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Hall effect of charge carriers in a correlated system

P. Prelovsˇek
Jožef Stefan Institute, University of Ljubljana, 1001 Ljubljana, Slovenia

~Received 24 September 1996!

The dynamical Hall response in a correlated electronic system is analyzed within the linear-response theory
for tight-binding models. AtT50 the dc Hall constant for a single quasiparticle is expressed explicitly via the
charge stiffness and a semiclassical result is recovered. As expected, a holelike response is found for a mobile
hole introduced into a quantum antiferromagnet, as represented by thet-J model.@S0163-1829~97!04015-0#
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The question of the Hall response in a system of co
lated electrons has proved to be extremely difficult. Theor
cal investigations of this problem in the past decade h
been stimulated by experiments on superconducting cupr
where, in low-doping materials, charge carriers are holes
troduced into a magnetic insulator. For cuprates in the n
mal state this is established by the Hall measuremen1

which reveal a holelike dc Hall constantRH
0 .0. In certain

cases, e.g., in La22xSrxCuO4 at low doping x,0.15, the
simple semiclassical resultRH

0 51/nhe0, with the hole den-
sity nh5x/V0 (V0 being the volume/formula unit!, seems to
be obeyed at low temperatures.1 This calls for a semiconduc
torlike interpretation in terms of independent holelike qua
particles~QP’s! rather than the usual picture for a metal wi
the Fermi surface. As is well known, however, such desc
tions fail to explain the strongT dependence ofRH

0 , persist-
ing down to the lowestT.Tc .

1–3

A quantum-mechanical analysis of the Hall respon
within the linear-response theory is complicated even fo
single charge carrier, as evidenced by the polaron probl4

and a single hole in a Mott-Hubbard insulator.5 Analogous
treatments of metals with a well-defined Fermi surface6,7

were mainly restricted to cases of nearly free electrons.
cently, the dynamical Hall responseRH(v) for lattice mod-
els of correlated electrons, such as thet-J and the Hubbard
model, has been approached within the relaxation-time8 and
other analytical approximations,9 and evaluated in more de
tail by the high-v,T analysis10 and numerical methods.11,12

Conclusions for these models, however, appear to be m
delicate and controversial for the dc and the low-tempera
limit RH

0 (T→0), questioning even the holelike sign ofRH
0 in

the regime of low hole doping.11,12

In this paper we consider dynamical conductiviti
s̃ab(v) in the presence of a magnetic fieldB, whereby we
perform a linearization inB.6,7 As analyzed by Kohn,13 at
T50 the usual ~diagonal! dynamical conductivity ~for
B50) is singular at low frequenciessaa(v→0)
} iD aa /v, whereDaa is the charge stiffness parameter, re
resenting the coherent response of the charge to the ext
field. It is now well established that the stiffness tens
Dab in correlated systems is an important and nontriv
quantity, distinguishing, e.g., a metal and a Mott-Hubba
~magnetic! insulator.13,14 We observe that forB.0 certain
off-diagonal conductivities have to be singular as we
saÞb(v)}A/v

2, in order to yield a meaningful dc Hall re
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sponseRh
05RH(v→0). We are able to relate explicitly thes

quantities for the case of a single mobile carrier, a QP, wh
we recover the simple semiclassical relationRH

0 51/ne.
Let us consider, for simplicity, a planarx-y system, with

a magnetic field applied in thez direction and a uniform
electric currentJW5JxeW x . We follow the linear-response ap
proach developed in Ref. 6, working with the magnetic fie
modulated in they direction,BW 5BeiqyeW z , inducing a modu-
lated electric fieldEW5EyqeiqyeW y . At the final stage, we are
interested in the limitq→0. As the corresponding vecto
potential we chooseAW 5AqeiqyeW x with Aq5 iB/q. The dy-
namical Hall responseRH(v)5Eyq(v)/Jx(v)B can be ex-
pressed as10

RH~v!5
1

B

2s̃yx
q ~v!

s̃xx
q ~v!s̃yy

q ~v!2s̃xy
q ~v!s̃yx

q ~v!
U
B,q→0

, ~1!

where s̃ab denote components of the conductivity tens
evaluated at finiteBÞ0. Models for strongly correlated elec
trons are usually analyzed within the tight-binding fram
work where the magnetic field enters~only! the kinetic en-
ergyHkin via the Peierls phase, i.e.,

Hkin52t(
^ i j &s

~eiu i j cjs
† cis1H.c.!, ~2!

where u i j5erW i j •AW (rW5RW i j ), rW i j5rW j2rW i , and RW i j5(rW i
1rW j )/2. The operators for the particle currentj̃ and for the
stress tensort can now be given by

j̃ a
k52

1

e

]Hkin

]Aa
2k 5t(

^ i j &s
r i j

aeik
W
•RW i j ~ ieiu i j cjs

† cis1H.c.!,

tab
k 52

1

e2
]2Hkin

]Aa
2k]Ab

2k 5t(
^ i j &s

r i j
a r i j

beik
W
•RW i j ~eiu i j cjs

† cis1H.c.!.

~3!

The conductivity tensor atBÞ0 can be expressed as6,10

s̃ab
q ~v!5

ie2

Vv1 @fab
q ~01!2fab

q ~v1!#,

fab
q ~vm!5E

0

b

dtevmt^Tt j̃ a
q~t! j̃ b

0~0!&B , ~4!
9219 © 1997 The American Physical Society
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wherevm52p imT, v15v1 id,d.0, V is the volume of
the system,Tt is the time ordering operator, and^ &B denotes
an average forBÞ0.

Next we perform a linearization inB, in analogy to the
treatment of a Fermi gas.6,7 From Eqs.~3! it follows that

j̃ a
k5 j a

k2etax
k2qAq, j a

k5 j̃ a
k~B50!. ~5!

Taking into account the linear coupling ter
H852e jx

2qAq, we can express the off-diagonal compone
fyx
q , linearized inAq, in the form

fyx
q 5eAqKyx

q , Kyx
q 5Kyx

I 1Kyx
II ,

Kyx
I ~vm!52E

0

b

dtevmt^Tt j y
q~t!txx

2q~0!&0 , ~6!

Kyx
II ~vm!5

1

bE0
b

dtE
0

b

dt8evmt^Tt j y
q~t! j x

2q~t8! j x
0~0!&0 ,

where we have taken into account that some averages,
as ^tyx

q (t) j x
0(0)&0 and ^ j y

q(t) j x
0(0)&0, vanish by symmetry.

We can then rewrite Eq.~1! as

RH~v!5
e3@Kyx

q ~01!2Kyx
q ~v1!#

qVv1sxx
0 ~v!syy

0 ~v!
U
q→0

, ~7!

wheresaa now refers to the caseB50.
In the following we restrict our analysis toT50. Let us

assume, for simplicity, that the absolute ground stateu0&,
having the energyE0 and the wave vectorQW 50, is nonde-
generate. For the diagonal conductivitysaa

q we can perform
the q→0 limit. Strictly at q50, we take into account the
sum rule faa

q (0)→^taa
0 &, while faa

0 (v→0),faa
q (01).

One can separate the response into a coherent~singular!
part13,14 and an incoherent~regular! part, expressed in term
of eigenstates,

saa
0 ~v!5

2ie2

Vv1Daa1saa
reg~v!,

Daa5
^taa

0 &
2

2 (
m.0

u~ j a
0 !0mu2

em
, ~8!

saa
reg~v!5

ie2

V (
m.0

u~ j a
0 !0mu2

em
F 1

v11em
1

1

v12em
G ,

where we use the notation (j a
0)0m5^0u j a

0 um& and
em5Em2E0.

ExpressingKyx
q in terms of eigenstates~at T50) is also

straightforward, although more tedious. Due to theq charac-
ter of operators entering Eqs.~6!, it is convenient to distin-
guish eigenstatesum&,um̃&, and um̂&, corresponding to
wavevectorsQW , QW 2qW , andQW 1qW , respectively. So we ob
tain from Eqs.~6!
s

ch

Kyx
q ~v1!5(

m̃
F gm̃

v12em̃
1

g̃m̃

v11em̃
G

1 (
m.0

F dm
v12em

1
d̃m

v11em
G , ~9!

where it follows froms̃ab(2v)5s̃ab* (v) and Eqs.~4!, ~6!,
and ~9! that g̃m̃5gm̃ ~real!, d̃m5dm ~real!, and

gm̃ 5~ j y
q!0m̃F ~txx

2q!m̃02(
l

~ j x
2q!m̃l~ j x

0! l0

e l2em̃
2

2(
l̃

~ j x
2q! l̃ 0~ j x

0!m̃ l̃

e l̃
G , ~10!

dm52~ j x
0!m0F(

l̃

~ j y
q!0 l̃ ~ j x

2q! l̃ m

e l̃ 2em
1(

l̂

~ j y
q! l̂ m~ j x

2q!0 l̂

e l̂
G .

We again separateKyx
q (v) into a regular and a singula

part. The latter should cancel the singular termssaa
0 }1/v in

Eq. ~7!, in order to yield a meaningfulRH(v→0). It is evi-
dent that the relevant contribution toKyx

q in Eq. ~9! comes
from terms with vanishingem ,em̃ . By analogy with free
fermions we can speculate on several possibilities for lo
lying excitations. For example, in a metal with a Fermi su
face one has to consider electron-hole pairs as the rele
excited states. At present we are not able to treat Eq.~9! in a
meaningful way for the analogous regime in a correla
metal.

It is, however, feasible to consider the nontrivial respon
of a single charge carrier, a QP, e.g., the one introduced
doping a Mott-Hubbard insulator or an antiferromagn
~AFM!. For a well-defined QP we require a quadratic disp
sion eq→0}q

2 and a pseudogap in the optical respon
saa
reg(v→0)→0, hence (j a

0)0m→0 for em→0. Such assump-
tions seem to hold, e.g., for a mobile hole introduced int
two-dimensional quantum AFM.15–17

Under these restrictions we note thatdm terms contribute
only to (s̃yx

q )reg because the prefactor (j a
0)0m vanishes for

m→0. In contrast, the essential contribution to them̃ sum in

Eq. ~9! comes from the QP excited stateu 0̃ & with
e 0̃5eq*0. It is possible to simplifyg 0̃ , since we can at the
same time perform the limitq→0 for certain matrix ele-
ments ~note that qW points in the y direction!, i.e.,

(txx
2q) 0̃0→(txx

0 )00, while for lÞ0 and l̃Þ 0̃,
e l̃ ,e l2e 0̃ →e l and (j x

2q) 0̃ l ,( j x
2q) l̃ 0 ,( j x

0) 0̃ l̃ →( j x
0)0l .

Comparing Eqs.~8! and ~10! we recognize

g 0̃ 52~ j y
q!0 0̃Dxx . ~11!

There is no analogous simpleq→0 limit for ( j y
q)0 0̃ . A

useful relation is obtained when we consider, forB50, the
current responsej y

q to the external fieldEyq . Such a response
has been invoked for finite systems in order to enforce
validity of the sum rule forsaa

reg .19 The corresponding con
ductivity syy

qq can be expressed, by analogy to theq50 one
in Eqs.~8!, as
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syy
qq~v!5

ie2

V (
m̃

u~ j y
q!0m̃u2

em̃
F 1

v12em̃
1

1

v11em̃
G . ~12!

The essential difference between Eqs.~8! and~12! is that the
coherent peak atv50 in Eq. ~12! now splits into two peaks
at v56e 0̃ , respectively. Since the sum rule is n
changed,19 we can equate their intensities,17

Dyy5~ j y
q!0 0̃

2 /eq . ~13!

Moreover, for a single QP also the coherent mass is dire
related to the stiffness,18, i.e., eq5Dyyq

2. Hence, from Eq.
~13! we get u( j y

q)0 0̃u5Dyyq. From Eqs.~7! and ~9!, with
Kyx
q (v.e 0̃);2g 0̃ /v

1, we finally obtain

RH
0 5sgn~z!

V

e
, z5^0u j y

qu 0̃&. ~14!

This is a semiclassical result for the single QP, sin
Z5sgn(z)561.

The remaining question of the sign ofz is not trivial; at
least we did not find a simple argument that would yield
expected plausible answer. While it is easy to show t
Z51 for a single free electron at the bottom of the ba
~note thate52e0,0), for a more general case the calcu
tion of Z requires the knowledge of the ground-state wa
function uCq& at finite qÞ0, which can be quite involved
within a correlated system. For a single QP it is conveni
to representuCq& in terms of localized functions

uCq&5(
l
ei ~Q

W 1qW !•rW luc l
q&. ~15!

Then one can expressz via Eq. ~3! for q!1, assuming a
local character ofuc l

q&,

z5
qt

2(
i , j ,l

e2 iQW •rW l^c l
qu~r i

y1r j
y!~ j y1

i j 2 j y2
i j !uc0

q&. ~16!

j y6
i j 5(sr i j

y cjs
† cis , where we have chosenrW050, and j y6

i j

5(sr i j
y cjs

† cis are forward~backward! hopping operators in
Eq. ~3!, corresponding tor i j

y 561, respectively. It now
seems plausible that the charge signature should come
the sign of the dominating forward hoppingr i

y1r j
y in Eq.

~16!, which should be positive for an electron~e.g., for a free
electron the only forward term isrW i50, rW j5rW l5eW y) and
negative for holes due to the opposite direction of the e
tron hopping~at least for free fermions!. However, as shown
below for a concrete example, the evaluation and the re
are not so evident in general.

Let us consider the problem of a spin polaron, i.e.
single hole inserted into an AFM,15 as relevant to cuprate
and described within thet-J model,

H52t(
^ i j &s

~ c̃ js
† c̃is1H.c.!1J(̂

i j &
SW i•SW j , ~17!

where c̃is ,c̃ is
† are projected operators, not allowing doub

occupancy of sites. Although the projection introduces
interaction also in the kinetic term, the analysis of the H
ly

e

e
t

-
e

t

m

-

lt

a

n
ll

response presented above remains valid, provided that op
tors j̃ andt in Eqs.~3! are redefined accordingly.

The quantityz for a single hole in thet-J model has been
considered in another context in Ref. 17. Since, in gene
uc l

q& are complicated, we evaluatez using the perturbation
expansion. We start with a static hole in the Ne´el AFM,
taking into account only the Ising-type spin interactio
JSi

zSj
z . Corrections due to the hopping termHkin with

t/J!1 and the spin flip partHg with g5J'/J!1 are treated
at T50 perturbatively.16 As noted in Ref. 17, nonzero con
tributions in Eq. ~16! can arise only from nonlocallÞ0
terms, since forl50 contributions ofj y2 and j y1 cancel.
The ground state of one hole in thet-J model is at
QW 5(6p/2,6p/2).15,16 Although such a ground state i
clearly degenerate, this should not change our results
RH
0 .
It is convenient to represent the localized wave functio

uc l
q& in terms of a basis of string statesuw lm

q &, which are
obtained by applying the operations ofHkin andHg on the
ground stateuw l0

0 & ~the Néel state with a static hole on th
site l ). Finally, we want to expressuc l

q& in the form

uc l
q&5(

m
cm
q uw lm

q &. ~18!

Although the calculation of alloweduw lm
q & and the corre-

spondingcm
q can be quite involved~and not unique!, it is

straightforward to lowest orders of the perturbation series
t,g.16,17The lowest nonzero contribution in Eq.~14! comes,
e.g., fromrW l522eW y . Let us evaluate the term starting wit
uw00

0 &. The operatorj 0 j
1 with rW j52eW y moves the hole in the

2y direction and leaves behind one flipped spin~relative to
the Néel state!. The resulting state can be represented also
an excited stateuw lm

q &, reached within the perturbation ex
pansion fromuw l0

0 & by applyingHkin andHg once. This par-
ticular contribution of perturbation expansion is thus

z i j l 5e2 iQW •rW l
qt2

2D1D2
,0, ~19!

whereD1 ,D2.0 are energies of intermediate excited stat
There are more nonzero contributions within the same or
of perturbation theory, but they are negative as well, c
firming the holelike character of the QP. Although the res
Z521 is strictly valid in thet-J model forg!1, J/t!1,
we do not expect any change in the sign ofZ when entering
the relevant regimeg51, J,t.16

The obtained results are not surprising. The charge ca
in an interacting system, obeying the properties of the Q
behaves in the dc Hall response atT50 according to the
semiclassical relation. The main difference is that no parti
lar assumptions, such as the relaxation-time approximat
are needed to derive this result. This should hold not only
correlated systems, but also for electrons interacting w
phonons, etc. We presented also the calculation that confi
a holelike Hall response for a single hole in thet-J model.

It is tempting to generalize the above results in seve
directions in order to be applicable to more realistic situ
tions in correlated systems, and in cuprates in particular
low hole dopingnh!1, we expect that holes in cuprate
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behave as independent QP-spin polarons. Thens̃ab}nh ,
which leads toRH

0 51/nhe0 in this regime. Such behavio
indeed seems to be found at lowestT in underdoped
La22xSrxCuO4 ~Refs. 1 and 3! ~although there seem to b
quantitative discrepancies between various data!, but not
quite so in other underdoped cuprates.1 Approaching the
‘‘optimum’’-doping regime, the scenario of an independe
QP is clearly not applicable since the electrons revea
rather well-defined large Fermi surface, whileRH

0 can even
change sign. The evaluation ofRH

0 in this intermediate re-
gime can, in principle, be treated with Eqs.~7!–~10!, taking
into account, in Eq.~9!, all relevant low-lying excited state
um̃&. Whereas the stiffnessDaa has been examined in deta
before,14 the central quantity forRH

0 , as inferred from Eq.
~11!, appears to bê( j y

q)0m̃&av, averaged over low-lying ex
er

h,

e

t
a

citations satisfyingem̃(q→0)→0. Analyzing the latter quan-
tity in a doped system, one could possibly gain more insi
into the change of the charge-carrier character on doping
far understood theoretically only in the high-frequency lim
RH*5RH(v→`).10,12 Another challenging question i
clearly the anomalousRH

0 (T) dependence, which, howeve
is beyond ourT50 analysis.
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