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Hall effect of charge carriers in a correlated system
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The dynamical Hall response in a correlated electronic system is analyzed within the linear-response theory
for tight-binding models. AT =0 the dc Hall constant for a single quasiparticle is expressed explicitly via the
charge stiffness and a semiclassical result is recovered. As expected, a holelike response is found for a mobile
hole introduced into a quantum antiferromagnet, as represented Iydtheodel.[S0163-182@07)04015-0

The question of the Hall response in a system of corresponseR=R,;(w— 0). We are able to relate explicitly these
lated electrons has proved to be extremely difficult. Theoretigquantities for the case of a single mobile carrier, a QP, where
cal investigations of this problem in the past decade haveve recover the simple semiclassical reIatIEE,F 1/ne.
been stimulated by experiments on superconducting cuprates Let us consider, for simplicity, a planary system, with
where, in low-doping materials, charge carriers are holes ina magnetic field applied in the direction and a uniform
troduced into a magnetiC insulator. For CUprateS in the NOrglectric Currenﬁ: JXéX' We follow the |inear-response ap-
mal state this is established by the Hall measuremlentsproach developed in Ref. 6, working with the magnetic field
which reveal a holelike dc Hall constaR{,>0. In certain  modulated in the direction,B=Be%e,, inducing a modu-
cases, e.g., In IQgXSrXCuO% at low dopingx<0.15, the |40 electric fieldé= &e'We, . At the final stage, we are
simple semiclassical resuRy,=1/ny€o, with the hole den- jpterested in the limitg—0. As the corresponding vector
sity n,=x/Q (Q( being the volume/formula unitseems to potential we choosé=A%%e, with A%=iB/q. The dy-

be obeyed at Iow_temperaturjeﬁh_ls calls for a semiconduc- oo ol respons®y (@) =)/ (w)B can be ex-
torlike interpretation in terms of independent holelike quas"pressed 48 Y

particles(QP’s) rather than the usual picture for a metal with

the Fermi surface. As is well known, however, such descrip- 1

tions fail to explain the strond dependence dR?, persist- Ruy(w)= < = — — —

ing down to the lowesT>T,.13 B rd(0)ayl(w)—od(w)Ty(w)
A quantum-mechanical analysis of the Hall response - .

within the linear-response theory is complicated even for here o,z denote components of the conductivity tensor,

single charge carrier, as evidenced by the polaron prdblen{evaluated at finit&+0. Models_fo_r strong_ly cor_relz_ited elec-
and a single hole in a Mott-Hubbard insulafoAnalogous trons are usually analyzed within the tight-binding frame-

treatments of metals with a well-defined Fermi surfdce WOTk where the magnetic field entefsnly) the kinetic en-

were mainly restricted to cases of nearly free electrons. ReE'9Y Hiin Via the Peierls phase, i.e.,

cently, the dynamical Hall respon$,(w) for lattice mod-

els of correlated electrons, such as thé and the Hubbard Hg=—t>, (& "ijcj’fscis+ H.c), (2
model, has been approachedﬁwithin the relaxationiamel (ij)s

other analytical approximationsand evaluated in more de- T RP_B > > o 3 _ 2
tail by theyhighw,F')rpanalysi:%0 and numerical methodd2  WNere dij=erj-Alr=R;), i =ri=ri a~'nd Rij=(r;
Conclusions for these models, however, appear to be mosti)/2- The operators for the particle currgnand for the
delicate and controversial for the dc and the low-temperatur8tr€SS tensor can now be given by

_’&ﬁx(w)

(D)

B,q—0

limit R%(T—0), questioning even the holelike sign®{, in 1 3H. o
the regime of low hole doping-*2 The m 2> raeiRi(jeiticl o+ H.C.),
In this paper we consider dynamical conductivities “ e A, {ps " :
Eaﬁ(w) in tlhe presence of E5:i7magneti|c fidl(;jt\)/vhereh% we 1 oH
perform a linearization irB.”" As analyzed by Kohny at kK __ — kin___ @y Baik-Rii (@i b nT o
T=0 the usual (diagonal dynamical conductivity(for "®~ &2 gA. E&Agz_t%;‘s riirjet T(eiecistH.c).
B=0) is singular at low frequencieso,,(w—0) 3

«iD ,,/®, whereD ,,, is the charge stiffness parameter, rep- o 6
resenting the coherent response of the charge to the extern-létkl]e conductivity tensor &80 can be expressed‘és

field. It is now well established that the stiffness tensor ie2

D,p in correlated systems is an important and nontrivial Elﬂﬁ(w)zW[¢2B(O+)—¢§B(w*)],
guantity, distinguishing, e.g., a metal and a Mott-Hubbard

(magnetig insulator**>** We observe that foB>0 certain 5

off-diagonal conductivities have to be singular as well, 4w :J drem (T 79( 190 4
04+ p(w)*xAlw?, in order to yield a meaningful dc Hall re- Paplom) 0 (Ta(7)15(0)s. @
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wherew,=27imT, o " =w+i8,6>0, Q is the volume of
the systemT . is the time ordering operator, aKi{lg denotes
an average foB#0.

Next we perform a linearization iB, in analogy to the
treatment of a Fermi gds. From Eqs.(3) it follows that

ja=la—era A% j=]4(B=0). (5)
Taking into account the linear coupling term
H'=—ej, 9A9, we can express the off-diagonal components

#yx. linearized inAY, in the form

eAIKY,,  KL=K},+K},,

yXx?

¢yx

B
K} (@m)=— fo drem (T jU(7) 100, (6)

1(8 B
Kiom =5 | a7 [ drt et i %0

where we have taken into account that some averages, su

as (79,(1)j2(0))o and(j3(7)j3(0))o, vanish by symmetry.
We can then rewrite Eq1) as

e’ [KJ(0") — K (0™)]

Ru(@)= = 00w 7O (@) a0 ()

, (@)

q~>0

whereo,, now refers to the casB=0.

In the following we restrict our analysis t6=0. Let us
assume, for simplicity, that the absolute ground stéate
having the energ¥, and the wave vectofr3=0, is nonde-
generate. For the diagonal conductivit§, we can perform
the q—0 limit. Strictly at g=0, we take into account the
sum rule ¢3_(0)—(7°,), while ¢°_ (0—0)<ad (07).
One can separate the response into a cohg@ngula)
part®*and an incohererfregula part, expressed in terms
of eigenstates,

2ie?
(w)_Q +Daa+o-reg(w)

{maw) o 1GDoml ®
o 2 m>0 €m '
0 2
o7 1) = |(j ) oml 1 1
Q S0 €m o te, o —ey|
where we use the notation j%),m=(0/j°m) and

en=Emn—Eo.

Expressing<§jx in terms of eigenstate@t T=0) is also
straightforward, although more tedious. Due to theharac-
ter of operators entering Eq&), it is convenient to distin-
guish elgenstates1 m) |m), and |m), corresponding to
wavevectorsQ Q q, andQ+q, respectively. So we ob-
tain from Eqs.(6)
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where it follows froma , 5(— w) =77, 5(») and Eqs(4), (6),
and(9) that yz= vy, (real), 6,= J,, (real), and

ZM_

|

Ay ~i Oy~ HEARY i Td) -~
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5 (19o7(ix )|m+2 (19im(ix m]

| €1~ €m i €

m :(jg)oﬁ‘w[(ixq)ﬁﬁo_
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_ET e

(10

Om= _(jg)mo

We again separatily J(w) into a regular and a singular

Eﬁll’t The latter should cancel the singular teoflg o 1/w in

g. (7), in order to yield a meaningfR,(w—0). It is evi-
dent that the relevant contribution tqux in Eqg. (9) comes
from terms with vanishinge,,,e7. By analogy with free
fermions we can speculate on several possibilities for low-
lying excitations. For example, in a metal with a Fermi sur-
face one has to consider electron-hole pairs as the relevant
excited states. At present we are not able to trea{®dn a
meaningful way for the analogous regime in a correlated
metal.

Itis, however, feasible to consider the nontrivial response
of a single charge carrier, a QP, e.g., the one introduced by
doping a Mott-Hubbard insulator or an antiferromagnet
(AFM). For a well-defined QP we require a quadratic disper-
sion eqﬂoocq and a pseudogap in the optical response

oY w—0)—0, hence [°)om— 0 for e,,— 0. Such assump-
tions seem to hold, e.g., for a mobile hole introduced into a
two-dimensional quantum AFNP~’

Under these restrictions we note thi‘;yt terms contribute
only to (” 1)'®9 because the prefactoj)on vanishes for
m—0. In contrast the essential contribution to thesum in
Eq. (9) comes from the QP excited stat) with

€5=¢€4=0. It is possible to simplifyys, since we can at the
same time perform the limig—0 for certain matrix ele-
ments (note that ﬁ points in the y direction, i.e.,
(o N50—(72)00,  While for 1#0 and [#0,
et a—eg—ea and (V5. (% V70, (057 — (o
Comparing Egs(8) and (10) we recognize
Yo :Z(j?/)OBDxx- (13)

There is no analogous simptg—0 limit for (j{)o5. A
useful relation is obtained when we consider, B0, the
current responsjﬂ to the external fielci‘j. Such a response
has been invoked for finite systems in order to enforce the
validity of the sum rule foro™®9 1° The corresponding con-
ductivity a' can be expressed, by analogy to the0 one
in Egs.(8), as



55 BRIEF REPORTS 9221

response presented above remains valid, provided that opera-
. (12 torsj andr in Egs.(3) are redefined accordingly.
The quantityZ for a single hole in thé-J model has been

The essential difference between E@.and(12) is that the considered in a_mother context in Ref._ 17. Since, in ge_neral,
coherent peak ab=0 in Eq.(12) now splits into two peaks |47y are complicated, we evaluateusing the perturbation

at w==*eg, respectively. Since the sum rule is not €Xpansion. We start with a static hole in the NéFM,

ieZE (iPoml®| 1

Q5 €m

7er=

0)+_Eﬁ1 w++em

changed?® we can equate their intensiti&s taking into account only the Ising-type spin interaction
JS'S;. Corrections due to the hopping terid, with
Dyy:(ig)ga/fq- (13y  t/3<1 and the spin flip partl, with y=J,/J<1 are treated

at T=0 perturbatively*® As noted in Ref. 17, nonzero con-
Moreover, for a single QP also the coherent mass is directljfibutions in Eq.(16) can arise only from nonlocal+0
related to the stiffnes¥, i.e., equyyqz. Hence, from Eq. terms, since fol =0 contributions ofj,_ andj,, cancel.
(13 we get|(j{)o5| =Dyyq. From Egs.(7) and (9), with The ground state of one hole in theJ model is at

Kix(w>e5)~2y5/w", we finally obtain Q= (% m/2,+mw/2) *5® Although such a ground state is
clearly degenerate, this should not change our results for
Q - RO
0 _ - —(0lid H- . . .
Ry=sgn¢) e’ ¢ <0|Jy|0>' (14) It is convenient to represent the localized wave functions

o ) ) ) ~|¢"y in terms of a basis of string statég[l ), which are
This is a semiclassical result for the single QP, sinceyptained by applying the operations kif;, andH, on the

Z:Tsr?;@ :ai.l.' fion of the sign 6fi ¢ trivial: at ground statd¢®,) (the Neel state with a static hole on the
remaining guestion o 19 IS hot trivial, at  gjta 1) Finally, we want to expresis)®) in the form
least we did not find a simple argument that would yield the ) y: press/y’)

expected plausible answer. While it is easy to show that
Z=1 for a single free electron at the bottom of the band lydy = cdled,). (18
(note thate= —ey<<0), for a more general case the calcula- m

tion of Z requires the knowledge of the ground-state waveajthough the calculation of allowedip?,) and the corre-
function [W9) at finite q#0, which can be quite involved gpondingcd can be quite involvedand not uniquk it is
within a correlated system. For a single QP it is conveniengaightforward to lowest orders of the perturbation series in
to represent¥9) in terms of localized functions t, 7.2 The lowest nonzero contribution in E4L4) comes,
o e.g., fromr,=—2e,. Let us evaluate the term starting with
[wh=2 @Iy, (15 |gy. The operatojj; with r;= —e, moves the hole in the
! —y direction and leaves behind one flipped sfrelative to
Then one can express via Eq. (3) for q<1, assuming a the Neel stat¢. The resulting state can be represented also as
local character ofy), an excited statéeyl ), reached within the perturbation ex-
pansion from cp,°0> by applyingH,, andH,, once. This par-
gt I ticular contribution of perturbation expansion is thus
(=52 e i+ Gy ol a8 )
i t - i Gy=e"'? :
jy===qrYic/scis, where we have chosen,=0, andj). 2014,
=34MiCjsCis are forward(backward hopping operators in \hereA,,A,>0 are energies of intermediate excited states.
Eq. (3), corresponding torj==1, respectively. It nOW There are more nonzero contributions within the same order
seems plausible that the charge signature should come frogt perturbation theory, but they are negative as well, con-
the sign of the dominating forward hopping+rY in Eq.  firming the holelike character of the QP. Although the result
(16), which should be positive for an electréag., forafree  z=—1 is strictly valid in thet-J model for y<1, J/t<1,
electron the only forward term is;=0,r;=r;=¢,) and Wwe do not expect any change in the sigrzofvhen entering
negative for holes due to the opposite direction of the electhe relevant regime/=1, J<t.*

<0, (19)

tron hopping(at least for free fermionsHowever, as shown The obtained results are not surprising. The charge carrier
below for a concrete example, the evaluation and the resuit an interacting system, obeying the properties of the QP,
are not so evident in general. behaves in the dc Hall response a0 according to the

Let us consider the problem of a spin polaron, i.e., asemiclassical relation. The main difference is that no particu-
single hole inserted into an AFR®, as relevant to cuprates lar assumptions, such as the relaxation-time approximation,
and described within the-ld model, are needed to derive this result. This should hold not only for

correlated systems, but also for electrons interacting with
—t = . phonons, etc. We presented also the calculation that confirms
H= _t<izs (c JsCiS’LH'C-)J“J; S-S, (17 a holelike Hall response for a single hole in thé model.

d Y It is tempting to generalize the above results in several
where”c:'is,'c':frS are projected operators, not allowing double directions in order to be applicable to more realistic situa-
occupancy of sites. Although the projection introduces artions in correlated systems, and in cuprates in particular. At
interaction also in the kinetic term, the analysis of the Halllow hole dopingn,<1, we expect that holes in cuprates
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behave as independent QP-spin polarons. Tﬁggocnh, citations satisfying+(q— 0)— 0. Analyzing the latter quan-
which leads toRE,=1/nhecJ in this regime. Such behavior tity in a doped system, one could possibly gain more insight
indeed seems to be found at lowest in underdoped into the change of the charge-carrier character on doping, so
La, ,Sr,CuQ, (Refs. 1 and B (although there seem to be far understood theoretically only in the high-frequency limit
quantitative discrepancies between various dabait not R¥=R,(w—=).>*2 Another challenging question is
quite so in other underdoped cuprateapproaching the clearly the anomalouB%(T) dependence, which, however,
“optl_mum”-doplng regime, the scenario of an independent;g beyond oufT=0 analysis.

QP is clearly not applicable since the electrons reveal a

rather well-defined large Fermi surface, whit can even The author acknowledges the financial support and the
change sign. The evaluation &, in this intermediate re- hospitality of the Max-Planck Institut fuFestkaperfor-
gime can, in principle, be treated with Eq%)—(10), taking ~ schung, Stuttgart, as well as of the Inst[tut Romand des Re-
into account, in Eq(9), all relevant low-lying excited states cherches Numigue en Physiques des Matux (IRRMA),

|M). Whereas the stiffned3 ,,, has been examined in detail EPFL, Lausanne, where part of this work was performed.
before* the central quantity foRY,, as inferred from Eq. The author also thanks P. Horsch, A. Rasand X. Zotos
(11), appears to bé(j})om)av, averaged over low-lying ex- for fruitful discussions.
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