g-factor formulas of $3d^5$ ions in trigonal-symmetry fields and their applications

M. G. Zhao and Y. Lei

Institute of Solid State Physics, Sichuan Normal University, Chengdu 610068, People's Republic of China

(Received 16 October 1996)

The *g*-factor formulas of $3d^5$ ions in C_{3v} symmetry are developed based on the equivalence between the phenomenological spin Hamiltonian and the microscopic Zeeman interaction. The formulas are universal ones and do not depend on the specific interaction model. Diagonalization of the complete Hamiltonian within the whole $3d^5$ configuration yields the theoretical zero-field splitting *D*, *a*, *a*-*F*, and *g* factors. The results for Mn²⁺ at the Li⁺ site in LiNbO₃ agree well with the experimental data. The Mn²⁺(Li)-O²⁻ average bond length deduced (*R*=2.0217 Å) is comparable with those obtained from extended x-ray-absorption fine structure measurements, namely (2.06±0.05) Å. The *d*-*d* transition bands and EPR *a* value predicted can be verified by further experiments. [S0163-1829(97)03514-5]

I. INTRODUCTION

The microscopic calculation of g factors of $3d^5$ ions in crystals is much more difficult than that of other $3d^n$ ions. To our knowledge, there are no rigorous complete diagonalization calculation formulas on the g factors of $3d^5$ ions in a trigonal symmetry field. To understand the EPR characteristic of $3d^5$ ions in a LiNbO₃ crystal, in this work we shall develop the microscopic calculation formulas on the g factors of $3d^5$ ions in crystals.

Lithium niobate (LiNbO₃) is an important ferroelectric and nonlinear optical material for many technical applications (see, e.g., Refs. 1 and 2). Because of the similarity of the Li⁺ and Nb⁵⁺ sites, one of the most difficult questions to answer with respect to defects in LiNbO₃ is whether dopant ions substitute for Li⁺ or Nb⁵⁺. The decrease in the zerofield splitting (ZFS) parameter D with increasing temperature supports the conclusion that Mn²⁺ replaces Nb^{5+,3,4} This conclusion has also been reached on the basis of electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies.^{5,6} An electron-nuclear double resonance (ENDOR) study favored Mn²⁺ at the Li⁺ site.⁷ This method can give direct information on the identity and the superhyperfine (SHF) and quadrupole interactions of the neighboring nuclei except those with zero nuclear spin (e.g., ¹⁶O, the only abundant oxygen isotope). An extended x-rayabsorption fine structure (EXAFS) study also favored Mn²⁺ at the Li^+ site.⁸ The comparison between the phases of Mn^{2+} in LiNbO₃ and in aqueous solution yields a true $Mn^{2+}(Li^+)-O^{2-}$ bond length of (2.06±0.05) Å.⁸ Fluorescence spectra are rather noisy due to the low Mn concentration in their experiment and this limits the accuracy in the determination of atomic distances. However, their results clearly show that Mn²⁺ lies at the Li⁺ site.

In this work, we apply both the complete diagonalization procedure (CDP) and an approximately equivalent self-consistent-field-molecular-orbital (SCF-MO) model^{9,10} to determine the local structure of Mn^{2+} ions at Li⁺ sites in LiNbO₃. The result shows that the values calculated are in good agreement with the experimental findings.

II. MICROSCOPIC EXPRESSIONS FOR EPR PARAMETERS

By means of the approximate equivalence between the spin Hamiltonian (SH) method and the complete diagonalization procedure (CDP), the following microscopic expressions of ZFS parameters were obtained:⁹

$$D = (1/56)[(9\Delta_1/\sqrt{1+T^2}) + \Delta_1 - 2\Delta_2], \qquad (1)$$

$$a - F = (1/28) [(3\Delta_1 / \sqrt{1 + T^2}) + 18\Delta_2 - 9\Delta_1], \qquad (2)$$

$$a = (3\Delta_1 / \sqrt{80})(T / \sqrt{1 + T^2}), \qquad (3)$$

with

$$T = -2a_1a_2/(a_1^2 - a_2^2), \tag{4}$$

$$\Delta_1 = E(\Gamma_4 + \pm 5/2) - E(\Gamma_4, \pm 1/2), \tag{5}$$

$$\Delta_2 = E(\Gamma_6, \pm 3/2) - E(\Gamma_4, \pm 1/2), \tag{6}$$

where $E(\Gamma_4, \pm 5/2)$ and $E(\Gamma_4, \pm 1/2)$ denote the eigenenergies of Γ_4 (CDP) ground states of $|\pm 5/2\rangle$ and $|\pm 1/2\rangle$, respectively, and $E(\Gamma 6, \pm 3/2)$ is the eigenenergy of the Γ_6 (CDP) ground state of $|\pm 3/2\rangle$. a_1 and a_2 denote the CDP eigenvectors of the ground state of Γ_4 ,

$$|+1/2\rangle(\text{CDP}) = a_1|^6S, +1/2\rangle + a_2|^6S, -5/2\rangle$$
 (7)

plus small contributions arising from S=3/2 and 1/2 states.

The theoretical calculation on g factors of $3d^5$ ions in crystals is much more difficult than that of other $3d^n$ ions. To our knowledge, there are no microscopic complete diagonalization calculation formulas on the g factors of $3d^5$ ions in a trigonal symmetry field.

By means of the approximate equivalence between the phenomenological SH and the microscopic Zeeman interaction, the following formulas are obtained:

8955

© 1997 The American Physical Society

	-		<u> </u>		,	
Calculated (D_{3d} symmetry)			Observed			
Model parameters: $N=0$ q=(Structure parameters: $R=0$ $\theta=($	0.978 ± 0.0001 $1.06 \pm 0.001)e$ $(2.17 \pm 0.001) Å$ $(53.72 \pm 0.001)^{\circ}$	Ref. 18	Ref. 16	Ref. 15	Ref. 17	
$\overline{{}^{6}\!A_{1}}({}^{6})$	0	0	0	0	0	
${}^{4}T_{1}(G)({}^{4}A_{2})$ ${}^{4}T_{1}(G)({}^{4}E)$	18 521±20 18 537±20	18 518	18 350	18 350	18 290	
${}^{4}T_{2}(G)({}^{4}A_{1})$ ${}^{4}T_{2}(G)({}^{4}E)$	22 417±40 22 696±40	22 370 22 730	22 600	22 600	22 560	
${}^{4}E(G)({}^{4}E)$ ${}^{4}A_{1}(G)({}^{4}A_{1})$	24 490±15 24 495±15	24 510 24 750	24 510 24 540	24 580	24 500 24 740	
${}^{4}T_{2}(D)({}^{4}E)$ ${}^{4}T_{2}(D)({}^{4}A_{1})$	27 770±40 27 935±40	27 400 27 700	27 620 27 950	27 255	27 330 27 580	
${}^{4}E({}^{4}E)$	29 469±15	29 240	29 330	29 170	29 120	
${}^{4}T_{1}(P)({}^{4}A_{2})$ ${}^{4}T_{1}(P)({}^{4}E)$	31 543±40 31 909±20	30 864 32 050	30 625 31 910	31 900	30 610 31 700	
${}^{4}A_{2}(F)({}^{4}A_{2})$	39 770±15				39 700	
${}^{4}T_{1}(F)({}^{4}E)$ ${}^{4}T_{1}(F)({}^{4}A_{2})$	40 521±20 40 874±20			40 820	40 540	
${}^{4}T_{2}(F)({}^{4}E)$ ${}^{4}T_{2}(F)({}^{4}A_{1})$	43 301±20 43 410±20			41 670		
EPR parameters		Observed (R	Observed (Refs. 19 and 20)			
$g_{\parallel} = 2.0019 \pm 0.0005$ $g_{\perp} = 2.0019 \pm 0.0005$		$g_{\parallel} = 2.0018 \pm g = 2.0019 \pm 0$	$g_{\parallel} = 2.0018 \pm 0.0005, g_{\perp} = 2.0013 \pm 0.0005$ $g = 2.0019 \pm 0.0009$			
$D(10^{-4} \text{ cm}^{-1}) = -75.9 \pm 0.5$		$-75.7(\pm 0.5)$	$-75.7(\pm 0.5), \pm 75(\pm 0.5)$			
$(a-F)(10^{-4} \text{ cm}^{-1})=6.27\pm0.5$		7.35(±0.5)	7.35(±0.5)			
$a(10^{-4} \text{ cm}^{-1}) = 5.84 \pm 0.5$		4.5(±0.5)	4.5(±0.5)			

TABLE I. d-d transitions and EPR parameters for MnCO₃ (all energies are in units of cm⁻¹).

$$g_{\parallel} = g_{zz} = \frac{1}{3} \left[\left< 5/2, 3/2 \right| \sum_{i=1}^{5} \left(k l_{z}(i) + 2.0023 S_{z}(i) \right) \left| 5/2, 3/2 \right> \right. \\ \left. - \left< 5/2, -3/2 \right| \sum_{i=1}^{5} \left(k l_{z}(i) + 2.0023 S_{z}(i) \right) \left| 5/2, -3/2 \right> \right],$$

$$\left. + 2.0023 S_{z}(i) \right) \left| 5/2, -3/2 \right> \right],$$

$$\left. (8)$$

$$g_{\perp} = g_{xx} = [(a_1^2 + a_2^2)/2a_1^2]^{1/2} \langle 5/2, 3/2 | \sum_{i=1}^5 (kl_x(i) + 2.0023S_x(i)) | 5/2, 1/2 \rangle,$$

where (kL(i)+2.0023S(i)) is the Zeeman magnetic moment operator of *i*th electron, *k* is the orbit reduction factor, and $|5/2,\pm3/2\rangle$ and $|5/2,\pm1/2\rangle$ denote the eigenfunctions of the ground state.

These expressions are universal ones and do not depend on the specific interaction model. The matrices of both the Zeeman magnetic moment (dimension 252) and the complete Hamiltonian may be computer generated.³¹

III. VALIDITY OF TECHNIQUE

It is currently accepted that for impurities in solids the bond lengths, R_i , can be determined through the EXAFS technique. It may be applied to any kind of impurity. However, the impurity concentrations of the order 100 ppm may be difficult to see by EXAFS, while concentration of the order of 1 ppm of some transition-metal ions can be detected through EPR. Zhao *et al.*^{9–11} show that the local structure of transition-metal ions in crystals can be determined from the optical and EPR spectra.

It must be pointed out that the local structure of impurity may differ from the host cation-anion one. In concentrated ruby, for instance, the Cr^{3+} ion has been found to be displaced from the host Al^{3+} ion site by 0.06 Å.¹²

Now, let us to study the validity of the technique for the

determination of local structure through the optical and EPR spectra measurements.

Following the x-ray diffraction data,¹³ the bond lengths and bond angles in MnCO₃ are as follows:

$$R = R_2 = R_1 = 2.17 \text{ Å},$$

$$\theta = 180^\circ - \theta_2 = \theta_1 = 53.7^\circ.$$
(9)

The optical absorption spectra have been observed by some authors. $^{15-17}$

In the approximately equivalent SCF-MO model,^{9–11} the C_{3v} crystal-field parameters were given by

$$B_{20} = \left[-3eq\langle r^2 \rangle/2\right] \sum_{i=1}^2 (3\cos^2\theta_i - 1)/R_i^3,$$

$$B_{40} = \left[-3eq\langle r^4 \rangle/8\right] \sum_{i=1}^2 (35\cos^4\theta_i - 30\cos^2\theta_i + 3)/R_i^5,$$

$$B_{43} = -B_{4-3} = [(\sqrt{35})3eq\langle r^4 \rangle/4] \\ \times [\sin^3\theta_2 \cos\theta_2/R_2^5 - \sin^3\theta_1 \cos\theta_2/R_1^5].$$
(10)

The crystal-field parameters, B_{kq} , can be calculated from the structure data provided that the expectation values $\langle r^n \rangle$ and the effective charge q are known. Considering the average covalency between central metal ion and ligand orbitals, a reasonable approximation was made that⁹⁻¹¹

$$B = N^4 B_0, \quad C = N^4 C_0, \quad \alpha = N^4 \alpha_0, \quad \beta = N^4 \beta_0,$$

$$\zeta_d = N^2 \zeta_d^0, \quad \langle r^n \rangle = N^2 \langle r^n \rangle_0, \quad k = N^2, \tag{11}$$

where *N* measures the average reduction factor due to the covalency, and B_0 , C_0 , α_0 , β_0 , ζ_d^0 , and $\langle r^n \rangle$, are the electrostatic parameters, Trees correction constant, Racah correction constant, the spin-orbit coupling constant, and the expectation value of r^n in the free ion state, respectively. As one sees, this model leaves at most two model parameters *N* and *q*, which remain to be determined from two theoretically or experimentally known energy levels. For the Mn²⁺ ion, we have⁹

TABLE II. *d-d* transitions and EPR parameters for LiNbO₃:Mn²⁺ (all the energies are in units of cm^{-1}).

Calculated (Li	Calculated (Nb site, $f=0.973\pm0.001)^{b}$		
O _h symmetry	C_{3v} symmetry	C'_{3v} symmetry	
$^{6}A_{1}(S)$ (ground state)	0.000 000 000 0.147 645 4264 0.437 555 3337	0.000 000 000 0.150 999 4580 0.435 823 0692	
${}^{4}T_{1}(G)$	$ \begin{bmatrix} 16 & 960 \\ 16 & 980 \end{bmatrix} {}^{4}A_{2} \\ 17 & 767 \\ 17 & 790 \\ 17 & 800 \\ 17 & 803 \end{bmatrix} {}^{4}E $	$\begin{bmatrix} 13 & 345 \\ 13 & 426 \end{bmatrix} {}^{4}A_{2}$ $\begin{bmatrix} 13 & 806 \\ 13 & 890 \\ 13 & 931 \\ 13 & 954 \end{bmatrix} {}^{4}E$	
${}^{4}T_{2}(G)$	$ \begin{array}{c} 21 765 \\ 21 876 \\ 21 912 \\ 21 968 \\ 21 010 \\ 22 014 \end{array} $ ${}^{4}E$	$\begin{bmatrix} 19 & 046 \\ 19 & 059 \\ 19 & 146 \\ 19 & 176 \\ 19 & 189 \\ 19 & 192 \end{bmatrix} {}^{4}A_{1}$	
${}^{4}A_{1}(G)$ ${}^{4}E(G)$	$ \begin{array}{c} 24 474 \\ 24 475 \\ 24 475 \\ 24 477 \\ 24 487 \\ 24 495 \\ 24 501 \\ \end{array} $ ${}^{4}A_{1}$	$ \begin{array}{c} 24 \ 407 \\ 24 \ 412 \end{array} \begin{array}{c} 4_{A_1} \\ 24 \ 447 \\ 24 \ 464 \\ 24 \ 485 \\ 24 \ 492 \end{array} \begin{array}{c} 4_E \end{array} $	
${}^{4}T_{2}(D)$	$ \begin{array}{c} 27 & 195 \\ 27 & 241 \\ 27 & 596 \\ 27 & 694 \\ 27 & 748 \\ 27 & 800 \\ \end{array} \begin{array}{c} 4_{A_1} \\ 4_E \\$	$ \begin{array}{c} 26 & 914 \\ 26 & 924 \\ 27 & 143 \\ 27 & 233 \\ 27 & 273 \\ 27 & 418 \end{array} $ $ \begin{array}{c} 4_{A_1} \\ 4_E \\ 4_E$	

Calculated (Li site, $f=0.93$	$39\pm0.001)^{a}$	Calculated (Nb site, $f = 0.072 \pm 0.001$) ^b	
O _h symmetry	C_{3v} symmetry	C'_{3v} symmetry	
${}^{4}E(D)$	29 179 29 251 29 320 29 379	29 488 29 497 29 503 29 506	
${}^{4}T_{1}(P)$	$\begin{bmatrix} 31 & 703 \\ 31 & 784 \\ 31 & 893 \\ 32 & 040 \\ 33 & 470 \\ 33 & 482 \end{bmatrix} {}^{4}E$	$ \begin{array}{c} 34\ 068\\ 34\ 179\\ 34\ 260\\ 34\ 370\\ 35\ 008\\ 35\ 071 \end{array} \begin{array}{c} 4E\\ 4A_2 \end{array} $	
${}^{4}A_{2}(F)$	$\begin{bmatrix} 39 & 731 \\ 39 & 863 \end{bmatrix} {}^{4}A_{2}$	$\begin{bmatrix} 39 & 834 \\ 39 & 837 \end{bmatrix} {}^{4}A_{2}$	
${}^{4}T_{1}(F)$	$ \begin{array}{c} 40 \ 478 \\ 40 \ 562 \\ 41 \ 378 \\ 41 \ 403 \\ 41 \ 511 \\ 41 \ 540 \\ \end{array} \begin{array}{c} 4_A_2 \\ 4_E \\ 4$	$ \begin{array}{c} 42 \ 330 \\ 42 \ 460 \\ 42 \ 509 \\ 42 \ 722 \\ 42 \ 793 \\ 42 \ 850 \\ \end{array} \begin{array}{c} 4_{A_2} \\ 4_{A_$	
EPR parameters		Observed (Refs. 5, 22, 23, and 24)	
Li site	Nb site		
$g_{\parallel} = 2.001 \ 887 \pm 0.0005$ $g_{\perp} = 2.001 \ 873 \pm 0.0005$ $\overline{g} = 2.001 \ 88 \pm 0.0005$	2.001 686±0.0005 2.001 680±0.0005 2.001 683±0.0005	$g = 2.002 \pm 0.0005$ $g = 1.995 \pm 0.005$ $g = 1.998 \pm 0.0025$	
$D(10^{-4} \text{ cm}^{-1}) = 730 \pm 4$	724±4	726±6, 725, 725±5	
$(a-F)(10^{-4} \text{ cm}^{-1})=11.6\pm0.5$ $a(10^{-4} \text{ cm}^{-1})=6.6\pm0.5$	36.7±0.5 28.1±0.5	7.5±4.5, 6±6, 8±5	

TABLE II. (Continued.)

^a R_1^0 =2.238 Å, R_2^0 =2.068 Å, θ_1 =44.57°, θ_2 =110.26° (Refs. 10, 25-27). ^b R_1^0 =1.889 Å, R_2^0 =2.112 Å, θ_1 =61.65°, θ_2 =133° (Refs. 10, 25-27).

 $B_0 = 911 \text{ cm}^{-1}$ (observed, 915 cm⁻¹, SCF, 885 cm⁻¹),

$$C_0 = 3273 \text{ cm}^{-1}$$

(observed, 3273 cm⁻¹; SCF, 3059 cm⁻¹),
 $\zeta_d^0 = 336.6 \text{ cm}^{-1}$ (SCF, 333 cm⁻¹),
 $\langle r^2 \rangle = 2.7755 \text{ a.u.},$
 $\langle r^4 \rangle = 23.2594 \text{ a.u.}$ (12)

Florez *et al.*¹⁴ have performed the first Hartree-Fock-Roothaan calculation of the crystal-field spectrum of MnF_6^{4-} (isolated as well as inserted the RbMnF₃ lattice). Results show that first, the inclusion in the SCF calculation of the electrostatic potential due to the rest of the lattice does not modify the values of the optical transition energies, which supports the idea of cluster as good for understanding the properties of the transition-metal impurities in crystals, and second, the average covalency model is a good approxima-

tion since the SCF-MO transition energies can be described by the electrostatic parameters *B* and *C*, Trees correction constant α , Racah seniority correction-constant β , and the crystal-field parameter, which shows that the usual crystalfield theory is approximately equivalent to the SCF-MO model calculation. In the crystal-field-like model proposed by Zhao *et al.*,^{9,10} the parameters *B*, *C*, α , β , ζ_d , B_{20} , B_{40} , and B_{43} were described by Eqs. (10)–(12) of this paper. By means of the approximate equivalence between the crystalfield model and the SCF-MO model, Zhao *et al.* have deduced the values of N=0.98496 and q=*e* for MnF₆⁴⁻ cluster in RbMnF₃,⁹ and the values of N=0.9595 and q=2*e* for CrO₆⁹⁻ cluster in LiNbO₃.¹⁰

Since there are no SCF-MO calculation values of the optical transition energies for MnO_6^{10-} cluster in crystals, so the parameters *N* and *q* are determined from the optical absorption bands measurement, in the present work.

For Mn²⁺ ion in MnCO₃, we have deduced the values of $N=0.978\pm0.001$, $q=(1.06\pm0.001)e$ (Ref. 32), $R=(2.17\pm0.001)$ Å, and $\theta=53.72^{\circ}\pm0.01^{\circ}$ from the optical absorption bands.¹⁵⁻¹⁸

The result is listed in Table I. An excellent agreement between theoretical and experimental structure supports the determination of the local structure through the optical and EPR spectra. It means that the technique presented is correct.

IV. CALCULATION AND RESULTS FOR Mn²⁺ IN LiNbO₃

As for LiNbO₃:Mn²⁺, no optical spectra have been published. However, we notice that the optical spectra of a lot of oxides containing Mn²⁺ ions are quite similar:²¹ 16 500– 19 000 cm⁻¹ for ⁴ $T_1(G)$, 21 000–23 000 cm⁻¹ for ⁴ $T_2(G)$, 23 000–24 800 cm⁻¹ for ⁴ $A_1(G)$ /⁴E(G), 27 500–27 700 cm⁻¹ for ⁴ $T_2(D)$, and 28 600–29 300 cm⁻¹ for ⁴E(D). This enables us to estimate the model parameters *N* and *q*. Considering the structure similarity between Mn²⁺-60²⁻ in MnCO₃ and Mn²⁺-60²⁻ in LiNbO₃, *N*=0.978 and *q*=1.06*e* are used in the calculation for LiNbO₃:Mn²⁺.

Considering the relaxation of the oxygen ligand, we define

$$f = R/R_0, \tag{13}$$

where *R* denotes the bond length of $Mn^{2+}-60^{2-}$ in Li^+/Nb^{5+} site and R_0 is the bond length of $Li^+/Nb^{5+}-60^{2-}$ in host LiNbO₃.

For the Mn^{2^+} ion in LiNbO₃, we have deduced a value of f=0.939 from the EPR parameter *D* value.^{5,22,26} The final results are listed in Table II. As one sees, an excellent agreement between theory and experiments is reached, as the Mn^{2^+} ion substitutes for the Li⁺ site. In contrast with this, the experimental EPR parameters cannot be reproduced placing the Mn^{2^+} ion at Nb⁵⁺ position.

V. DISCUSSION AND CONCLUSION

(a) The microscopic g-factors calculation of $3d^5$ ions in crystal is much more difficult than that of other $3d^n$ ions. In this work the microscopic formulas on g factors of $3d^5$ ions in trigonal-symmetry field are developed based on the rigorous complete diagonalization procedure. These formulas are

universal ones and do not depend on the specific interaction model. Applications show that the values calculated are in good agreement with experiments.

(b) We have deduced the values of R=2.17 Å and $\theta=53.72^{\circ}$ from the EPR and optical absorption spectra of Mn²⁺ ions in MnCO₃ which are in excellent agreement with the x-ray diffraction data,¹³ which strongly supports that the local structure of Mn²⁺ ions in crystal can be determined through optical and EPR spectra. This is consistent with the conclusion reached in Refs. 9–11.

(c) We have deduced the values of $R_1=2.101482$ Å, $R_2=1.941852$ Å, and R=2.021667 Å for the Mn²⁺(Li)-O²⁻ bond lengths from the EPR *D* value (or, f=0.939). The average bond length deduced is comparable with those obtained from EXAFS measurement, namely (2.06±0.005) Å.⁸ The g_{\parallel} , g_{\perp} , and *a*-*F* values predicted are consistent with experiments within the range of experimental errors.

(d) The d-d transition bands and EPR a value predicted can be verified by further experiments.

(e) It must be pointed out that there is an error in the calculation by Yu and Zhao²⁸ because *D* (observed) is $(-199\pm7)\times10^{-4}$ cm⁻¹ instead of $(34.5\pm5)\times10^{-4}$ cm⁻¹ (see Ref. 29). Adopting the rigorous complete diagonalization procedure, the analytical expression for *D* value, and an approximately equivalent SCF-MO model,⁹ we have deduced the bond lengths of $R_{\parallel}=2.09$ Å and $R_{\perp}=2.13$ Å for MnF₂ from the experimental *D* value $(-199\pm7)\times10^{-4}$ cm⁻¹ (Ref. 29) and the optical spectrum, which are consistent with the structure data by Baur³⁰ [$R_{\parallel}=(2.10\pm0.01)$ Å, $R_{\perp}=(2.13\pm0.027)$ Å], which supports again the determination of the bond lengths through the optical and EPR measurements.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (Grant No. 19574036).

- ¹A. Rauber, in *Current Topics in Material Science*, edited by E. Kaldis (North-Holland, Amsterdam, 1987), Vol. 1.
- ²F. F. Agullo-Lopez and J. M. Cabrera, *Properties of Lithium Niobate*, EMIS Datareview Ser. No. 5 (INSPEC, London, 1989).
- ³M. P. Petrov, Sov. Phys. Solid State **10**, 2574 (1969).
- ⁴G. I. Malovichko, A. A. Karmazin, I. P. Bykov, V. V. Laguta, and V. P. Yarunichev, Sov. Phys. Solid State 25, 2038 (1983).
- ⁵T. Takeda, A. Watanabe, and K. Sugihara, Phys. Lett. **27A**, 114 (1968).
- ⁶S. H. Choh, H. T. Kim, H. K. Choh, C. S. Han, D. Choi, and J. N. Kim, Bull. Magn. Reson. **11**, 371 (1989).
- ⁷G. Gorradi, H. Sothe, J. M. Spaeth, and K. Polgar, J. Phys. Condens. Matter 2, 6603 (1990).
- ⁸C. Zaldo and F. Agullo-Lopez, Solid State Commun. **71**, 243 (1989).
- ⁹M. G. Zhao and M. Chiu, Phys. Rev. B 52, 10 043 (1995).
- ¹⁰M. G. Zhao and Y. Lei, J. Phys. Condens. Matter 9, 529 (1997).
- ¹¹M. G. Zhao, Phys. Status Solidi B 84, 441 (1994).

- ¹²S. C. Moss and R. E. Newnham, Z. Kristallogr. **120**, 359 (1964).
- ¹³R. W. G. Wyekoff, *Crystal Structures* (Wiley-Interscience, New York, 1964), Vol. 2.
- ¹⁴M. Florez, L. Seijo, and Pueyo, Phys. Rev. B 34, 1200 (1986).
- ¹⁵L. L. Lohr, J. Chem. Phys. **45**, 3611 (1966).
- ¹⁶A. L. P. Malecot, C. R. Acad. Sci. (Paris) **266**, 804 (1968).
- ¹⁷C. Y. Lin, H. B. Zhu, and Z. W. Ma, Acta Mineral. Sinica 1, 40 (1981).
- ¹⁸F. Z. Lee, J. Sichuan Normal Univ. **3**, 44 (1984).
- ¹⁹G. E. Barberis, R. Calvo, H. G. Masdonado, and C. E. Zarate, Phys. Rev. B **12**, 853 (1975).
- ²⁰F. K. Hurd, M. Sachs, and W. D. Herschberger, Phys. Rev. 93, 3731 (1954).
- ²¹A. N. Platknow, *Meaning of Cloure of Minerals* (Science Press, Kiev, 1976) (Russian).
- ²²J. B. Herrington, B. Dischler, and J. Schneider, Solid State Commun. **10**, 509 (1972).
- ²³J. C. Danner, V. Ranon, and D. N. Stamires, Chem. Phys. Lett. 2, 605 (1968).

- ²⁴G. I. Malovichko, V. G. Grachev, and S. N. Lukin, Sov. Phys. Solid State 28, 553 (1986).
- ²⁵ A. M. Glass, J. Chem. Phys. **50**, 1501 (1969).
 ²⁶ S. C. Abraham and P. Marsh, Acta Crystallogr. B **42**, 61 (1986). ²⁷S. C. Abraham, W. C. Hamilton, and J. M. Reddy, J. Phys. Chem. Solids 27, 1013 (1966).
- ²⁸W. L. Yu and M. G. Zhao, J. Phys. C 18, L1087 (1987).

²⁹M. Tinkham, Proc. R. Soc. London Ser. A 236, 535 (1956).

- ³⁰V. W. Baur, Acta Crystallogr. **11**, 488 (1958).
- ³¹The matrices of both the energy and the magnetic moment of $3d^n$ ions (n=1, 2, 3, 4, 5, 6, 7, 8, 9) in C'_{3v} and C'_{2v} symmetry fields can be obtained from the authors.
- ³²X. Y. Kuang (unpublished).