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Statistics of the charging spectrum of a two-dimensional Coulomb-glass island
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~Received 30 December 1996!

The fluctuations of capacitance of a two-dimensional island are studied in the regime of low electron
concentration and strong disorder, when electrons can be considered classical particles. The universal capaci-
tance distribution is found, with the dispersion being of the order of the average. This distribution is shown to
be closely related to the shape of the Coulomb gap in the one-electron density of states of the island. Behavior
of the capacitance fluctuations near the metal-insulator transition is discussed.@S0163-1829~97!11416-3#
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CapacitanceC is conventionally understood as a well d
fined geometrical property of a metallic sample. For e
ample, for a metallic sphere of radiusR capacitanceC5R,
and when the sphere is large, in the first approximation
pacitance does not depend on the distribution of impuri
inside the sphere or on its charge. However, in very sm
metallic samples fluctuations of capacitance become obs
able. Recently, such fluctuations were measured in the s
conductor quantum dots as a function of the total charge
the dot using the Coulomb blockade phenomenon.1,2 In such
an experiment a small quantum dot is weakly coupled
current leads while a gate is placed in the proximity of t
dot and is used to vary its electrostatic potential. At lo
temperatures the charge of the dot is typically quantized
there is no significant current. However, the gate voltage
be tuned in such a way that the ground states withN and
N11 electrons are degenerate. At this gate voltage cur
can flow through the dot. The resulting conductance vs g
voltage comprises a series of sharp peaks~charging spec-
trum!. The spacing between two peaksDVg can be expresse
in terms of the ground state energiesEN of the dot withN
electrons:

eaDVg5DN5EN1122EN1EN215e2/CN . ~1!

Herea is the geometrical coefficient andCN is the capaci-
tance of the dot withN electrons. This equation may b
considered as a definition of the capacitance. For a ma
scopic body with the positive background chargeeN0, EN
has a simple form:EN5e2(N2N0)

2/2C and Eq.~1! gives
CN5C5const. For the quantum dot the charging ene
DN was found2 to have surprisingly large relative fluctua
tions:

d[
~^DN

2 &2^DN&2!1/2

^DN&
;0.15. ~2!

Here^ & denotes the averaging overN. Much effort has been
done to explain such large fluctuations. First, the experim
tal data were compared with the so-called constant inte
tion model in whichDN5e2/C1hN2hN21, wherehN is the
Nth single-electron energy.2 The fluctuations of the spacin
between the nearest-neighbor levels are of the order of
average spacingEF /N, whereEF is the Fermi energy. Hence
for a dot of radiusR
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wherer s5aB is the screening radius of the two-dimension
electron gas,aB is a semiconductor Bohr radius, which
close to 10 nm in GaAs. For this value ofaB and for
R;200 nm ~see Ref. 2! Eq. ~3! gives fluctuations that are
substantially smaller than observed in the experiment. T
discrepancy initiated the computer modeling and the ana
cal calculations ofd ~see Refs. 2 and 3!. When discussing
theoretical results one should keep in mind that in all
theoretical worksd was obtained by averaging over the d
ferent realizations of disorder, instead of number of electr
N. Below we will also assume that in strongly disorder
systems there is no difference between these two definit
of fluctuations.

Analytical diagrammatic calculations based on RPA co
firm Eq. ~3!.3 On the other hand, the results of comput
modeling2,3 agree with Eq.~3! for weak interactions~large
r s andaB) and lead to larger and interaction independend
for strong interactions, corresponding to low density elect
gas. This fact was identified as a failure of RPA in the lo
density electron gas.3 It can be interpreted easily in terms o
revision of equationr s5aB at low densitiesn!aB

22 . Indeed
r s cannot be smaller than the average distance between
tronsn21/2 and at the small densities one should substit
r s5n21/2 into Eq. ~3!. It is not clear yet whether such
simple modification of Eq.~3! can quantitatively explain nu
merical and experimental data,2 which seem to indicate tha
d is almostR independent. Hence it is challenging to unde
stand what happens withd(R) in the limit of a very low
electron density.

In this paper we theoretically study the fluctuations
capacitance of the island in the extreme classical limit wh
the quantum kinetic energy of electrons is much smaller t
both the disorder strength and Coulomb interactions.
consider the case of a large disorder when the ground sta
the island is a Coulomb glass.4 Below we show that for a
piece of Coulomb glass or, in other words, a Coulomb-gl
island, the fluctuations are large,d is of the order of unity,
does not depend onR, i.e., is universal for a given shape o
the island. For the square sample we findd50.32. ~Previ-
ously a similar statement about giant, of the order of un
relative fluctuations of the polarizability of the Coulomb
glass island was made in Ref. 5.!
9223 © 1997 The American Physical Society
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We study probability density ofDN and show that it is a
universal function of the ratiox5DN /^DN&. We also discuss
how the transition from the Coulomb glass to metal is
flected in the capacitance fluctuations.

When an electron is added to a large metallic sample
charge is distributed in the unique way according to the e
trostatic theory. For this reason with addition of every ele
tron the electric potential grows by the same amounte2/C,
or in other wordsC5const. In the Coulomb glass the ele
tronic states are localized, so that every new electron is
into some localized site. Then electrons rearrange themse
in the vicinity of this site. However, it was shown in Ref.
that such rearrangement happens only with probability cl
to 1/2 on every scale. As a result the added charge in
majority of cases is localized in the region smaller than
size of the island. When next electron enters the island
charge is centered near another site in the island. The
tance between this site and the position of the previous e
tron fluctuates between 0 and 2R. As a result the difference
between energies required to bring two sequential electr
DN and capacitanceCN experience roughly speaking hun
dred percent fluctuations.

To verify this reasoning we study the capacitance fluct
tions numerically. We use the lattice model of the Coulom
glass suggested by Efros6 and widely used to study the Cou
lomb gap in the density of states~DOS!. The Coulomb glass
island is modeled by the squareM3M lattice, with every
site being either empty~occupation numberni50) or occu-
pied by one electron (ni51). Electrons interact with eac
other by Coulomb interaction. The interaction energy b
tween the nearest lattice sites is chosen to be the un
energy and the lattice constant is the unit of length. Disor
is introduced by the random site energiesf i which are dis-
tributed uniformly between21 and 1. The correspondin
Hamiltonian has the form

Hclass5(
i

~f i1ui !ni1
1

2(i , j ninj /r i j . ~4!

Here ui is the potential due to the uniform backgroun
charge making the system electrically neutral forN elec-
trons. We find the ground-state energies ofN21, N, N11
electrons whereN is the integer part ofM2/2 and then cal-
culateDN using Eq.~1!. To find the ground state we use tw
different methods: the exhaustive enumeration and the si
lated annealing. The first one is used for relatively sm
samples withM<5. We enumerateall the possible states o
N electrons onM3M lattice sites and find one with th
lowest energy. In the second method we employ the sim
lated annealing technique, running the finite-temperat
classical Monte Carlo for some time and taking the lowe
energy state. The convergence of the solution to the gro
state has been checked by doubling the time of the sim
tion and making sure that the solution is not affected. T
reliable results have been obtained by this method
M<8. DN has been calculated typically for 1000–2000 d
ferent realizations of disorder. We have obtainedd50.32.
Normalized distributionsF(x) of the ratiox5DN /^DN& for
M54,5,7,8 are shown in Fig. 1. We have foun
^DN&52.3/M , in a good agreement with the inverse capa
tance of metallic square of the same size. Remarka
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F(x) does not depend onM . We emphasize also that con
trary to the predictions of the constant interaction model
inverse capacitance of the Coulomb glass island can be
larger andsmallerthan that of the metallic island of the sam
shape. The fit in Fig. 1 is given by

F~x!5H 0, x,x0

4~x2x0!exp@22~x2x0!
2#, x>x0 ,

~5!

wherex050.37. Two interesting features ofF(x) are clearly
seen. First, this function has a termination point atx5x0.
One can easily check thatDN corresponding to this point is
equal to the smallest possible Coulomb interaction: 1/rmax,
where rmax5(M21)A2 is the maximum distance betwee
sites in the squareM3M . Second,F(x1x0) is identical to
the Wigner surmise for the nearest-neighbor distance di
bution of the levels of a random matrix. We shall show b
low that this is only an interesting coincidence.

Now we would like to interpret both features establishi
the relation betweenF(x) and the one-electron DOSg(e) of
the Coulomb-glass island. The energy of the one-elect
excitation localized ati th site can be written as

e i5f i1ui1(
j

nj
r i j

. ~6!

For an empty site, for example, it is the energy required
bring an electron from infinity to this site. When averagin
this DOS over different realizations of the disorder poten
or, in other words, over different samples, we match
chemical potential in them (m averaging!.4 The chemical po-
tential of the island is situated halfway between the larg
energy of the occupied states and the lowest energy of
empty ones. The corresponding DOS is shown in Fig. 2. T
important feature of this DOS is a linear Coulomb ga
which at the small energies crosses over to the hard
related to the finite size effects.4 Linear dependence of th
DOS for ueu.0.2 agrees with the analytical expression for
infinitely large sample

g~e!5
2

p
ueu ~7!

FIG. 1. The inverse capacitance distribution is presented
different sample sizes. The line is the fit by Eq.~5!.



i
-
t

an
e
l

b
es
c
le

y

n
m

i
n
w
on

th
-

tw

th
c
io

n
he

y:
e
ies
l

een
ibu-
p-
od

of
,
as a

he
m

w

the

55 9225BRIEF REPORTS
derived in Refs. 6 and 7. The total width of the hard gap
equal to 1/rmax, where rmax is the maximum distance be
tween two points in the island. Indeed, the energy tha
required to transfer an electron from sitei to an empty site
j is equal to

D i→ j5e j2e i2
1

ur i2r j u
>0. ~8!

The minimum difference between the energies of empty
occupied states cannot exceed the minimum interaction
ergy within the island and hence is greater than or equa
1/rmax.

Let us now explain how the one-electron DOS can
used to findF(x). Strictly speaking the one-electron energi
are not directly related to the ground-state energies and
pacitance. The excitations relevant to capacitance are e
tronic polarons introduced by Efros.6 Their energiesẽ i can
be used to calculateDN . Indeed,ẽ i is defined as the energ
required to bring an electron to the sitei and rearrange the
other electrons in order to reach minimum of the total e
ergy. From this definition it is obvious that the minimu
polaron energy of the empty states isEN112EN , and the
maximum polaron energy of the occupied states
EN2EN21. It is clear thatDN is just the energy gap betwee
these two polaron states. It is known, however, that in t
dimensions the polaron energies are very close to the
electron ones.4 This means thatDN can be well approximated
by the energy difference between the lowest empty and
highest occupiedone-electronstates. This immediately ex
plains the existence of the termination point ofF(x): DN
cannot be smaller than the smallest interaction between
electrons within the island. Moreover the functionF(x) can
be related to the one-electron DOSg(e) in the following
way.

As the inverse capacitance of an island is equal to
difference between the lowest empty and the highest oc
pied states’ energies, our problem is to find the distribut
function of this difference. The probabilityP(D>e) to have
it bigger or equal than certain valuee is equal to the prob-

FIG. 2. DOS for the 838 sample averaged over disorder. T
main picture shows the region near the Fermi level. The Coulo
gap in the density of states for an infinitely large sample@Eq. ~7!# is
presented by the straight lines. The inset shows the general vie
the DOS.
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ability not to find energy levels in the regio
2(e/2),e8,e/2. Assuming the Poissonian statistics of t
level distribution we arrive at

P~D>e!5expS 2M2E
2~e/2!

e/2

g~e8!de8D . ~9!

Here g(e) is assumed to be normalized to unit
*2`

` g(e8)de851. The expression in the exponential is th
average number of electrons in the band of energ
@2(e/2),e/2#. The probability density ofD is, hence, equa
to

F~e!52
dP~D>e!

de

52NgS e

2D expS 22M2E
0

e/2

g~e8!de8D . ~10!

This expression establishes the general relationship betw
the one-electron DOS and the inverse capacitance distr
tion function for the Coulomb glass island. Having been a
plied to the numerically obtained DOS it gives a very go
agreement with the actualF(e). Substituting Eq.~7! into Eq.
~10! one arrives at the Gaussian asymptotic behavior
F(x): lnF(x)}2x2, 1!x!M . This asymptotic, however
does not persist in three dimensions, where the DOS h
different form.

Let us now examine what happens withd when a hopping
term is added to the classical Hamiltonian, given by Eq.~4!:

b

of

FIG. 3. Relative inverse capacitance fluctuations of 434 island
as a function of the hopping matrix elementJ.

FIG. 4. The relative inverse capacitance fluctuations of
three-dimensional island as given by Eq.~12! for J,Jc2DJ and by
Eq. ~13! for J.Jc2DJ.
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H5Hclass2J(
^ i , j &

ai
†aj . ~11!

HereJ is the hopping matrix element andai
† is the creation

operator of the electron at sitei . The summation is carried
over the neighboring sites. The ground states of this Ham
tonian were found numerically using the Lanczos algorith
The system considered was of size 434 lattice sites, with up
to 7, 8, and 9 electrons. The results are depicted in Fig. 3
it is seen thatd decreases by a factor of 2 fromJ50 to
J50.4. Such a decay is consistent with the tendency of
tallic samples to have smaller capacitance fluctuations.
the same time the shape ofF(x) becomes more symmetric i
agreement with Refs. 2 and 3. Unfortunately we were
able to do such calculations forM.4. Hence the existing
numerical data leave open the challenging question of h
the crossover happens betweend;1 in the classical case an
Eq. ~3! in the quantum one for large enough samples. Be
we try to answer this question concentrating on the thr
dimensional case where the insulator-metal transition h
pens at some critical valueJ5Jc . We assume that this tran
sition is accompanied by the divergency of the wav
function correlation lengthj and the dielectric constantk:
j5uJc2Ju2n and k5uJc2Ju2z. It was argued that
k;(j/r s)

2, where r s is the screening radius of the thre
dimensional degenerate Fermi gas, orz52n ~see Ref. 8!.
WhenJ approachesJc from the insulator side the growth o
k plays a very important role in the distribution of charge
the added electron, even whenj is still much smaller than a
sample sizeR. It is well known that if a localized charge i
put inside a dielectric sample withk@1 the sample become
polarized in such a way that almost all of the added cha
appears on its surface in the form of induced charge. On
r,
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e-
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w
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-
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e
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small fraction of chargee/k remains localized inside. If the
second electron is added to the sample at the distancer from
the first the interaction energy between these two conse
tively added electrons fluctuates bye2/kR!e2/R, provided
thatr fluctuates in the range 0,r,2R for a sphere of radius
R. Therefore

d;1/k;~r s /j!2;~Jc2J!2n. ~12!

Equation~12! is valid only if j!R, or J,Jc2DJ, where
DJ5(r s /R)

1/n. At j5R the relative capacitance fluctuation
saturate at

d;~r s /R!2. ~13!

Equation~13! is the three-dimensional analog of Eq.~3!. It
can also be obtained from the assumption that fluctuation
DN are equal to the fluctuations of the spacing between
one-electron quantum levels. Predicted behavior of funct
d(J) is schematically depicted in Fig. 4. We conjecture th
in the two-dimensional case, where as it is commonly
lieved j grows monotonically withJ, the crossover from
d;1 to Eq. ~3! happens in the similar way:d;r s /j at
r s!j!R andd;r s /R at j@R. Schematically this behavio
is similar to the one shown in Fig. 4. Our numerical resu
do not contradict this prediction.

In conclusion, we have found the large universal relat
fluctuations of capacitance of the Coulomb-glass island
described a scenario of their decay when the system un
goes the insulator-metal transition.
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