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Transition-temperature features of layered superconductors
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A model theory for the superconducting transition temperalyres derived that is based on a generalized
version of the Eliashberg equations taking into account an energy dependence in the electronic density of states
N(e). We treat an electronic structure with characteristic two-dimensional character. An analytical expression
for T obtained for intermediate coupling establishes features of tha the logarithmic van Hove scenario.
Results describe the behavior of, vs x observed in well-annealed LaSr,CuO, oxides.
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INTRODUCTION of the VHS. In the pioneering work of Pickétiit is argued
that for strongly coupled superconductors peaks in the EDOS
A characteristic feature of nonconventional superconductare quite ineffective in raisind.. By assuming thagg lies
ors is the presence of low-dimensional structural elementaear the center of a very narrow peak, these authors esti-
such as weakly coupled planes or chains of atoms. Becauseateda reduction of T by 15% in A15 compounds. How-
of this marked anisotropy it is possible thdfe), the elec- ever, in more recent studies by Mansor and Carbo#el .
tronic density of state€EDOS), in cuprate superconductors, greatly enhanced over the value when van Hove singularities
for example, is not smooth but exhibits appreciable variaare not present is obtained which drops rapidly by shifting
tions with energye over a significant scale. In particular, the e away from the center of the EDOS peak, as expected.
singularities in a van Hove scenario, necessarily present i€learly, additional work is required in order to clarify the
periodic potentials, may play an important rofé.Recent  situation.
experimentaf* as well as theoretical results!’ in non- Eliashberg theory determines the critical temperature as a
conventional superconducting materials suggesting a Fernfiinctional of the electron-phonon interaction spectrum,
level pinned very close to a van Hove saddle point ina?F(w), so that obtaining a universal, describing all su-
N(e), raise important questions about the possible role of gerconducting materials is, strictly speaking, impossible.
nonsmooth EDOS and its subsequent effectTerin these  Fortunately, howevefT. depends mainly on the characteris-
materials. tic phonon frequencw,, as well as on the value of the mass
In conventional superconductivity thid(e) is assumed renormalization factoh. This circumstance admits various
not to vary around the Fermi energs; , over the character- analytical approaches based on physical assumptions about
istic energy range corresponding to the maximum phonomhe actual electron-phonon interaction. Specifically, the fa-
energy,wo. The EDOS is then replaced by its valueeat. ~ miliar expressions forT, of McMillan,2® of Allen and
On the other hand, ik is located near a singularity any Dynes?’ of Leavens and Carbotté, as well as the more
infinitesimal departure of from e gives rise to sharp varia- recent formula of KresiR? all follow after making reason-
tions inN(e) that must be taken into account in a consistentable approximations of the gap function and of the effective
theory. electronic mass. These solutions Tiqrsucceed in describing
The formalism with nonconstahi(e) was initially devel-  the behavior of the exact solution of the ordinary Eliashberg
oped in anticipation of possible applications to “classical” equations for appropriately chosen ranges of the interaction
high-temperature superconductors such as Ai& com- parametern. But for modified Eliashberg equations with a
pounds, and were carried out within the framework of BCS,nonconstant EDOS analytical solutions far have not been
as well as of Eliashberg theory which has since been exreported. Results are obtainable either from numerical analy-
tended by many authot8-22 With the discovery of high- ses or for weak couplingy—0.1¢*” Meanwhile, a simple
T. cuprate superconductors, interest in this area has resusnalytical representation based on specifically physical as-
faced as a possible explanation of fhg enhancement ob- sumptions would shed light on the dependencd& obn the
served in the cuprates. Nevertheless, in recent favihin relevant parameters of the underlying strongly correlated
the framework of the Fermi-surface-restricted Eliashbergelectron-phonon system, and perhaps suggest nontrivial in-
theory824it is concluded that a van Hove scenafiéHS) to  formation about such a complex many-particle system.
enhanceT; operateonly in weak couplingand that inclu- The purpose of this paper is to present the results of ana-
sion of strong coupling deactivates tfig-enhancing effects lytic calculations for T, for values of A<1.5 and for
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wpr> 7T . For such parameter restrictions the method of A(iwn)z(iwn)
solving the standard Eliashberg equations was developed in Pliv)=—=—", 6)
Refs. 30 and 31see belowaccording to which the solution A(0)2(0)

for the gap in the quasiparticle excitation spectrum is repre-
sented in a form reflecting features of théF (w) without
specifying its explicit shape. The final expression for the
critical temperature follows as the eigenvalue of an integral
equation for the gap function and is a functional of .
«’F (). Naturally, one looks for a solution of the modified ¢(""“):¢0(""“)+”T)‘m;m [1(n,m)=1(n,0)1(0m)]
Eliashberg equations by the methods of the usual theory.
Since for cuprates one deals with conducting planes, we shall 1 ¢(iowy) ~
use the general form oN(e) which is known for low- |w [ 5
dimensional periodic structures. ml Z(iom)

whereA(0) andZ(O) are understood in the limit ab—0.
Then Eq.(1) can be rewritten as

+ oo

N(|@ml), (6)

where in the last expression the identify0)=1 was used,

I. BASIC EQUATIONS AND METHOD namely,
For T=T. the Eliashberg equations written in the o
imaginary-axis representation, valid for geneh(e),'822 1 ¢(iow ~
T A(Om N
are 7T 2 ANOm) = (ol |Z(Iwm) (|@ml)=
. (7)
A(iwn)Z(iwn)ZTFTm;oc {A(m=n)—u(wo)} and the functions¢°(i ) and « are introduced
Aliwy) ~ ¢°(iwy)=1(n,00+ «[1(n,00—1], (8)
o ]“ N([@), (1) "
+ o
$iw ) —
and k=) mT X “N(@al): 9

o [oml Z(iwp)

~ TN 2 ~

Z(iwn) =1+ — _2 I(m—n)sgnonN(|@n|), (20 Note, however, thak does not depend on frequency but only
nmeTE on temperature. By definition(0,0)=1. Moreover, for val-

uesn—c (and also fom— ) the functionl (w, ,»,) goes

to zero. The latter circumstance ensures a vanishing kernel in

where iw,=inT(2n—1) are the Matsubara frequencies. Ed- (6) for small and largew, . Therefore, for small and

Equations(1) and (2) determine the critical temperatufe, ~ 1a79€ values ofv, the free termp°(iwp) is equivalent to an

resulting from a specific electron-phonon spectral densitfX@ct solution of Eq.6) 4(iw,). Because of the factor
«?F () which enters through | in the denominator in Eq(7) as well as the rapid de-

crease of (w,,w,,) With increasingw,, it is not difficult to
2 [ w see that low frequencies,, dominate in Eq(7), which in
I[((n—m)= Xf 2—_2a2F(w)dw, (3)  turnis an eigenvalue equation. But for such frequencies the
0 @"F (0~ 0m) difference betweem®(iw,) and the exact solutiog(i w,,)
is negligible. That is why using°(i w,) instead of¢(i ) in
Eq. (7) leads to an equation for determiniiig whose solu-
tion differs negligibly from the exact eigenvalue of E). It
is also of interest that the analytical continuation of the free
term ¢°(iw,) on the real axisv has the characteristic fea-
(@ |)__J de @[ N(e) (4 lures atoi<oy, repeating the features @f’F(w) (which
n 24 wZ N(er)’ stem from the interaction of electrons with individual groups
of phonons with frequency;), while at w> w, its behavior
where the energy integral in E(#) can be performed once is determined by the Coulomb interaction. Note thgt is
the density of statebl(e) is specified. In the following we just maxXw;}. Following the results of Refs. 30,31 we con-
assume that the standard electron-phonon spectral densigyruct an iteration series for E() by starting from the trial
a’F(w), namely wherein all characteristic phonon frequen-function ¢°(i w,,) expressed in terms ¢{n,0) and withx as
cieswp, are of the same order, and such that the unequalitiethe zero-order approximation. The kernel of H) pos-
wpr>A(0) or wp> T hold. Equation(1) can, in principle, sesses no singularities so that the iteration procedure con-
then be solved by iteration. For the case of condty#f) the  verges rapidly. Subsequent iteration corrections are small
regularization procedurghat is, elimination of the singular- and do not significantly affect the accuracy of results ob-
ity at ®«—0) and the iteration solution for the Eliashberg tained by usingp°(w,). In this scheme Eq7) is effectively
equation afT=T, is carried out in the real-axis representa- clearly an eigenvalue equation.
tion for intermediate coupling\<1.5), in Refs. 30 and 31. As to the renormalization factor for the electronic mass
Let us define the function Eq. (2), it is convenient to write it as

Bn=wnZ(io),

where A\ =25 (dw/ w) @*F (w), and the Coulomb potential
p(wc) appropriate to the cutofw. in Eq. (1). Finally
N(@,) is given by
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_ o S N(|5 ) must utilize some prefactor fafn(e) in order to suppress
Z(iwn)=1+2f dw?S(w) >, < 2—2mz the logarithm at large energiesr{—0 only ate—x). In-
0 m=0 ®m ®°+ o+ wpy cluding an energy-dependent damping fadtas done, for
® PV 2p example, in Ref. 2bonly causes additional difficulties in the
XD | (10)  analytic calculations due to the additional complication of an
p=0 | 0"+ oyt oy explicit form of N(@,,). These difficulties are avoidable by

[In the above equation and from now on the electron-phonogMploying the direct definitiori4) for N(w,) since as em-
interaction spectrunaF () will be denoted asS(w).] Ex-  Phasized in Ref. 4, Ed13) is a very good approximation to
pression(10) differs from the standard one only by the factor Ed- (12). Specifically, the values dfi(ef) (as well as mag-
N(’a”)m). The convergence of the sum owerin Eq. (10) is nitudes of EDOS integrated over the entire range)gfcal-

sufficiently rapid. Specifically, for the case of a constantCulated, respectively, by using E@L3) as well as the exact

EDOS only the first term needed being retained. Further€XPression(12), differed only slightly from each other.
more, the variation oZ(iw,) with n is not large, so that in Therefore one can approximate the exact EDQS by the

the int 1 (i b laced b tant val tsimple form(13) over the entire range af—and this guar-
€ integralsZ(iwn) can be replaced by a constant value Alantees analytic results. Inserting expressh8) for N(e)

n=13%In determiningZ(i »,) and T, we use foN(@) the  ihto Eq. (4) immediately leads to
valuew,= 0,Z(0), whereZ(0)=1+\ is a renormalization

factor corresponding tdl(e) =const.

N(@,) = N(ls) In 22W~ , (16)
Il. THE MODEL Vst (@)
We retain only nearest-neighbor terms in the dispersiomwhereN(s)=In(2W/s). It should be noted that the EDOS at
relation €g is given by
e(k)=—2B[cogk,a) + cogk,a)]|+4B. (11 2W
The EDOS per spin associated with the plane band(EL. N(ep)= Noln?, (17

is given fore<4B by*3
and depends on the filling fact@®. To obtain a physical

€ value forN(eg) ats—0 we must include, e.g., the transition
SB—¢/’ (12)  matrix elements for charge carriers between conducting lay-

ers. Henceforth we deal only with the casessf« T, rather
whereK is an elliptic integral* and N is the number of thans=0.

atoms per unit two-dimensional lattice cell. In the vicinity of
the middle of the band~ 4B, N(¢) is well approximated by

4N
(&)= Tz 25—

IIl. SUPERCONDUCTING TRANSITION TEMPERATURE

2W ;
N(e)=N0In(— ) (13) . At temperatures neaf, t'he electron mass rehormallza-
|e—4B| tion factor Z(w,) does not involve the gap functiah(w,)
In expression(13) Ng=N/27?B where W=8B is the full so that it may calculated independently. Due to rapid conver-

bandwidth. Let us define the filling facter=4B— ez which gence of the sum ovep in Eq. (10) one can accurately
describes the position af- with respect to the saddle point '€Present(wy) as
in N(€). As usual, pute— e— e . We then have

Z(wn) =1+ fwdeS(w)
0

_aw
N(E)—Nomm. (14)

Since the variation of the EDOS is important only near

+
, w?+ w2 IN(2WIs) [s/Z(0)]?— w?— w?
€g, one may represe(e) over the entire energy range as

n n

‘ 1 1 1

2 InZ(0) Vo’to?

X +In
Tra? 7200 TS

N(e)=Ng[1+dn(e)], (15

] . (18

where the background vallé, is chosen so as to yield the

critical temperatureT®). This corresponds to the case of IN Eg. (18) we have neglected terms proportional to
N(e) = const, and the function(e) (whose implicitformis ~ (7Tc)% wjy,. Expression(18) differs from the analogous re-
postulated according to the physical situajiomodulates the sult for Z(w,) corresponding to constant EDOS only by the
variation ofN(e€) neareg . By definition, 5n(e) goes to zero  Second term in the curly brackets. As a rule, because of the
over a characteristic energy scale describing the damping ¢imall variation withw,,, the Z(w,) can be replaced by its
the rapidly varying portion oN(e€). If the EDOS is modeled, constant value at=1 which thus allows analytic calculation
for example, by a Lorentzian factor of widthand superim-  (see, for example in Ref. 32it is not difficult to realize that
posed on a backgrourd,, thensn(e) vanishes for energies such is the case here; namely, @g increases up to the

of the order ofa. But for a logarithmic variation obn(e), if maximum phonon frequency,, Z(w,) changes only by a
we wish to represent a varying EDOS in the fotirb) one  few percent. Therefore, to the same accuracy as in the usual
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case, one can substiti@§w,) for Z(w,) to be designated in Wherev=»\/(1+X) andZ(0)=1+\ is the renormalization
the following asZ(0). In accordance with Eq18) we have factor corresponding to constant EDQ&s) is given by

Z(0)=2(0)[1+ vp(s)], (19

1 Jodw?S(w)[ U(t?— 0?) ][ (t? 0?)InZ(0) +In(w/s)]

(S =12wWis) [5(dw? 0d)S(w) =520 20
|
Consider the eigenvalue equatidi@) where we put 1 dt? 113

¢(iwn) = ¢°(i ). SubstitutingZ(0) for Z(wy) Eq. (7) can Si(w,Te)= gf LU S
be rewritten as

1 e The integralS(w,T;) cannot be expressed in terms of el-

—=|1—ﬁlz, (21 ementary functions; but depending on the value of

9 T s=tZ(0) it can be written as a sum of leading terms
where the following notation was used: S’(w,T¢) plus correction terms;(w); that is

g 22 Si(0,To) =S, To)+ 5i(w). (28
Z(0)

In the last equation the index is 1 or 2 and labels the
1, different domains in which the filling parametsrtakes on
'FFL do1S(0) values corresponding to<e (i=1) andt>w (i=2), re-
spectively (see Appendix A It turns out that the explicit
© o, 1 formula for S,(w,T,;) is a piecewise-continuous function of
X fo d“’2s(“’2)wg_w§[P(“’1)_P(“’Z)]’ 23 the filing parametels=tZ(0), and inpassing through the
point s*=wZ(0) the functional dependence 8§f( w,T;) on
1 (= s changes. In the meantime, it is noteworthy that the discon-
|2=—f dw?S(w)P(w), (24)  tinuous character o&(w,T,) is an intrinsic property of the
Mo logarithmic VHS. Simple inspection convinces one that the
situation does not change when other models such as the
27T, 1 ~ _ two-square wefl’ or two-step® models are used for the gap
Plw)= 2—0 mmN(WmUv (29 function ¢(w) in the eigenvalue equatiofl) instead of
m m m ¢°(w) Eq.(8). It should also be noted that our representation
(02)/Z(0) (28) for Si(w,T,) is.not an expansion in the interaction pa-
K=y, p= K De ) rameterA. We retain all termss;(w) considering them as
1+ [u(wc)/Z(0)]JIn(2W/ wpyp) small corrections o8%(w,T,). Taking into account the spe-
20 ific expressions fo8(w,T.) in Egs.(21)—(27) finally gives
Note that the weak Coulomb pseudopotengigl Eq. (26) ~ an eigenvalue equation from which, is ultimately deter-
differs from the analogous TolmacH&vor Anderson and Mined. The final form off . depends on the relative positions
Morel® results by a factoZ(0) in both denominator and ©f the filling parameters with respect to the peaks in
numerator. PuttingN(|5m|) as given by Eq.(16) into S(w). One obtains the following distinct cases.
P(w) Eq. (25 one can perform the summation ower the
result being easily expressed in terms of combinations of A. Case of small separationss< Z(0)
digamma  functions W[1/2+i(x/27wT.)],2>%*  where
x=s/Z(0) or w. For nT < wy, We obtain

o0

Here we assume that all phonon frequencigg repre-
sented in the spectral density of interacti8fw) satisfy the

1 1 113 oW condi_tiont< . _Thi_s is the ‘most important case sinc_e_the
Plw)=——— " In Fermi energy lies in a region where the EDOS exhibits a
N(s) Te  J|tP—w? pronounced structure in energy. For simplicity we use the
weak Coulomb pseudopotentié?6) u,=0. Using the im-
B Elnz 1.13w FS(oT,) 27 plicit expressions foS;(w,T.) (Appendix A in Egs.(21)—
2 T, @) | (27), the eigenvalue equatiof2l) becomes quadratic in

In(1.13/T.) (Appendix B); from this the final result fof ., is
where in the last equation we have sets/Z(0) and just
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T.=1.130exp —D), (29)
o[ @y
Q=2We " ’2( Tph) (30)
2w\ 1)? ) °2 1 2Inz(0) —
_ bk B Ppn) 7~ AT
D—\/ In( n +—| + In( n ) 2} 2 g 26. (3D
|
In expression$29)—(31) for T, we set B. Case of large separationss>wZ(0)
Let us consider values of the filling paramesgor which
— _ x| 11 N S 3p  the conditiont> is satisfied for all characteristic frequen-
wph=expINw)s) , g v p(s), t= Z(0)’ 32 ies of S(w). In analogy with the case a§<wZ(0) we
obtain(see Appendix €
w2 w% A( )
o__ .\, S
7 _< < e '”EZ> > L ® T(s)= 1.131(s)exp< - (36)
S(wr)! S(w) g(s) — i
1
where in Eq.(36) one introduces the notation
— w%w% 1 —
= 7| 261(w1,1) Q(s) = wprexp(y(s) + &(s)),
wz_ wl wl
N(s) InZ(0)
1 AS)= o =1— ——, 3
- ;(wz,t)) > > . @ ©=No " N 37
S(wl) S(‘Dz)

where the factorg(s) and §,(w,t) are determined corre-
spondingly, by Eqgs.(20) and (28); the symbol{((...))
should be understood as

_f°o°(dw2/w2)8(w)( oY)
 [5(de? 0?)S(w)

(€. (39

This expression foll; closely resembles that obtained in the
van Hove scenario within the framework of BCS theory by

Tsuei et al® Physically, however, formulag29)—(31) are
much richer since they differ from the well-known result
which is an exponential factdd premultipied by(). The

Q includes the full bandwidth & as well as the character-
istic phonon energyo,,. In addition(2 depends on the fill-
ing factors as well as on the mass renormalization facto
Z(0). Theexponential factoD also involves characteristic
parameters which in turn depend upon electronic, phonon
and electron-phonon properties. Formg®®) also has an-
other very interesting feature. To illustrate this, in accor
dance with the ordinary Eliashberg theorjwhen
N(e)=cons] let us assume that\®/ wy,>1. For not very
small values ofx (approximately, fox>0.5) one can then
neglect all terms in the exponential fac@rEq. (31) except
the first. Thus, expressiof29) for T, takes the form

:“’_ph —10-2
Te=145° p~10

1+\
XP[ — 5 (1+p)

which is precisely the familiar McMillan formufawith zero
Coulomb pseudopotential.

99= TryEg: BSOS n(s)+5'(s). (39

In expression36) for T, the factorg(s) Eqg. (38) plays the
role of an effective interaction parameter, the Coulomb
pseudopotentigk, being given by Eq(26). Specific expres-
sions forp(s) Eq.(20), y(s), %(s), and4(s) in Eq. (36) are
then determined by the shape of interaction spect8(mw),
namely,

e
’)/(S)—_m InTIn —t—z S(w),
1
5(5): W<52(wit)>5(w)! (39)
r
1 w2+ wi w1 a)i
icn(s)= 2N(S) N(t)n°+§ PR In—=In| 1- &
) w (1)2
—InTIn 1—?— , (40)
S(wq)! S(w)
Lo 1 w’+ w%
(41)

—52(w1,t)]> > :
S(ml) S(w)
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In the above formulasN(t)=In(2Wt), N(s)=In(2W/s); of the interaction spectrum®F (w). In arriving at final for-

d,(w,1), wpy, and 7° are given correspondingly, by Egs. mulas (29)—(31) and (36)—(38) one need not specify the

(28), (32), and(33). shape of?F (), by which one understandsy spectrur-
According to Eq.(17) the values of parameteS(s) Eq.  including spectra associated withonoatomicor with com-

(37), y(s) Eqg.(39), and n(s) Eq. (40) depend on the mag- poundsuperconductorésee Refs. 39 and 40

nitude of N(eg). For a large shifts of ez from the saddle

point the function(17) is slowly varying. Therefore, in IV. DISCUSSION OF RESULTS

agreement with the physical situation, far from the peak in

EDOS we can suppress the logarithmic variation of the Consider now the expression for the critical temperature

N(EF) that enters expressiomgn_(4o) and take it as con- TC for Vf_irious para_meter values of the mo(-jel adopted above.
stant for large energy values® Fixing N(eg) at the inter-  We are interested in cases when the Fermi level is either near

domain boundarg* we set or far from the saddle point in the EDOS. Physically, we
expect higher values dff; for smalls. The shift ofeg from
the middle of the conduction band may be considered as
N(t)=In—. comparatively small in the domains labeled iy 1 in Eq.
@ph (28), since in these cases the distance betwaemnd the
If the interaction spectrun$(w) is a & function centered EDOS peak is of the order of the phonon frequengy,
about some average frequenay,,, and in addition if which is the characteristic energy scale important for super-

w*=0, then a little algebra leads to the following expressionconductivity. By contrast, wheg is off the saddle point, we
for T.: can expect a secondafy-enhancing effect due to the peak

structure in the EDOS and we recover a resultTgwalues
Wph 1 consistent with those from ordinary Eliashberg theory
Tc:mex% -t R(5)> ; (42)  [namely,N(€) = const, comparatively small values Bf]. A
significant separation ofc from the middle of the conduc-
where tion band occurs whes>w,Z(0) (in the domain labeled
with i=2). It should be emphasized, that the width of the
InZ(0) 1 wpp w,z)h segment of the filling parameter values where we expect
Y 2 n t 12 higher values ofT; implicitly depends on the interaction
parametern. Actually, the energy dependence M(e) is
incorporated into Eliashberg theory by introducing an addi-
tional factorN(|@,|) Eq. (4) into the sums of the ordinary

It is not difficult to see that formula Eq36) for T, has ~ duations. The factd¥(|ay) is determined not by “bare”
the correct asymptotic “behavior,” namely, ifV&/@p— o Matsubara frequencies,, but rather by the renormalized

1

RS = I 2Wiay)

then Eq.(36) assumes the form onesw,, EQ.(2). The final expressions deC Eqs.(29)—(3_1) '
and(36)—(38) are obtained after a preliminary summation in
. 1 v eigenvalue equatiof21) over discretew,,, which in turn
To= 1-13wpheXF< - ﬂ) QOZW- depend on the value of the fact@(w,,). Because of the

(43) summation in Eq(21) the superconducting critical tempera-

. _ _ ture, T, depends on the filling parameteby means of the
Expression(43) is well known from the theor? with con-  ratio t=s/Z(0). Separation into domains where one expects,
stant _EDOS for intermediate coupling. In particular, this ex-respectively, large and moderate values Tof occurs at
pression turns out to be extremely useful in understanding*:w—ph_ Thus, the width of the segment of the filling pa-
the differences in partial isotope shift factors rameter values, where a high® is expected, depends on
ai=(m;/T,)dT./dm;, in compounds arising from the dis- Z(0).

similar variation in the interaction spectrua?F(w) under Note that in the derivation of formulas fdr, Egs.(29)—

substitutions of type of atoms by different isotopes. On the (31) we have used the digamma function represent&tion
basis of formula(43) it was showrr>* though the critical

temperature itself is a weak function of the shape of 1 1
a?F(w) (T, is determined mainly by average phonon fre- V) =IN[X] = o5 = g5zt
guencyw, interaction parametex as well as weak Coulomb
pseudopotentiagk,) the differential parameters, such as, e.g.,which is valid for|X|> 1 (hereX= 1/2—s/2%T.). Therefore,
the partial isotope shift factor and the pressure variation ofor very small separatios of the Fermi level from the saddle
T. may be very sensitive to changes in the interaction spegeoint, when the application of the above-mentioned formula
trum. is invalid, our result forT, is not correct and the range of
It should be stressed that formulé29)—(31) and (36)—  values ofs, where the final expression far, Egs.(29)—(31)
(38) for T, were obtained solely within the framework of is applicable, must be restricted from below, saywat/2.
Eliashberg theory. That is, we deal with treal parameters  Here, it was assumed that,>27T., which is the case for
of the electron-phonon system, which has a speafficro- La-Sr-Cu-O (LSCO) superconductors. Experimentally,
scopic origin Again, the final expressions fof, include  LSCO electrons interact mainly with the O and Cu atoms in
parameters of electronic, phononic, and electron-phonon orihe conducting planes for which,,~300 K andT.~40 K.
gin. Moreover, the results fdf, are obtained as a functional Thus, if s> /2 then the conditiors>27T, holds.
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8| 34+ 2W/m= 100
BN =200
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FIG. 1. T./Tg vs X, for (2W/wp) =200 (solid line) and 40

(dashed ling the so-called “high-temperature region.” FIG. 3. T as function oft/ wy, for large separation ofg from

the saddle point. &/ w,,=200 (solid line) and 100(dashed ling
Dotted and dash-dotted lines at bottom correspond, respectively, to
cases W/ wy,— and constant EDOS. Here=1.2, wy,=20
meV.

Next we analyze thél. formulas. Direct inspection of
T. Egs.(29—(31) allows one to conclude that for values of
the filling parameters such thatw,/2<s<w,Z(0), the

transition temperatur@; exceeds the valu; correspond-  cated by the horizontal line at the bottom. This figure clearly
ing to constant(e). However, enhancement 8t will de-  jjystrates the considerably highéF, compared withT?
pend on the value.of the |nter§\ct|on parameter. T_he relat'v?r_wroughout the entire range of variation ®ffrom @yy/2 to
enhancement of . is more nougeable for smal, viz., as wpZ(0). Henceforth, this domain will be referred to as the
seen from Fig. 1 wherel./T; versus A appears. For «nigh-temperature region.” Significantly, however, in this
A =0.3 the critical temperature increases nearly four timeslfegiOn T. is nonmonotonic in the filling parametsr As s
while for A=1.5 the increase iff; is only about 50%. Ac- decreases frontZ(0), T increases initially and then
tually, in the modified Eliashberg theory fdf. the factor reaches a maximum value at sorsie Further decrease of
N(@,) Eg. (4) describes the broadening in the EDOS peaks, namely, further increasing N{) through the saddle point,
structure. Washing out of the EDOS peaks due to this broadyroduces a gradual decreaseTof, in agreement with the
ening is more pronounced for large Therefore, for strongly  pickett resuft® for A15 compounds. The reason for the re-
coupled superconductors a sharp structureN{®) is less  duction of T, for small separatios of e; from the middle of
effective for T enhancement than for weakly coupled ones.the conducting band can be understood if we recall the sub-
_ Figure 2 shows plots dF as a function o (Sf s), for  stantial decrease of the factd(@,) Eq. (16) produced by
different values of 2V/w,,. The magnitude off is indi- decreasings. BecauseN(@,) is proportional to IN(er)
which vanishes rapidly asg varies up to the saddle point,
we have a reduction of; for smalls instead of its expected
0 -~ T T T~ ——— increase. Another remarkable featureTgfis that the stron-
gest variation inT. does not occur in our so-called high-
T ] temperature region. NameljAT. /T, is of order 0.1, where
AT, is the total change i, as s varies from w2 to
35} A=12 wppZ(0). We again stress that the width of the “high-
temperature region” thus defined depends on the value of the
interaction parameter: large values ®f correspond to a
. broader such region.
30+ Figure 3 displays plots of ; vs s for large separations
(s>s*). As seen from Figs. 2 and 3, both drawn for the
o-like interaction spectrum and for the same values aind
2W/ wyyp, for a value ofwprZ(0) for the filling parameter
o b ] s, T, drops discontinuously toward th&? lying a little
higher thanT¢ . The differencel .— T¢ tends to zero for sig-
nificant values of the ratio\®/w,, in accordance with the
constant EDOS case. In fact, variation of the functional form
of T¢(t) by increasing the filling parametgthat is, transfer
FIG. 2. T, as a function oft/wy, (high-temperature region ~ Of expressions(29)—(31) for T, to formulas of the form
Curves correspond to VB/w,,=200 and 40. Herex=1.2, (36)—(41)] takes place over the full “width” of the spectral
wph=20 meV. The horizontal dotted line T& . densityS(w). The Eliashberg functio®(w) consists of sev-

T, (K)
a
i
3
3
<
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eral narrow peaks at certajm;} (i=1,2, ...) arising from 40
the interaction of electrons with individual groups of

phonons with frequencies;.>? The é-like structure of

S(w) leads to a discontinuity off, as a function of

s=1Z(0). Note that the magnitude df.— T¢ at larges (Fig. 35k
3) is associated with the factorZ(D) in the expression for .
T. [Eq.~(42)] arising from using rerlormalized frequencies <
®,=w,Z(0) in the broadening factdd(w@,) Eq. (4). Using [
in our T. calculations the “bare” Matsubara frequencies 30 |

w,, instead ofw,, then beginning approximately from
(t/wpr) =2 the critical temperaturd approached¢. The
qualitative picture shown in Fig. 2 does not change on sub-
stitution of w,, for the renormalizeds,,, but the\ depen- OB b .
dence ofT, (Fig. 1) steepens, and for=1.5 we have only . ' s ' . . ; L

~25% of theT, enhancement. It is easy to understand that 05 1.0 1.5 2.0
representing the spectral functi®jw) as a sum of several Ve

o-like peaks, that is, allowing for simultaneous contribution

of frequencies from two different domains with<w and FIG. 4. T; as function oft/wy,. Dashed curve is plot of

with t>w to the integralg23) and (24), does not alter the When correction terms discussed in text are included. Full curve is
discontinuous character @, nor its asymptotic behavior at Same plot but without(w,s). 2W/w,=200; A and » are as in
large values o§. Thereforegdiscontinuity of T as a function ~F8s- 2 and 3.

of the filling parameter is an intrinsic feature of quasi-two-

dimensional superconductivityaking into account the finite  x=0.14-0.21. Atx,~0.21-0.22, T, drops discontinuously

widths of the peaks iI5(w), as well as the transition matrix 4 sero. If one assumes that critical dopingcorresponds to
elements for electrons between adjacent conducting Iayerfﬁ"ng parameters* = w,Z(0) in our consideration, then one
will “spoil” this ideal discontinuous picture in th@. behav- .5, explainT, as negrly constant over the concentration
ior and smooth out the transition from the high-temperaturg ygey —0.14-0.21, and one can understand its discontinuity
region to a region wherd, is moderate. We believe that, g el |t has also been fouttdhat at a concentration where
physically, the discontinuous nature ®f as a function of 1 oyneriences an abrupt decrease, a second-order structural
the distance betwees: and saddle point itN(e) is a result  ansition takes place from a low-temperature orthorhombic
of the short-range character in the energy spamiethe indi-  phase to a high-temperature tetragonal phase. Such drastic
rect electron-electron interaction via phonons. The matht:hanges in the material at nearly the same concentratjon
ematical origin of this discontinuity is hidden in the nonana-may, in principle, have an identical origin. Thus, it would be
lytic behavior of the integral(28). In energy space this gyiremely interesting to investigate this phase transition in
interaction is spread over a regiar, around the Fermi sur- layered systems by assuming a van Hove scenario.
face. Let us assume that the singularity in EDOS is located at "1, conclude, an analytic expression is obtained for the
exactly a distancey, from e . Then any small increase of gynerconducting critical temperatufie in the logarithmic
s will remove the singularity from the energy shell 44 Hove scenari®VHS) within the framework of the modi-
€p—wp<e<eptwo and lead to exclusion of the contribu- fieq Eliashberg equations allowing for sharp variations in the
tion to T due to the singularity ifN(e). Namely, the latter  g|ectronic density of states. The behaviofTefas a function
contribution is responsible for the discontinuous nature ofyf ihe Fermi energy shift from the van Hove saddle point is
Te. e analyzed, and we identify the region of the filling parameter
It is not difficult to see that §T./6W)<0 everywhere. y3jyes where the effectiveness of VHS in enhanciigs

Thus, decreasing\®/ wp, always results in a slight increase most appreciable. The dependenceTgfenhancing on the
in T, the influence of bandwidth off; becoming more jue of interaction parametarin VHS is thus established.
significant for relatively smaller ratios ofV/wp- It is shown that though an increasifig is more effective for

In Fig. 4 the influence of the correction terigw,s) on weak coupling, nevertheless, for intermediate coupling the
Tc is exhibited, the dashed curve corresponding to a plot Ofyitica| temperature is still considerably higher tHBh, cor-
T including correction terms in expressiof29)—(31) and  esponding to a constant EDOS. Based on the existence of
(36)—(38). The full curve is the same plot but without the |oy_dimensional structural elements such as planes, a pos-
6i(w,s). Evidently, over the entire range of variation of the gjhje explanation is suggested for a curious discontinuous

filling parameter, taking these correction terdjgw,s) into  change in transition temperature observed experimentally in
account leads to small changes in the magnitudé&_of La,_,Sr,CuO, oxides.

Our results may be useful in understanding the experi-
mental data of Ref. 41 where it was established that the

phase diagram of well-annealed,LgSr,Cu0, oxides dif- ACKNOWLEDGMENTS
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APPENDIX A

To obtain concrete expressions 8 w,T.) Eq. (28) in-
tegral table¥ give

1.130/T, 1.13Jw?—t?
Te

Sl(w,Tc):In In +51(w,'[), t<(1).,
(A1)
1.13 1.13t*-w? 1 _1.13
=1 1 ——In?
S)(w,To)=In T In T 2In T +6y(w,t),
t>w, (A2)
where
5 (o) 1% 1 [ w?—t2\
Ww)="g2 2|~z tte

1a 1[0\
52((,0):—221? Tz_ , t>o.

If the Eliashberg functionS(w) is located in the interval
(@min @may then, depending on the relation< w,, or

t> wmay the integrals(23) and (24) are determined corre-

spondingly by Eq.(Al) or (A2). The use ofS;(w,T;) or
S)(w,T,), for Egs.(2D)—(27), results in expressions fdr,
which have different functional form&ee below.

APPENDIX B

Substitution ofS;(w, T;) (Appendix A into Eq.(27) after
rearrangement gives

9085

P(w)= L2 L2 n 2 L s (ot
(©)=Nis) 222 Nz tinging+ e,

where L=In(1.13/T.); 6i(w,t) for i=1 is given by Eq.
(Al). From definitiong(23) and (35 we have

] ofw;
l,= Zg—_wf[P(wl)_P(MZ)] .
S(w1)! S(wy)

Using in the last equality the relations

<< w303 ( 1I 2Wo, 1 | 2Ww2)> >
22| 22— ——=In—F7;

w5,— w7\ t w t

27 W1\ W1 2 s So)

2Wo 1 o
=In———57

wlws 1|w1 1|a)2 _Iw_lo
Wmeflel U W) T2
where the factorss and 7° in the above expressions are
given by Eqgs.(31) and(33), and inserting a zero Coulomb

pseudopotentigh*=0 into the eigenvalue equatidgl) we
arrive at

Taking into account irL .. the identity

we get, after simple algebra,

L |2Ww_ n°+\/|2w+1
BN 2 " g

which is the physically possible solution, of equation
(B1). One finally obtains the expression fog in Eqs(29)—

2 7°
2 -
L“+2L In—tz— 2)
PP CiAd NI i Pyl LI
£\t 2 g (B1)
The solution forL of the last equation gives
|
2Wo  2° \/ 2Wo  7°\2 2W/[ @ 7°| 2N(s) —
= — — — — | + | — - —
L. (In 2 2)_ (In 2 5 2InT Int 5 + 26.
N(s)=In—+In-,
o 7o\ 1 2InZ(0) —
+Ine-——| ——S————-26,
t 2 g g
|
Z(0) B
T_(Il_IZ)_m' (CY

(3D.

APPENDIX C

Let us rewrite the eigenvalue equati(®i) for T, in the
form

In the denominator E¢26) was used, ana(O) is given by
Eqg. (20). Recalling Eqs(23) and(24) the concrete expres-
sion for S,(w,T.) EQ. (A2) gives



9086 T. A. MAMEDOV, M. de LLANO, AND T. FIRAT 55

1 _ APPENDIX D
l1=——=(L+ 7.+ 5,), C2 ) , )
! N(S)( 7t %) €23 In this appendix we derive formulas for parameters ap-
pearing in the final expressiori29)—(31) and (36)—(38) for
T., assuming that the interaction spectr®iw) has a
2= N(s )(L+772+52) I ke shape:
where the following notation was introduced:
113 2w @ph=wpn,  7°=1,
L=In TC InT, t2 2 3 ) , tz )
— w
8(s)=3 2——t| tgh—E p( phz ) }
wiws [ 1 e 2W @ph k=1 @ph
R S y
p(s)=—— ! <|n2(0)+ 0 I "“)
1 @ 2W N(s) -l ot )
——In—In— ,
S(wy)! S(w,

1 ph w,zjh
y(s)= 2N(t) In—n(l—t—z),

1 N(t) 1 wsh ZwSh Wph
”<S>—§@‘4N(s)['”(1‘t—2 et

2 2
= (292 [ L 51— 5 6(wn)
2 wi—wi| 0] Y W3 T ’ 1 S 103\
S e )=~ N2, F(t_g> ’
83=(35(0,1)) 510 -

The left-hand side of EqC1) does not depend of, and is §'(s)=— In( ph)
v

denoted by I(s). Then from Egq. (C1) we have 4N(s) t

I,=1/g— . which in conjunction with Eq(C3) leads to the

final expression$36)—(38) for T.. whereN(t) =In(2W/t) and N(s) =In(2W/s).
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