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Characteristics of two-dimensional vortex dynamics fromXY-type models
with Ginzburg-Landau dynamics
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The characteristic features of vortex dynamics corresponding to two-dimens{ofiglpe models with
Ginzburg-Landau dynamics are extracted from simulations. The cases covered are with and without frustration,
as well as above and below the Kosterlitz-Thouless transition. Most of the results are very well described by
a phenomenological response function. The dependence of the characteristic frequency for this response func-
tion on the vortex density, frustration, correlation length, and temperature is obtained. A critical behavior for
vortex dynamics at the Kosterlitz-Thouless transition is suggested by the simulations. The agreements with
experiments and other simulations are discusg80163-1827)04514-]

I. INTRODUCTION model with TDGL dynamics and experiments support this
view’ as do recent comparisons with the 2D Coulomb gas
The aim of the present investigation is to extract characmodel with Langevin dynamic.
teristic features for two-dimension&2D) vortex dynamics We have to a large extent chosen to analyze the simula-
from simulations of 2DXY-type models. Our general moti- tion data in terms of the Minnhagen phenomenol¢iiP)
vation for this investigation is that some of these charactertesponse functidi’® which is given by Eqs(15) and (16).
istic features of 2D vortex dynamics should be quite generic his is convenient because the present simulations as well as
for a large class of systems. The systems we in particulagxperimental data for both 2D superconductors and 2D
have in mind are 2D superconductors and 2D Josephsory®Sephson-junction arrays are very well described by the

P ,5,10
junction coupled arrays. For these types of systems therinctional form of the MP response:>°Thus we suggest

exist experimental data. Thus our hope is to get some furthéf@t the MP response function can be viewed as a character-

insight into the characteristic features of 2D vortex fluctua-'Stc feature of 2D vortex dynamics. Accordingly, we have to

tions for these real systems by studying vortex dynamics fof large extent focused on how the characteristic frequency in
X Y-type models. he MP response function depends on temperature and frus-

. tration. However, there are also interesting deviations from
_ _The 2_DXY model undergoe_s a K_oster_htz-ThouIess tran-yp o v response which we will discuss.
sition driven by vortex fluctuations just like the 2D super-

HAVE The paper is organized as follows. In Sec. Il we introduce
conductors and the 2D Josephson coupled arrayBis  he model, the dynamics, and describe how the simulations

means that in a region around the transition the behavior ig;e qone. Since we are interested in the vortex dynamics we
dominated by the thermally created vortices. We also invespaye to extract the relevant vortex variables. How this is
tigate the case when, in addition to these thermally createglone is explained in Sec. Ill where we also introduce the 2D
vortices, additional vortices are introduced by frustrating thecoulomb gas variables; Coulomb gas temperaftit par-
model. This would, e.g., correspond to a 2D Josephsoficle density n, static dielectric functione(k), screening
coupled array in a perpendicular magnetic field. There existfength), and dielectric constar@ In Sec. IV we present the
high precision measurements for these type of Josephsonp yvortex dynamics results for the case with no frustration
junction arrays in small magnetic fields to compare With. hoth below and above the KT transition. Relations between
This comparison suggests to us that the simulations and megre MP characteristic frequency, the screening length, and
surements reflect precisely the same generic vortex dynanhe vortex density are obtained. Section V describes the cor-
ics. The simulations also show that the flux noise approxivesponding result for the frustrated case. Relations between
mately goes like X over a limited region which increases in the MP characteristic frequency, the frustration, and the vor-
decades as the Kosterlitz-Thoule§i§T) transition is ap- tex density are found. Section VI focuses on small deviations
proached from above. This feature is discussed in connectiofiom the MP response function. Section VII discusses the
with flux noise measurements. connection between the results found in the simulations and

~ Dynamics can be introduced into the 20¥-type models  experiments. Finally, Sec. VIII contains some concluding re-
in several ways. In the present investigation we have fofarks.

simplicity chosen a time-dependent Ginzburg-Landau

(TDGL)-type dynamic$:” This makes it possible to con-

verge the simulations much easier than for ¥¥ model Il. MODEL AND DYNAMICS

with resistively shunted junctiofRSJ dynamics® The un-

derlying assumption is that the characteristic features of vor- The 2DXY model is defined on a 2D square lattice where
tex dynamics are anyway rather insensitive to the preciseach lattice point is associated with a phase andgle The
choice of dynamics. Earlier comparisons between Xhé  lattice variables interact with a nearest-neighbor coupling
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which in the absence of frustration is given by the Hamil-

t0n|an 04 T T T T T ;
H:<Z> U(ij=6i—6)), oY) 03 1
ij -

where o

T, 02F

U()=2J[1—cog(4/2)]. 2)
01 -

Here (ij) denotes sum over nearest-neighbor pairs and
—m<¢<w.U(¢) reduces fopp=1 to the usuaKy inter- "

action U(¢)=J(1—cosp). The point of the generalization 0
to Eq. (2) with p>1 is that a larger value of makes it

easier to create vorticés.Consequently, the largep the

more thermally created vortex fluctuations and the more FIG. 1. Coulomb gas temperatufé® as a function off/J. The
dominating becomes the vortex response. However pfor dotted curve corresponds =1, f=0. The short dashed, long
exceeding some maximum valuge., p>pma~6) the dashed, and fuI_I curves correspondote 2 andf=0, f=1/16, and
phase transition of the model changes from KT type to firsf =1/8, respectively.

order*2The main part of the results in the present paper is

for p=2 which is well inside the KT transition region, yet is

large enough to ensure substantial vortex fluctuations over ghere

temperature region around the phase transition. We also

make comparisons with the standaftd model correspond-

ing top=1. F(t)=2, U'[¢;(1)—A;]l, (6)
)

We use periodic boundary conditions in the simulations (i)«

and the results presented are for lattice sikesL where L _ .
L=64, 96, and 128. The lattice constanis set to 1. The whereU’ is the derivative and the sum is over all nearest-

neighbor pair in one of the basic lattice directidiesg., all
pairs parallel to thex direction.

In order to translate the information from this time corre-
lation function into vortex dynamics we also have to calcu-
late some static correlation functions. How this translation is
done and which static correlation functions are needed is
explained in the next section.

frustration is introduced into the model through a vector po
tential associated with each link;; so that the argument in
the cosine of the Hamiltonian changesd#g—A;; . In order
to introduce the frustratiorf(f=0) we choose the vector
potential for the links belonging to rom to be identical and
equal toA;;=2mmf. The periodic boundary condition then
constrains ZLf to be a multiple of Zr.

The dynamics of the model is introduced through the

Langevin equatiofﬁ7 I1l. COULOMB GAS ANALOGY
It is often convenient to discuss 2D vortices in terms of a
de;(t) JH Coulomb gas analogy. The vortices correspond to Coulomb
a9 =—F(9—0i+77i(t), (3 gas charges which in two dimensions have a logarithmic

interaction® The Coulomb gas particlésr vortices are as-

wherel" is a constant which determines the relaxation andEnOC'ated with an effective dimensionless Coulomb gas tem-

CG2 H H H
7;(t) is a fluctuating noise associated with each lattice poin ergttljre.T 'bg;;hls effective temperature s for thx¥
such that odel given

T

CG_
=y

(m()7(t))=2TTs;8(t—t"), (4) @)

where T is the temperaturéin energy units, Boltzmann’s where() denot_e the thermal average. One may npte _that for
constantkg=1). We integrate Eq(3) by discretizing time ac26D superfluid thf g:oulomb gas temperature is given by
into small enough steps subject to a random noise defined by~ — 1/[27po(7i/m*)*], wherepy is the bargarea) super-

Eq. (4) at each time step. We use a two-valued random noisfuid density? Consequently, the bare supelg‘!;wd density cor-
=TT, which turns out to be an efficient choice for the r€SPonds tqU") in case of thexY model. - for the XY
present type of problerd? model depends ok and thus on the value gf in Eq. (2).

. _ <
The information about the vortex dynamics is extractedOne also realizes f‘hmc for the XY modC%I depends on both

from the time correlation functio(t) given by T and the frustratiorf. ConsequentlyT~" is a function of

f for a fixedT. These features are illustrated in Fig. 1 which
shows T°C as a function ofT/J for p=1, f=0 (dotted
curve; p=2, f=0 (short dashed curyg p=2, f=1/16

1
G()= F<F(t)F(O)>’ ®) (long dashed curyeandp=2, f=1/8 (full curve).
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FIG. 2. Vortex densityn as a function ofT°%/T¢®, where FIG. 3. 1k(k) as a function ok2. The full and dashed curves

TS refers tof=0. The dotted curve corresponds po=1 and  correspond to (k) for a fixed temperatur&°® above and below
f=0. The short dashed, long dashed, and full curves correspond tpCCG, respectively.

p=2 andf=0, f=1/16, andf=1/8, respectively. The vertical bro-
ken line denoted €%/ TSC=1. 1 cG

77 £ 2
ko L Tz (R, (11)

The charge density associated with a fundamental square

labeled byl in the quadratic lattice is given by the directed g re 3 shows H(k) obtained in this way. The full curve is
sum (corresponding to a line integyabver the four linksij for a fixed TC® above the KT transition. In this caseelK)

H 15
making up the squaté goes to zero ak—0. The broken curve is for a fixe@®®
below the KT transition in which caseelk) goes to a con-

TCG
An(')E—( 2 U/)—f. (8) stant ak—0. - . o
T \ el Below the KT critical temperatur@;~ we will in the
. ) following only need the value &k=0). However, above
The average particle density corresponds to TSC we will in the unfrustrated case use thelependence of
1 1/e(k) in order to extract the screening lengthas well as
n=—( > [An()]). (9 the dielectric constaré.? Basically we make use of the re-
L\ lation
Figure 2 shows the average densityas a function of 1 1 K2
TCE/TSC for the same four cases as in Fig. TSE is the KT L. (12)
e(k) Tk

transition temperature of the unfrustrated mod€igure 2
clearly demonstrates a main difference between fikel
case(standardXY mode) and thep=2 case; for a giveri
and TC®/TSC the p=2 case contains more vortices than the
p=1 case. As stated earlier this is the reason why we hav
chosen to focus on thp=2 case in order to extract the
vortex properties. In Fig. 2 we have also plotted f for the

which is expected to be valid in the limit of sm&lf In the

present square lattice case this relation can be somewhat im-
roved by replacing?® with 4sirf(k/2).1* The practical pro-
edure we use is to plog(k)sirtki2 as a function of

sirfk/2 and determine the best straight line through the data

. _2 ~ _
p=2 cases with frustratiofi=1/16 andf=1/8 wheren— f for small k. Figures 43 and 4b) show * and e deter

measures the density of vortex fluctuations. One notices th%.:\'/r;déz zlfhvgag'lfocrr;[tri](?;lztsrr?a:reéttli%tg E/Cfi :2 V'T/'S di(?;r-
for a givenp and a givenT® below TSC the density of 9 P

i TCG » o = CG_
vortex fluctuations increases with increasing mine T~ from the KT critical conditione T;°=1/4. As seen

~_ _ CG . _ .
A fundamental quantity in the Coulomb-gas-vortex analy-TOM Ed.(12) we havee=e(k=0) belowTc™ sincex =< in
sis is the dielectric functiore(k,») wherek is the wave (he low-temperature phase. Figurépishowse both below

CG : - =
vector andw is the frequency. The static dielectric function @nd aboveT:™. The dielectric constard is expected to ap-

¢(k,0) is in the unfrustrated case related to ¥ model as  Proach 1 forr®—0 andT“¢—<. In between it is expected
follows 147 Define to be larger than 1 and have a maximum just ab®g€.2
These expectations are consistent with the results in Fig.
4(b).
Fm= E u’, (10 The vortex dynamics is described by the complex fre-

quency dependent functiof{w)= e(k=0,w). This function
wherem labels a row of the lattice and the sum is over allis given by
links making up this row. Next we define the one-

dimensional Fourier transfor (k) == F ™. The con- %
nection is then

1 N 27w TCC
€(0) T?

1

€(w)

fmdtsinth(t) (13
0
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FIG. 4. (a) A2 as a function of Coulomb gas temperatu(ts.
The dielectric constard as a function of Coulomb gas temperature.
The dashed line is just a guide to the eye.

and

27w TCC
TZ

1

é(w)

Im

f:dtcosx)tG(t), (14

where G(t) was defined by Eqs(5) and (6). Note that
1/e(0) is a real quantity. The response functior(l) de-

scribes the dynamical response associated with the voftices.

We will in the following relate this dynamical response to
other vortex quantities such as the vortex densityhe vor-

tex screening length, and the effective vortex temperature
TCC.

IV. VORTEX DYNAMICS
FOR THE UNFRUSTRATED CASE

ANNA JONSSON AND PETTER MINNHAGEN
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FIG. 5. The linear response functionel®) as a function of
o for p=2 andf=0 for (a) fixed T¢%(=0.23) aboveTSC®, (b)
fixed T¢%(=0.09) below TS®. Open circles correspond to
Rd 1/e(w)] and filled circles tdIm[ 1/e(w)]|. The full curves cor-
respond to the imaginary part of the MP equatid®) and the
broken curves correspond to the real part of the MP equ#tibn

and

1

e(w)

1 2 wwglnw/wg

T = 2 2
e T w _(UO

Im

(16)

Figure 5 demonstrates that Eq45) and (16) give a very
good representation of the simulated datth above[Fig.
5(a)] and below[Fig. 5(b)] the KT transition. In these fits the
MP characteristic frequenay, ande are adjustable param-
eters. The value oF obtained in this way is abov@>®
somewhat closer to 1 compared to what is obtained directly
from the static response functiafk). However, the impor-

In this section we analyze the dynamical vortex response,nt point here is that the functiontrm given by Eqs(15)

contained in the function &(w) for the XY model with

and (16) is such a good description of the data for a rather

p=2 andf=0. Figure 5 shows the real and imaginary parts, ije temperature region arouﬁlth. This means that the

of 1/e(w) as obtained from the simulations for a fixed tem-

perature abovfFig. 5a)] and below[Fig. 5b)] the KT tran-
sition. We will in the following analysis use the fact that our

characteristic frequency is really the key quantity charac-
terizing the dynamical response. Consequently, we focus on
this quantity. A practical and unambiguous way of determin-

simulated data is very well described by MP response funcl-ng g is to note that according to Eq&L5) and (16) the

tion. The MP response function is given%y

&

1 1
e(w) €0)

w

(19

1
_'E w+wy

ratio | Im[ 1/e(w)]|//Re 1/e(w) — 1/e(0)] is equal to 24 pre-

cisely atwg. This is sometimes referred to as the peak ratio
because it occurs precisely at the maximum of
|Im[1/e(w)]|. For convenience we have chosen to determine
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FIG. 6. The characteristic frequenay, as a function of Cou- FIG. 8. The characteristic frequencys, divided by
lomb gas temperature. [4—1/(€T®9]n as a function of Coulomb gas temperature above

TSC. The vertical dashed line denotes the temperature where
w, from this 247 ratio. Figure 6 shows the determined valuesnM“=1/(27). The horizontal broken line is just a guide to the eye.

of wy as a function ofT°®. One notes that, vanishes as . .
TSC is approached both from above and from below. strates that this hypothesis appears true. We have plotted

The dynamical equatiori3) has the natural time unit @o divided by [1/(€T®®)—4]n as a function ofT°®. As
a?/T'J or equivalently the frequency uniitd/a?, wherea is ~ S€en in the figure the data points to very good approximation
the lattice constant. It is then conceivable that the dimensionfall on a horizontal line. This implies that
less ratiowa®/T'J is given by a dimensionless function of
dimensionless combinations of variables related to the vorti- ( 1 4)

(O] - n

ces. In the low-temperature phase one has~ and the only * ~Tce (18)

natural length scale associated with the vortitaker then €
the lattice constant related to the vortex coyeis n~%2
which is related to the vortex density. Thus one may expe

that

over a rather large temperature region. This region appar-
CEzntly extends all the way up to the critical temperature
TSG. We may thus conclude that, is indeed proportional to
wo=TJnh(na2TC%), 17) _r|1_cvg|th a proportionality constant which is a function of only
whereh is such a dimensionless function. Furthermore, letus One may note that if Eq18) is precisely correct all the
suppose that the MP form given by Eq45) and (16) de-  way up toTSC (which is implied by Fig. 7 but which is of
scribes a limiting behavior which contains no explicit depen-course impossible to verify by simulations on a finite lattice
dence on the short distance scal€This assumption implies then the implication is
the limitna®— 0. Thus according to Eq17) this assumption
|mpl_|es thatwo should be propoonnaI(;[u, _Where the pro- wox \[TSC—TCC (19
portionality constant only depends a@iY®. Figure 7 demon-
asTSCis approached from below. This follows from H48)
because the KT critical behavior fa(T¢®) is given by
E(TSS) —€(TCC) o |TSC—TCC and e(TSG) TSC=1/42

We now turn to the high-temperature phase wheres

20 T T T T T

S g5 b . 4 finite. This means that we now have two relevant length
- scales associated with the vortices besides the lattice constant

e * e veeee a, i.e., A andn~ Y2 The assumption that the MP form is

I 10 |- - associated with the limiha?—0 in this case leads to the
slg expectation

=~

= 5r N wexnh(n\2,T€C). (20)

Consequently, we may expect different behavior in the two
05 002 001 006 oo0s o1 limits nA2—0 and~n)\2—>oo. In Fig. 8 we have plotteds
706 divided by[4—1/(€T¢®)]n versusT®C. The data points in
Fig. 8 to good approximation fall on a horizontal line for
FIG. 7. The characteristic frequencys, divided by  largerT<C. However, ash G is approached from above there
[1/(€TC®) —4]n as a function of Coulomb gas temperature belowis a clear deviation. The vertical line in Fig. 8 denotes the
TSC. The horizontal broken line is just a guide to the eye. temperature whera\?=1/(2). Thus the data imply that
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FIG. 10. The linear response functione(#) as a function of
o for a temperaturd ©%(~0.042) which is belowr$¢,p=2 and
f=1/8. The symbols are the same as in Fig. 5.

[4—1/(€T®) ]\ "2C as a function of Coulomb gas temperature.
Open circles correspond towg and pluses to [4—1/

(€TSS I\ "2C. HereC is a fitting parameter. The figure shows that
a constant can be found which makes circles and pluses coincid

. . Smaller than 1/2, where=1/2 corresponds to the fully frus-
in a region close td .

trated case. The largest included in our analysis is
f=1/8. Just as in the unfrustrated case the simulations are
very well described by the MP form of Eqg€l5) and (16).

This is illustrated in Fig. 10 for the cage=2 andf=1/8.
Consequently, we again focus on the MP characteristic fre-
for n\2<1. However, asT¢® is approacheck increases quencyw,. In Fig. 11 we have plotted,/n versusTCS. The
leading to a crossover to the region®>1 and Eq.(21) figure includes data for=1/16, 1/12, 1/8. All the data below
becomes invalid. In the original motivation for the MP form TSG coalesce to very good approximation on a horizontal
it was assumed thabooch 22 Thus one may suspect that jine. Thus we conclude that for the frustrated case the rela-
this is indeed the correct behavior closerT®. This sug- tion is

gests that the dimensionless functibrin Eg. (20) has the
limit hoc1/n\? asn\®— . These expectations are put to test
in Fig. 9 where we have plotted, versusT“® and compare

it to [4—1/(€T®) ]\ 2C. The figure demonstrates that the
constantC can be chosen so that the two functions coalescéj

1

eTce

n (21

(,UOOC<4_

(24)

woxn,

where the proportionality constant is almost completely in-
ependent of T°C over a wide region (0.027T¢°

to good approximation. Consequently, the simulations sugfo'llmTEG’ our  determination  gives Tg®~0.1085
gest that +0.0003). —~
In the frustrated case we can estimaty fitting the data
1 to the MP form given by Eq915) and (16). We then find
“’0“(4_;1-%) A2 (22)  thate~1 over a wide region. Consequently, beth/n and
for n\2>1. If Eq. (22) holds all the way tar € then the KT 15 : : , , .
critical behaviot? of A and translates into the critical be-
havior
wo \/TT_TCC_Ge—constI\/TCG—TgG (23) _ 10 i
~
asTSC is approached from above. % STt AR Sa b e S
For the unfrustrated case we have thus identified three ?
distinct behaviors, i.e.,wox[1/(€T¢®)—4]n for TCC 5k -
<TSC; wox[4— (€T I\ "2 for TC>TSC andna?>1;
wo*[4—1/(€T®]n for T¢®>TSC and n\?<1. This in
turn implied the critical behaviors given by Egd.9) and
(23). In the following section we investigate the frustrated 0 002 002 006 008 ' Tc'cc; 012
case. 70G

V. VORTEX DYNAMICS FOR THE FRUSTRATED CASE

FIG. 11. wy/n as a function ofT® for three different frustra-

tions. Filled circles, open diamonds, and pluses correspond to
Our analysis of the frustrated case follows the same line$=1/8, f=1/12, andf =1/16, respectively. The horizontal broken
as the unfrustrated case. We are only considering frustratione is just a guide to the eye.
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FIG. 12. 1k(w) as a function ofw/n for three different frustra- FIG. 14. 1k(w) for fixed T/J, as a function ofw/f for five

tions andT®®<[0.027,0.1]. Open diamonds, pluses, open squares different frustrations. Open diamonds, pluses, open squares,
and crosses correspond fte- 1/8, T®=0.034, 0.043, 0.057, and crosses, and open circles correspond 401/8, 1/12, 1/16, 1/24,
0.087, respectively. Open circles, open triangles, open pentagonand f =1/32, respectively. The full curves combining the points of
and filled diamonds correspond to f=1/12, T°® R l/e(w)] indicate a small but systematic spread for the large
=0.029, 0.049, 0.076, and 0.112, respectively. Filled squaresp/f values.

filled triangles, filled circles, and filled pentagons correspond to

f=1/16, T°©=0.027, 0.045, 0.069, and 0.103, respectively. Theversusw/f provided theT® range is small enough fe to

full curves correspond to the MP Edd.5) and (16). be constant. Suppose we choose a fiXe@he Coulomb gas

_ ) ) temperaturel “© will then vary as a function of (compare

€ are temperature independent over a wide range. Thigjg. 1). However, there will always exist a range of frustra-
means that if J(w) is plotted as a function ab/n the data  tions over which the variation fof €€ for fixed T is small
from different temperatures and different frustrations 5h0U|Cbnough forC to be almost constant. Over such a range the
collapse on a single curve. This data collapse is shown igjata will again collapse on a single curve. This is illustrated
Fig. 12. The data span the temperature intervajn Fig. 14 where we have plotted elkv) as a function of
0.027<T¢®<0.11 and the frustration interval /&6 <1/8.  ,/f for a fixedT belowT,. However, it should be noted that
The full curve is a fit to the MP form. o w/n is really the fundamental scaling variable in the sense
~ The vortex densityn is to good approximation propor- that it causes a much wider range of data to collapse on a
tional to f over a wide temperature and frustration region.sing|e curve. Thew/f scaling shown in Fig. 14 is in this
This proport'ione.llity is illustrated in Fig. 13. As seen in Fig. gense just an approximation. On the other handudHescal-

13 the relation is to very good approximatior=Co+Cf,  ing is more easily related to experiments, as will be dis-
whereC, is very small andC is rather independent of tem- cyssed in Sec. VILI.

perature, as shown in the inset of Fig. 13. This means that the

data should also collapse on a single curve when plotted VI. DEVIATIONS FROM THE MP RESPONSE

We will first discuss thef=0 case just above the KT

0.2 T n > transition. This region is hard to converge because of the
///
/ 1.5 T T
0.15 |- s .
/
s
/
NS 0.1 //./2 T T N E
, =
/ =
/‘ \ =
O1F RIS =
005 " ] S T
14
4 3
7
7/ 0 Lew=—-d4-=-"1
0 CG 0.15
0 ' I 0 . .
0 0.05 0.1 0.15 0 1 2 3

w [FJa"'Z]
FIG. 13. The vortex density as a function of frustration, for fixed
Coulomb gas temperature. The dashed line is a fit of the data points FIG. 15. en|Im[1/e(w)]| as a function ofw. The full, long
to Co+ Cf. Inset showsC andC, as a function ofT°C. The full  dashed, and short dashed curves corresponiofe=0.13, 0.15,
curve corresponds t6@ and the dashed curve ©. and 0.17, respectively.
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7: as the frequency is increased the MP form gives

! ' ' ' ' 'gd& @_;l [Im[ 1/e(w) ]| = In(w)/w, whereas the true behavior is a cross-
i over to |Im[1/e(w)]|<1/\w followed by a crossover to
081 o708 . ] |Im[1/e(w)]|*1/w for even higher frequencies. The corre-
e 06 F . sponding result for the flux noise spectrum is a crossover to
__06F o > 04l 4 7 1/w®? followed by 12 which we will come back to in the
- Pfff =02 b7 T . following section.
= o4l 2 0 ! i Above the KT transition fof =0 there is flux flow resis-
0 0.5 1 tance at zero frequenéThis means that the MP form can-
¢ w [[Ja™] not be valid all the way down to zero frequency because it
0.2 ;nl 4 predicts a vanishing flux flow in this limit. In the limit of
! very small frequencies we must come back to a conventional
0 : : : . ' . response of Drude typ€.We may phenomenologically in-

corporate this correction by extending the MP form into

w [FJa_Z]
2
FIG. 16. The linear response functione(é) as a function of R 1 zl w (25)
o for p=1 andf =0. The ratio betweef®® andTSC is the same as e(w)| T o+owyta?’

in Fig. 5a). Open circles correspond to Rée(w)] and filled
circles to|Im[ l/e(w)]|. The full curve corresponds to the imagi- \wheregxX 2 and\ is the screening length. The flux flow
nary part of the extended MP equati6) and the broken curve  yagjstanceR is by definition proportional ter and according
correspond to the real pa.rt of the extended MP gqua(ﬁsh The to the Coulomb gas analogy proportionalnﬁz. One notes
vslueo/w0~0.4 was obte_uned. Insethshows the difference beftwei_hat o=0 corresponds to the pure MP case, whereas
the extended MP equations and the pure MP response for t 'c%ozo corresponds to the pure Drude case. In the frustrated
olwg. The full curves correspond to EqR5) and (26) and the . .
dashed curves to the MP E45) and (16). case there is always some flux flpw rt_aS|§tance both above
and below the KT transition and in principle has to be
finite. What we have found in our simulations is conse-
quently thatoe compared to the characteristic frequengyis
critical slowing down as'l’fG is approached. Nevertheless an very small. This is the reason for the success of the MP form.
interesting deviation from the MP form can be discerned inRoughly speaking the MP form suggests that the response of
the data: the maximum o¢fm[ 1/e(w)]| becomes broad, as is the bound vortex pairs dominates over the response of the
seen in Fig. 15. This flat region extends typically from somefree vortices. This is certainly true for our simulations for
small frequencyw,,, to some large frequency,.. We  p=2 in a temperature region arouﬁc’fe. However, from
empirically find wmin~wg and thatw,,y is rather indepen- Fig. 2 we note that in the cage=1 the vortex density is
dent of T°®, whereaswiy~w, vanishes asT® goes to  smaller so the density of bound pairs is smaller and hence the
TSC. Thus very close to the KT transitigim[ 1/e(w)]| be-  ratio o/w, may be expected to be larger. Figure 16 shows
comes fairly constant over an extended intervalthe unfrustratep=1 case somewhat above the KT transi-
0< w< wma (the simulations shown in Fig. 15 suggest that ittion. This should be compared to the correspondirig2
varies by a factor less than 1.5 over the extended intervatase in Fig. 8. The point is that the data in Fig. 16 fit much
However, the simulations cannot be converged in the regiobetter with o/wy=0.4 than with the pure MP value
very close to the KT transition so in fact this factor might o/wy=0. This is in contrast to th@=2 case in Fig. &)
turn out to be smaller In Sec. VII we will discuss this result where the pure MP value/w,=0 gives a very good fit to
in the context of the flux noise spectrum: a constantthe data. In the fitting procedure of Fig. 16 we have first
|Im[ 1/e(w)]| corresponds to a &/ noise. obtained the imaginary part of the response function by start-
There is also a deviation from the MP form for the un-ing from Eq. (25 and using the Kramer-Kronig relation.
frustrated case above the KT transition as discussed in Retfhis leads to

1 1 wwg 2w2In|(w/o)|+[ w?—2(0l we)*(w?+ 0?)]C(al wg)
Im e(w) __'E T (0’+0%)°— (wwg)? ' (26)
where
1 | 1—V1-4(0lwg)? a2
n
T—4(alwg? | 1+ V1-a(olag?| ° “°
C(alwg)= ) 1 27
Y | — (72|, > wol?2.
\/4(0/w0)2_1{tan (\/4(0'/w0)2—1> (i2) 70
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FIG. 17. The linear response functione(é) as a function of FIG. 18. Real and imaginary part of the linear response

o for p=1 andf=1/8. The ratio betweel®® andT<® s the same  1/e(w) as a function of temperature for fixed frequeney The

as in Fig. 10. The symbols are the same as in Fig. 16. The valugimulation data are foro=0.5 and p=2. The real part

olwy~1.5 was obtained. Inset shows the difference between theoR€ 1/e(w)] is given by the open circles and the imaginary part

extended MP equations and pure Drude response fouthig. The  pollm[1/e(w)]| by the filled circles. The broken curve corresponds

full lines correspond to Eq$25) and(26) and the dashed curves to 10 (2/m)poRe 1/e(w)]. The broken curve cuts the imaginary part at

a pure Drude response. the peak which means that the ratio between the imaginary and real
part of the response at the dissipation peak is, 2s predicted by

- the MP d iption.
We have then used Eq&5) and (26) when fitting to the = " oo Pron

simulation data. Figure 17 illustrates the same thing for th
frustrated case below the KT transition. In the case
p=1 the simulated data fit much better withl wo~1.5.

This should be compared to the corresponding2 case in
Fig. 10 which fits very well witho/wy=0. Thus our inter-
pretation of the difference between tpe=2 case and the
p=1 case is that the vortex fluctuations are dominant for the VII. RELATIONS TO EXPERIMENTS
p=2 case which gives a vortex response close to the MP

form o/wo=0, whereas for thep=1 case they are 1ess ro5n4nge for our model simulations was very well described

dominant and this drives the vortex response towards thBy the MP form both with and without frustration. For a

Drude limit o/ wo==. superconducting film and 2D Josephson-junction array the
The interplay between the MP and the Drude responsgnfysirated case corresponds to no magnetic field applied

behavior also manifests itself in another way. The peak rati‘berpendicular to the sample. It has been shown earlier that
predicted by the MP form is 2/ (see Sec. IY. One way of

measuring this peak ratio is to keep the frequency fixed and
vary the temperature. The functighm[ 1/e(T<®)]| then has 1

erature to Eq(25). For the high-temperature data in Fig. 19
Okhis giveso/wy~=0.7 to be compared to/wy=0 closer to
TSG. The experimental implications of the peak ratio varia-
tion with frequency are discussed in the following section.

In Secs. IV and V it was shown that the dynamical vortex

a maximum for a unique temperature. The ratio :

[Im[1/€]|/Rd 1/e] at this temperature is the peak ratio. Fig- 08 L I

ure 18 demonstrates that this peak ratio for a certain fixed ’ | ooooO‘f;
frequency is close to 2/. However, for higher frequencies i 0 0o =

the deviation from the MP form causes this ratio to increase - 06 - | 50° ~
towards 1. This is shown in Fig. 19 which shows the realand < 01’° S
imaginary part of 1¢(w) as a function ofw for a fixed — 04 F ....30700-............
temperaturd “©. This temperatureT¢®=2.7) is higher than oo sesnsanii)
the temperature of the peak position in Fig. 18. This means 0. _.° o ! |
that the peak in Fig. 19 corresponds to a higher frequency LS |

o (0=~9.4) than the frequency in Fig. 18. At this higher * |

frequency there is a deviation from the MP resulting in a 000 '1'0 2'0 3'0
peak ratio which is larger than&/ The peak ratio in Fig. 19 w [[Ja™?

is 0.83. The inset in Fig. 19 shows the peak ratio as a func-

tion of frequency. A_‘S seen It increases fromTwaar_ds_ 1 FIG. 19. The linear response functione(#) as a function of

where the peak ratio 1 corresponds to the Drude limit. The, ¢ TC6_» 7(=TC%) and p=2. Open circles correspond to
. . . * C .

deviation from 2(:4(73 comes because, as the temperature iq1/e(w)] and filled circles tdIm[1/e(w)]|. The vertical dashed

increased fromT;~, more and more vortices become free jine denotes the frequency whelien[ 1/e(w)]| has its maximum.

and the response of the vortex pairs becomes less dominarrhe peak ratio is 0.83. Inset shows the peak ratio as a function of
Another way of seeing this is to fit the data for fixed tem- frequency. The dashed line corresponds t®.2/
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the MP form gives a good description of this case both for

superconducting films’ and Josephson-junction arrays.
) . 0.04

The frustrated case was tested in Ref. 3. The experiments
were made on 2D triangular array superconductor—normal-
metal—superconductor-junctions. The complex impedance __ 0.03 -
Z, which is directly related to the dielectric constant Tm '
1/e(w) was measured at a temperature below the KT transi- = 0.02 -
tion. A rough estimate suggests tH’&G/TgG~O.3. The frus- % ’
tration range was up té~0.05. It was shown that the data
were well described by the MP form. It was also shown that 0.01 -
the data scaled as/f. Both these features are in precise
correspondence with our simulations, as seen from Figs. 10 0

and 14. The fact that the simulations and experiments are in
agreement suggests that the vortex characteristics obtained
from the simulations are rather generic. What can then be
said about the reason for this unconventional dynamical re- FIG. 20. Real and imaginary parts ofG for a 60-A MoGe

sponse? One argument would be to say that sincéuperconducting film measured in a field of 10 kOe and a frequency
TCS/TCC~ 0.3 is far below the transition there are no vortex ©f 10 kHz. The experimental data is taken from Ref. 16. The full,
c .

. long dashed, and short dashed curves correspond to
fluctuations present and consequently the response cannotaf)f?m[e]’ wRd4G], and (2 wIm[G], respectively. This demon-

this case be caused by vortex fluctuations. This argument IS ates that the peak ratio isi2to very good approximation
countered by the present simulations: as is apparent from '
Fig. 2 vortex fluctuations are still present at lower temperay pinning. However, the peak ratio together with the present
tures and furthermore they increase as a function of frustra‘éimulations point in, a different direction: the rather high
tion. This increase cc_)nsists of two paGrts..The first i_s the in'magnetic field(in relation toH,,) induces enough vortex
crease of the effective temperatufe® with f for fixed fluctuations to cause a MP response. This type of vortex

tempgratureT, as shown in Fig. 1: The seconpl is that the g, cyyations can then in principle be dominating all the way
density of vortex fluctuations—f increases withf for a down to the melting of the vortex lattice

fixed TC below TS as seen in Fig. 2. The simulations also e now turn to possible experimental consequences of
gives us the possibility to manipulate the amount of vortexhe deviations from the MP form found in the simulations
fluctuations by changing thp value of the model. This is \yhich were discussed in Sec. VI. We found that for the un-
illustrated by Figs. 17 and 10: as thevalue is changed from  frystrated case above, but very close to, the KT transition the
2 to 1 the dynamical response is pushed towards a morgnction |Im[1/e(w)]| is fairly constant over an extended
conventional Drude-type response. If vortex ﬂucmat'onsfrequency interval & o< w,, (compare discussion in con-

were not an essential part of the cause then the differenGaction with Fig. 15. According to Ref. 7 the relation to the
between the=1 case and thp=2 case for the same value f,x nojse spectrum is

of f and T°®/TS® may be hard to explain. Taken together
this suggests to us that the unconventional response de- 47TCC
scribed by the MP form is indeed linked to the vortex fluc- Se(w)=———|Im
tuations also in the frustrated case below the KT transition.
One may also note that, although théf scaling works well — where Eq.(28) is valid to the extent that the effects associ-
both in our simulations and the experiments, the correct scahted with the boundary of the flux noise measuring region
ing is neverthelesso/n where n is the vortex density as play a minor role. Equatiof28) together with the fact that
demonstrated in Figs. 11-13. |Im[ 1/e(w)]| is constant over an extended frequency interval
We now turn to superconducting films in a perpendicular0<w<w, predicts thatSy(w) is proportional to 1.
magnetic fieldB. A demonstration of the/B scaling below  Such a 1 flux noise has been measured in Ref. 4 in case of
the KT transition and a fair agreement with the MP form wasa 2D square lattice Josephson-junction array. Of course the
pointed out in Ref. 2 based on data for a granular aluminunfact that the 1 noise is a property both of the simulations
film from Ref. 17. Another striking example is given in Fig. and the measurements does not necessarily mean that the
20. The data is for a 60-A-thick MoGe superconducting filmcause is the same. In the simulations there is always an
from Ref. 16. The data are taken at 10 kHz in a perpendiculaw,. For frequencies larger than this upper lin8{w)
magnetic field of 10 kOe and are plotted as a function ofcrosses over t&(w)* w2 According to the simulations
temperature.G is the conductance an@Gxi/e. Conse- this cutoff frequency should be rather independent of tem-
guently, the representation of the data corresponds to Fig. 1®erature(compare Fig. 1b The data of Ref. 4 do not show
The MP response predicts that the peak ratio should bany such cutoff. However, this might just mean that this
2/7. To check this we have plotted @)wIm[G] (dashed cutoff frequency is beyond the frequency range of the experi-
line). As seen in Fig. 20 it cuts theRg G] data precisely at mental setup in Ref. 4. Other flux noise measurements such
the peak. According to our simulations this suggests that thas the one on BErL,CaCuyOgq films in Ref. 5 definitely have
response is due to vortex fluctuations. Although the itio  such a crossover at higher frequenciésss well as agree-
is a irrefutable feature of the data, one can of course argument with the MP form. To the extent that E@8) is valid
about the cause. In Ref. 16 the data in Fig. 20 are attributethere has to exist such a cutoff because the response function

1

e(w)

‘ ) (28)
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FIG. 21.7€/ TSy (w) as a function ofw for five temperatures FIG. 22. Real and imaginary part @G for a 30-A MoGe
aboveT.. The upper short dashed, upper medium dashed, longuperconducting film measured at three different frequencigse
dashed, lower short dashed’ and lower medium dashed curves c&xperimental data is taken from Ref. 18. The curves shows from left
respond toT¢%/TS®~1.1, 1.3, 1.4, 1.6, and 1.75, respectively. {0 right data forv=1, 10, and 100 kHz, respectively. The long
The full line has slope-1 which corresponds to a@/noise. dashed curves correspond to the imaginary part and the full curves

to the real part ofwG. The short dashed curves sh@wim[G]
[Im[1/e(w)]| has to vanish in the high-frequency limit. The where the constan€ has begn adjusted so that the short d_ashed
flux noise data in Ref. 4 were found to obey a scaling func-curves pass through the maximumsudRe G]. ConsequentlyC is
tion wSe(w/wy). According to Eq.(28) this means that the peak ratio. The inset ghows the peak ratios determined in this
lIm[1/e(w)]| is only a function ofw/w,, where w, is a  Wa for the three frequencies.
characteristic frequency. This is also the scaling idea behind
the MP form. However, there is one difference between the
scaling form found in the experimental data and the implica- In the present paper we have presented results from our
tions of Eq.(28): comparison between Eq&28) and (16)  extensive simulation of the 2 Y-type models with TDGL
shows that the amplitude abSy(w/wp) as a function of dynamics. We have tried to demonstrate that when inter-
temperature is proportional f6°%/¢. Thus the scaling in the preted in terms of effective vortex variables the simulation
experimental data and the simulations are consistent to the@sults can be turned into a cogent picture. The results are
extent thatTC%/€ is almost constant for the experimental then described in terms of vortex density, effective vortex
data presented in Ref. 4. This is quite possible because atemperature, screening length, dielectric constant, frustration,
cording to the simulations the d/noise only shows up in a and so forth. The dynamical properties were to a large extent
very narrowT C region aboveT“C. In Fig. 21 we have plot- found to be described by the MP response function and a
ted €/ T°®Sy(w) versusw in logarithmic scales as obtained characteristic frequency,. We have found that the MP re-
from our simulations. The full line in Fig. 21 has slopel  sponse describes the dynamics both above and below the KT
and corresponds to ad/hoise. The agreement with Fig. 2 in transition and furthermore also the case with frustration. We
Ref. 4 is indeed striking. However, the simulation data inhave investigated how the characteristic frequengyde-
Fig. 21 have a large frequency cutoff beyond which the datgends on the other effective vortex variables and have also
fall below the 1 line. The experimental data in Fig. 2 of been able to extract a critical behavior fey at the KT
Ref. 4 show no such deviation from this line. In order totransition.
further investigate the connection between the experimental An interesting question is then how generic these simula-
flux noise data and our simulations it would be helpful totion results for 2D vortex dynamics really are. Here the cir-
also have the experimentally measured complex impedanceumstantial evidence indicates that the results could be quite
For example, a break down of ER8) would immediately generic: for the unfrustrated case above the KT transition it
suggest that other effects beyond the “pure” vortex fluctua-has been shown that the MP response function describes the
tions extracted from our present simulations come into playexperimental data very welf'® The deviations from the MP

As discussed in Sec. VII there was the crossover towardeesponse found in the simulations also seem to have a direct
a Drude response behavior as the temperature was increasedrrespondence in the experiments as discussed in connec-
As a consequence the peak-rationf 1/€]|/Re 1/e] should tion with Fig. 22. In the unfrustrated case below the KT
increase from 2f towards 1 as the frequency is increased.transition simulations for a 2D Coulomb gas with Langevin
This effect was illustrated in Fig. 18. In Fig. 22 we give the dynamics show good agreement with the MP respdriges
peak ratios for a 30-A-thick MoGe superconducting film suggests that the MP response is indeed linked to the vortex
measured in Ref. 18. The conductarBewas obtained in degrees of freedom because the vortex system maps onto the
zero perpendicular magnetic field as a function of tempera2D Coulomb gas systefFor the frustrated case it has been
ture for three different frequencies 1, 10, and 1@®iz), shown that the MP response describes a frustrated
respectively. Just as in the case of our simulations the experdosephson-junction array very wél\We have here shown
mental data increases from the MP valuer 26r small fre-  that a frustratecX'Y model with TDGL dynamics is similarly
guencies towards 1 at higher frequencies. described by the MP response.

VIIl. CONCLUDING REMARKS
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The picture which emerges from the simulations suggesttions, is lacking at present. However, we hope that the criti-
that the MP response is linked to the density of vortex fluccal behavior of the characteristic frequency and the various
tuations. In a rough sense the MP response can be viewed ggaling relations which we have extracted from our simula-
the response due to the vortex pairs. The deviations from thgons will serve as helpful clues. Another input, which might
MP response found in the simulations can be understoofkad to further understanding, would be experiments de-

from such an assumption. A particularly interesting thingsigned to test how generic the results found in the present
was that the simulations indicated that the MP response iaper are.

the frustrated case was valid far below the KT transition
temperature of the unfrustrated case. Again measurements
point in the same direction as shown in Fig. 20 and in Ref. 3.

The simulations also indicated the existence of an ap-
proximate 1ék noise in the flux noise spectrum. However, Stimulating discussions with and a critical reading of the
whether or not this 1 noise can be linked to the measured manuscript by Peter Olsson are gratefully acknowledged.
1l/w noise in Ref. 4 is at present an open question. This work was supported by the Swedish Natural Research

A deeper theoretical understanding of the properties of 2BCouncil through Contract Nos. F-FU 04040-322 and E-EG
vortex dynamics, which have emerged from our simula-04040-327.
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