independent contributions from each bond, based on
the calculated eigenvalues and eigenvectors. Then, the Ra-
W(r‘l‘):f C(q)expiq-r)dq, (3 man inten.sity_in t_hq.w polarization for the backscattering
configuration is given by

1 _
C(O'):—o‘(zw)fW“'UeX“"q'”d“ @ (@)@ +1]3 so-wo@)Aa, ()2 1D
J

The weighting function will influence the line shape of the
phonon Raman peaks via the Fourier coefficiebfg). We  where [n(w)+1] is the Bose-Einstein population factor.

use an analytic form o (q), which is expressed as Neither Frdnlich interactions nor electro-optic effects are in-
corporated in the model.
»?(q)=C+Dcogaqg/4), 5 In the framework of the bond-polarizability model, Ra-

man spectra are obtained from the contributions of each bond
in the system considered, based on the calculated eigenval-
ues and eigenvectors. The microscopic characters are consid-

where C=1.714<10° cm~? and D=1.000<10° cm?,
taken from Ref. 20.
The key part of the model is the phonon weighting func-

tion. In most cases a Gaussian is used as the weighting fung-re_?h'(;1 (E,?Iser:?ﬁadiléncies and eigenvectors can be calculated
tion to characterize the Raman spectra of Si nano; clgentrequencies J ; : .
structures-7 by a direct diagonalization of the dynamical matrix for Si

spheres with the force constants given by the partial-density

W(r,L)=exp(—ar?/L?). (6) approach.” The Si spheres consisting of up to 657 atoms are
) ) - ) studied. Si nanocrystals with other shapes, for example,
The corresponding Fourier coefficients are given by cubes are also considered. The calculated results are almost
L6 identical if the number of atoms involved are the same com-
C(q)|2= extl — a2L2/2a). 7 pared with that of a sphere.
IC(@| 16(2m)%a® P-4 ) @) From the calculated eigenvectors, one can get the insight

into the confinement of vibrations in Si spheres. Figure 1

A sinc function has also been tested Lo : ;
shows the calculated vibrational amplitude of a Si sphere for

sin(2mr/L) the most Raman active mode. This Si sphere consists of 357
) o T or<Lti2 atoms with a diameter df=23.5 A. The most Raman active
W(r,L)= 8 mode in the present situation has the highest frequency.
0 if r=L/2, Other modes only give minor contributions to the Raman

which gives a vibrational amplitude exactly equal to O at theNtensity. The amplitude at the center of the sphere is nor-

boundary. The corresponding Fourier coefficients are giverﬁn""“.zed to be_l. It can be seen from the figure that the vi-
by brational amplitude attenuates from the center to the bound-

ary. At the boundary the vibrations with respect to the center
4L* Siré(qL/2) are quite small, only 3.6%. The vibrational amplitude can be
|C(q)|?= 5% A= 2LD (99 viewed as the envelope function or weighting function de-
(2m)" g (47" =LY scribed above. The sinc and Gaussian weighting functions
It should be noted that the Fourier coefficients of a sinc funcare also plotted for comparison. For the Gaussian weighting
tion given in Ref. 11 are not correct. The choice of a sincfunction, the coefficient ofr=872 has been widely used in
function is based on the assumption that the weighting functhe literature™" It gives too strong confinement. Only a
tion may be analogous to the wave function of an electron irsmall amount of atoms in the central part of the sphere can
a hard sphere potential. vibrate. This weighting function gives results which are far
In order to test the validity of the RWL model, a bond- from those obtained by the microscopic calculations. Other
polarizability modet'~2% is used to calculate the Raman values ofa have been tested. It is found that a value of
spectra of Si spheres from the eigenvalues and eigenfunex=9.67, obtained by the best fitting, can give a better de-
tions given by the microscopic calculations based on thescription. From Fig. 1 it can be seen that a sinc function and
partial-density approach. The detailed description of thea Gaussian function with=9.67 could give relatively good
bond-polarizability model can be found elsewh&tén the  descriptions of the vibrational confinement in Si spheres. By
framework of the bond-polarizability model, the variation of using the bond-polarizability model, Raman spectra of Si
the wv component of the polarizability tensor due to a pho-nanocrystals can be calculated from the eigenvalues and
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0.0 R \"Q-T‘#- cal Si nanocrystals. The solid circles are the results calculated by
o 2 4 6 8 10 12 14 the bond-polarizability model and the solid line is the fitted results.
(A) The results obtained by using the sinc weighting functidashed
r

line) and Gaussian weighting function wita=82 (dotted ling

FIG. 1. Calculated vibrational amplitudeolid circles for the ~ @nd«=9.67 (dot-dashed linkare also plotted for comparison.
most Raman active mode versus the distance from the center of a Si
sphere consisting of 357 atoms. The vibrational amplitude at thgvith « =872 are too large, while those obtained by the sinc
center is normalized to be 1. The diameter of the sphere is 23.5 Aynction and by the Gaussian with=9.67 are small al-
The lines are the results from using a sinc weighting functionthough the latter two can give relatively good descriptions of
(dashed |in}3and a Gaussian We|ght|ng function with the coefficient the vibrational confinement. For |arge size Si SphereS, the
=87 (dotted ling and «=9.67 (dot-dashed line frequency shifts obtained by the RWL model will be closer
to the results obtained by the microscopic calculations. This

: . . . . is due to the fact that for large size spheres the corresponding
eigenvectors obtained from the microscopic calculatlonsfrequency shifts are very small.

based on the force constants given by the partial-density ap- gher forms of weighting functions have been tested. It is

proach. found that no weighting functions can give good descriptions
We define the Raman frequency shifto by of the confinement and Raman frequency shifts at the same
Aw= _ time. There are two main reasons why the RWL model can-
w=w(L)— wgy, (12 , . . .
not reproduce the microscopic calculations. One is due to the
wherew(L) is the Raman frequency of a Si sphere with sizefact that the model is too simplified and the microscopic
L andw, is the LO or TO phonon frequency of the perfect Si characters are not taken into consideration. The second rea-
crystal at thel’ point. In Fig. 2 the Raman frequency shifts son is due to the fact that for small size nanocrystals one
versus size for Si spheres obtained by the bond-polarizabilitgannot use the envelope function or weighting function to
model are given as solid circles. For the convenience of apdescribe the phonon wave function in the nanocrystals.
plications, we use an analytic fotfrto describe Raman fre- In conclusion, the vibrational properties of Si nanocrystals
guency shifts obtained by the bond-polarizability model,  were investigated in the framework of partial-density ap-
proach. It was found that for Si spheres with a small size the
(13) RWL model cannot give a satisfactory description of the
weighting function and the Raman frequency shift simulta-
_ 1 _ , neously. Our results indicate that over the other weighting
vv.here.AT:.M.ézll cm ?gdl.y_ }'4::1: Tge r:ﬂtted r?SUIttS) ar€ functions the sinc function can give a good description of the
given in F1g. 2 as a sold fin€. in Fig. . t '€ resu ts'o talnedvibrational confinement in Si spheres and a relatively good
by the RWL model with different weighting functions are description of the Raman frequency shifts. Therefore, if the

also given for comparison. .It can _be seen that the RWI‘RWL model is used, a sinc weighting function is suggested
model cannot reproduce satisfactorily the Raman frequenc%r Si spheres
shifts calculated by the partial-density approach and the '
bond-polarizability model. The model with a sinc weighting This work is supported by the National Natural Science
function gives relatively better agreement than with a GaussFoundation of China. One of the auth@dsZ) is indebted to

ian function. Especially for small size Si spheres, the Ramafrofessor W. Ludwig and Professor C. Falter for interesting

frequency shifts obtained by the Gaussian weighting functiodiscussions.
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