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Transition-temperature features of layered superconductors
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A model theory for the superconducting transition temperatureTc is derived that is based on a generalized
version of the Eliashberg equations taking into account an energy dependence in the electronic density of states
N(e). We treat an electronic structure with characteristic two-dimensional character. An analytical expression
for Tc obtained for intermediate coupling establishes features of theTc in the logarithmic van Hove scenario.
Results describe the behavior ofTc vs x observed in well-annealed La22xSrxCuO4 oxides.
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INTRODUCTION

A characteristic feature of nonconventional supercondu
ors is the presence of low-dimensional structural eleme
such as weakly coupled planes or chains of atoms. Bec
of this marked anisotropy it is possible thatN(e), the elec-
tronic density of states~EDOS!, in cuprate superconductor
for example, is not smooth but exhibits appreciable va
tions with energye over a significant scale. In particular, th
singularities in a van Hove scenario, necessarily presen
periodic potentials, may play an important role.1–8 Recent
experimental,9–14 as well as theoretical results15–17 in non-
conventional superconducting materials suggesting a Fe
level pinned very close to a van Hove saddle point
N(e), raise important questions about the possible role o
nonsmooth EDOS and its subsequent effect onTc in these
materials.

In conventional superconductivity theN(e) is assumed
not to vary around the Fermi energy,eF , over the character
istic energy range corresponding to the maximum pho
energy,v0. The EDOS is then replaced by its value ateF .
On the other hand, ifeF is located near a singularity an
infinitesimal departure ofe from eF gives rise to sharp varia
tions inN(e) that must be taken into account in a consist
theory.

The formalism with nonconstantN(e) was initially devel-
oped in anticipation of possible applications to ‘‘classica
high-temperature superconductors such as theA15 com-
pounds, and were carried out within the framework of BC
as well as of Eliashberg theory which has since been
tended by many authors.18–22 With the discovery of high-
Tc cuprate superconductors, interest in this area has re
faced as a possible explanation of theTc enhancement ob
served in the cuprates. Nevertheless, in recent work23 within
the framework of the Fermi-surface-restricted Eliashb
theory,18,24it is concluded that a van Hove scenario~VHS! to
enhanceTc operatesonly in weak coupling, and that inclu-
sion of strong coupling deactivates theTc-enhancing effects
550163-1829/97/55~14!/9077~11!/$10.00
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of the VHS. In the pioneering work of Pickett18 it is argued
that for strongly coupled superconductors peaks in the ED
are quite ineffective in raisingTc . By assuming thateF lies
near the center of a very narrow peak, these authors
mateda reduction of Tc by 15% inA15 compounds. How-
ever, in more recent studies by Mansor and Carbotte25 a Tc
greatly enhanced over the value when van Hove singular
are not present is obtained which drops rapidly by shift
eF away from the center of the EDOS peak, as expec
Clearly, additional work is required in order to clarify th
situation.

Eliashberg theory determines the critical temperature a
functional of the electron-phonon interaction spectru
a2F(v), so that obtaining a universalTc describing all su-
perconducting materials is, strictly speaking, impossib
Fortunately, however,Tc depends mainly on the characteri
tic phonon frequencyvph as well as on the value of the mas
renormalization factorl. This circumstance admits variou
analytical approaches based on physical assumptions a
the actual electron-phonon interaction. Specifically, the
miliar expressions forTc of McMillan,26 of Allen and
Dynes,27 of Leavens and Carbotte,28 as well as the more
recent formula of Kresin,29 all follow after making reason-
able approximations of the gap function and of the effect
electronic mass. These solutions forTc succeed in describing
the behavior of the exact solution of the ordinary Eliashb
equations for appropriately chosen ranges of the interac
parameterl. But for modified Eliashberg equations with
nonconstant EDOS analytical solutions forTc have not been
reported. Results are obtainable either from numerical an
ses or for weak coupling,l→0.16,17 Meanwhile, a simple
analytical representation based on specifically physical
sumptions would shed light on the dependence ofTc on the
relevant parameters of the underlying strongly correla
electron-phonon system, and perhaps suggest nontrivia
formation about such a complex many-particle system.

The purpose of this paper is to present the results of a
lytic calculations for Tc for values of l,1.5 and for
9077 © 1997 The American Physical Society
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vph@pTc . For such parameter restrictions the method
solving the standard Eliashberg equations was develope
Refs. 30 and 31~see below! according to which the solution
for the gap in the quasiparticle excitation spectrum is rep
sented in a form reflecting features of thea2F(v) without
specifying its explicit shape. The final expression for t
critical temperature follows as the eigenvalue of an integ
equation for the gap function and is a functional
a2F(v). Naturally, one looks for a solution of the modifie
Eliashberg equations by the methods of the usual the
Since for cuprates one deals with conducting planes, we s
use the general form ofN(e) which is known for low-
dimensional periodic structures.

I. BASIC EQUATIONS AND METHOD

For T5Tc the Eliashberg equations written in th
imaginary-axis representation, valid for generalN(e),18,22

are

D~ ivn!Z̃~ ivn!5pT (
m52`

1`

$lI ~m2n!2m~vc!%

3
D~ ivm!

uvmu
Ñ~ uṽmu!, ~1!

and

Z̃~ ivn!511
pTl

vn
(

m52`

1`

I ~m2n!sgn~vm!Ñ~ uṽmu!, ~2!

ṽn5vnZ̃~ ivn!,

where ivn5 ipTc(2n21) are the Matsubara frequencie
Equations~1! and ~2! determine the critical temperatureTc
resulting from a specific electron-phonon spectral den
a2F(v) which enters through

I ~n2m!5
2

lE0
` v

v21~vn2vm!2
a2F~v!dv, ~3!

wherel52*0
`(dv/v)a2F(v), and the Coulomb potentia

m(vc) appropriate to the cutoffvc in Eq. ~1!. Finally
Ñ(ṽn) is given by

Ñ~ uṽnu!5
1

pE2`

`

de
uṽnu

e21ṽn
2

N~e!

N~eF!
, ~4!

where the energy integral in Eq.~4! can be performed onc
the density of statesN(e) is specified. In the following we
assume that the standard electron-phonon spectral de
a2F(v), namely wherein all characteristic phonon freque
ciesvph are of the same order, and such that the unequal
vph@D(0) orvph@pTc hold. Equation~1! can, in principle,
then be solved by iteration. For the case of constantN(e) the
regularization procedure~that is, elimination of the singular
ity at v→0) and the iteration solution for the Eliashbe
equation atT5Tc is carried out in the real-axis represent
tion for intermediate coupling (l,1.5), in Refs. 30 and 31

Let us define the function
f
in

-

l

y.
all

y

ity
-
es

f~ ivn!5
D~ ivn!Z̃~ ivn!

D~0!Z̃~0!
, ~5!

whereD(0) andZ̃(0) are understood in the limit ofv→0.
Then Eq.~1! can be rewritten as

f~ ivn!5fo~ ivn!1pTl (
m52`

1`

@ I ~n,m!2I ~n,0!I ~0,m!#

3
1

uvmu
f~ ivm!

Z̃~ ivm!
Ñ~ uṽmu!, ~6!

where in the last expression the identityf(0)51 was used,
namely,

pT (
m52`

1`

$lI ~0,m!2m~vc!%
1

uvmu
f~ ivm!

Z̃~ ivm!
Ñ~ uṽmu!51,

~7!

and the functions,fo( iv) andk are introduced

fo~ ivn!5I ~n,0!1k@ I ~n,0!21#, ~8!

k5m~vc!pT (
m52`

1`
1

uvmu
f~ ivm!

Z̃~ ivm!
Ñ~ uṽmu!. ~9!

Note, however, thatk does not depend on frequency but on
on temperature. By definitionI (0,0)51. Moreover, for val-
uesn→` ~and also form→`) the functionI (vn ,vm) goes
to zero. The latter circumstance ensures a vanishing kern
Eq. ~6! for small and largevn . Therefore, for small and
large values ofvn the free termfo( ivn) is equivalent to an
exact solution of Eq.~6! f( ivn). Because of the facto
uvmu in the denominator in Eq.~7! as well as the rapid de
crease ofI (vn ,vm) with increasingvn , it is not difficult to
see that low frequenciesvn dominate in Eq.~7!, which in
turn is an eigenvalue equation. But for such frequencies
difference betweenfo( ivn) and the exact solutionf( ivn)
is negligible. That is why usingfo( ivn) instead off( iv) in
Eq. ~7! leads to an equation for determiningTc whose solu-
tion differs negligibly from the exact eigenvalue of Eq.~6!. It
is also of interest that the analytical continuation of the fr
term fo( ivn) on the real axisv has the characteristic fea
tures atv i,v0, repeating the features ofa2F(v) ~which
stem from the interaction of electrons with individual grou
of phonons with frequencyv i), while atv@v0 its behavior
is determined by the Coulomb interaction. Note thatv0 is
just max$v i%. Following the results of Refs. 30,31 we con
struct an iteration series for Eq.~6! by starting from the trial
functionfo( ivn) expressed in terms ofI (n,0) and withk as
the zero-order approximation. The kernel of Eq.~6! pos-
sesses no singularities so that the iteration procedure
verges rapidly. Subsequent iteration corrections are sm
and do not significantly affect the accuracy of results o
tained by usingfo(vn). In this scheme Eq.~7! is effectively
clearly an eigenvalue equation.

As to the renormalization factor for the electronic ma
Eq. ~2!, it is convenient to write it as
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Z̃~ ivn!5112E
0

`

dv2S~v! (
m50

`
pTc
vm

Ñ~ uṽmu!
v21vn

21vm
2

3 (
p50

` S 2vnvm

v21vn
21vm

2 D 2p. ~10!

@In the above equation and from now on the electron-pho
interaction spectruma2F(v) will be denoted asS(v).# Ex-
pression~10! differs from the standard one only by the fact
Ñ(ṽm). The convergence of the sum overp in Eq. ~10! is
sufficiently rapid. Specifically, for the case of a consta
EDOS only the first term needed being retained. Furth
more, the variation ofZ̃( ivn) with n is not large, so that in
the integralsZ̃( ivn) can be replaced by a constant value
n51.32 In determiningZ̃( ivn) andTc we use forÑ(ṽm) the
value ṽn5vnZ(0), whereZ(0)511l is a renormalization
factor corresponding toN(e)5const.

II. THE MODEL

We retain only nearest-neighbor terms in the dispers
relation

e~k!522B@cos~kxa!1cos~kya!#14B. ~11!

The EDOS per spin associated with the plane band Eq.~11!
is given fore,4B by33

N~e!5
4N

p2

1

4B2e
KS e

8B2e D , ~12!

where K is an elliptic integral34 and N is the number of
atoms per unit two-dimensional lattice cell. In the vicinity
the middle of the bande;4B, N(e) is well approximated by

N~e!5N0lnS 2W

ue24Bu D . ~13!

In expression~13! N05N/2p2B whereW58B is the full
bandwidth. Let us define the filling factors54B2eF which
describes the position ofeF with respect to the saddle poin
in N(e). As usual, pute→e2eF . We then have

N~e!5N0ln
2W

ue2su
. ~14!

Since the variation of the EDOS is important only ne
eF , one may representN(e) over the entire energy range a

N~e!5N0@11dn~e!#, ~15!

where the background valueN0 is chosen so as to yield th
critical temperatureTc

(0) . This corresponds to the case
N(e)5const, and the functiondn(e) ~whose implicit form is
postulated according to the physical situation! modulates the
variation ofN(e) neareF . By definition,dn(e) goes to zero
over a characteristic energy scale describing the dampin
the rapidly varying portion ofN(e). If the EDOS is modeled
for example, by a Lorentzian factor of widtha and superim-
posed on a backgroundN0, thendn(e) vanishes for energie
of the order ofa. But for a logarithmic variation ofdn(e), if
we wish to represent a varying EDOS in the form~15! one
n

t
r-

t

n

r

of

must utilize some prefactor fordn(e) in order to suppress
the logarithm at large energies (dn→0 only at e→`). In-
cluding an energy-dependent damping factor~as done, for
example, in Ref. 25! only causes additional difficulties in th
analytic calculations due to the additional complication of
explicit form of Ñ(ṽn). These difficulties are avoidable b
employing the direct definition~4! for Ñ(ṽn) since as em-
phasized in Ref. 4, Eq.~13! is a very good approximation to
Eq. ~12!. Specifically, the values ofN(eF) ~as well as mag-
nitudes of EDOS integrated over the entire range ofe), cal-
culated, respectively, by using Eq.~13! as well as the exac
expression~12!, differed only slightly from each other
Therefore one can approximate the exact EDOS~12! by the
simple form~13! over the entire range ofe—and this guar-
antees analytic results. Inserting expression~13! for N(e)
into Eq. ~4! immediately leads to

Ñ~ṽn!5
1

N~s!
ln

2W

As21uṽn
2u
, ~16!

whereN(s)5 ln(2W/s). It should be noted that the EDOS a
eF is given by

N~eF!5N0ln
2W

s
, ~17!

and depends on the filling factors. To obtain a physical
value forN(eF) at s→0 we must include, e.g., the transitio
matrix elements for charge carriers between conducting
ers. Henceforth we deal only with the case ofs@pTc rather
thans50.

III. SUPERCONDUCTING TRANSITION TEMPERATURE

At temperatures nearTc the electron mass renormaliza
tion factor Z̃(vn) does not involve the gap functionD(vn)
so that it may calculated independently. Due to rapid conv
gence of the sum overp in Eq. ~10! one can accurately
representZ̃(vn) as

Z̃~vn!511E
0

`

dv2S~v!

3H 1

v21vn
2 1

1

ln~2W/s!

1

@s/Z~0!#22v22vn
2

3F s2

v21vn
2

lnZ~0!

Z2~0!
1 ln

Av21vn
2

s G J . ~18!

In Eq. ~18! we have neglected terms proportional
(pTc)

2/v̄ph
2 . Expression~18! differs from the analogous re

sult for Z(vn) corresponding to constant EDOS only by th
second term in the curly brackets. As a rule, because of
small variation withvn , the Z(vn) can be replaced by its
constant value atn51 which thus allows analytic calculatio
~see, for example in Ref. 32!. It is not difficult to realize that
such is the case here; namely, asvn increases up to the
maximum phonon frequencyv0, Z̃(vn) changes only by a
few percent. Therefore, to the same accuracy as in the u
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case, one can substituteZ̃(v1) for Z̃(vn) to be designated in
the following asZ̃(0). In accordance with Eq.~18! we have

Z̃~0!5Z~0!@11nr~s!#, ~19!
o

wheren5l/(11l) andZ(0)511l is the renormalization
factor corresponding to constant EDOS;r(s) is given by
r~s!5
1

ln~2W/s!

*0
`dv2S~v!@1/~ t22v2!#@~ t2/v2!lnZ~0!1 ln~v/s!#

*0
`~dv2/v2!S~v!

, t5s/Z~0!. ~20!
l-
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s
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Consider the eigenvalue equation~7! where we put
f( ivn)5fo( ivn). SubstitutingZ̃(0) for Z̃(vm) Eq. ~7! can
be rewritten as

1

g
5I 12

ko

11ko I 2 , ~21!

where the following notation was used:

g5
l

Z̃~0!
, ~22!

I 15
1

l2E
0

`

dv1
2S~v1!

3E
0

`

dv2
2S~v2!

1

v2
22v1

2 @P~v1!2P~v2!#, ~23!

I 25
1

lE0
`

dv2S~v!P~v!, ~24!

P~v!5 (
m50

`
2pTc
uvmu

1

v21vm
2 Ñ~ uṽmu!, ~25!

ko5m!I 2 , m!5
m~vc!/Z~0!

11@m~vc!/Z~0!# ln~2W/vph!
.

~26!

Note that the weak Coulomb pseudopotentialm! Eq. ~26!
differs from the analogous Tolmachev35 or Anderson and
Morel36 results by a factorZ(0) in both denominator and
numerator. PuttingÑ(uṽmu) as given by Eq.~16! into
P(v) Eq. ~25! one can perform the summation overm, the
result being easily expressed in terms of combinations
digamma functions C@1/26 i (x/2pTc)#,

20,34 where
x5s/Z(0) or v. ForpTc!vph we obtain

P~v!5
1

N~s!

1

v2 S ln 1.13vTc
ln

2W

Aut22v2u

2
1

2
ln2

1.13v

Tc
1St~v,Tc!D , ~27!

where in the last equation we have sett5s/Z(0) and
f

St~v,Tc!5
1

2E dt2

t22v2 ln
1.13t

Tc
.

The integralSt(v,Tc) cannot be expressed in terms of e
ementary functions; but depending on the value
s5tZ(0) it can be written as a sum of leading term
Si
o(v,Tc) plus correction termsd i(v); that is

St~v,Tc!5Si
o~v,Tc!1d i~v!. ~28!

In the last equation the indexi is 1 or 2 and labels the
different domains in which the filling parameters takes on
values corresponding tot,v ( i51) and t.v ( i52), re-
spectively ~see Appendix A!. It turns out that the explicit
formula for St(v,Tc) is a piecewise-continuous function o
the filling parameters5tZ(0), and inpassing through the
point s!5vZ(0) the functional dependence ofSt(v,Tc) on
s changes. In the meantime, it is noteworthy that the disc
tinuous character ofSt(v,Tc) is an intrinsic property of the
logarithmic VHS. Simple inspection convinces one that t
situation does not change when other models such as
two-square well27 or two-step28 models are used for the ga
function f(v) in the eigenvalue equation~21! instead of
fo(v) Eq. ~8!. It should also be noted that our representat
~28! for St(v,Tc) is not an expansion in the interaction p
rameterl. We retain all termsd i(v) considering them as
small corrections ofSi

o(v,Tc). Taking into account the spe
cific expressions forSt(v,Tc) in Eqs.~21!–~27! finally gives
an eigenvalue equation from whichTc is ultimately deter-
mined. The final form ofTc depends on the relative position
of the filling parameters with respect to the peaks in
S(v). One obtains the following distinct cases.

A. Case of small separations,s<vZ„0…

Here we assume that all phonon frequenciesvph repre-
sented in the spectral density of interactionS(v) satisfy the
condition t,v. This is the most important case since t
Fermi energy lies in a region where the EDOS exhibits
pronounced structure in energy. For simplicity we use
weak Coulomb pseudopotential~26! m!50. Using the im-
plicit expressions forS1(v,Tc) ~Appendix A! in Eqs.~21!–
~27!, the eigenvalue equation~21! becomes quadratic in
ln(1.13t/Tc) ~Appendix B!; from this the final result forTc is
just
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Tc51.13Vexp~2D !, ~29!

V52We2ho/2S v̄ph

t D , ~30!

D5AF lnS 2Wt D1
1

gG21F lnS v̄ph

t D2
ho

2 G22 1

g2
2
2lnZ~0!

g
22d̄. ~31!
-

e
by

lt

-

to
c
n

or

-

b

In expressions~29!–~31! for Tc we set

v̄ph5exp̂ lnv&S~v! ,
1

g
5
1

n
1r~s!, t5

s

Z~0!
, ~32!

ho5K K v2

v22v1
2 ln

v1
2

v2 L
S~v1!

L
S~v!

;1, ~33!

d̄5K K v1
2v2

2

v2
22v1

2 S 1

v1
2 d1~v1 ,t !

2
1

v2
2 d1~v2 ,t !D L

S~v1!

L
S~v2!

, ~34!

where the factorsr(s) and d1(v,t) are determined corre
spondingly, by Eqs.~20! and ~28!; the symbol ^( . . . )&
should be understood as

^~ . . . !&5
*0

`~dv2/v2!S~v!~ . . . !

*0
`~dv2/v2!S~v!

. ~35!

This expression forTc closely resembles that obtained in th
van Hove scenario within the framework of BCS theory
Tsuei et al.6 Physically, however, formulas~29!–~31! are
much richer since they differ from the well-known resu
which is an exponential factorD premultipied byV. The
V includes the full bandwidth 2W as well as the character
istic phonon energyv̄ph. In additionV depends on the fill-
ing factor s as well as on the mass renormalization fac
Z(0). Theexponential factorD also involves characteristi
parameters which in turn depend upon electronic, phono
and electron-phonon properties. Formula~29! also has an-
other very interesting feature. To illustrate this, in acc
dance with the ordinary Eliashberg theory@when
N(e)5const# let us assume that 2W/v̄ph@1. For not very
small values ofl ~approximately, forl.0.5) one can then
neglect all terms in the exponential factorD Eq. ~31! except
the first. Thus, expression~29! for Tc takes the form

Tc5
v̄ph

1.45
expH 2

11l

l
~11r!J , r;1022

which is precisely the familiar McMillan formula37 with zero
Coulomb pseudopotential.
r

ic

-

B. Case of large separations,s>vZ„0…

Let us consider values of the filling parameters for which
the conditiont.v is satisfied for all characteristic frequen
cies of S(v). In analogy with the case ofs,vZ(0) we
obtain ~see Appendix C!

Tc~s!51.13V~s!expS 2
A~s!

g~s!2m!
D , ~36!

where in Eq.~36! one introduces the notation

V~s!5v̄phexp„g~s!1d~s!…,

A~s!5
N~s!

N~ t!
512

lnZ~0!

N~ t !
, ~37!

g~s!5
n

11nE~s!
, E~s!5r~s!1h~s!1d8~s!. ~38!

In expression~36! for Tc the factorg(s) Eq. ~38! plays the
role of an effective interaction parameter, the Coulom
pseudopotentialm! being given by Eq.~26!. Specific expres-
sions forr(s) Eq. ~20!, g(s), h(s), andd(s) in Eq. ~36! are
then determined by the shape of interaction spectrumS(v),
namely,

g~s!52
1

2N~ t ! K lnv

t
lnS 12

v2

t2 D L
S~v!

,

d~s!5
1

N~ t !
^d2~v,t !&S~v! , ~39!

h~s!5
1

2N~s! H N~ t !ho1
1

2 K K v21v1
2

v22v1
2 F lnv1

t
lnS 12

v1
2

t2 D
2 ln

v

t
lnS 12

v2

t2 D G L
S~v1!

L
S~v!

J , ~40!

d8~s!5
1

2N~s! K K v21v1
2

v22v1
2 @d2~v,t !

2d2~v1 ,t !#L
S~v1!

L
S~v!

. ~41!
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In the above formulasN(t)5 ln(2W/t), N(s)5 ln(2W/s);
d2(v,t), v̄ph, and ho are given correspondingly, by Eq
~28!, ~32!, and~33!.

According to Eq.~17! the values of parametersA(s) Eq.
~37!, g(s) Eq. ~39!, andh(s) Eq. ~40! depend on the mag
nitude ofN(eF). For a large shifts of eF from the saddle
point the function ~17! is slowly varying. Therefore, in
agreement with the physical situation, far from the peak
EDOS we can suppress the logarithmic variation of
N(eF) that enters expressions~37!–~40! and take it as con-
stant for large energy valuess.25 Fixing N(eF) at the inter-
domain boundarys! we set

N~ t !5 ln
2W

v̄ph

.

If the interaction spectrumS(v) is a d function centered
about some average frequencyvph, and in addition if
m!50, then a little algebra leads to the following express
for Tc :

Tc5
vph

1.45
expS 2

1

n
1R~s! D , ~42!

where

R~s!5
1

ln~2W/vph!
F lnZ~0!

l
2
1

2
ln

vph

t
lnS 12

vph
2

t2 D
2
3

2

vph
2

t22vph
2 ln

vph

t
2
1

4 (
k51

`
1

k2 S vph
2

t2 D kG .
It is not difficult to see that formula Eq.~36! for Tc has

the correct asymptotic ‘‘behavior,’’ namely, if 2W/v̄ph→`
then Eq.~36! assumes the form

Tc
o51.13v̄phexpS 2

1

go2m!
D , go5

n

11~1/2!hon
.

~43!

Expression~43! is well known from the theory38 with con-
stant EDOS for intermediate coupling. In particular, this e
pression turns out to be extremely useful in understand
the differences in partial isotope shift facto
a i5(mi /Tc)dTc /dmi in compounds arising from the dis
similar variation in the interaction spectruma2F(v) under
substitutions ofi type of atoms by different isotopes. On th
basis of formula~43! it was shown,39,40 though the critical
temperature itself is a weak function of the shape
a2F(v) (Tc is determined mainly by average phonon fr
quencyv̄, interaction parameterl as well as weak Coulomb
pseudopotentialm!) the differential parameters, such as, e.
the partial isotope shift factor and the pressure variation
Tc may be very sensitive to changes in the interaction sp
trum.

It should be stressed that formulas~29!–~31! and ~36!–
~38! for Tc were obtained solely within the framework o
Eliashberg theory. That is, we deal with thereal parameters
of the electron-phonon system, which has a specificmicro-
scopic origin. Again, the final expressions forTc include
parameters of electronic, phononic, and electron-phonon
gin. Moreover, the results forTc are obtained as a functiona
n
e

n

-
g

f

,
f
c-

ri-

of the interaction spectruma2F(v). In arriving at final for-
mulas ~29!–~31! and ~36!–~38! one need not specify the
shape ofa2F(v), by which one understandsany spectrum—
including spectra associated withmonoatomicor with com-
poundsuperconductors~see Refs. 39 and 40!.

IV. DISCUSSION OF RESULTS

Consider now the expression for the critical temperat
Tc for various parameter values of the model adopted abo
We are interested in cases when the Fermi level is either
or far from the saddle point in the EDOS. Physically, w
expect higher values ofTc for small s. The shift ofeF from
the middle of the conduction band may be considered
comparatively small in the domains labeled byi51 in Eq.
~28!, since in these cases the distance betweeneF and the
EDOS peak is of the order of the phonon frequencyv̄ph
which is the characteristic energy scale important for sup
conductivity. By contrast, wheneF is off the saddle point, we
can expect a secondaryTc-enhancing effect due to the pea
structure in the EDOS and we recover a result forTc values
consistent with those from ordinary Eliashberg theo
@namely,N(e)5const, comparatively small values ofTc]. A
significant separation ofeF from the middle of the conduc
tion band occurs whens.v̄phZ(0) ~in the domain labeled
with i52). It should be emphasized, that the width of t
segment of the filling parameter values where we exp
higher values ofTc implicitly depends on the interaction
parameterl. Actually, the energy dependence inN(e) is
incorporated into Eliashberg theory by introducing an ad
tional factorÑ(uṽmu) Eq. ~4! into the sums of the ordinary
equations. The factorÑ(uṽmu) is determined not by ‘‘bare’’
Matsubara frequenciesvm but rather by the renormalize
onesṽm Eq. ~2!. The final expressions forTc Eqs.~29!–~31!
and~36!–~38! are obtained after a preliminary summation
eigenvalue equation~21! over discreteṽm , which in turn
depend on the value of the factorZ(vm). Because of the
summation in Eq.~21! the superconducting critical tempera
ture,Tc , depends on the filling parameters by means of the
ratio t5s/Z(0). Separation into domains where one expec
respectively, large and moderate values ofTc occurs at
t!5v̄ph. Thus, the width of the segment of the filling pa
rameter values, where a higherTc is expected, depends o
Z(0).

Note that in the derivation of formulas forTc Eqs.~29!–
~31! we have used the digamma function representation20

C~X!5 lnuXu2
1

2X
2

1

12X2 1•••,

which is valid foruXu.1 ~hereX51/22s/2pTc). Therefore,
for very small separations of the Fermi level from the saddle
point, when the application of the above-mentioned form
is invalid, our result forTc is not correct and the range o
values ofs, where the final expression forTc Eqs.~29!–~31!
is applicable, must be restricted from below, say atv̄ph/2.
Here, it was assumed thatvph@2pTc , which is the case for
La-Sr-Cu-O ~LSCO! superconductors. Experimentally
LSCO electrons interact mainly with the O and Cu atoms
the conducting planes for whichvph;300 K andTc;40 K.
Thus, if s.vph/2 then the conditions.2pTc holds.
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Next we analyze theTc formulas. Direct inspection o
Tc Eqs.~29!–~31! allows one to conclude that for values
the filling parameters such thatv̄ph/2,s,v̄phZ(0), the
transition temperatureTc exceeds the valueTc

o correspond-
ing to constantN(e). However, enhancement ofTc will de-
pend on the value of the interaction parameter. The rela
enhancement ofTc is more noticeable for smalll, viz., as
seen from Fig. 1 whereTc /Tc

o versus l appears. For
l50.3 the critical temperature increases nearly four tim
while for l51.5 the increase inTc is only about 50%. Ac-
tually, in the modified Eliashberg theory forTc the factor
Ñ(ṽn) Eq. ~4! describes the broadening in the EDOS pe
structure. Washing out of the EDOS peaks due to this bro
ening is more pronounced for largel. Therefore, for strongly
coupled superconductors a sharp structure inN(e) is less
effective forTc enhancement than for weakly coupled on

Figure 2 shows plots ofTc as a function ofs (s,s!), for
different values of 2W/v̄ph. The magnitude ofTc

o is indi-

FIG. 1. Tc /Tc
o vs l, for (2W/vph)5200 ~solid line! and 40

~dashed line!, the so-called ‘‘high-temperature region.’’

FIG. 2. Tc as a function oft/v̄ph ~high-temperature region!.
Curves correspond to 2W/vph5200 and 40. Herel51.2,
vph520 meV. The horizontal dotted line isTc

o .
e

s,

k
d-

.

cated by the horizontal line at the bottom. This figure clea
illustrates the considerably higherTc compared withTc

o

throughout the entire range of variation ofs from v̄ph/2 to
v̄phZ(0). Henceforth, this domain will be referred to as th
‘‘high-temperature region.’’ Significantly, however, in thi
regionTc is nonmonotonic in the filling parameters. As s
decreases fromv̄phZ(0), Tc increases initially and then
reaches a maximum value at somes8. Further decrease of
s, namely, further increasing N(eF) through the saddle point,
produces a gradual decrease ofTc , in agreement with the
Pickett result18 for A15 compounds. The reason for the re
duction ofTc for small separations of eF from the middle of
the conducting band can be understood if we recall the s
stantial decrease of the factorÑ(ṽn) Eq. ~16! produced by
decreasings. BecauseÑ(ṽn) is proportional to 1/N(eF)
which vanishes rapidly aseF varies up to the saddle point
we have a reduction ofTc for smalls instead of its expected
increase. Another remarkable feature ofTc is that the stron-
gest variation inTc does not occur in our so-called high
temperature region. Namely,DTc /Tc is of order 0.1, where
DTc is the total change inTc as s varies from v̄ph/2 to
v̄phZ(0). We again stress that the width of the ‘‘high
temperature region’’ thus defined depends on the value of
interaction parameter: large values ofl correspond to a
broader such region.

Figure 3 displays plots ofTc vs s for large separationss
(s.s!). As seen from Figs. 2 and 3, both drawn for th
d-like interaction spectrum and for the same values ofl and
2W/vph, for a value ofv̄phZ(0) for the filling parameter
s, Tc drops discontinuously toward theTc

o lying a little
higher thanTc

o . The differenceTc2Tc
o tends to zero for sig-

nificant values of the ratio 2W/v̄ph, in accordance with the
constant EDOS case. In fact, variation of the functional for
of Tc(t) by increasing the filling parameter@that is, transfer
of expressions~29!–~31! for Tc to formulas of the form
~36!–~41!# takes place over the full ‘‘width’’ of the spectra
densityS(v). The Eliashberg functionS(v) consists of sev-

FIG. 3. Tc as function oft/vph for large separation ofeF from
the saddle point. 2W/vph5200 ~solid line! and 100~dashed line!.
Dotted and dash-dotted lines at bottom correspond, respectively
cases 2W/vph→` and constant EDOS. Herel51.2, vph520
meV.
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eral narrow peaks at certain$v i% ( i51,2, . . .! arising from
the interaction of electrons with individual groups
phonons with frequenciesv i .

32 The d-like structure of
S(v) leads to a discontinuity ofTc as a function of
s5tZ(0). Note that the magnitude ofTc2Tc

o at larges ~Fig.
3! is associated with the factor lnZ(0) in the expression for
Tc @Eq. ~42!# arising from using renormalized frequenci
ṽn5vnZ̃(0) in the broadening factorÑ(ṽn) Eq. ~4!. Using
in our Tc calculations the ‘‘bare’’ Matsubara frequencie
vn , instead of ṽn , then beginning approximately from
(t/v̄ph)52 the critical temperatureTc approachesTc

o . The
qualitative picture shown in Fig. 2 does not change on s
stitution of vn for the renormalizedṽn , but thel depen-
dence ofTc ~Fig. 1! steepens, and forl51.5 we have only
;25% of theTc enhancement. It is easy to understand t
representing the spectral functionS(v) as a sum of severa
d-like peaks, that is, allowing for simultaneous contributi
of frequencies from two different domains witht,v and
with t.v to the integrals~23! and ~24!, does not alter the
discontinuous character ofTc nor its asymptotic behavior a
large values ofs. Therefore,discontinuity of Tc as a function
of the filling parameter is an intrinsic feature of quasi-tw
dimensional superconductivity.Taking into account the finite
widths of the peaks inS(v), as well as the transition matri
elements for electrons between adjacent conducting la
will ‘‘spoil’’ this ideal discontinuous picture in theTc behav-
ior and smooth out the transition from the high-temperat
region to a region whereTc is moderate. We believe tha
physically, the discontinuous nature ofTc as a function of
the distance betweeneF and saddle point inN(e) is a result
of theshort-range character in the energy spaceof the indi-
rect electron-electron interaction via phonons. The ma
ematical origin of this discontinuity is hidden in the nonan
lytic behavior of the integral~28!. In energy space this
interaction is spread over a regionv0 around the Fermi sur
face. Let us assume that the singularity in EDOS is locate
exactly a distancev0 from eF . Then any small increase o
s will remove the singularity from the energy she
eF2v0,e,eF1v0 and lead to exclusion of the contribu
tion to Tc due to the singularity inN(e). Namely, the latter
contribution is responsible for the discontinuous nature
Tc .

It is not difficult to see that (dTc /dW),0 everywhere.
Thus, decreasing 2W/v̄ph always results in a slight increas
in Tc , the influence of bandwidth onTc becoming more
significant for relatively smaller ratios of 2W/v̄ph.

In Fig. 4 the influence of the correction termsd i(v,s) on
Tc is exhibited, the dashed curve corresponding to a plo
Tc including correction terms in expressions~29!–~31! and
~36!–~38!. The full curve is the same plot but without th
d i(v,s). Evidently, over the entire range of variation of th
filling parameter, taking these correction termsd i(v,s) into
account leads to small changes in the magnitude ofTc .

Our results may be useful in understanding the exp
mental data of Ref. 41 where it was established that
phase diagram of well-annealed La22xSrxCuO4 oxides dif-
fers sharply from that held by conventional wisdom. T
concentration dependence ofTc in La22xSrxCuO4 does not
follow the commonly assumed ‘‘inverted-parabola’’ beha
ior; rather it remains in the 35–40 K range fo
-

t

rs

e

-
-

at

f

f

i-
e

x50.14–0.21. Atxcr;0.2120.22,Tc drops discontinuously
to zero. If one assumes that critical dopingxcr corresponds to
filling parameters!5vphZ(0) in our consideration, then on
can explainTc as nearly constant over the concentrati
rangex50.14–0.21, and one can understand its discontinu
as well. It has also been found41 that at a concentration wher
Tc experiences an abrupt decrease, a second-order struc
transition takes place from a low-temperature orthorhom
phase to a high-temperature tetragonal phase. Such dr
changes in the material at nearly the same concentrationxcr
may, in principle, have an identical origin. Thus, it would b
extremely interesting to investigate this phase transition
layered systems by assuming a van Hove scenario.

To conclude, an analytic expression is obtained for
superconducting critical temperatureTc in the logarithmic
van Hove scenario~VHS! within the framework of the modi-
fied Eliashberg equations allowing for sharp variations in
electronic density of states. The behavior ofTc as a function
of the Fermi energy shift from the van Hove saddle point
analyzed, and we identify the region of the filling parame
values where the effectiveness of VHS in enhancingTc is
most appreciable. The dependence ofTc enhancing on the
value of interaction parameterl in VHS is thus established
It is shown that though an increasingTc is more effective for
weak coupling, nevertheless, for intermediate coupling
critical temperature is still considerably higher thanTc

o , cor-
responding to a constant EDOS. Based on the existenc
low-dimensional structural elements such as planes, a
sible explanation is suggested for a curious discontinu
change in transition temperature observed experimentall
La22xSrxCuO4 oxides.
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APPENDIX A

To obtain concrete expressions forSt(v,Tc) Eq. ~28! in-
tegral tables34 give

S1~v,Tc!5 ln
1.13v/Tc

ln

1.13Av22t2

Tc
1d1~v,t !, t,v;

~A1!

S2~v,Tc!5 ln
1.13t

Tc
ln
1.13At22v2

Tc
2
1

2
ln2

1.13t

Tc
1d2~v,t !,

t.v, ~A2!

where

d1~v!52
1

4(k51

`
1

k2 S v22t2

v2 D k, t,v,

d2~v!52
1

4(k51

`
1

k2 S v2

t2 D k, t.v.

If the Eliashberg functionS(v) is located in the interva
(vmin ,vmax) then, depending on the relationt,vmin or
t.vmax, the integrals~23! and ~24! are determined corre
spondingly by Eq.~A1! or ~A2!. The use ofS1(v,Tc) or
S2(v,Tc), for Eqs. ~21!–~27!, results in expressions forTc
which have different functional forms~see below!.

APPENDIX B

Substitution ofS1(v,Tc) ~Appendix A! into Eq.~27! after
rearrangement gives
P~v!5
1

N~s!

1

v2 S 12 L21L ln
2Wv

t2
1 ln

v

t
ln
2W

t
1d1~v,t ! D ,

where L5 ln(1.13t/Tc); d i(v,t) for i51 is given by Eq.
~A1!. From definitions~23! and ~35! we have

I 15K K v1
2v2

2

v2
22v1

2 @P~v1!2P~v2!#L
S~v1!

L
S~v2!

.

Using in the last equality the relations

K K v1
2v2

2

v2
22v1

2 S 1

v1
2 ln

2Wv1

t2
2

1

v2
2 ln

2Wv2

t2 D L
S~v!

L
S~v!

5 ln
2Wv̄

t2
2
1

2
ho,

K K v1
2v2

2

v2
22v1

2 S 1

v1
2 ln

v1

t
2

1

v2
2 ln

v2

t D L L 5 ln
v̄

t
2
1

2
ho,

where the factorsv̄ and ho in the above expressions ar
given by Eqs.~31! and ~33!, and inserting a zero Coulom
pseudopotentialm!50 into the eigenvalue equation~21! we
arrive at

L212LS ln2Wv̄

t2
2

ho

2 D
12 ln

2W

t S lnv̄

t
2

ho

2 D12d̄5
2N~s!

g
. ~B1!

The solution forL of the last equation gives
L652S ln2Wv̄

t2
2

ho

2 D6AS ln2Wv̄

t2
2

ho

2 D 222 ln
2W

t S lnv̄

t
2

ho

2 D1
2N~s!

g
22d̄.

Taking into account inL6 the identity

N~s!5 ln
2W

t
1 ln

t

s
,

we get, after simple algebra,

L52S ln2Wv̄

t2
2

ho

2 D1AS ln2Wt 1
1

gD
2

1S lnv̄

t
2

ho

2 D 22 1

g2
2
2 lnZ~0!

g
22d̄,
-

which is the physically possible solutionL1 of equation
~B1!. One finally obtains the expression forTc in Eqs.~29!–
~31!.

APPENDIX C

Let us rewrite the eigenvalue equation~21! for Tc in the
form
Z̃~0!

l
2~ I 12I 2!5

I 2
11m!I 2

. ~C1!

In the denominator Eq.~26! was used, andZ̃(0) is given by
Eq. ~20!. Recalling Eqs.~23! and ~24! the concrete expres
sion forS2(v,Tc) Eq. ~A2! gives
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I 15
1

N~s!
~L1h11 d̄2!, ~C2!

I 25
1

N~s!
~L1h21 d̄28!, ~C3!

where the following notation was introduced:

L5 ln
1.13t

Tc
ln
2W

t
,

h15K K v1
2v2

2

v2
22v1

2 S 1

v1
2 ln

v1

t
ln

2W

At22v1
2

2
1

v2
2 ln

v2

t
ln

2W

At22v2
2D L

S~v1!

L
S~v2!

,

h25K lnv

t
ln

2W

At22v2L
S~v!

,

d̄25K K v1
2v2

2

v2
22v1

2 S 1

v1
2 d2~v1!2

1

v2
2 d2~v2!D L

S~v1!

L
S~v2!

,

d̄285^d2~v,t !&S~v! .

The left-hand side of Eq.~C1! does not depend onTc and is
denoted by 1/g(s). Then from Eq. ~C1! we have
I 251/g2m! which in conjunction with Eq.~C3! leads to the
final expressions~36!–~38! for Tc .
APPENDIX D

In this appendix we derive formulas for parameters a
pearing in the final expressions~29!–~31! and ~36!–~38! for
Tc , assuming that the interaction spectrumS(v) has a
d-like shape:

v̄ph5vph, ho51,

d̄~s!5
1

8 F t2

vph
2 2t2

ln
vph
2

t2
2 (

k51

`
1

k2 S vph
2 2t2

vph
2 D kG ,

r~s!5
1

N~s! S lnZ~0!1
vph
2

t22vph
2 ln

vph

t D ,
g~s!52

1

2N~ t !
ln

vph

t
lnS 12

vph
2

t2 D ,

h~s!5
1

2

N~ t !

N~s!
2

1

4N~s! H lnS 12
vph
2

t2 D 2
2vph

2

t22vph
2 ln

vph

t J ,
d~s!52

1

4N~ t !(k51

`
1

k2 S vph
2

t2 D k,
d8~s!52

1

4N~s!
lnS 12

vph
2

t2 D ,
whereN(t)5 ln(2W/t) andN(s)5 ln(2W/s).
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