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Formation of stationary localized states due to nonlinear impurities
using the discrete nonlinear Schrdinger equation
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Institute of Physics, Bhubaneswar, 751 005, India
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The discrete nonlinear Schiimger equation is used to study the formation of stationary localized states due
to a single nonlinear impurity in a Caley tree and a dimeric nonlinear impurity in the one-dimensional system.
The rotational nonlinear impurity and the impurity of the formy|C|” where o is arbitrary, andy is the
nonlinearity parameter are considered. Furtherm@grepresents the absolute value of the amplitude. Alto-
gether four cases are studied. The usual Green's-function approach and the ansatz approach are coherently
blended to obtain phase diagrams showing regions of different number of states in the parameter space.
Equations of critical lines separating various regions in phase diagrams are derived analytically. For the
dimeric problem with the impurity- x|C|?, three values ofx.|, namely,|x.|=2, ato=0 and|x.|/=1 and
8/3 for =2 are obtained. The last two values are lower than the existing values. The energy of the states as
a function of parameters is also obtained. A model derivation of the impurities is presented. The implication of
our results in relation to disordered systems comprising nonlinear impurities and perfect sites is discussed.
[S0163-18297)07201-9

I. INTRODUCTION transport from the absorption center to the reaction center in
a photosynthetic unit have been modeled by an effective
The discrete nonlinear Schdimger equatiofDNLSE) is  quantum nonlinear diméf=2® A nonlinear dimer analysis

a set ofN coupled differential equations, has also been applied to several experimental situations, like
neutron scattering of hydrogen atoms trapped at impurity
dCp, sites??8

"ot~ = Xmfml|C) Cont Vinm--1Cone 1 Vimm-1Crm—1. The self-trapping of a quasiparticle at a nonlinear site in a

perfect lattice containing a single nonlinear impurity has
been studied. In the analysi$(|C,|) was taken to be
|Cm|2. The critical value of the nonlinear paramejefor the
self-trapping is found to increase with increasing
In Eq. (1) the nonlinearity appears through functions dimensior?® It has also been shown that near the self—

f.(ICl), and x, is the nonlinearity parameter associatedtrapPping tre}nsition the dynamics 'of the qulasiparti'cle is
with the mth grid point. Since|C,.|? is brought to unity Mostly confined to the few near nelghbﬁ?s@\n interesting
by choosing appropriate initial condition,,|2 can be in-  €Xperimental example in this context is the observation that
terpreted as the probability of finding a particle at tnen  rapped hydrogen atoms in metals like Nb move among sites
grid point. One way to derive this set of equations is toin the neighborhood of impurity atoms such as oxy&ef:*®
couple in the adiabatic approximation the vibration ofA self-trapping transition has also been obtained in systems
masses at the lattice points of a lattice Mfsites to the Where a nonlinear cluster is embedded in a perfect lattice. In
motion of a quasiparticle in the same lattice. The motion offact, two types of transitions are obtained, with the cluster-
the quasiparticle is described, however, in the framework ofrapping transition preceding the self-trapping transittbn.
a tight binding Hamiltonian. The same type of equation can Another important feature of this type of nonlinear equa-
also be obtained by nonlinear coupling of anharmonic osciltion is that they can yield stationary localiz€sl) states and
lators through both positions and momenta of thesolitonlike solutions. However, the presence of disorder or
oscillators'** The set of equations, thus derived, are calledaperiodicity either in site energies or in nonlinearity param-
discrete self—trapping equatiofDST’s). These equations eters is needed for this purpose. For example, the Ablowitz-
also possess a constant of motion analogous {fC,|2 in  Ladik-like equatioR*~*4can yield both localized and soliton-
the DNLSE. In fact, both the DST and the DNLSE containlike solutions in the presence of disorder in static site
the same number of constants of motion. energies. Similarly, the DNLSE can produce a solitonlike
An analytical solution of Eq(1) in general is not known. solution if any aperiodicity is present in the static site
However, nonlinear quantum dimers, which are two-site sysenergies® The effect of disorder in the static site energies, in
tems with the nonlinearity either in both the site energies othe nonlinear parameters, and in both of these on the solution
in one of them, can be solved analytically for any arbitraryof the DNLSE has also been studied by numerical integra-
initial condition. From analytical solutions a self-trapping tions. One also finds solitonlike solutions in this case. It has
transition is found in this model. The trapping of hydrogenalso been shown that the presence of nonlinear impurities in
ions around oxygen atoms in metal hydrides and the energihe absence of any disorder in the static site energies can

where

Vim+1=Vmi1m, and m=1,23,. .. N. (1)
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produce SL states in one dimension. The first study was dc

. n
made using the Green’s-function approach, and the authors It = KCn+1+Cpo1, n=1 ()
consideredf(|C|) = |Cy|2.% Furthermore, some cursory
discussion on the two and more nonlinear impurities has dc, _
been presented. Later, the one-nonlinear-impurity case has iwz—X|Co|"CO+ZC1, n=0. (3

been generalized by takingd|C,,|)=|C|“, and the forma-
tion of SL states is studied in one, two, and threeFurthermore, we have
dimensiong~43

It is obvious from the above discussion that for a com- , Z - N )
plete understanding of the single-nonlinear-impurity problem [Co(t)|*+ Rn§=:1 KT Cn(t)[*=1. (4)
the effect of increasing of connections on the formation of
SL states in the DNLSE needs further consideration. ThusSince we are interested here in SL states, we WEitét)
we plan to study the formation of SL states in the Caley tree= exp(—iEt)an_ After introducing this form ofC,(t) in Egs.
in the presence of a single nonlinear impurity. Along with (2) and (3), we make the following transformationsi)
f(ICul) = ICm|”, the effect of a more generalized nonlin- 5 —k-"2¢4 (i) E = E/JK, and (iii) y=%/JK. With
earity impurity (like the rotational nonlinear impurilyalso  these transformations, we finally obtain
needs consideration. Furthermore, a thorough understanding
of the nonlinear dimer problem in relation to SL states is Edn=cdni1+ bn_1, n=1, (5)
required. This is a partial requirement to understand the ef-
fect of disorder in nonlinearity parameters in solutions of the d
DNLSE. Thus here we study in substantial detail the phase Edo=—x|do| "o+ K 1, n=0, (6)
diagram of SL states due to the presence of a nonlinear dimer
in the perfect one-dimensional chain. In this connection weand
also synthesize the original Green’s-function approach and
the ansatz approaéf*! Finally, we present a logical deriva- z >
tion of the DNLSE withf(|C|) = |Cn|?, by generalizing | ol >+ EE | al?=1. (7)
the potential of the nonlinear pendulum. To the best of our n=t
knowledge no such attempt has been made in this directiomfter some standard algebra fE| > 2 %2 from Egs.(5) and

The organization of the paper is as follows. In Sec. Il we(g) we obtain
consider a nonlinear impurity of the formy|C|” embedded
in a Caley tree. We next consider in Sec. Ill a rotational én  E—xK|po” _, 0
nonlinear impurity in the Caley tree. In Sec. IV we deal with b0 — % GndB)=GniadB), ®
a dimeric nonlinear impurity in a one-dimensional system.
The impurity is, of course, of the form x|C|?. A similar ~ whereG, ((E)=[sgnE)]"** G8’O(|E|) 7", and sgnE) de-
problem with the rotational nonlinear impurity is considerednotes the signature d&&. We also havep=(|E|— W/E2—4)/
in Sec. V. Section VI deals with a model derivation of the 2. So 0< 5<1. ForGJ|E|), we have
DNLSE considered here. Finally we conclude our paper by '

highlighting the major features and the importance of our 1 ”
results in understanding the behavior of disordered systems God|E])= 12 9)
made up of nonlinear impurities and perfect sites. E°-4 K

Eq. (8) for n = 0 yields

II. SINGLE NONLINEAR IMPURITY OF THE FORM EGSO(E)

xK
—x| C|” IN A CALEY TREE > T GE,O( E)=— 7| ¢o|"68,0( E). (10

We consider a Caley tree with the coordination number
Z. Its connectivity is, therefor&=Z—1. We set a nonlinear
impurity at a site and call it the zeroth site. Furthermore, her
we considerfy(|Co|) = |Cy|” wherea=0. Now, from this
site, Z branches will emerge. Again, from each of these
branche« branches will emerge. So the number of points in
the nth generatior(or nth shel) is ZK("~1). From any point
in thenth shell a quasiparticle can move eitheikigoints in K
the (n+1)th shell or to a point in then(—1)-th shell if ——n=—xK]| ¢o|”sgn(E). (12)
n=1. Of course, we are considering only nearest-neighbor 7
hopping with a real hopping element. So, if the nearestgimijarly, Eq. (8), after some simple algebra, yields, for
neighbor hopping element is the same for all sites, every,_
point in a given shell will show an identical time evolution of
the probability amplitude of the quasi-particle. Thus the set bn=don". (12)
of equations that describes the time evolution of the prob-
ability amplitude in the present modefts Now introducing Eq.(12) into Eq.(7), we obtain

So the energy of SL states is obtained from solution of Eq.
élO). We further note that the left-hand side of EGQ) is
independent of the sign &. On the other hand, to keep the
sign unchanged on the right-hand side of Eff)), a simul-
taneous change of the signs®fand y is required. Equation
(10), when written in terms ofp, assumes the form
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K(1=|¢ol?) 10
P (13 ' ' ' PN
77K+l -
Using Eq.(13), we eliminaten from Eq.(11), to obtain the g L . g
equation for| ¢g|. This in turn yields o
K+1)2— ((K—1)+ 2| | 2)? 6 - _
AP (St 2l o B
X (K=1+2[ o) . A e
ForK = 1, Eq.(14) then gives 4 // ’ PP )
g w2 -] \
=1 b2 A1 hol), (15) o
and this equation has already been obtafatfe again note -
2 ; . ‘ . .
that|¢o|°<1. The energy E) of SL states is %0 o5 9 s 20 25 30
g
E=—sgnix)| n+ ;) FIG. 1. Critical value of nonlinearityx,,) separating the no-SL-
state region from the two-SL-state region is plotted as a function of
) (2K —(K—1)| ¢o|?)? 18 o for Caley trees having<=1 (solid line), K=2, (dashed ling
=—sgnx 5 >- (16)  K=3 (dotted ling, andK =10 (dot-dashed line There is one non-
‘/R‘/(K+ D= (K=1)+[¢o|*) linear impurity in the Caley tree of the form x|C|”.

Equation(16) can be derived using Eq§l3) and (14). We

note that, fore = 0, Eq.(16) in conjunction with Eq.(14) cal line from above for anyr, two distinct SL states merge

yields increaseK, the separation between critical lines for aamy
IXl(K=1) K+1 decreases, as shown in Fig. 1. $®.| becomes virtually

E=—-sgnx)| — + Vx’K+4|. (17  independent of the connectivity for very lardle For the

2 2VK energy diagrangsee Fig. 2we have takemr=1. We see that

Equation (17) yields the correct result for a single linear for K=1 the energy of the SL state increases vthThis

- L : - lies that localization becomes stronger for larggr On
impurity in a one-dimensional perfect system. We also sed"P ~ ;
from Eq. (16) that, for K=1, E=—sgn(y)|¥||dol” 2. the other hand foK=2, 3, and 10 i.e., foK>1, one of the

Then, fore=2, |E|=[¥|. Inasmuch as the minimum abso- }WO |$L ts_,tateics |rllcreases _\ll_Vr']tM This co;rfhspo?gs tgftrct)ntg
lute value of the energy of a SL state is-2the critical value ocalization for largel x|. The energy of the other state

of | x|, i.e.,|xol=2. Above this value ofy|, two SL states
are obtained?

We numerically solve Eq(14) for |¢,| as a function of
x ando. If | ¢g|<1, we obtain an admissible solution. Num-
ber of such solutions are the number of SL states in the
system. We then calculate the energy of the SL states using 100
Eqg. (16). The phase diagram for SL states and energies of
these states as a functionpfindo are shown in Figs. 1 and
2 for K=1, 2, 3, and 10 respectively. We note that for 80T
o=0 we have the standard Anderson localization problem.
To obtain a localized eigenstate in a Caley tree of connectiv-
ity K, the condition|x|=(K—1)/VK has to be satisfied.
This can be obtained from E¢L4) by setting| ¢,|?=0, and w
also from Eq.(17) by setting|E|=2. This is also obtained in
our numerical analysis, as shown in Fig. 1. IRor= 1, there
are three regimes. Whern<2, there is always one SL state
for |x|>0. Fora=2, there is a critical value of (|x]) for 20
eacho (represented by a solid curyebelow which no SL
state appears, but above it two SL states ensue. On the other

sponds to weak localization for lardg|.
We now present analytical results in favor of our numeri-
cal results. The relevant equation for this purpose is(E4).

hand, forK>1, we find that for any value a¥>0, there is 0.0 . . . .

a |xo| below which no SL state appears, contrary to the 0.0 20 40 60 8.0 100
K=1 case. But fol x|>| x|, we obtain two SL states. So -

there is a critical lingdashed line foK = 2, dotted line for FIG. 2. The energy of SL states shown in Fig. 1 for1 is

K = 3, dot-dashed line foK = 10 in Fig. 1) in the (x,  plotted as a function of the nonlinearity parametey for the Caley
o) plane which separates the no-SL state region and thgee. The solid curve is fd€ = 1, the dotted curve is fd€ = 2, the
region containing two SL states. If one approaches the critidashed curve is fdk = 3, and the dot-dashed curve is #r= 10.

on the critical line, and below that line they disappear. As we

goes toward the appropriate band-edge energy. This corre-
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We denote the right-hand-side expression of Eifl) by
Ok.o(A), where A=|¢o2. We note that for 0>0,
Ok o(0)=0=gk ,(1). We also havegy ,(A)=0 for A in

[0,1]. So there must be a maximum of this function with

respect toA for A in [0,1]. For o= 0, this maximum occurs
at A = 0. If the value of the left-hand side of E¢L4) lies

above the maximum, no SL states will be obtained. How-

ever, for (4/x|?) lying below the maximum, we shall obtain

at least two SL states. Our numerical result suggests that

gk.-(A) has one maximum foA in [0,1]. So, by imposing
the maximality condition o, ,(A) with respect toA, i.e.,
by settingdgg ,(A)/dA=0, we obtain

20A%+30(K—1)A%+[(K+1)2+ (K?2—4K+1)o]A
—oK(K—=1)=0. (18

Note that foro=0, A = 0. Furthermore, foK = 1, we
obtain A=\/(0—2)/c. For K>1 and >0, Eq. (18) has
only one real root RR given by

e (17K 3% 0—2)(K+1)?+3"D? 19
-2 60D
where
D=[9Vo(K+1)4AK—1)+3(K+1)2Do]*® (20
and
Do=V(K+1)%(2— )3+ 270(K—1)>. (21

We emphasize that for all value of>0 andK>1, the RR

is real and lies between 0 and 1. So the equation for the
critical line in the (¢, o) plane separating the no-state and the,

two-state regions is

2
el = K /R

We now analyze the case Kf = 1 along the same line. The
relevant equation is Eq15), in which the right-hand side
will be denoted byg,(A). Inasmuch as & A<1 the domain
of g,(A) is[0p] if 0<2. So, foroe<2, the line y= const
= (4/x?) always intersects the cungg,(A) at a single point.
This will happen even ify| is infinitesimally small. So for

(22
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FIG. 3. The phase diagram for the Caley tree with a single
rotational nonlinear impurity showing the number of SL states as a
function of nonlinearity parametej and the parameteX. In this
case the connectivity of the Caley trde,= 2.

Ill. SINGLE-ROTATIONAL-NONLINEAR
IMPURITY IN A CALEY TREE

Here we consider the case wheref(|Cy|)
=|Col/(N1+ (x/A)?[Cq[?). The origin of this particular
form of nonlinearity was discussed in Ref. 45. For this case,
from the appropriate version of EGL0), for |¢o|>=A we
obtain

A+ (K—1)A*+PA2+Q=0, (24)
where
K—1\2
—_ 2 2| —
! X<K A )) ,
X P—’_K
and
2 2 4
Q=(K—-1) % P+K . (26)

o<2 we shall always obtain one and only one SL state ifrorK =1, that is for a one-dimensional system, we find, from

|x|>0. Precisely this is obtained in Ref. 41. If
0>2, 9,(0)=0=g,(1). Furthermore,g,(A) is positive
semidefinite forA in [0, 1]. So there must be at least one
maximum forA in [0, 1]. We also note that for=2, the
maximum ofg,(A) occurs atA = 0. Therefore, foK = 1

and 0=0, applying the same analysis we obtdjy,|=2,

Eq. (24),

A
X

_ x4 ‘
kil

So if [x|>2, one and only one SL state will be obtained.

(27)

below which there is no SL state and above which there igurthermore, the energyEj of this SL state is

one SL state. Furthermore, it can be shown from &§) by
maximizingg,(A) that| x| separating the no-state and two-
state regions for>2 is

\/50_0'/4

|Xcd = (o= 2) T2 (23

This expression fofy.| has been mentionétwithout any
derivation.

4+A2 1/2

X2+A2

E==|x| (28)
However,K>1, the analytical calculation of the energy of
the SL state is quite prohibitory. So we examine the case for
K=2. Qur results are shown in Fig. 3. We again find two
regions. In the lower region we find no SL state. On the other
hand, in the upper region there are two SL states. The line
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separating these regions contains one SL state. We find that, We now consider the case of our nonlinear dimer. We
for |[A|—=0 , |xo|—c°. This should be expected. Another have three equations, name{g0), and(31), and(34). So, if

interesting feature is thdj,| reduces with increasing\|.  ¢q and ¢, are fully complex quantities, for the problem to
For small value offA|, the fall in|x.| is quite sharp with be well posed, we must havg, = ¢5. Otherwise, the prob-
increasing A|. lem is well posed. From Eq$30) and(31), we obtain

IV. NONLINEAR DIMER IMPURITY yora_ L‘ (36)

IN A ONE-DIMENSIONAL PERFECT CHAIN: 1+X|’
IMPURITY OF —x| C |” TYPE
where
Two consecutive sites occupied by nonlinear impurities
are labeled as zeroth and first sites, respectively. Here we b1
consider,xofo(| Co)|) = x| Col” and xaf(|Cal) = x|Co[”. Al =% (37
other y,, are set to zero. AV, ., in Eq. (1) are set to
unity. Since we are looking for SL states, we setand
Cy(t) = ¢exp(—iEt) in the appropriate version of EQL).
From the set of equations thus obtained we solvedfpiby XGo(E)| ol 7(YT—1) @8
the standard proceduté Consequently, we obtain 1+ xGIJE) o
$n=Gy o(E) €gpo+ Gy 1(E) €16b . (29 It is to be noted that, fofég|=|d4|, Eq. (36) becomes an

In Eq. (29), for the purpose of generality, we define identity. Consider now the case wheg&g ((E)>0. This
€0=—x|#0|” and €= — x| #1|°. Furthermore, fom = 0  limit can be obtained either byi) x>0, E>2 or by (i)

andn = 1, Eq.(29) yields x<0, E<—2.ltis easy to see that ¥# 1, Eq.(36) is not
satisfied. So the solution in this limit ispo|=|¢#,|. Since
bo=G3 (E)€oho+ Go (E)erhy (300  these quantities can be taken as real, we haye * ¢,.

However, it can be trivially shown either from Eg80) or
(31) that no SL states will be obtained in this case. Consider
=GY (E)egpo+ G ((E)ercby. (31  hext the other limit whereyGy (E)<0. To achieve this
d>10 1dE)€odot G _ 1 limit we need either(i) x<0, E>2 or (i) x>0, E<—2.
We note thaiG, (|E|) has been defined by E(9). After  Now it can be easily shown that if bottD,=1
some simple algebra it can be shown with the help of Eqs'—|XGgo(E)||¢o|”<0 andD1=1—|XG80(E)||¢1|‘T<0, the
(30) and(31) that solution of Eq.(36) is, again| ¢|=|#4|. Note further that if
_ n1 Y>1 is a solution of Eq(36), Y<<1 should also be a solu-
$n=(SgnE)n)" “¢1, n>1, (32 tion of Eq. (36) [see, for example, EJ35)]. So, any con-
= E) )l - straint onD g will imply a similar constraint orD,, and vice
¢-ni=(SgME) M) "o, [n[>0, 33 versa. On the other hand, we may hag,|#|¢4| if
where O0< <1 as was defined in Sec. Il. We further note D,>0, and, consequently, aldd,>0. We again consider
that the form of¢,, given by Egs(32) and(33) is indepen-  Eq. (30), which for)(Ggo(E)<0 is
dent of the form ofe, and e;. Since we must have '

and

>*_|#nl?=1, using Eqs(32) and(33) we find that &,
’ 1-[XGadB)l | dol"=IxCEAE)ll 41l sgriE)| =] (39)
|pol?+ | p1l*=1—7°. (34 0
When ¢, and e, are linear impurities, from Eqg30) and e can also consider the equation i [Eq. (31)]. Both
(31) we obtain equations will yield the same conclusion. It is easy to see
that for E>2, Eq.(39) tells that (¢, /®,) must be positive.
€0€r( €9t €1) T|2— egeq| V(eo— €)%+ 4 On the other hand, fdE<—2, (¢1/¢,) should be negative.
E.= eger—1) ., (39  This result, coupled with the formula fa, [Egs.(32) and

(33)], suggests that SL states dp>0 either have no nodes
whereE.. denotes the energy of the SL state. We note thafor E>2, or haveN (the number of sites in the latticaodes

for eg=€,>2, two SL states appear above the band. Thdor E<—2. We further note that band-edge states in the
situation reverses foreg=€e,;<—2. Furthermore, for perfect system have these characteristics. In the case of the
€o=€,—0, we obtainE. = *2. In other words, we obtain linear eigenvalue problem, we know that there will be only
one of the band-edge states. These are consistent with estaime SL state in this limit. This SL state will evolve from one
lished resultd® but the exact form of the solution is not of the band-edge states. Since here all we are dealing with a
presented there. In the present model we heyree;= — x nonlinear eigenvalue problem, it is in principle possible to
for =0. On the other hand, sin¢e|,| $,|<1, for a finite  have multiple permissible values a@f, and ¢,. In other

x, if o—o, we obtaine,=e€;—0. General solutions of the words, we may obtain a set of states. We shall refer to this as
nonlinear dimer impurity problem are expected to showa symmetric set. But all these SL states will contain the same
these asymptotic behaviors. It should be noted in this contexaiumber of nodes. Of course, a subset of these states will
that for a single nonlinear impurity this continuity has beenhave ¢¢= ¢, and one state in this subset will survive for
rigorously establishet: o=0.
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In the linear dimer impurity problem we also obtain an-
other SL state. This state has either a nole-2) through
the dimer, or the node through the dimer disappears
(E<—2). We should have the same situation with the non- 10
linear dimer, but instead of having one such state we may
have a set of states, again with the same number of nodes. gl
Since in the second set we must have,/dg
=—sgnE)|(¢1/¢y)|, for this set to appear we need
Dy,D1<<0. This, in turn implies that the second set of states )
should always havépg|=|#,|. Thus, states whergé,= ¢,
in the first set together with states coming from this antisym- 4t
metric set, will constitute a major part of the phase diagram
for SL states. This phase diagram will be discussed here. We
also analyze ifpy# ¢, is at all possible in the first set of SL
states.

For | ¢o|=]| ¢4 from either Eq.(30) or (31), for |E|>2, %0 o8 _
we obtain s

12

_ 1 FIG. 4. The phase diagram for a perfect chain with a nonlinear
== [x||dolo=1" (40 dimer made up of impurities of the forny}C|. The figure shows
regions containing different number of SL states in theo{) plane.
For positive sign we need; / o= —sgn(y) =sgn(E), while  There are one SL state in region I, no SL state in region Il, two SL
for the other signp, / po=sgn(xy) = —sgn(E). Furthermore, states in region Ill, three SL states in region IV and four SL states
the equation for determininigho| can be obtained from Egs. in region V. The solid x| curve arises from the symmetric set and

(34) and (40). The required equation fdkp,| is the dotted curve arises from the antisymmetric setoAt 2 three
values of| x| exist. These points are shown by boxes. The upper
(1—2| pol?) (x| po| "+ 1)%=1, (4)  box along theo=2 line corresponds tg.=8, which comes from

. _ antisymmetric seti.e., ¢g=— ¢1). The lower box corresponds to
and the energy of the SL stateE) is E=sgnE)[7 xo=1, which comes from symmetric séte., ¢o= ¢,). But the

+(1/p)], 0= 77$_1- ] ] . middle box corresponds tg.= 35, and this appears for the case
The phase diagram is obtained by analytical as well avhen | do| # | o).

numerical calculationgsee Fig. 4 We first describe our

numerical findings. Note that fer=0, we have one state for per box along ther=2 line in the figure. We also empha-
|x|<2 and then fof x|>2 second state appears. This agreessize that thar=2 line is a line of continuity. The energy of
with established resul@.On the other hand, we find that for states as a functioﬁ in regions | and IV of F|g 4 is shown
O<o=<2 we find a regime(l) with one SL statelcoming in Fig. 5. We have takerr=1 for example to analyze this.
only from symmetric set For all values ofo in this range  |n region | the energy of the state always increases with
there is d x,| which increases with increasing shown the increasing|y|. In region IV, the energy of one of the two

in figure by the dotted line. Two SL states exist along thisstates belonging to the antisymmetric set decreases with in-
line. Note further that one of these states comes from the

antisymmetric set. Above this line we then have a regime
(IV) where three SL states are obtainete from the sym-
metric set and other two from the antisymmetric)set

We now consider the case where-2. We have a region 50 r
(I) where no SL state exists. Note that a similar situation is
also obtained for one nonlinear impurity c43&his region w0l
is bounded by a critical line along which one SL state exists !
(shown by the solid line in Fig.)4 This state comes from the
symmetric set. Above this critical line we have a regitih) wsor
of two SL states. Furthermore, we never obtain more than
two states from the symmetric set. This region of two states 2.0 T — -
continues until we reach the critical linehown by the dot-
ted line in the Fig. # due to the antisymmetric set. Along
this line we always have three SL states, and above this line
we have a regiofiV) of four SL states. We also mention that
o=2 is the special line. Along this line all transitions take 0.0
place. For exampldy,| at c=2, below which no SL state
is obtained, is 1 this is shown by the lower box along the
o=2 line in the figure. The previously reported value of  FiG. 5. The energy diagram of SL states as a functiory @it
this | x| is 2, and this value is obtained from an approximates = 1, which corresponds to the regions | and IV of Fig. 4. The
calculation®® Another| x| is found to be exactly 8, which solid curve is due to the symmetric set, and the dotted curve is due
comes from the antisymmetric sghis is shown by the up- to the antisymmetric set.

6.0

1.0 r

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
=X
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maximum with respect tey in [0, 1]. Our numerical calcu-

70 lations also suggest that this is so. Therefore, there will be a
6o | no-SL-state region and a two-localized-state region separated
' by a line in the §,o) plane. Furthermore, only one SL state
will exist along this line. To obtain the equation for this line,
50 ¢ we as usual maximizgg(o, ) with respect toy. This then
yields
40
w I on’—n—1=0, (44)
30t
and the permissible solution foy, 7, iS
201 1+ 1+4o s
NMms— —  ~ _ -
10 | ms 20
Now from Eg.(43) we obtain, fore>2,
0.0
0 * | Xl = 2 (46)
Ner 9s(0, ms)

FIG. 6. The energy diagram for SL states as a functioyy att . . L
o = 3, which corresponds to the regions II, Ill, and V in Fig. 4. The FOr =2, g5(2,77) =2 is the maximum permissible value of

solid curve is due to the symmetric set and the dotted curve is dufs(2,7) for » in [0, 1]. Albeit this is not a true maximum of

to the antisymmetric set. The dashed vertical lines touch the soli@s(o, 77), the left-hand side of Eq42) must attend this value

and dotted curves at the critical values| gf. to obtain a SL state. Hence fer=2, |x,|=1. Analytical

continuation of Eq(46) also yields this result.

creasing|y|, and it reduces asymptotically tB=2 (the For the antisymmetric case the relevant function to ana-

band-edge staleThe energy diagram in regions Il, Ill, and lyze is

V is shown in Fig. 6. In this case we have taker 3. The ol (o12)—1

energy diagram also shows three distinct regions having no Ga(o,m)=n(1—1)7(1+ 1) : (47)

state, two states, and four states. Two consecutive regions aj@e note that forr>0, ga(o,0)=0=g,(,1). Thefunction

separated by critical lines where one and three states exigl 5150 positive semidefinite fay in [0, 1]. Hence there will

respectively. We should note that the energy of one pair ofe 3 maximum 0B, With respect toy for 7 in [0, 1. It

states(one from the symmetric set and the other from theis obvious from the 'gtructure (o, 7) that there is only

antisymmetric sgtdecreases asymptotically ©=2 (band  5ne maximum. From these we conciude that there will be

edge statewith increasing|x|. The energy of other pair g regions, one having no SL state and the other containing

increases afy| increases. _ two SL states. Again the line separating these regions will
We now provide analytical support for our numerical re- contain only one SL state. To obtain the equation of this line,

sults. Since, here we are considering the das’=|11>, e maximizeg,(c, ) with respect toy. We thus obtain
from Eq. (34) we obtain|¢o|?>=(1— %?)/2. Then, from Eq.

(40), we obtain onp’+n—1=0, (48)
202 and the permissible solution of, 7,5 is
T = 7 (1F n) ML) (42
X _VAo+1-1
In Eq. (42) the upper case sign is for the symmetric set, while Mma= 20 ' (49

the lower case sign represents the antisymmetric set. We first ] o
consider the symmetric case. We denote the right-hand sid@0: the equation for thg, line is

of Eq. (42) by gs(a, 7) o(al2)

O )= (1 MR- @D (43) Xel = Goormmd

and 7 lies in [0, 1]. We further note that forr<<2, the  We again note that foor=2,7,,=1/2 which in turn yields
domain ofgy(a, %) is [0:]. So, by applying our analysis of ga(o,7am) = 1/4. Hence from Eq(47) we obtain|x.|=8.
one nonlinear impurity in a one-dimensional system, we ob-This is obtained from our numerical calculation. Fe+=0,
tain that, foro<2, the system will produce one and only one the maximum permissible value @,(0,7) is 1/2, which
SL state for|x./>0. In other words, in this limi{fy./=0. occurs atp=1. Consequently from Eq(50) we obtain
This is precisely seen in our numerical calculation. On thg x.|=2. This also agrees with the established result for
other hand, fore>2, g4(o,0)=0=g.(o,1). Furthermore, static dimer impuritie§® We further note that the analytical
g<(o,7) is positive semidefinite for in [0, 1]. This, in turn  continuation of Eq.(50) also produce this result. We now
implies that there will be a regime where no SL state will note the following.(1) If 0—%, Pms™~ Pma= 1/\Jo. This im-
exist. However, forly| exceeding some critical valyg., plies that two critical lines will approach each other @s
we shall obtain at least two SL states. It is quite transparenincreases(2) In contrast to the symmetric case, the antisym-
from the form ofgg(o, ) that the function has only one metric case will have nonzetg,,| for all o(>0) separating

(50
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the no-SL-state and two-SL-state regimé3). The value of 4A2

|xol for the antisymmetric case is greater than the corre- —=(1+ )’ [A?7*—(1-n)?]=G, (7). (55

sponding value in the symmetric casedifis finite. (4) For X

the antisymmetric case, there is no regime with one SL stat8ince the left-hand side of E@55) is always positive, we

except the critical line. This is again in contrast to the sym-need»=1/(1+A) but at the same time we neeg1. So

metric case, but quite similar to the Caley tree case. the condition ony is 1/(1+ A)< »<1. It is obvious that the
We now consider the possibility @by # ¢, in the region  constraint is met for A=0. On the other hand,

where Dy, D;>0. Since E>2, —x>0, we are taking Gj(1)=4A2 Since G, (#) is monotonically increasing

strictly x positive to avoid complication. From the starting function of 5 for # in [0, 1], 4A? is the maximum permis-

equation of¢,,, ne N, we obtain sible value of the function. So, for a SL state to appear we
need|x.|=1. Since there is only one intersection of a line

” ” o~ 2 y=4A%/x? = const with the curveG} (#) for 7 in [0, 1]
X bol "= 4|7 = d1do (52) and |x|>1, we shall always obtain one and only one SL

state from the symmetric case|j|=|x|=1.
and For the antisymmetric case from the appropriate version
1 1 of Egs.(40) and(34) we obtain

= = . (52 A2

X|<i>o|‘”rﬂ X|¢1|0+@ —=(1- I A%9*—(1+)?]=G,(n). (56)
b0 b1 X

Furthermore, we have E¢34). We emphasize that not only Sincegg(n) should be positive se'midefinite in the permis-
that ¢, and ¢, have the same sign, but that they are reaiSible interval of » not exceeding[0, 1], we need

quantities. Forr=2, after some algebra we find that 7min=1/(A—1), since forp=<1, we must haved=2. We
note now thatG, (1)=0=G, (7min). So, there must be at
3 1 least one maximum o6, (#) with respect toz. Imposing
7ot % =0 (53 the condition of maximality o1G , (#) with respect toy, we
obtain
and
A%+2
e ¢y 1% Vi-447 (54 Tmax=2(AZ= 1)’ (57
bo 27 ' It can be easily shown thaty,,=1. Furthermore

Since 8 should be real, we must have<1/2. Then, from  7max<7min- Then by setting7ma= 7mn="1/(A—1), we

Eq. (53), we find | x| =8/3 for this case. This is shown by 2gain find thatd,, = 2. We also note tha, () has only

the middle box along-= 2 line in Fig. 4. We emphasize that ©ne allowed maximum fow in [ 7m,,1]. Hence above this

to the best of our knowledge this result has not been obtaine@aximum we shall not obtain any SL state. On the other
before. So, along the'=2 line we have(i) |x|<1, no SL hand, for A2/ x? lying belqw this maximum, we s_hall obtain
state; (i) 1=<|y|=<8/3, one SL state(iii) 8/3<|x|<8, two WO SL states. The equation of the line separating these two
SL states;(iv) |x| = 8, a point of three SL states arfd)  '€9IONS IS

|x|>8, four SL states. Furthermore, where we have two or

more SL states, one of the states h#s# ¢,. This state Xl = 2A (59)
appears fofx|=8/3. The case of = 1, 3, and 4 have also Xer VG (Dmay)

been examined. No SL state fgip# ¢4 is found. It appears

thato=2 is a very special case. Further analysis for arbitrary/Ve further note that Eqe56) and (57) in the limit A—c

o will be presented elsewhere. Before concluding this secyield |xo|=8. This is expected. . .
tion we again point out that far=2 and|x|=8, of the four In Fig. 7 we shown graphically the existence or nonexist-

SL states, two states come from the antisymmetric set. ~ ence of SL states for the antisymmetric case, wita4, for
example. The plot ofG, (#) is shown as a dotted curve.

Along with that we have superimposed the lines
y=4A?/y? for three values of as shown in figure. The line
with | x|=11.313 touches the maximum point of the dotted
We now consider the case wheref,(|Cyl) curve, and represents one SL state. So any line with
=|Cm| ¥ (V1+ (x/A)?[C|*) for m = 0 and 1, and zero oth- |x|<11.313 will not touch the dotted curve, and hence there
erwise. In other words we have nonlinear dimer impuritiesare no SL states fdiy|<11.313( for example the upper line
made up of so-called rotational nonlinear impuriftéén this ~ is for |x|=9.65). On the other hand, the lines with
casedo=* ¢, also constitute a set of solutions. We focus|x|>11.313 will touch the line twice. Therefore there will
our attention on this set. A more general case will be conexist two SL states fofy|>11.313(for example, the third
sidered elsewhere. Here we have two cases, namely, thi@e with |x|=14.61). Therefore it is very transparent that
symmetric case, wheré,= ¢;, and the antisymmetric case for this case withA=4,|y.|=11.313.
otherwise. For the symmetric case from the appropriate ver- We next consider the full phase diagram obtained numeri-
sion of Eq.(40), along with Eq.(34) we obtain cally. This is shown in Fig. 8. Fdiy| <1 we have a no-state

V. ROTATIONAL NONLINEAR DIMER IMPURITY
IN A PERFECT CHAIN
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FIG. 7. The functiorG, () is plotted as a function of (dotted FIG. 9. The energy for SL states shown in Fig. 8 is plotted as a

curve). The solid lines correspond to tlye=4A%/x? for | x| = 9.65,  function of y for A=4.
11.313, and 14.61, respectively. Heke=4.

1—cog2yx)|?

4)/2

region for anyA. For |y|>1 andA<2, we have a region
where one SL state exissoming from symmetric sgtFor
|x|>1 andA>2, we have two regions separated by a criti-
cal line (shown by solid lingin the (y,A) plane. Above this
critical line we have three SL statésne from symmetric set Whend = 1, we obtain the potential for the nonlinear pen-
and other two from antisymmetric $dtut below this line we  dulum. We also know that such a system exhibits two types
have only one stat@&coming from the symmetric 9etOn the  of motion, namely, libration and rotation. Two regions are
critical line only two SL states exigbne from the symmetric separated by a critical line, called separaffiA similar situ-

set and the other one from the antisymmetrig.séhe en-  ation also occurs for generdl Whend= 3, the periodic part
ergy of SL states as a function af for A=4 is shown in  of the potential is of sawtooth type, with kinks smoothed out.

(59

V(X)= k{

Fig. 9. It shows the typical behavior. For d>>1, the periodic part is more like a repeated hard-
wall potential. These are shown in Fig. 10. We further note

VI. MODEL DERIVATION OF THE DNLSE that for y—0, V(x) ~(k/2%)|x|?9. Ford = 1, we obtain the

WITH GENERALIZED NONLINEARITIES usual Hook spring. On the other hand, for genetathe

spring deviates from the Hookian behavior.

To start with, we consider a model potentia(x) given We consider next a Hamiltoniar given by

by
20 . . . | . . . 10
I
: Three SL states o=03
\ e G=2.0
16 : 08
I
I
|
I
12 |
! -
| x
i One SL state ! OneSLstate s
8| |
I
I
I
4t |
I
|
I}
0 . . No SL state . ) .
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
A X

FIG. 8. The phase diagram for the perfect chain with a rotational FIG. 10. The potentiaVl/(x) = k([ 1— cos(2yx)]/4y?)’ is plotted
nonlinear dimer impurity showing the number of SL states as aas a function ofx. The solid curve is fok=1,y=1, ando=0.5,
function of y andA. and the dotted one is fde=1,y=1, ando=2.
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1 N literature*~*34>We consider a situation, where fore N,
H=5 > [@n(X)|Cnl?+(ChChi1+CiChia)] Vi(X,) is given by Eq.(59), and forw(x) we assume
n=1
E 1—cos{2yx))d‘1
N 2 0 .
X)=—\|——F—>— sSin(2yx). 66
+ 3| o Valte) | =Ha H,. (60 o= e (09
= n

Then from Eq.(65) we obtain
By defining positions Q,) and momenta R,) by

=(C,+Cn/2 and P,=i(C;—C,)/2 respectively, we d—1)2

]f?r;‘d t(haft‘ n) n=1(Ch=Cn) pectively 1—52(7) C|*|tarf(2yx) — 25|C|2tan 2 yx)
1 2, A2 o(2d—1 4
Hi=5 2 @n(n) (PR QD)+ 2 (PoPnyat QnQnsa)- + 8% —gz—|Icl*=0, (67)
(61) where

SoH; can be said to define the dynamics of a superoscillator )
with 2N degrees of freedom. Furthermore, the frequency of _ 4507:4Eo/k _X 68)
the oscillator in a given direction is coupled to the motion of k Eo/y A

another oscillator defined by,.” On the other hand, we can

replaceC,(C;) in H; by the annihilationcreation operator Equation(67) then yields

Cn(Ch), such that[C!,C,]=i%. C,(C!) then defines the 5|2 (2d-1)
annihilation (creation operator of a particle. Under this tan(2yx) = 1+ (1_y 5 )1/2} (69)
transformation it transforms to the usual tight-binding d

Hamiltonian of a particle moving on a ring & sites. Pa-  \yhere

rametersx, then define the displacement of lattice points

from their respective equilibrium positions. Although here X2 [d—1\2 4
we consider the local displacement of atorsptical y=1—p(T) IC|*.
phonong, the collective motion of atoms in the lattice

(acoustic phononcan be incorporated in this formalism by Then ford = 1 we havey = 1. This in turn yields

(70

making appropriate modifications f.*® Now from Hamil-  tan(2yx) = 8|C|%. Then, after some simple algebra, we ob-
ton’s principle we find that tain
y gH xICI?
|Cm:2ﬁ:wm(xm)+cm+l+cmfl (62) w(X)=— Y (71
\ 1+ % |C|*
e T m (63 we consider next the other limit whege—0. Then from Eq.

(69) we obtain
and

2E,
L y X~ - (2d=1)[C[%. (72
_p':a_x,:w' XD[CI*+ V] (x)). (64)
This in turn yieldsw(x)=—x,|C|?, where c=2(2d—1)
We now assume that the dynamical evolutiorxpbccurs on  and
a much longer time scale compared to the time scale of
C,. So the dynamics of the other system is determined pri-
marily by the adiabatic variation of,.” In the electron lat- Xo
tice interaction language, the dynamics of the lattice is as-
sumed to be far slower compared to the dynamics of thdhen ford = 1, we obtainw(x)=x|C|?. Introducing this
electron. Since the adiabatic approximation fgrimplies int(\)NEQ-(62);dW9 Obtgin the gefifehd DNLSE&k@() -
o : P e consider another model where we =2EpX,
p,=0 for | e N, the equation for determining is then andV(x) is given in Eq.(59). Then again from Eq(65) we

of (x)|C/[2==V/(x)). (65  obtain

2d+2

(73

_1y\2d-1
EO‘(|Eo|(2kd 1)) .

Consider, for exampley,(x,)=1/2x? and (X)) =Ex; . EolC|?=—kd|x|*¢"Vx. (74)
Then from Eq{(65) we obtainx,= (E, /k;)|Cy|2. Introduction
of this into Eq. (62 yields the DNLSE’s wheref,(|C)|)
:|C||2 andX|:E|2/k| .

In principle w,(X,) can be a nonlinear function of,,. X[ = kd
Furthermore, the overall dynamics ®f can be quite com-
plicated, and yet can be physically realistic. A few exampleConsequently we have w(x)=—x(¢')|C|?, where
in this regard have already been considered in ther’'=2/(2d—1) and

This in turn yields

1(2d—1)
|C|2/(2d_1>. (75)
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1(2d—1) estic of the extra state that appears fgf=3.6. We also
have a|y.| at 8 separating two-SL-state and four-SL-state
regions, with three SL states at that point.

For the monomer problery,| = 8 does not exist. How-
ever, one obtain$y.|=2 which separates the no-SL-state
and two-SL-state regions. The analytical reason behind this

is discussed here. Furthermore, the equation for the critical

The formation of stationary states due to a single nonlin/iN€ séparating these regimes is analytically derived. In fact,
ear impurity in a Caley tree and a dimeric nonlinear impurityequat'O”S despnbmg various critical Ime_s are derived from a
in a perfect one-dimensionélD) linear system are studied general analytical approach. Our numerical results also agree
here using the DNLSE. Two types of nonlinear impurities— Very well with our analytical results. We further note that for
namely, f(|C|)=|C|, where o is arbitrary, and the rota- the dimer problem thigx.| is 1. So it appears that for a
tional impurity are considered. Altogether four cases aretluster ofN sites, this| x| will go as 1IN. This assertion,
studied. Important features of these problems are thoroughlpowever, needs a thorough investigation.
discussed in the text. Whenever necessary, analytical argu- Another interesting feature of this problem is the possibil-
ments in support of numerical results are provided. Somdty of more localized states than the number of impurities in
important aspects of this paper are elucidated further belowcertain situations. This happens due to multiple permissible

In this paper a very useful synthesis of the usual Green'salues of the amplitude at the impurity sites. Furthermore,
function approach and the ansatz approach is made, to gaintge localization length of one set of states increases, while
better understanding of the problems. Because of synthesiiis length in the other set of states decreases as the strength
we are able to derive many important results. For examplepf the nonlinearity parameteryj increases. Hence, in con-
in the case of a nonlinear dimer with(|C|[)=|C|’, at trast to the static impurity case, the system here can assume
o=2 and |x|>8/3 a stationary localized state in which more than one configuration.
| ol #| 1| is obtained. However, for=1,3, and 4, no such  Physically, the effect of localized states is manifested in
Xor is found. So, it appears that, for this nonlinear dimer,transport properties of the material. However, a system con-
o=2 is a very special case. Of course, further analysis igaining a finite number of impurities can only produce a fi-
required, and this will be presented elsewhere. nite number of such states. So the probability that these

For the nonlinear dimer probleny.| ~2 and 3.6 have states will exert their influence on transport properties of the
been reported in the literature. These valuekygf separate  system is very small, if not unlikely. On the other hand, for a
the whole of theo=2 line into three regions, having no SL thorough understanding of properties of a disordered system
state, one SL state, and two SL states, respectively. On treomprising nonlinear impurities and perfect sites, a critical
other hand our analysis gives three valuef@f|, namely, 1, understanding of these problems is essential. So the impor-
8/3, and 8. Furthermore, from our analysis we do not findtance of the problems presented here should be understood in
| xol ~3.6. It is not clear from Ref. 40 what is the character-this context.

X(0")=2|Ey| (76)

—0
kd
Then insertingw(x) into Eq.(62), we obtain the desired set
of equations.
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