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Characteristics of two-dimensional vortex dynamics fromXY-type models
with Ginzburg-Landau dynamics

Anna Jonsson and Petter Minnhagen
Department of Theoretical Physics, Umea˚ University, 901 87 Umea˚, Sweden

~Received 7 May 1996!

The characteristic features of vortex dynamics corresponding to two-dimensionalXY-type models with
Ginzburg-Landau dynamics are extracted from simulations. The cases covered are with and without frustration,
as well as above and below the Kosterlitz-Thouless transition. Most of the results are very well described by
a phenomenological response function. The dependence of the characteristic frequency for this response func-
tion on the vortex density, frustration, correlation length, and temperature is obtained. A critical behavior for
vortex dynamics at the Kosterlitz-Thouless transition is suggested by the simulations. The agreements with
experiments and other simulations are discussed.@S0163-1829~97!04514-1#
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I. INTRODUCTION

The aim of the present investigation is to extract char
teristic features for two-dimensional~2D! vortex dynamics
from simulations of 2DXY-type models. Our general mot
vation for this investigation is that some of these charac
istic features of 2D vortex dynamics should be quite gene
for a large class of systems. The systems we in partic
have in mind are 2D superconductors and 2D Joseph
junction coupled arrays. For these types of systems th
exist experimental data. Thus our hope is to get some fur
insight into the characteristic features of 2D vortex fluctu
tions for these real systems by studying vortex dynamics
XY-type models.

The 2DXY model undergoes a Kosterlitz-Thouless tra
sition driven by vortex fluctuations just like the 2D supe
conductors and the 2D Josephson coupled arrays.1,2 This
means that in a region around the transition the behavio
dominated by the thermally created vortices. We also inv
tigate the case when, in addition to these thermally crea
vortices, additional vortices are introduced by frustrating
model. This would, e.g., correspond to a 2D Joseph
coupled array in a perpendicular magnetic field. There ex
high precision measurements for these type of Joseph
junction arrays in small magnetic fields to compare wit3

This comparison suggests to us that the simulations and m
surements reflect precisely the same generic vortex dyn
ics. The simulations also show that the flux noise appro
mately goes like 1/v over a limited region which increases
decades as the Kosterlitz-Thouless~KT! transition is ap-
proached from above. This feature is discussed in connec
with flux noise measurements.4,5

Dynamics can be introduced into the 2DXY-type models
in several ways. In the present investigation we have
simplicity chosen a time-dependent Ginzburg-Land
~TDGL!-type dynamics.6,7 This makes it possible to con
verge the simulations much easier than for theXY model
with resistively shunted junction~RSJ! dynamics.8 The un-
derlying assumption is that the characteristic features of v
tex dynamics are anyway rather insensitive to the pre
choice of dynamics. Earlier comparisons between theXY
550163-1829/97/55~14!/9035~12!/$10.00
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model with TDGL dynamics and experiments support t
view7 as do recent comparisons with the 2D Coulomb g
model with Langevin dynamics.9

We have to a large extent chosen to analyze the sim
tion data in terms of the Minnhagen phenomenology~MP!
response function2,7,9 which is given by Eqs.~15! and ~16!.
This is convenient because the present simulations as we
experimental data for both 2D superconductors and
Josephson-junction arrays are very well described by
functional form of the MP response.2,3,5,10Thus we sugges
that the MP response function can be viewed as a chara
istic feature of 2D vortex dynamics. Accordingly, we have
a large extent focused on how the characteristic frequenc
the MP response function depends on temperature and
tration. However, there are also interesting deviations fr
the MP response which we will discuss.

The paper is organized as follows. In Sec. II we introdu
the model, the dynamics, and describe how the simulati
are done. Since we are interested in the vortex dynamics
have to extract the relevant vortex variables. How this
done is explained in Sec. III where we also introduce the
Coulomb gas variables; Coulomb gas temperatureTCG, par-
ticle density n, static dielectric functione(k), screening
lengthl, and dielectric constantẽ. In Sec. IV we present the
2D vortex dynamics results for the case with no frustrat
both below and above the KT transition. Relations betwe
the MP characteristic frequency, the screening length,
the vortex density are obtained. Section V describes the
responding result for the frustrated case. Relations betw
the MP characteristic frequency, the frustration, and the v
tex density are found. Section VI focuses on small deviatio
from the MP response function. Section VII discusses
connection between the results found in the simulations
experiments. Finally, Sec. VIII contains some concluding
marks.

II. MODEL AND DYNAMICS

The 2DXYmodel is defined on a 2D square lattice whe
each lattice pointi is associated with a phase angleu i . The
lattice variables interact with a nearest-neighbor coupl
9035 © 1997 The American Physical Society
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9036 55ANNA JONSSON AND PETTER MINNHAGEN
which in the absence of frustration is given by the Ham
tonian

H5(̂
i j &

U~f i j5u i2u j !, ~1!

where

U~f!52J@12cos2p
2
~f/2!#. ~2!

Here ^ i j & denotes sum over nearest-neighbor pairs
2p,f,p. U(f) reduces forp51 to the usualXY inter-
actionU(f)5J(12cosf). The point of the generalization
to Eq. ~2! with p.1 is that a larger value ofp makes it
easier to create vortices.11 Consequently, the largerp the
more thermally created vortex fluctuations and the m
dominating becomes the vortex response. However, fop
exceeding some maximum value~i.e., p.pmax'6) the
phase transition of the model changes from KT type to fi
order.11,12The main part of the results in the present pape
for p52 which is well inside the KT transition region, yet
large enough to ensure substantial vortex fluctuations ov
temperature region around the phase transition. We
make comparisons with the standardXY model correspond-
ing to p51.

We use periodic boundary conditions in the simulatio
and the results presented are for lattice sizesL3L where
L564, 96, and 128. The lattice constanta is set to 1. The
frustration is introduced into the model through a vector p
tential associated with each linkAi j so that the argument in
the cosine of the Hamiltonian changes tof i j2Ai j . In order
to introduce the frustrationf ( f>0) we choose the vecto
potential for the links belonging to rowm to be identical and
equal toAi j52pmf. The periodic boundary condition the
constrains 2pL f to be a multiple of 2p.

The dynamics of the model is introduced through t
Langevin equation6,7

du i~ t !

dt
52G

]H

]u i
1h i~ t !, ~3!

whereG is a constant which determines the relaxation a
h i(t) is a fluctuating noise associated with each lattice po
such that

^h i~ t !h j~ t8!&52GTd i jd~ t2t8!, ~4!

where T is the temperature~in energy units, Boltzmann’s
constantkB51). We integrate Eq.~3! by discretizing time
into small enough steps subject to a random noise define
Eq. ~4! at each time step. We use a two-valued random no
h i56AGT, which turns out to be an efficient choice for th
present type of problem.13

The information about the vortex dynamics is extrac
from the time correlation functionG(t) given by

G~ t ![
1

L2
^F~ t !F~0!&, ~5!
-

d

e

t
s

a
so

s

-

d
t

by
e

d

where

F~ t ![ (
^ i j &x

U8@f i j ~ t !2Ai j #, ~6!

whereU8 is the derivative and the sum is over all neare
neighbor pair in one of the basic lattice directions~e.g., all
pairs parallel to thex direction!.

In order to translate the information from this time corr
lation function into vortex dynamics we also have to calc
late some static correlation functions. How this translation
done and which static correlation functions are needed
explained in the next section.

III. COULOMB GAS ANALOGY

It is often convenient to discuss 2D vortices in terms o
Coulomb gas analogy. The vortices correspond to Coulo
gas charges which in two dimensions have a logarithm
interaction.2 The Coulomb gas particles~or vortices! are as-
sociated with an effective dimensionless Coulomb gas te
peratureTCG.2 This effective temperature is for theXY
model given by14

TCG5
T

2p^U9&
, ~7!

where^& denote the thermal average. One may note that
a 2D superfluid the Coulomb gas temperature is given
TCG5T/@2pr0(\/m* )

2#, wherer0 is the bare~areal! super-
fluid density.2 Consequently, the bare superfluid density c
responds tôU9& in case of theXY model.TCG for theXY
model depends onU and thus on the value ofp in Eq. ~2!.
One also realizes thatTCG for theXYmodel depends on both
T and the frustrationf . Consequently,TCG is a function of
f for a fixedT. These features are illustrated in Fig. 1 whi
shows TCG as a function ofT/J for p51, f50 ~dotted
curve!; p52, f50 ~short dashed curve!; p52, f51/16
~long dashed curve!; andp52, f51/8 ~full curve!.

FIG. 1. Coulomb gas temperatureTCG as a function ofT/J. The
dotted curve corresponds top51, f50. The short dashed, long
dashed, and full curves correspond top52 andf50, f51/16, and
f51/8, respectively.
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55 9037CHARACTERISTICS OF TWO-DIMENSIONAL VORTEX . . .
The charge density associated with a fundamental sq
labeled byl in the quadratic lattice is given by the directe
sum ~corresponding to a line integral! over the four linksi j
making up the square14,15

Dn~ l ![
TCG

T S (
~ i j !P l

U8D 2 f . ~8!

The average particle density corresponds to

n5
1

L2 K (l uDn~ l !u L . ~9!

Figure 2 shows the average densityn as a function of
TCG/Tc

CG for the same four cases as in Fig. 1 (Tc
CG is the KT

transition temperature of the unfrustrated model!. Figure 2
clearly demonstrates a main difference between thep51
case~standardXY model! and thep52 case; for a givenf
andTCG/Tc

CG the p52 case contains more vortices than t
p51 case. As stated earlier this is the reason why we h
chosen to focus on thep52 case in order to extract th
vortex properties. In Fig. 2 we have also plottedn2 f for the
p52 cases with frustrationf51/16 andf51/8 wheren2 f
measures the density of vortex fluctuations. One notices
for a given p and a givenTCG below Tc

CG the density of
vortex fluctuations increases with increasingf .

A fundamental quantity in the Coulomb-gas-vortex ana
sis is the dielectric functione(k,v) where k is the wave
vector andv is the frequency. The static dielectric functio
e(k,0) is in the unfrustrated case related to theXY model as
follows.14,7 Define

Fm[ (
^ i j &Pm

U8, ~10!

wherem labels a row of the lattice and the sum is over
links making up this row. Next we define the on
dimensional Fourier transformF̂(k)5(mFme

ikm. The con-
nection is then

FIG. 2. Vortex densityn as a function ofTCG/Tc
CG, where

Tc
CG refers to f50. The dotted curve corresponds top51 and
f50. The short dashed, long dashed, and full curves correspon
p52 andf50, f51/16, andf51/8, respectively. The vertical bro
ken line denotesTCG/Tc

CG51.
re

ve

at

-

l

1

e~k,0!
512

2pTCG

T2L2
^uF̂~k!u2&. ~11!

Figure 3 shows 1/e(k) obtained in this way. The full curve is
for a fixedTCG above the KT transition. In this case 1/e(k)
goes to zero ask→0. The broken curve is for a fixedTCG

below the KT transition in which case 1/e(k) goes to a con-
stant ask→0.

Below the KT critical temperatureTc
CG we will in the

following only need the value 1/e(k50). However, above
Tc
CG we will in the unfrustrated case use thek dependence of

1/e(k) in order to extract the screening lengthl as well as
the dielectric constantẽ.2 Basically we make use of the re
lation

1

e~k!
5
1

ẽ

k2

k21l22 ~12!

which is expected to be valid in the limit of smallk.2 In the
present square lattice case this relation can be somewha
proved by replacingk2 with 4sin2(k/2).14 The practical pro-
cedure we use is to plote(k)sin2k/2 as a function of
sin2k/2 and determine the best straight line through the d
for small k. Figures 4~a! and 4~b! show l22 and ẽ deter-
mined in this way for thep52 case. Note thatl in Fig. 4~a!
diverges at the KT critical temperatureTc

CG where we deter-
mineTc

CG from the KT critical conditionẽTc
CG51/4. As seen

from Eq.~12! we haveẽ5e(k50) belowTc
CG sincel5` in

the low-temperature phase. Figure 4~b! showsẽ both below
and aboveTc

CG. The dielectric constantẽ is expected to ap-
proach 1 forTCG→0 andTCG→`. In between it is expected
to be larger than 1 and have a maximum just aboveTc

CG.2

These expectations are consistent with the results in
4~b!.

The vortex dynamics is described by the complex f
quency dependent functione(v)[e(k50,v). This function
is given by7

ReF 1

e~v!G5
1

e~0!
1
2pvTCG

T2 E
0

`

dtsinvtG~ t ! ~13!

to

FIG. 3. 1/e(k) as a function ofk2. The full and dashed curve
correspond to 1/e(k) for a fixed temperatureTCG above and below
Tc
CG, respectively.
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9038 55ANNA JONSSON AND PETTER MINNHAGEN
and

ImF 1

e~v!G52
2pvTCG

T2 E
0

`

dtcosvtG~ t !, ~14!

where G(t) was defined by Eqs.~5! and ~6!. Note that
1/e(0) is a real quantity. The response function 1/e(v) de-
scribes the dynamical response associated with the vortic2

We will in the following relate this dynamical response
other vortex quantities such as the vortex densityn, the vor-
tex screening lengthl, and the effective vortex temperatu
TCG.

IV. VORTEX DYNAMICS
FOR THE UNFRUSTRATED CASE

In this section we analyze the dynamical vortex respo
contained in the function 1/e(v) for the XY model with
p52 and f50. Figure 5 shows the real and imaginary pa
of 1/e(v) as obtained from the simulations for a fixed tem
perature above@Fig. 5~a!# and below@Fig. 5~b!# the KT tran-
sition. We will in the following analysis use the fact that o
simulated data is very well described by MP response fu
tion. The MP response function is given by2

ReF 1

e~v!
2

1

e~0!G5
1

ẽ

v

v1v0
~15!

FIG. 4. ~a! l22 as a function of Coulomb gas temperature.~b!
The dielectric constantẽ as a function of Coulomb gas temperatur
The dashed line is just a guide to the eye.
s.

e

s

c-

and

ImF 1

e~v!G52
1

ẽ

2

p

vv0lnv/v0

v22v0
2 . ~16!

Figure 5 demonstrates that Eqs.~15! and ~16! give a very
good representation of the simulated databoth above@Fig.
5~a!# and below@Fig. 5~b!# the KT transition. In these fits the
MP characteristic frequencyv0 and ẽ are adjustable param
eters. The value ofẽ obtained in this way is aboveTc

CG

somewhat closer to 1 compared to what is obtained dire
from the static response functione(k). However, the impor-
tant point here is that the functionalform given by Eqs.~15!
and ~16! is such a good description of the data for a rath
wide temperature region aroundTc

CG. This means that the
characteristic frequencyv0 is really the key quantity charac
terizing the dynamical response. Consequently, we focus
this quantity. A practical and unambiguous way of determ
ing v0 is to note that according to Eqs.~15! and ~16! the
ratio uIm@1/e(v)#u/Re@1/e(v)21/e(0)# is equal to 2/p pre-
cisely atv0. This is sometimes referred to as the peak ra
because it occurs precisely at the maximum
uIm@1/e(v)#u. For convenience we have chosen to determ

FIG. 5. The linear response function 1/e(v) as a function of
v for p52 and f50 for ~a! fixed TCG(50.23) aboveTc

CG, ~b!
fixed TCG(50.09) below Tc

CG. Open circles correspond to
Re@1/e(v)# and filled circles touIm@1/e(v)#u. The full curves cor-
respond to the imaginary part of the MP equation~16! and the
broken curves correspond to the real part of the MP equation~15!.
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55 9039CHARACTERISTICS OF TWO-DIMENSIONAL VORTEX . . .
v0 from this 2/p ratio. Figure 6 shows the determined valu
of v0 as a function ofTCG. One notes thatv0 vanishes as
Tc
CG is approached both from above and from below.
The dynamical equation~3! has the natural time uni

a2/GJ or equivalently the frequency unitGJ/a2, wherea is
the lattice constant. It is then conceivable that the dimens
less ratiov0a

2/GJ is given by a dimensionless function o
dimensionless combinations of variables related to the vo
ces. In the low-temperature phase one hasl5` and the only
natural length scale associated with the vortices~other then
the lattice constanta related to the vortex core! is n21/2

which is related to the vortex density. Thus one may exp
that

v05GJnh~na2,TCG!, ~17!

whereh is such a dimensionless function. Furthermore, let
suppose that the MP form given by Eqs.~15! and ~16! de-
scribes a limiting behavior which contains no explicit depe
dence on the short distance scalea. This assumption implies
the limit na2→0. Thus according to Eq.~17! this assumption
implies thatv0 should be proportional ton, where the pro-
portionality constant only depends onTCG. Figure 7 demon-

FIG. 6. The characteristic frequencyv0 as a function of Cou-
lomb gas temperature.

FIG. 7. The characteristic frequencyv0 divided by
@1/( ẽTCG)24#n as a function of Coulomb gas temperature bel
Tc
CG. The horizontal broken line is just a guide to the eye.
n-

i-

ct

s

-

strates that this hypothesis appears true. We have plo
v0 divided by @1/( ẽTCG)24#n as a function ofTCG. As
seen in the figure the data points to very good approxima
fall on a horizontal line. This implies that

v0}S 1

ẽTCG
24D n ~18!

over a rather large temperature region. This region app
ently extends all the way up to the critical temperatu
Tc
CG. We may thus conclude thatv0 is indeed proportional to

n with a proportionality constant which is a function of on
TCG.

One may note that if Eq.~18! is precisely correct all the
way up toTc

CG ~which is implied by Fig. 7 but which is of
course impossible to verify by simulations on a finite lattic!
then the implication is

v0}ATcCG2TCG ~19!

asTc
CG is approached from below. This follows from Eq.~18!

because the KT critical behavior forẽ(TCG) is given by
ẽ(Tc

CG)2 ẽ(TCG)}ATcCG2TCG and ẽ(Tc
CG)Tc

CG51/4.2

We now turn to the high-temperature phase wherel is
finite. This means that we now have two relevant leng
scales associated with the vortices besides the lattice con
a, i.e., l and n21/2. The assumption that the MP form i
associated with the limitna2→0 in this case leads to th
expectation

v0}nh̃~nl2,TCG!. ~20!

Consequently, we may expect different behavior in the t
limits nl2→0 andnl2→`. In Fig. 8 we have plottedv0

divided by @421/( ẽTCG)#n versusTCG. The data points in
Fig. 8 to good approximation fall on a horizontal line fo
largerTCG. However, asTc

CG is approached from above ther
is a clear deviation. The vertical line in Fig. 8 denotes t
temperature wherenl251/(2p). Thus the data imply tha

FIG. 8. The characteristic frequencyv0 divided by
@421/( ẽTCG)#n as a function of Coulomb gas temperature abo
Tc
CG. The vertical dashed line denotes the temperature wh

nl251/(2p). The horizontal broken line is just a guide to the ey
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9040 55ANNA JONSSON AND PETTER MINNHAGEN
v0}S 42
1

ẽ TCG
D n ~21!

for nl2!1. However, asTc
CG is approachedl increases

leading to a crossover to the regionnl2@1 and Eq.~21!
becomes invalid. In the original motivation for the MP for
it was assumed thatv0}l22.2 Thus one may suspect tha
this is indeed the correct behavior closer toTc

CG. This sug-
gests that the dimensionless functionh̃ in Eq. ~20! has the
limit h̃}1/nl2 asnl2→`. These expectations are put to te
in Fig. 9 where we have plottedv0 versusT

CG and compare
it to @421/( ẽTCG)#l22C. The figure demonstrates that th
constantC can be chosen so that the two functions coale
to good approximation. Consequently, the simulations s
gest that

v0}S 42
1

ẽTCG
D l22 ~22!

for nl2@1. If Eq. ~22! holds all the way toTc
CG then the KT

critical behavior1,2 of l and ẽ translates into the critical be
havior

v0}ATCG2Tc
CGe2const/ATCG2Tc

CG
~23!

asTc
CG is approached from above.

For the unfrustrated case we have thus identified th
distinct behaviors, i.e.,v0}@1/( ẽTCG)24#n for TCG

,Tc
CG; v0}@421/( ẽTCG)#l22 for TCG.Tc

CG andnl2@1;
v0}@421/( ẽTCG)#n for TCG.Tc

CG and nl2!1. This in
turn implied the critical behaviors given by Eqs.~19! and
~23!. In the following section we investigate the frustrat
case.

V. VORTEX DYNAMICS FOR THE FRUSTRATED CASE

Our analysis of the frustrated case follows the same li
as the unfrustrated case. We are only considering frustrat

FIG. 9. The characteristic frequency v0 and
@421/( ẽTCG)#l22C as a function of Coulomb gas temperatur
Open circles correspond tov0 and pluses to @421/
( ẽTCG)#l22C. HereC is a fitting parameter. The figure shows th
a constantC can be found which makes circles and pluses coinc
in a region close toTc .
t

e
-

e

s
ns

smaller than 1/2, wheref51/2 corresponds to the fully frus
trated case. The largestf included in our analysis is
f51/8. Just as in the unfrustrated case the simulations
very well described by the MP form of Eqs.~15! and ~16!.
This is illustrated in Fig. 10 for the casep52 and f51/8.
Consequently, we again focus on the MP characteristic
quencyv0. In Fig. 11 we have plottedv0 /n versusT

CG. The
figure includes data forf51/16, 1/12, 1/8. All the data below
Tc
CG coalesce to very good approximation on a horizon

line. Thus we conclude that for the frustrated case the r
tion is

v0}n, ~24!

where the proportionality constant is almost completely
dependent of TCG over a wide region (0.027,TCG

,0.11'Tc
CG, our determination gives Tc

CG'0.1085
60.0003).

In the frustrated case we can estimateẽ by fitting the data
to the MP form given by Eqs.~15! and ~16!. We then find
that ẽ'1 over a wide region. Consequently, bothv0 /n and

e

FIG. 10. The linear response function 1/e(v) as a function of
v for a temperatureTCG('0.042) which is belowTc

CG,p52 and
f51/8. The symbols are the same as in Fig. 5.

FIG. 11. v0 /n as a function ofTCG for three different frustra-
tions. Filled circles, open diamonds, and pluses correspond
f51/8, f51/12, andf51/16, respectively. The horizontal broke
line is just a guide to the eye.
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55 9041CHARACTERISTICS OF TWO-DIMENSIONAL VORTEX . . .
ẽ are temperature independent over a wide range. T
means that if 1/e(v) is plotted as a function ofv/n the data
from different temperatures and different frustrations sho
collapse on a single curve. This data collapse is shown
Fig. 12. The data span the temperature inter
0.027,TCG,0.11 and the frustration interval 1/16< f<1/8.
The full curve is a fit to the MP form.

The vortex densityn is to good approximation propor
tional to f over a wide temperature and frustration regio
This proportionality is illustrated in Fig. 13. As seen in Fi
13 the relation is to very good approximationn5C01Cf ,
whereC0 is very small andC is rather independent of tem
perature, as shown in the inset of Fig. 13. This means tha
data should also collapse on a single curve when plo

FIG. 12. 1/e(v) as a function ofv/n for three different frustra-
tions andTCGP@0.027,0.11#. Open diamonds, pluses, open squar
and crosses correspond tof51/8, TCG50.034, 0.043, 0.057, and
0.087, respectively. Open circles, open triangles, open pentag
and filled diamonds correspond to f51/12, TCG

50.029, 0.049, 0.076, and 0.112, respectively. Filled squa
filled triangles, filled circles, and filled pentagons correspond
f51/16, TCG50.027, 0.045, 0.069, and 0.103, respectively. T
full curves correspond to the MP Eqs.~15! and ~16!.

FIG. 13. The vortex density as a function of frustration, for fix
Coulomb gas temperature. The dashed line is a fit of the data p
to C01Cf . Inset showsC andC0 as a function ofTCG. The full
curve corresponds toC and the dashed curve toC0.
is

d
in
l

.

he
d

versusv/ f provided theTCG range is small enough forC to
be constant. Suppose we choose a fixedT. The Coulomb gas
temperatureTCG will then vary as a function off ~compare
Fig. 1!. However, there will always exist a range of frustr
tions over which the variation forTCG for fixed T is small
enough forC to be almost constant. Over such a range
data will again collapse on a single curve. This is illustrat
in Fig. 14 where we have plotted 1/e(v) as a function of
v/ f for a fixedT belowTc . However, it should be noted tha
v/n is really the fundamental scaling variable in the sen
that it causes a much wider range of data to collapse o
single curve. Thev/ f scaling shown in Fig. 14 is in this
sense just an approximation. On the other hand thev/ f scal-
ing is more easily related to experiments, as will be d
cussed in Sec. VII.

VI. DEVIATIONS FROM THE MP RESPONSE

We will first discuss thef50 case just above the KT
transition. This region is hard to converge because of

,

ns,

s,
o

ts

FIG. 14. 1/e(v) for fixed T/J, as a function ofv/ f for five
different frustrations. Open diamonds, pluses, open squa
crosses, and open circles correspond tof51/8, 1/12, 1/16, 1/24,
and f51/32, respectively. The full curves combining the points
Re@1/e(v)# indicate a small but systematic spread for the lar
v/ f values.

FIG. 15. ẽpuIm@1/e(v)#u as a function ofv. The full, long
dashed, and short dashed curves correspond toTCG50.13, 0.15,
and 0.17, respectively.



n
i
s
m

va
t i
va
io
ht
t
an

n-
R

es
s-

e-
r to

-
e it
f
nal
-

as
ted
ove

e-

rm.
e of
the
or

the
ws
si-

h

rst
art-
.

i-

ee
th

9042 55ANNA JONSSON AND PETTER MINNHAGEN
critical slowing down asTc
CG is approached. Nevertheless a

interesting deviation from the MP form can be discerned
the data: the maximum ofuIm@1/e(v)#u becomes broad, as i
seen in Fig. 15. This flat region extends typically from so
small frequencyvmin to some large frequencyvmax. We
empirically findvmin'v0 and thatvmax is rather indepen-
dent of TCG, whereasvmin'v0 vanishes asTCG goes to
Tc
CG. Thus very close to the KT transitionuIm@1/e(v)#u be-

comes fairly constant over an extended inter
0,v,vmax ~the simulations shown in Fig. 15 suggest tha
varies by a factor less than 1.5 over the extended inter
However, the simulations cannot be converged in the reg
very close to the KT transition so in fact this factor mig
turn out to be smaller!. In Sec. VII we will discuss this resul
in the context of the flux noise spectrum: a const
uIm@1/e(v)#u corresponds to a 1/v noise.

There is also a deviation from the MP form for the u
frustrated case above the KT transition as discussed in

FIG. 16. The linear response function 1/e(v) as a function of
v for p51 andf50. The ratio betweenTCG andTc

CG is the same as
in Fig. 5~a!. Open circles correspond to Re@1/e(v)# and filled
circles to uIm@1/e(v)#u. The full curve corresponds to the imag
nary part of the extended MP equation~26! and the broken curve
correspond to the real part of the extended MP equation~25!. The
values/v0'0.4 was obtained. Inset shows the difference betw
the extended MP equations and the pure MP response for
s/v0. The full curves correspond to Eqs.~25! and ~26! and the
dashed curves to the MP Eqs.~15! and ~16!.
n

e

l
t
l.
n

t

ef.

7: as the frequency is increased the MP form giv
uIm@1/e(v)#u} ln(v)/v, whereas the true behavior is a cros
over to uIm@1/e(v)#u}1/Av followed by a crossover to
uIm@1/e(v)#u}1/v for even higher frequencies. The corr
sponding result for the flux noise spectrum is a crossove
1/v3/2 followed by 1/v2 which we will come back to in the
following section.

Above the KT transition forf50 there is flux flow resis-
tance at zero frequency.2 This means that the MP form can
not be valid all the way down to zero frequency becaus
predicts a vanishing flux flow in this limit. In the limit o
very small frequencies we must come back to a conventio
response of Drude type.13 We may phenomenologically in
corporate this correction by extending the MP form into

ReF 1

e~v!G5
1

ẽ

v2

v21vv01s2 , ~25!

wheres}l22 andl is the screening length. The flux flow
resistanceR is by definition proportional tos and according
to the Coulomb gas analogy proportional tol22. One notes
that s50 corresponds to the pure MP case, where
v050 corresponds to the pure Drude case. In the frustra
case there is always some flux flow resistance both ab
and below the KT transition and in principles has to be
finite. What we have found in our simulations is cons
quently thats compared to the characteristic frequencyv0 is
very small. This is the reason for the success of the MP fo
Roughly speaking the MP form suggests that the respons
the bound vortex pairs dominates over the response of
free vortices. This is certainly true for our simulations f
p52 in a temperature region aroundTc

CG. However, from
Fig. 2 we note that in the casep51 the vortex density is
smaller so the density of bound pairs is smaller and hence
ratio s/v0 may be expected to be larger. Figure 16 sho
the unfrustratedp51 case somewhat above the KT tran
tion. This should be compared to the correspondingp52
case in Fig. 5~a!. The point is that the data in Fig. 16 fit muc
better with s/v0'0.4 than with the pure MP value
s/v050. This is in contrast to thep52 case in Fig. 5~a!
where the pure MP values/v050 gives a very good fit to
the data. In the fitting procedure of Fig. 16 we have fi
obtained the imaginary part of the response function by st
ing from Eq. ~25! and using the Kramer-Kronig relation
This leads to

n
is
ImF 1

e~v!G52
1

ẽ

vv0

p

2v2lnu~v/s!u1@v222~s/v0!
2~v21s2!#C~s/v0!

~v21s2!22~vv0!
2 , ~26!

where

C~s/v0!55
1

A124~s/v0!
2
lnU 12A124~s/v0!

2

11A124~s/v0!
2U , s,v0/2

2

A4~s/v0!
221

F tan21S 1

A4~s/v0!
221

D 2~p/2!G , s.v0/2.

~27!
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55 9043CHARACTERISTICS OF TWO-DIMENSIONAL VORTEX . . .
We have then used Eqs.~25! and ~26! when fitting to the
simulation data. Figure 17 illustrates the same thing for
frustrated case below the KT transition. In the case
p51 the simulated data fit much better withs/v0'1.5.
This should be compared to the correspondingp52 case in
Fig. 10 which fits very well withs/v050. Thus our inter-
pretation of the difference between thep52 case and the
p51 case is that the vortex fluctuations are dominant for
p52 case which gives a vortex response close to the
form s/v050, whereas for thep51 case they are les
dominant and this drives the vortex response towards
Drude limit s/v05`.

The interplay between the MP and the Drude respo
behavior also manifests itself in another way. The peak r
predicted by the MP form is 2/p ~see Sec. IV!. One way of
measuring this peak ratio is to keep the frequency fixed
vary the temperature. The functionuIm@1/e(TCG)#u then has
a maximum for a unique temperature. The ra
uIm@1/e#u/Re@1/e# at this temperature is the peak ratio. Fi
ure 18 demonstrates that this peak ratio for a certain fi
frequency is close to 2/p. However, for higher frequencie
the deviation from the MP form causes this ratio to incre
towards 1. This is shown in Fig. 19 which shows the real a
imaginary part of 1/e(v) as a function ofv for a fixed
temperatureTCG. This temperature (TCG52.7) is higher than
the temperature of the peak position in Fig. 18. This me
that the peak in Fig. 19 corresponds to a higher freque
v (v'9.4) than the frequency in Fig. 18. At this high
frequency there is a deviation from the MP resulting in
peak ratio which is larger than 2/p. The peak ratio in Fig. 19
is 0.83. The inset in Fig. 19 shows the peak ratio as a fu
tion of frequency. As seen it increases from 2/p towards 1
where the peak ratio 1 corresponds to the Drude limit. T
deviation from 2/p comes because, as the temperature
increased fromTc

CG, more and more vortices become fre
and the response of the vortex pairs becomes less domi
Another way of seeing this is to fit the data for fixed tem

FIG. 17. The linear response function 1/e(v) as a function of
v for p51 andf51/8. The ratio betweenTCG andTc

CG is the same
as in Fig. 10. The symbols are the same as in Fig. 16. The v
s/v0'1.5 was obtained. Inset shows the difference between
extended MP equations and pure Drude response for thiss/v0. The
full lines correspond to Eqs.~25! and~26! and the dashed curves t
a pure Drude response.
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perature to Eq.~25!. For the high-temperature data in Fig. 1
this givess/v0'0.7 to be compared tos/v0'0 closer to
Tc
CG. The experimental implications of the peak ratio var

tion with frequency are discussed in the following section

VII. RELATIONS TO EXPERIMENTS

In Secs. IV and V it was shown that the dynamical vort
response for our model simulations was very well describ
by the MP form both with and without frustration. For
superconducting film and 2D Josephson-junction array
unfrustrated case corresponds to no magnetic field app
perpendicular to the sample. It has been shown earlier

ue
e

FIG. 18. Real and imaginary part of the linear respon
1/e(v) as a function of temperature for fixed frequencyv. The
simulation data are forv50.5 and p52. The real part
r0Re@1/e(v)# is given by the open circles and the imaginary p
r0uIm@1/e(v)#u by the filled circles. The broken curve correspon
to (2/p)r0Re@1/e(v)#. The broken curve cuts the imaginary part
the peak which means that the ratio between the imaginary and
part of the response at the dissipation peak is 2/p, as predicted by
the MP description.

FIG. 19. The linear response function 1/e(v) as a function of
v for TCG52.7(@Tc

CG) and p52. Open circles correspond t
Re@1/e(v)# and filled circles touIm@1/e(v)#u. The vertical dashed
line denotes the frequency whereuIm@1/e(v)#u has its maximum.
The peak ratio is 0.83. Inset shows the peak ratio as a functio
frequency. The dashed line corresponds to 2/p.
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9044 55ANNA JONSSON AND PETTER MINNHAGEN
the MP form gives a good description of this case both
superconducting films5,7 and Josephson-junction arrays.10

The frustrated case was tested in Ref. 3. The experim
were made on 2D triangular array superconductor–norm
metal–superconductor-junctions. The complex impeda
Z, which is directly related to the dielectric consta
1/e(v) was measured at a temperature below the KT tra
tion. A rough estimate suggests thatTCG/Tc

CG'0.3. The frus-
tration range was up tof'0.05. It was shown that the dat
were well described by the MP form. It was also shown t
the data scaled asv/ f . Both these features are in preci
correspondence with our simulations, as seen from Figs
and 14. The fact that the simulations and experiments ar
agreement suggests that the vortex characteristics obta
from the simulations are rather generic. What can then
said about the reason for this unconventional dynamical
sponse? One argument would be to say that si
TCG/Tc

CG'0.3 is far below the transition there are no vort
fluctuations present and consequently the response cann
this case be caused by vortex fluctuations. This argume
countered by the present simulations: as is apparent f
Fig. 2 vortex fluctuations are still present at lower tempe
tures and furthermore they increase as a function of frus
tion. This increase consists of two parts. The first is the
crease of the effective temperatureTCG with f for fixed
temperatureT, as shown in Fig. 1. The second is that t
density of vortex fluctuationsn2 f increases withf for a
fixed TCG belowTc

CG as seen in Fig. 2. The simulations al
gives us the possibility to manipulate the amount of vor
fluctuations by changing thep value of the model. This is
illustrated by Figs. 17 and 10: as thep value is changed from
2 to 1 the dynamical response is pushed towards a m
conventional Drude-type response. If vortex fluctuatio
were not an essential part of the cause then the differe
between thep51 case and thep52 case for the same valu
of f and TCG/Tc

CG may be hard to explain. Taken togeth
this suggests to us that the unconventional response
scribed by the MP form is indeed linked to the vortex flu
tuations also in the frustrated case below the KT transiti
One may also note that, although thev/ f scaling works well
both in our simulations and the experiments, the correct s
ing is neverthelessv/n where n is the vortex density as
demonstrated in Figs. 11–13.

We now turn to superconducting films in a perpendicu
magnetic fieldB. A demonstration of thev/B scaling below
the KT transition and a fair agreement with the MP form w
pointed out in Ref. 2 based on data for a granular alumin
film from Ref. 17. Another striking example is given in Fig
20. The data is for a 60-Å-thick MoGe superconducting fi
from Ref. 16. The data are taken at 10 kHz in a perpendic
magnetic field of 10 kOe and are plotted as a function
temperature.G is the conductance andvG} i /e. Conse-
quently, the representation of the data corresponds to Fig
The MP response predicts that the peak ratio should
2/p. To check this we have plotted (2/p)vIm@G# ~dashed
line!. As seen in Fig. 20 it cuts thevRe@G# data precisely at
the peak. According to our simulations this suggests that
response is due to vortex fluctuations. Although the 2/p ratio
is a irrefutable feature of the data, one can of course ar
about the cause. In Ref. 16 the data in Fig. 20 are attribu
r

ts
l-
e

i-

t

0
in
ed
e
e-
e

t in
is
m
-
a-
-

x

re
s
ce

e-

.

l-

r

s
m

ar
f

8.
e

e

ue
d

to pinning. However, the peak ratio together with the pres
simulations point in a different direction: the rather hig
magnetic field~in relation toHc2) induces enough vortex
fluctuations to cause a MP response. This type of vor
fluctuations can then in principle be dominating all the w
down to the melting of the vortex lattice.

We now turn to possible experimental consequences
the deviations from the MP form found in the simulatio
which were discussed in Sec. VI. We found that for the u
frustrated case above, but very close to, the KT transition
function uIm@1/e(v)#u is fairly constant over an extende
frequency interval 0,v,vmax ~compare discussion in con
nection with Fig. 15!. According to Ref. 7 the relation to th
flux noise spectrum is

SF~v!5
4pTCG

v UImF 1

e~v!GU, ~28!

where Eq.~28! is valid to the extent that the effects asso
ated with the boundary of the flux noise measuring reg
play a minor role. Equation~28! together with the fact tha
uIm@1/e(v)#u is constant over an extended frequency inter
0,v,vmax predicts thatSF(v) is proportional to 1/v.
Such a 1/v flux noise has been measured in Ref. 4 in case
a 2D square lattice Josephson-junction array. Of course
fact that the 1/v noise is a property both of the simulation
and the measurements does not necessarily mean tha
cause is the same. In the simulations there is always
vcut. For frequencies larger than this upper limitS(v)
crosses over toS(v)}v23/2. According to the simulations
this cutoff frequency should be rather independent of te
perature~compare Fig. 15!. The data of Ref. 4 do not show
any such cutoff. However, this might just mean that th
cutoff frequency is beyond the frequency range of the exp
mental setup in Ref. 4. Other flux noise measurements s
as the one on Bi2Sr2CaCu2O8 films in Ref. 5 definitely have
such a crossover at higher frequencies,5,7 as well as agree-
ment with the MP form. To the extent that Eq.~28! is valid
there has to exist such a cutoff because the response fun

FIG. 20. Real and imaginary parts ofvG for a 60-Å MoGe
superconducting film measured in a field of 10 kOe and a freque
of 10 kHz. The experimental data is taken from Ref. 16. The f
long dashed, and short dashed curves correspond
vIm@G#, vRe@G#, and (2/p)vIm@G#, respectively. This demon
strates that the peak ratio is 2/p to very good approximation.
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55 9045CHARACTERISTICS OF TWO-DIMENSIONAL VORTEX . . .
uIm@1/e(v)#u has to vanish in the high-frequency limit. Th
flux noise data in Ref. 4 were found to obey a scaling fu
tion vSF(v/v0). According to Eq.~28! this means that
uIm@1/e(v)#u is only a function ofv/v0, wherev0 is a
characteristic frequency. This is also the scaling idea beh
the MP form. However, there is one difference between
scaling form found in the experimental data and the impli
tions of Eq. ~28!: comparison between Eqs.~28! and ~16!
shows that the amplitude ofvSF(v/v0) as a function of
temperature is proportional toTCG/ ẽ. Thus the scaling in the
experimental data and the simulations are consistent to
extent thatTCG/ ẽ is almost constant for the experiment
data presented in Ref. 4. This is quite possible because
cording to the simulations the 1/v noise only shows up in a
very narrowTCG region aboveTCG. In Fig. 21 we have plot-
ted ẽ/TCGSF(v) versusv in logarithmic scales as obtaine
from our simulations. The full line in Fig. 21 has slope21
and corresponds to a 1/v noise. The agreement with Fig. 2 i
Ref. 4 is indeed striking. However, the simulation data
Fig. 21 have a large frequency cutoff beyond which the d
fall below the 1/v line. The experimental data in Fig. 2 o
Ref. 4 show no such deviation from this line. In order
further investigate the connection between the experime
flux noise data and our simulations it would be helpful
also have the experimentally measured complex impeda
For example, a break down of Eq.~28! would immediately
suggest that other effects beyond the ‘‘pure’’ vortex fluctu
tions extracted from our present simulations come into p

As discussed in Sec. VII there was the crossover towa
a Drude response behavior as the temperature was incre
As a consequence the peak-ratiouIm@1/e#u/Re@1/e# should
increase from 2/p towards 1 as the frequency is increase
This effect was illustrated in Fig. 18. In Fig. 22 we give th
peak ratios for a 30-Å-thick MoGe superconducting fi
measured in Ref. 18. The conductanceG was obtained in
zero perpendicular magnetic field as a function of tempe
ture for three different frequencies 1, 10, and 100~kHz!,
respectively. Just as in the case of our simulations the exp
mental data increases from the MP value 2/p for small fre-
quencies towards 1 at higher frequencies.

FIG. 21. ẽ/TCGSF(v) as a function ofv for five temperatures
aboveTc . The upper short dashed, upper medium dashed, l
dashed, lower short dashed, and lower medium dashed curves
respond toTCG/Tc

CG'1.1, 1.3, 1.4, 1.6, and 1.75, respective
The full line has slope21 which corresponds to a 1/v noise.
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VIII. CONCLUDING REMARKS

In the present paper we have presented results from
extensive simulation of the 2DXY-type models with TDGL
dynamics. We have tried to demonstrate that when in
preted in terms of effective vortex variables the simulati
results can be turned into a cogent picture. The results
then described in terms of vortex density, effective vort
temperature, screening length, dielectric constant, frustrat
and so forth. The dynamical properties were to a large ex
found to be described by the MP response function an
characteristic frequencyv0. We have found that the MP re
sponse describes the dynamics both above and below the
transition and furthermore also the case with frustration.
have investigated how the characteristic frequencyv0 de-
pends on the other effective vortex variables and have
been able to extract a critical behavior forv0 at the KT
transition.

An interesting question is then how generic these simu
tion results for 2D vortex dynamics really are. Here the c
cumstantial evidence indicates that the results could be q
generic: for the unfrustrated case above the KT transitio
has been shown that the MP response function describe
experimental data very well.5,10 The deviations from the MP
response found in the simulations also seem to have a d
correspondence in the experiments as discussed in con
tion with Fig. 22. In the unfrustrated case below the K
transition simulations for a 2D Coulomb gas with Langev
dynamics show good agreement with the MP response.9 This
suggests that the MP response is indeed linked to the vo
degrees of freedom because the vortex system maps ont
2D Coulomb gas system.2 For the frustrated case it has bee
shown that the MP response describes a frustra
Josephson-junction array very well.3 We have here shown
that a frustratedXYmodel with TDGL dynamics is similarly
described by the MP response.

g
or-

FIG. 22. Real and imaginary part ofvG for a 30-Å MoGe
superconducting film measured at three different frequenciesn. The
experimental data is taken from Ref. 18. The curves shows from
to right data forn51, 10, and 100 kHz, respectively. The lon
dashed curves correspond to the imaginary part and the full cu
to the real part ofvG. The short dashed curves showCvIm@G#
where the constantC has been adjusted so that the short das
curves pass through the maximums ofvRe@G#. Consequently,C is
the peak ratio. The inset shows the peak ratios determined in
way for the three frequencies.
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9046 55ANNA JONSSON AND PETTER MINNHAGEN
The picture which emerges from the simulations sugge
that the MP response is linked to the density of vortex fl
tuations. In a rough sense the MP response can be viewe
the response due to the vortex pairs. The deviations from
MP response found in the simulations can be underst
from such an assumption. A particularly interesting thi
was that the simulations indicated that the MP respons
the frustrated case was valid far below the KT transit
temperature of the unfrustrated case. Again measurem
point in the same direction as shown in Fig. 20 and in Ref

The simulations also indicated the existence of an
proximate 1/v noise in the flux noise spectrum. Howeve
whether or not this 1/v noise can be linked to the measur
1/v noise in Ref. 4 is at present an open question.

A deeper theoretical understanding of the properties of
vortex dynamics, which have emerged from our simu
nd

nd

ys

pl

n

ts
-
as
he
d

in

nts
.
-

D
-

tions, is lacking at present. However, we hope that the c
cal behavior of the characteristic frequency and the vari
scaling relations which we have extracted from our simu
tions will serve as helpful clues. Another input, which mig
lead to further understanding, would be experiments
signed to test how generic the results found in the pres
paper are.
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