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Comparison of models for Raman spectra of Si nanocrystals
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Within the framework of a partial-density approach, the confinement of vibrations in spherical Si nanocrys-
tals is studied and the Raman frequency shifts of Si spheres with different sizes are derived based on the
Raman spectra obtained by a bond-polarizability model. The results obtained by the bond-polarizability model
are compared with those by the phenomenological model developed by Richteret al. @Solid State Commun.
39, 625 ~1981!#. @S0163-1829~97!01312-X#
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The recent observation of strong visible photolumin
cence at room temperature from low dimensional Si na
structures has created a different possibility for the appl
tions of Si in optoelectronic devices. These Si nanostructu
include porous Si~Refs. 1 and 2! and Si nanometer-siz
particles.3,4

Raman spectroscopy, which is a sensitive probe to
local atomic arrangements and vibrations, has been use
characterize porous Si~Refs. 5–8! and Si nanostructures.3,9

To characterize and interpret the Raman spectra of semi
ductor nanostructures, a phenomenological phon
confinement model10,11 has been widely used. This mode
originally proposed by Richter, Wang, and Ley10 ~hereafter
this model is referred to as the RWL model!, has been found
to be useful for accounting for the peak-position shift, broa
ening, and asymmetry of bands observed in nanocrysta
Si,5–8 Ge12, and GaAs.13 The key part of the model is th
phonon weighting function. In most cases a Gaussian is u
as the weighting function.5–7 The form of weighting func-
tions has been chosen somewhat arbitrarily, without phys
justifications. To our knowledge, there are few microsco
calculations on the vibrational properties in Si nanocryst
Only recently, Raman spectra of Si nanocrystals were s
ied by Shen14 by using a Keating-type potential.15 The Ra-
man spectra and Raman frequency shifts due to the effe
size for Si spheres and columns were investigated by
present authors based on a partial-density approach.16

In the present work, the confinement of vibrations in
spherical nanocrystals and Raman frequency shifts o
spheres with different sizes are investigated based o
partial-density approach.17 The results obtained are com
pared with those by the RWL model in order to test t
validity of the model.

A partial density approach17 is adopted to calculate th
force constants in crystal Si. Within the framework of th
approach, the ion-ion interaction contribution is calcula
conventionally by the Ewald method, while the electron
related part is obtained by a pseudopotential calculation w
the help of linear-response theory. The detailed descrip
of the approach can be found elsewhere.17 This parameter-
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free approach could give a good description of the vib
tional properties for crystal Si.17,18

Since there is a large number of atoms involved in
calculations of Si nanocrystals, in order to reduce the amo
of computation, the following assumptions are made. It is
unreasonable to assume that Si atoms are located at
diamond lattice sites and no relaxation exists, since x-
characterizations have found that the relaxation is rat
small.8 The force constants in Si nanocrystals are taken to
the same as those in the bulk for similar reason. We do
use hydrogen atoms to saturate the dangling bonds, a
usually done in the electronic calculations,19 in order to re-
duce the number of atoms involved. This is due to the f
that the very small atomic mass of hydrogen makes the
quency of the Si-H vibrations much higher than that of Si
vibrations. If hydrogen atoms are used, they would beh
almost like massless atoms, which have very little effect
Si-Si vibrations. The final results are nearly unaffect
whether the hydrogen atoms are introduced or not.

We first briefly describe the RWL model. The vibration
wave function of a phonon in an infinite crystal can be wr
ten asF(q0 ,r ), whereq0 is the wave vector or the momen
tum of the phonon. In the off-resonant condition, only t
optical phonons withq050 are Raman active in the on
phonon scattering process. For nanocrystals the momen
will no longer be a good quantum number owing to the fa
that the phonons are localized. This can be described b
weighting functionW(r ,L) for the phonon amplitude, wher
L is the size of nanocrystals. The weighting function here
similar to the envelope function in the electronic structur
It can be viewed as a measure of the confinement of vib
tions in nanocrystals. The vibrational wave function in
nanocrystal can then be approximated by10,11

C~q0 ,r !5W~r ,L !F~q0 ,r !. ~1!

The phonon wave functions in a nanocrystal can be
pressed as a superposition of the eigenfunctions found for
corresponding infinite crystal. Therefore, phonons out of
interval of q wave vectors centered aroundq050 will con-
9263 © 1997 The American Physical Society
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tribute to the Raman spectra. The first-order Raman spec
of a nanocrystal,I (v), can be calculated by10,11

I ~v!}E uC~q!u2

@v2v~q!#21~G0/2!2
dq, ~2!

wherev(q) is the phonon dispersion curve of the infini
crystal andG0 is the natural linewidth. Equation~2! repre-
sents a weighted integration of phonon Lorentzians
C(q) is the Fourier coefficients of the vibrational weightin
function expanded in a Fourier integral,

W~r ,L !5E C~q!exp~ iq–r !dq, ~3!

C~q!5
1

~2p!3
E W~r ,L !exp~2 iq–r !dr . ~4!

The weighting function will influence the line shape of th
phonon Raman peaks via the Fourier coefficientsC(q). We
use an analytic form ofv(q), which is expressed as

v2~q!5C1Dcos~aq/4!, ~5!

where C51.7143105 cm22 and D51.0003105 cm22,
taken from Ref. 20.

The key part of the model is the phonon weighting fun
tion. In most cases a Gaussian is used as the weighting f
tion to characterize the Raman spectra of Si na
structures,5–7

W~r ,L !5exp~2ar 2/L2!. ~6!

The corresponding Fourier coefficients are given by

uC~q!u25
L6

16~2p!2a3 exp~2q2L2/2a!. ~7!

A sinc function has also been tested8

W~r ,L !5H sin~2pr /L !

2pr /L
if r,L/2

0 if r>L/2,

~8!

which gives a vibrational amplitude exactly equal to 0 at
boundary. The corresponding Fourier coefficients are gi
by

uC~q!u25
4L4

~2p!4
sin2~qL/2!

q2~4p22q2L2!2
. ~9!

It should be noted that the Fourier coefficients of a sinc fu
tion given in Ref. 11 are not correct. The choice of a s
function is based on the assumption that the weighting fu
tion may be analogous to the wave function of an electron
a hard sphere potential.

In order to test the validity of the RWL model, a bon
polarizability model21–23 is used to calculate the Rama
spectra of Si spheres from the eigenvalues and eigenf
tions given by the microscopic calculations based on
partial-density approach. The detailed description of
bond-polarizability model can be found elsewhere.24 In the
framework of the bond-polarizability model, the variation
themn component of the polarizability tensor due to a ph
m
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non modej with wave vectorq;0 is a sum of the contribu-
tions from each bond in the whole system

Damn~ jq!5 (
i

bonds

Damn~ i u jq!, ~10!

where Damn( i u jq) is the differential polarizability of the
i i th bond in the system considered.

The polarizability of the whole system is calculated as
sum of independent contributions from each bond, based
the calculated eigenvalues and eigenvectors. Then, the
man intensity in themn polarization for the backscatterin
configuration is given by

Imn~v!}@n~v!11#(
j

d„v2v j~q!…uDamn~ jq!u2, ~11!

where @n(v)11# is the Bose-Einstein population facto
Neither Fröhlich interactions nor electro-optic effects are i
corporated in the model.

In the framework of the bond-polarizability model, Ra
man spectra are obtained from the contributions of each b
in the system considered, based on the calculated eigen
ues and eigenvectors. The microscopic characters are co
ered in this model.

The eigenfrequencies and eigenvectors can be calcul
by a direct diagonalization of the dynamical matrix for
spheres with the force constants given by the partial-den
approach.17 The Si spheres consisting of up to 657 atoms
studied. Si nanocrystals with other shapes, for exam
cubes are also considered. The calculated results are al
identical if the number of atoms involved are the same co
pared with that of a sphere.

From the calculated eigenvectors, one can get the ins
into the confinement of vibrations in Si spheres. Figure
shows the calculated vibrational amplitude of a Si sphere
the most Raman active mode. This Si sphere consists of
atoms with a diameter ofL523.5 Å. The most Raman activ
mode in the present situation has the highest frequen
Other modes only give minor contributions to the Ram
intensity. The amplitude at the center of the sphere is n
malized to be 1. It can be seen from the figure that the
brational amplitude attenuates from the center to the bou
ary. At the boundary the vibrations with respect to the cen
are quite small, only 3.6%. The vibrational amplitude can
viewed as the envelope function or weighting function d
scribed above. The sinc and Gaussian weighting functi
are also plotted for comparison. For the Gaussian weigh
function, the coefficient ofa58p2 has been widely used in
the literature.5–7 It gives too strong confinement. Only
small amount of atoms in the central part of the sphere
vibrate. This weighting function gives results which are f
from those obtained by the microscopic calculations. Ot
values ofa have been tested. It is found that a value
a59.67, obtained by the best fitting, can give a better
scription. From Fig. 1 it can be seen that a sinc function a
a Gaussian function witha59.67 could give relatively good
descriptions of the vibrational confinement in Si spheres.
using the bond-polarizability model, Raman spectra of
nanocrystals can be calculated from the eigenvalues
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eigenvectors obtained from the microscopic calculatio
based on the force constants given by the partial-density
proach.

We define the Raman frequency shiftDv by

Dv5v~L !2v0 , ~12!

wherev(L) is the Raman frequency of a Si sphere with s
L andv0 is the LO or TO phonon frequency of the perfect
crystal at theG point. In Fig. 2 the Raman frequency shif
versus size for Si spheres obtained by the bond-polarizab
model are given as solid circles. For the convenience of
plications, we use an analytic form16 to describe Raman fre
quency shifts obtained by the bond-polarizability model,

Dv52AS aL D g

, ~13!

whereA547.41 cm21 and g51.44. The fitted results ar
given in Fig. 2 as a solid line. In Fig. 2 the results obtain
by the RWL model with different weighting functions ar
also given for comparison. It can be seen that the RW
model cannot reproduce satisfactorily the Raman freque
shifts calculated by the partial-density approach and
bond-polarizability model. The model with a sinc weightin
function gives relatively better agreement than with a Gau
ian function. Especially for small size Si spheres, the Ram
frequency shifts obtained by the Gaussian weighting func

FIG. 1. Calculated vibrational amplitude~solid circles! for the
most Raman active mode versus the distance from the center o
sphere consisting of 357 atoms. The vibrational amplitude at
center is normalized to be 1. The diameter of the sphere is 23.
The lines are the results from using a sinc weighting funct
~dashed line! and a Gaussian weighting function with the coefficie
a58p2 ~dotted line! anda59.67 ~dot-dashed line!.
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with a58p2 are too large, while those obtained by the s
function and by the Gaussian witha59.67 are small al-
though the latter two can give relatively good descriptions
the vibrational confinement. For large size Si spheres,
frequency shifts obtained by the RWL model will be clos
to the results obtained by the microscopic calculations. T
is due to the fact that for large size spheres the correspon
frequency shifts are very small.

Other forms of weighting functions have been tested. I
found that no weighting functions can give good descriptio
of the confinement and Raman frequency shifts at the s
time. There are two main reasons why the RWL model c
not reproduce the microscopic calculations. One is due to
fact that the model is too simplified and the microsco
characters are not taken into consideration. The second
son is due to the fact that for small size nanocrystals
cannot use the envelope function or weighting function
describe the phonon wave function in the nanocrystals.

In conclusion, the vibrational properties of Si nanocryst
were investigated in the framework of partial-density a
proach. It was found that for Si spheres with a small size
RWL model cannot give a satisfactory description of t
weighting function and the Raman frequency shift simu
neously. Our results indicate that over the other weight
functions the sinc function can give a good description of
vibrational confinement in Si spheres and a relatively go
description of the Raman frequency shifts. Therefore, if
RWL model is used, a sinc weighting function is sugges
for Si spheres.

This work is supported by the National Natural Scien
Foundation of China. One of the authors~J.Z.! is indebted to
Professor W. Ludwig and Professor C. Falter for interest
discussions.

Si
he
Å.
n
t

FIG. 2. Relation between the Raman frequency shifts with
spect to the bulk LO phonon at theG point and the size for spheri
cal Si nanocrystals. The solid circles are the results calculate
the bond-polarizability model and the solid line is the fitted resu
The results obtained by using the sinc weighting function~dashed
line! and Gaussian weighting function witha58p2 ~dotted line!
anda59.67 ~dot-dashed line! are also plotted for comparison.
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