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Formation of stationary localized states due to nonlinear impurities
using the discrete nonlinear Schro¨dinger equation

B. C. Gupta and K. Kundu
Institute of Physics, Bhubaneswar, 751 005, India

~Received 18 June 1996!

The discrete nonlinear Schro¨dinger equation is used to study the formation of stationary localized states due
to a single nonlinear impurity in a Caley tree and a dimeric nonlinear impurity in the one-dimensional system.
The rotational nonlinear impurity and the impurity of the form2xuCus wheres is arbitrary, andx is the
nonlinearity parameter are considered. Furthermore,uCu represents the absolute value of the amplitude. Alto-
gether four cases are studied. The usual Green’s-function approach and the ansatz approach are coherently
blended to obtain phase diagrams showing regions of different number of states in the parameter space.
Equations of critical lines separating various regions in phase diagrams are derived analytically. For the
dimeric problem with the impurity2xuCus, three values ofuxcru, namely,uxcru52, ats50 anduxcru51 and
8/3 for s52 are obtained. The last two values are lower than the existing values. The energy of the states as
a function of parameters is also obtained. A model derivation of the impurities is presented. The implication of
our results in relation to disordered systems comprising nonlinear impurities and perfect sites is discussed.
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I. INTRODUCTION

The discrete nonlinear Schro¨dinger equation~DNLSE! is
a set ofN coupled differential equations,

i
dCm

dt
52xmfm~ uCmu!Cm1Vm,m11Cm111Vm,m21Cm21 ,

where

Vm,m115Vm11,m
! , and m51,2,3,. . . ,N. ~1!

In Eq. ~1! the nonlinearity appears through functio
f m(uCmu), and xm is the nonlinearity parameter associat
with themth grid point. Since,(muCmu2 is brought to unity
by choosing appropriate initial conditions,uCmu2 can be in-
terpreted as the probability of finding a particle at themth
grid point. One way to derive this set of equations is
couple in the adiabatic approximation the vibration
masses at the lattice points of a lattice ofN sites to the
motion of a quasiparticle in the same lattice. The motion
the quasiparticle is described, however, in the framework
a tight binding Hamiltonian. The same type of equation c
also be obtained by nonlinear coupling of anharmonic os
lators through both positions and momenta of t
oscillators.1–13 The set of equations, thus derived, are cal
discrete self–trapping equation~DST’s!. These equations
also possess a constant of motion analogous to(muCmu2 in
the DNLSE. In fact, both the DST and the DNLSE conta
the same number of constants of motion.

An analytical solution of Eq.~1! in general is not known.
However, nonlinear quantum dimers, which are two-site s
tems with the nonlinearity either in both the site energies
in one of them, can be solved analytically for any arbitra
initial condition. From analytical solutions a self-trappin
transition is found in this model. The trapping of hydrog
ions around oxygen atoms in metal hydrides and the ene
550163-1829/97/55~2!/894~12!/$10.00
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transport from the absorption center to the reaction cente
a photosynthetic unit have been modeled by an effec
quantum nonlinear dimer.14–26 A nonlinear dimer analysis
has also been applied to several experimental situations,
neutron scattering of hydrogen atoms trapped at impu
sites.27,28

The self-trapping of a quasiparticle at a nonlinear site i
perfect lattice containing a single nonlinear impurity h
been studied. In the analysis,f (uCmu) was taken to be
uCmu2. The critical value of the nonlinear parameterx for the
self-trapping is found to increase with increasin
dimension.29 It has also been shown that near the se
trapping transition the dynamics of the quasiparticle
mostly confined to the few near neighbors.30 An interesting
experimental example in this context is the observation t
trapped hydrogen atoms in metals like Nb move among s
in the neighborhood of impurity atoms such as oxygen.15,27,28

A self-trapping transition has also been obtained in syste
where a nonlinear cluster is embedded in a perfect lattice
fact, two types of transitions are obtained, with the clust
trapping transition preceding the self-trapping transition.31

Another important feature of this type of nonlinear equ
tion is that they can yield stationary localized~SL! states and
solitonlike solutions. However, the presence of disorder
aperiodicity either in site energies or in nonlinearity para
eters is needed for this purpose. For example, the Ablow
Ladik-like equation32–38can yield both localized and soliton
like solutions in the presence of disorder in static s
energies. Similarly, the DNLSE can produce a solitonli
solution if any aperiodicity is present in the static s
energies.39 The effect of disorder in the static site energies,
the nonlinear parameters, and in both of these on the solu
of the DNLSE has also been studied by numerical integ
tions. One also finds solitonlike solutions in this case. It h
also been shown that the presence of nonlinear impuritie
the absence of any disorder in the static site energies
894 © 1997 The American Physical Society
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55 895FORMATION OF STATIONARY LOCALIZED STATES . . .
produce SL states in one dimension. The first study w
made using the Green’s-function approach, and the aut
consideredf (uCmu) 5 uCmu2.40 Furthermore, some cursor
discussion on the two and more nonlinear impurities
been presented. Later, the one-nonlinear-impurity case
been generalized by takingf (uCmu)5uCmus, and the forma-
tion of SL states is studied in one, two, and thr
dimensions.41–43

It is obvious from the above discussion that for a co
plete understanding of the single-nonlinear-impurity probl
the effect of increasing of connections on the formation
SL states in the DNLSE needs further consideration. Th
we plan to study the formation of SL states in the Caley t
in the presence of a single nonlinear impurity. Along w
f (uCmu) 5 uCmus, the effect of a more generalized nonlin
earity impurity ~like the rotational nonlinear impurity! also
needs consideration. Furthermore, a thorough understan
of the nonlinear dimer problem in relation to SL states
required. This is a partial requirement to understand the
fect of disorder in nonlinearity parameters in solutions of
DNLSE. Thus here we study in substantial detail the ph
diagram of SL states due to the presence of a nonlinear d
in the perfect one-dimensional chain. In this connection
also synthesize the original Green’s-function approach
the ansatz approach.40,41Finally, we present a logical deriva
tion of the DNLSE with f (uCmu) 5 uCmus, by generalizing
the potential of the nonlinear pendulum. To the best of
knowledge no such attempt has been made in this direc

The organization of the paper is as follows. In Sec. II
consider a nonlinear impurity of the form2xuCus embedded
in a Caley tree. We next consider in Sec. III a rotation
nonlinear impurity in the Caley tree. In Sec. IV we deal w
a dimeric nonlinear impurity in a one-dimensional syste
The impurity is, of course, of the form2xuCus. A similar
problem with the rotational nonlinear impurity is consider
in Sec. V. Section VI deals with a model derivation of t
DNLSE considered here. Finally we conclude our paper
highlighting the major features and the importance of o
results in understanding the behavior of disordered syst
made up of nonlinear impurities and perfect sites.

II. SINGLE NONLINEAR IMPURITY OF THE FORM
2xz C zs IN A CALEY TREE

We consider a Caley tree with the coordination numb
Z. Its connectivity is, thereforeK5Z21. We set a nonlinea
impurity at a site and call it the zeroth site. Furthermore, h
we considerf 0(uC0u) 5 uC0us wheres>0. Now, from this
site, Z branches will emerge. Again, from each of the
branchesK branches will emerge. So the number of points
thenth generation~or nth shell! is ZK(n21). From any point
in thenth shell a quasiparticle can move either toK points in
the (n11)th shell or to a point in the (n21)-th shell if
n>1. Of course, we are considering only nearest-neigh
hopping with a real hopping element. So, if the neare
neighbor hopping element is the same for all sites, ev
point in a given shell will show an identical time evolution
the probability amplitude of the quasi-particle. Thus the
of equations that describes the time evolution of the pr
ability amplitude in the present model is44
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i
dCn

dt
5KCn111Cn21 , n>1 ~2!

i
dC0

dt
52x̃uC0usC01ZC1 , n50. ~3!

Furthermore, we have

uC0~ t !u21
Z

K(
n51

`

KnuCn~ t !u251. ~4!

Since we are interested here in SL states, we writeCn(t)
5exp(2iẼt)an . After introducing this form ofCn(t) in Eqs.
~2! and ~3!, we make the following transformations:~i!
an5K2n/2fn , ~ii ! E 5 Ẽ/AK, and ~iii ! x5x̃/AK. With
these transformations, we finally obtain

Efn5fn111fn21 , n>1, ~5!

Ef052xuf0usf01
Z

K
f1 , n50, ~6!

and

uf0u21
Z

K(
n51

`

ufnu251. ~7!

After some standard algebra foruEu.2,32 from Eqs.~5! and
~6! we obtain

fn

f0
5
E2xKuf0us

Z
Gn,0
0 ~E!2Gn11,0

0 ~E!, ~8!

whereGn,0(E)5@sgn(E)#n11 G0,0
0 (uEu) hn, and sgn(E) de-

notes the signature ofE. We also haveh5(uEu2AE224)/
2. So 0<h<1. ForG0,0

0 (uEu), we have

G0,0~ uEu!5
1

AE224
5

h

12h2 . ~9!

Eq. ~8! for n 5 0 yields

12
EG0,0

0 ~E!

Z
1G1,0

0 ~E!52
xK

Z
uf0usG0,0

0 ~E!. ~10!

So the energy of SL states is obtained from solution of E
~10!. We further note that the left-hand side of Eq.~10! is
independent of the sign ofE. On the other hand, to keep th
sign unchanged on the right-hand side of Eq.~10!, a simul-
taneous change of the signs ofE andx is required. Equation
~10!, when written in terms ofh, assumes the form

K

h
2h52xKuf0ussgn~E!. ~11!

Similarly, Eq. ~8!, after some simple algebra, yields, fo
n>1,

fn5f0h
n. ~12!

Now introducing Eq.~12! into Eq. ~7!, we obtain
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896 55B. C. GUPTA AND K. KUNDU
h25
K~12uf0u2!
K1uf0u2

. ~13!

Using Eq.~13!, we eliminateh from Eq. ~11!, to obtain the
equation foruf0u. This in turn yields

4

x̃2
5uf0u2s

~K11!22„~K21!12uf0u2…2

~K2112uf0u2!2
. ~14!

For K 5 1, Eq. ~14! then gives

4

x2 5uf0u2~s22!~12uf0u4!, ~15!

and this equation has already been obtained.41We again note
that uf0u2<1. The energy (E) of SL states is

E52sgn~x!S h1
1

h D
52sgn~x!

„2K2~K21!uf0u2…2

AKA~K11!22„~K21!1uf0u2…2
. ~16!

Equation~16! can be derived using Eqs.~13! and ~14!. We
note that, fors 5 0, Eq. ~16! in conjunction with Eq.~14!
yields

E52sgn~x!F2
uxu~K21!

2
1
K11

2AK
Ax2K14G . ~17!

Equation ~17! yields the correct result for a single linea
impurity in a one-dimensional perfect system. We also
from Eq. ~16! that, for K51, E52sgn(x)ux̃uuf0us22.
Then, fors52, uEu5ux̃u. Inasmuch as the minimum abso
lute value of the energy of a SL state is 21, the critical value
of uxu, i.e., ux̃cru52. Above this value ofux̃u, two SL states
are obtained.41

We numerically solve Eq.~14! for uf0u as a function of
x ands. If uf0u<1, we obtain an admissible solution. Num
ber of such solutions are the number of SL states in
system. We then calculate the energy of the SL states u
Eq. ~16!. The phase diagram for SL states and energies
these states as a function ofx ands are shown in Figs. 1 and
2 for K51, 2, 3, and 10 respectively. We note that f
s50 we have the standard Anderson localization proble
To obtain a localized eigenstate in a Caley tree of connec
ity K, the conditionux̃cru>(K21)/AK has to be satisfied
This can be obtained from Eq.~14! by settinguf0u250, and
also from Eq.~17! by settinguEu52. This is also obtained in
our numerical analysis, as shown in Fig. 1. ForK 5 1, there
are three regimes. Whens<2, there is always one SL stat
for uxu.0. Fors>2, there is a critical value ofx (uxcru) for
eachs ~represented by a solid curve!, below which no SL
state appears, but above it two SL states ensue. On the
hand, forK.1, we find that for any value ofs.0, there is
a uxcru below which no SL state appears, contrary to t
K51 case. But foruxu.uxcru, we obtain two SL states. S
there is a critical line~dashed line forK 5 2, dotted line for
K 5 3, dot-dashed line forK 5 10 in Fig. 1.! in the (x,
s) plane which separates the no-SL state region and
region containing two SL states. If one approaches the c
e

e
ng
of

.
v-

her

e

e
i-

cal line from above for anys, two distinct SL states merge
on the critical line, and below that line they disappear. As
increaseK, the separation between critical lines for anys
decreases, as shown in Fig. 1. So,uxcru becomes virtually
independent of the connectivity for very largeK. For the
energy diagram~see Fig. 2! we have takens51. We see that
for K51 the energy of the SL state increases withx. This
implies that localization becomes stronger for largeruxu. On
the other hand forK52, 3, and 10 i.e., forK.1, one of the
two SL states increases withuxu. This corresponds to stron
localization for largeuxu. The energy of the other SL stat
goes toward the appropriate band-edge energy. This co
sponds to weak localization for largeuxu.

We now present analytical results in favor of our nume
cal results. The relevant equation for this purpose is Eq.~14!.

FIG. 1. Critical value of nonlinearity (xcr) separating the no-SL-
state region from the two-SL-state region is plotted as a function
s for Caley trees havingK51 ~solid line!, K52, ~dashed line!,
K53 ~dotted line!, andK510 ~dot-dashed line!. There is one non-
linear impurity in the Caley tree of the form2xuCus.

FIG. 2. The energy of SL states shown in Fig. 1 fors51 is
plotted as a function of the nonlinearity parameter (x) for the Caley
tree. The solid curve is forK 5 1, the dotted curve is forK 5 2, the
dashed curve is forK 5 3, and the dot-dashed curve is forK 5 10.
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55 897FORMATION OF STATIONARY LOCALIZED STATES . . .
We denote the right-hand-side expression of Eq.~14! by
gK,s(A), where A5uf0u2. We note that for s.0,
gK,s(0)505gK,s(1). We also havegK,s(A)>0 for A in
@0,1#. So there must be a maximum of this function wi
respect toA for A in @0,1#. For s50, this maximum occurs
at A 5 0. If the value of the left-hand side of Eq.~14! lies
above the maximum, no SL states will be obtained. Ho
ever, for (4/ux̃u2) lying below the maximum, we shall obtai
at least two SL states. Our numerical result suggests
gK,s(A) has one maximum forA in @0,1#. So, by imposing
the maximality condition ongK,s(A) with respect toA, i.e.,
by setting]gK,s(A)/]A50, we obtain

2sA313s~K21!A21@~K11!21~K224K11!s#A

2sK~K21!50 . ~18!

Note that fors50, A 5 0. Furthermore, forK 5 1, we
obtain A5A(s22)/s. For K.1 ands.0, Eq. ~18! has
only one real root RR given by

RR5
~12K !

2
1
32/3~s22!~K11!2131/3D2

6AsD
~19!

where

D5@9As~K11!2~K21!1A3~K11!2D0#
1/3 ~20!

and

D05A~K11!2~22s!3127s~K21!2. ~21!

We emphasize that for all value ofs.0 andK.1, the RR
is real and lies between 0 and 1. So the equation for
critical line in the (x,s) plane separating the no-state and t
two-state regions is

uxcru5
2

AKAgK,s~RR!
. ~22!

We now analyze the case ofK 5 1 along the same line. Th
relevant equation is Eq.~15!, in which the right-hand side
will be denoted bygs(A). Inasmuch as 0<A<1 the domain
of gs(A) is @0,̀ # if s,2. So, fors,2, the line y5 const
5 (4/x2) always intersects the curvegs(A) at a single point.
This will happen even ifuxu is infinitesimally small. So for
s,2 we shall always obtain one and only one SL state
uxu.0. Precisely this is obtained in Ref. 41.
s.2, gs(0)505gs(1). Furthermore,gs(A) is positive
semidefinite forA in @0, 1#. So there must be at least on
maximum forA in @0, 1#. We also note that fors52, the
maximum ofgs(A) occurs atA 5 0. Therefore, forK 5 1
and s50, applying the same analysis we obtainuxcru52,
below which there is no SL state and above which there
one SL state. Furthermore, it can be shown from Eq.~15! by
maximizinggs(A) that uxcru separating the no-state and tw
state regions fors.2 is

uxcru5
A2ss/4

~s22!~s22!/4 . ~23!

This expression foruxcru has been mentioned41 without any
derivation.
-

at

e

if

is

III. SINGLE-ROTATIONAL-NONLINEAR
IMPURITY IN A CALEY TREE

Here we consider the case wheref (uC0u)
5uC0u/(A11(x/D)2uC0u2). The origin of this particular
form of nonlinearity was discussed in Ref. 45. For this ca
from the appropriate version of Eq.~10!, for uf0u25A we
obtain

A41~K21!A31PA21Q50, ~24!

where

P5

42x2SK22SK21

D D 2D
x2S 4D2 1K D ~25!

and

Q5~K21!2Y Fx2S 4D2 1K D G . ~26!

ForK51, that is for a one-dimensional system, we find, fro
Eq. ~24!,

A5
Ax224

Ax21D2 UDx U. ~27!

So if uxu.2, one and only one SL state will be obtaine
Furthermore, the energy (E) of this SL state is

E56uxuS 41D2

x21D2D 1/2. ~28!

However,K.1, the analytical calculation of the energy o
the SL state is quite prohibitory. So we examine the case
K52. Our results are shown in Fig. 3. We again find tw
regions. In the lower region we find no SL state. On the ot
hand, in the upper region there are two SL states. The

FIG. 3. The phase diagram for the Caley tree with a sin
rotational nonlinear impurity showing the number of SL states a
function of nonlinearity parameter (x) and the parameterD. In this
case the connectivity of the Caley tree,K 5 2.
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898 55B. C. GUPTA AND K. KUNDU
separating these regions contains one SL state. We find
for uDu→0 , uxcru→`. This should be expected. Anothe
interesting feature is thatuxcru reduces with increasinguDu.
For small value ofuDu, the fall in uxcru is quite sharp with
increasinguDu.

IV. NONLINEAR DIMER IMPURITY
IN A ONE-DIMENSIONAL PERFECT CHAIN:

IMPURITY OF 2xz C zs TYPE

Two consecutive sites occupied by nonlinear impurit
are labeled as zeroth and first sites, respectively. Here
consider,x0f 0(uC0)u)5xuC0us andx1f (uC1u)5xuC1us. All
other xm are set to zero. AllVn,n11 in Eq. ~1! are set to
unity. Since we are looking for SL states, we s
Cn(t)5fnexp(2 iEt) in the appropriate version of Eq.~1!.
From the set of equations thus obtained we solve forfn by
the standard procedure.32 Consequently, we obtain

fn5Gn,0
0 ~E!e0f01Gn,1

0 ~E!e1f1 . ~29!

In Eq. ~29!, for the purpose of generality, we defin
e052xuf0us and e152xuf1us. Furthermore, forn 5 0
andn 5 1, Eq. ~29! yields

f05G0,0
0 ~E!e0f01G0,1

0 ~E!e1f1 ~30!

and

f15G1,0
0 ~E!e0f01G1,1

0 ~E!e1f1 . ~31!

We note thatGn,m
0 (uEu) has been defined by Eq.~9!. After

some simple algebra it can be shown with the help of E
~30! and ~31! that

fn5„sgn~E!h…n21f1 , n.1, ~32!

f2unu5„sgn~E!h…unuf0 , unu.0, ~33!

where 0<h<1 as was defined in Sec. II. We further no
that the form offn given by Eqs.~32! and ~33! is indepen-
dent of the form of e0 and e1. Since we must have
(2`

` ufnu251, using Eqs.~32! and ~33! we find that

uf0u21uf1u2512h2. ~34!

When e0 and e1 are linear impurities, from Eqs.~30! and
~31! we obtain

E65
e0e1~e01e1!6u22e0e1uA~e02e1!

214

2~e0e121!
, ~35!

whereE6 denotes the energy of the SL state. We note t
for e05e1.2, two SL states appear above the band. T
situation reverses for e05e1,22. Furthermore, for
e05e1→0, we obtainE6562. In other words, we obtain
one of the band-edge states. These are consistent with e
lished results,46 but the exact form of the solution is no
presented there. In the present model we havee05e152x
for s50. On the other hand, sinceuf0u,uf1u,1, for a finite
x, if s→`, we obtaine05e1→0. General solutions of the
nonlinear dimer impurity problem are expected to sh
these asymptotic behaviors. It should be noted in this con
that for a single nonlinear impurity this continuity has be
rigorously established.41
at,
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We now consider the case of our nonlinear dimer. W
have three equations, namely,~30!, and~31!, and~34!. So, if
f0 andf1 are fully complex quantities, for the problem t
be well posed, we must havef15f0

!. Otherwise, the prob-
lem is well posed. From Eqs.~30! and ~31!, we obtain

Ys125U 1

11X U, ~36!

where

Y5U f1

f0
U ~37!

and

X5
xG0,0

0 ~E!uf0us~Ys21!

11xG0,0
0 ~E!uf0us

. ~38!

It is to be noted that, foruf0u5uf1u, Eq. ~36! becomes an
identity. Consider now the case wherexG0,0

0 (E).0. This
limit can be obtained either by~i! x.0, E.2 or by ~ii !
x,0, E,22. It is easy to see that ifYÞ1, Eq.~36! is not
satisfied. So the solution in this limit isuf0u5uf1u. Since
these quantities can be taken as real, we havef056f1.
However, it can be trivially shown either from Eqs.~30! or
~31! that no SL states will be obtained in this case. Consi
next the other limit wherexG0,0

0 (E),0. To achieve this
limit we need either~i! x,0, E.2 or ~ii ! x.0, E,22.
Now it can be easily shown that if bothD051
2uxG0,0

0 (E)uuf0us,0 andD1512uxG0,0
0 (E)uuf1us,0, the

solution of Eq.~36! is, againuf0u5uf1u. Note further that if
Y.1 is a solution of Eq.~36!, Y,1 should also be a solu
tion of Eq. ~36! @see, for example, Eq.~35!#. So, any con-
straint onD0 will imply a similar constraint onD1, and vice
versa. On the other hand, we may haveuf0uÞuf1u if
D0.0, and, consequently, alsoD1.0. We again consider
Eq. ~30!, which for xG0,0

0 (E),0 is

12uxG0,0
0 ~E!uuf0us5uxG0,0

0 ~E!uuf1ush sgn~E!S f1

f0
D . ~39!

We can also consider the equation forf1 @Eq. ~31!#. Both
equations will yield the same conclusion. It is easy to s
that forE.2, Eq. ~39! tells that (f1 /f0) must be positive.
On the other hand, forE,22, (f1 /f0) should be negative
This result, coupled with the formula forfn @Eqs. ~32! and
~33!#, suggests that SL states forD0.0 either have no node
for E.2, or haveN ~the number of sites in the lattice! nodes
for E,22. We further note that band-edge states in
perfect system have these characteristics. In the case o
linear eigenvalue problem, we know that there will be on
one SL state in this limit. This SL state will evolve from on
of the band-edge states. Since here all we are dealing w
nonlinear eigenvalue problem, it is in principle possible
have multiple permissible values off0 and f1. In other
words, we may obtain a set of states. We shall refer to thi
a symmetric set. But all these SL states will contain the sa
number of nodes. Of course, a subset of these states
havef05f1, and one state in this subset will survive fo
s50.
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55 899FORMATION OF STATIONARY LOCALIZED STATES . . .
In the linear dimer impurity problem we also obtain a
other SL state. This state has either a node (E.2) through
the dimer, or the node through the dimer disappe
(E,22). We should have the same situation with the no
linear dimer, but instead of having one such state we m
have a set of states, again with the same number of no
Since in the second set we must havef1 /f0
52sgn(E)u(f1 /f0)u, for this set to appear we nee
D0 ,D1,0. This, in turn implies that the second set of sta
should always haveuf0u5uf1u. Thus, states wheref05f1
in the first set together with states coming from this antisy
metric set, will constitute a major part of the phase diagr
for SL states. This phase diagram will be discussed here.
also analyze iff0Þf1 is at all possible in the first set of S
states.

For uf0u5uf1u from either Eq.~30! or ~31!, for uEu.2,
we obtain

h65
1

uxuuf0us61
. ~40!

For positive sign we needf1 /f052sgn(x)5sgn(E), while
for the other signf1 /f05sgn(x)52sgn(E). Furthermore,
the equation for determininguf0u can be obtained from Eqs
~34! and ~40!. The required equation foruf0u is

~122uf0u2!~xuf0us61!251, ~41!

and the energy of the SL state (E) is E5sgn(E)@h
1(1/h)], 0<h<1.

The phase diagram is obtained by analytical as well
numerical calculations~see Fig. 4!. We first describe our
numerical findings. Note that fors50, we have one state fo
uxu,2 and then foruxu.2 second state appears. This agre
with established results.46 On the other hand, we find that fo
0<s<2 we find a regime~I! with one SL state~coming
only from symmetric set!. For all values ofs in this range
there is auxcru which increases with increasings, shown the
in figure by the dotted line. Two SL states exist along t
line. Note further that one of these states comes from
antisymmetric set. Above this line we then have a regi
~IV ! where three SL states are obtained~one from the sym-
metric set and other two from the antisymmetric set!.

We now consider the case wheres.2. We have a region
~II ! where no SL state exists. Note that a similar situation
also obtained for one nonlinear impurity case.41 This region
is bounded by a critical line along which one SL state ex
~shown by the solid line in Fig. 4!. This state comes from th
symmetric set. Above this critical line we have a region~III !
of two SL states. Furthermore, we never obtain more t
two states from the symmetric set. This region of two sta
continues until we reach the critical line~shown by the dot-
ted line in the Fig. 4! due to the antisymmetric set. Alon
this line we always have three SL states, and above this
we have a region~V! of four SL states. We also mention th
s52 is the special line. Along this line all transitions tak
place. For example,uxcru at s52, below which no SL state
is obtained, is 1~ this is shown by the lower box along th
s52 line in the figure!. The previously reported value o
this uxcru is 2, and this value is obtained from an approxima
calculation.40 Another uxcru is found to be exactly 8, which
comes from the antisymmetric set~this is shown by the up-
rs
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per box along thes52 line in the figure!. We also empha-
size that thes52 line is a line of continuity. The energy o
states as a functionx in regions I and IV of Fig. 4 is shown
in Fig. 5. We have takens51 for example to analyze this
In region I the energy of the state always increases w
increasinguxu. In region IV, the energy of one of the tw
states belonging to the antisymmetric set decreases with

FIG. 4. The phase diagram for a perfect chain with a nonlin
dimer made up of impurities of the form -xuCus. The figure shows
regions containing different number of SL states in the (x,s) plane.
There are one SL state in region I, no SL state in region II, two
states in region III, three SL states in region IV and four SL sta
in region V. The soliduxcru curve arises from the symmetric set an
the dotted curve arises from the antisymmetric set. Ats 5 2 three
values ofuxcru exist. These points are shown by boxes. The up
box along thes52 line corresponds toxcr58, which comes from
antisymmetric set~i.e., f052f1). The lower box corresponds to
xcr51, which comes from symmetric set~i.e., f05f1). But the
middle box corresponds toxcr5

8
3, and this appears for the cas

when uf0uÞuf1u.

FIG. 5. The energy diagram of SL states as a function ofx at
s 5 1, which corresponds to the regions I and IV of Fig. 4. T
solid curve is due to the symmetric set, and the dotted curve is
to the antisymmetric set.
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900 55B. C. GUPTA AND K. KUNDU
creasing uxu, and it reduces asymptotically toE52 ~the
band-edge state!. The energy diagram in regions II, III, an
V is shown in Fig. 6. In this case we have takens53. The
energy diagram also shows three distinct regions having
state, two states, and four states. Two consecutive region
separated by critical lines where one and three states e
respectively. We should note that the energy of one pai
states~one from the symmetric set and the other from t
antisymmetric set! decreases asymptotically toE52 ~band
edge state! with increasinguxu. The energy of other pai
increases asuxu increases.

We now provide analytical support for our numerical r
sults. Since, here we are considering the caseuf0u25uf1u2,
from Eq. ~34! we obtainuf0u25(12h2)/2. Then, from Eq.
~40!, we obtain

2s/2

uxu
5h6~17h6!21~12h6

2 !s/2. ~42!

In Eq. ~42! the upper case sign is for the symmetric set, wh
the lower case sign represents the antisymmetric set. We
consider the symmetric case. We denote the right-hand
of Eq. ~42! by gs(s,h)

gs~s,h!5h~11h!~s/2!~12h!~s/2!21, ~43!

and h lies in @0, 1#. We further note that fors,2, the
domain ofgs(s,h) is @0,̀ #. So, by applying our analysis o
one nonlinear impurity in a one-dimensional system, we
tain that, fors,2, the system will produce one and only on
SL state foruxcru.0. In other words, in this limituxcru50.
This is precisely seen in our numerical calculation. On
other hand, fors.2, gs(s,0)505gs(s,1). Furthermore,
gs(s,h) is positive semidefinite forh in @0, 1#. This, in turn
implies that there will be a regime where no SL state w
exist. However, foruxu exceeding some critical valueuxcru,
we shall obtain at least two SL states. It is quite transpa
from the form of gs(s,h) that the function has only on

FIG. 6. The energy diagram for SL states as a function ofx at
s 5 3, which corresponds to the regions II, III, and V in Fig. 4. T
solid curve is due to the symmetric set and the dotted curve is
to the antisymmetric set. The dashed vertical lines touch the s
and dotted curves at the critical values ofuxu.
o
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maximum with respect toh in @0, 1#. Our numerical calcu-
lations also suggest that this is so. Therefore, there will b
no-SL-state region and a two-localized-state region separ
by a line in the (x,s) plane. Furthermore, only one SL sta
will exist along this line. To obtain the equation for this lin
we as usual maximizegs(s,h) with respect toh. This then
yields

sh22h2150, ~44!

and the permissible solution forh,hms is

hms5
11A114s

2s
. ~45!

Now from Eq.~43! we obtain, fors.2,

uxcru5
2s/2

gs~s,hms!
. ~46!

For s52, gs(2,h)52 is the maximum permissible value o
gs(2,h) for h in @0, 1#. Albeit this is not a true maximum o
gs(s,h), the left-hand side of Eq.~42! must attend this value
to obtain a SL state. Hence fors52, uxcru51. Analytical
continuation of Eq.~46! also yields this result.

For the antisymmetric case the relevant function to a
lyze is

ga~s,h!5h~12h!s/2~11h!~s/2!21. ~47!

We note that fors.0, ga(s,0)505ga(s,1). Thefunction
is also positive semidefinite forh in @0, 1#. Hence there will
be a maximum ofg(s,h) with respect toh for h in @0, 1#. It
is obvious from the structure ofga(s,h) that there is only
one maximum. From these we conclude that there will
two regions, one having no SL state and the other contain
two SL states. Again the line separating these regions
contain only one SL state. To obtain the equation of this li
we maximizega(s,h) with respect toh. We thus obtain

sh21h2150, ~48!

and the permissible solution ofh,hma is

hma5
A4s1121

2s
. ~49!

So, the equation for thexcr line is

uxcru5
2~s/2!

ga~s,hma!
. ~50!

We again note that fors52,ham51/2 which in turn yields
ga(s,ham)51/4. Hence from Eq.~47! we obtain uxcru58.
This is obtained from our numerical calculation. Fors50,
the maximum permissible value ofga(0,h) is 1/2, which
occurs ath51. Consequently from Eq.~50! we obtain
uxcru52. This also agrees with the established result
static dimer impurities.46 We further note that the analytica
continuation of Eq.~50! also produce this result. We now
note the following.~1! If s→`, hms;hma51/As. This im-
plies that two critical lines will approach each other ass
increases.~2! In contrast to the symmetric case, the antisy
metric case will have nonzerouxcru for all s(.0) separating
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55 901FORMATION OF STATIONARY LOCALIZED STATES . . .
the no-SL-state and two-SL-state regimes.~3! The value of
uxcru for the antisymmetric case is greater than the co
sponding value in the symmetric case ifs is finite. ~4! For
the antisymmetric case, there is no regime with one SL s
except the critical line. This is again in contrast to the sy
metric case, but quite similar to the Caley tree case.

We now consider the possibility off0Þf1 in the region
where D0, D1.0. Since E.2, 2x.0, we are taking
strictly x positive to avoid complication. From the startin
equation offn , nPN, we obtain

x~ uf0us2uf1us!5
f0
22f1

2

f1f0
~51!

and

h5
1

xuf0us1
f1

f0

5
1

xuf1us1
f0

f1

. ~52!

Furthermore, we have Eq.~34!. We emphasize that not onl
that f0 andf1 have the same sign, but that they are r
quantities. Fors52, after some algebra we find that

h32h1
1

x
50 ~53!

and

b5
f1

f0
5
16A124h2

2h
. ~54!

Sinceb should be real, we must haveh,1/2. Then, from
Eq. ~53!, we find uxcru58/3 for this case. This is shown b
the middle box alongs52 line in Fig. 4. We emphasize tha
to the best of our knowledge this result has not been obta
before. So, along thes52 line we have~i! uxu,1, no SL
state;~ii ! 1<uxu<8/3, one SL state;~iii ! 8/3,uxu,8, two
SL states;~iv! uxu 5 8, a point of three SL states and~v!
uxu.8, four SL states. Furthermore, where we have two
more SL states, one of the states hasf0Þf1. This state
appears foruxcru>8/3. The case ofs 5 1, 3, and 4 have also
been examined. No SL state forf0Þf1 is found. It appears
thats52 is a very special case. Further analysis for arbitr
s will be presented elsewhere. Before concluding this s
tion we again point out that fors52 anduxu>8, of the four
SL states, two states come from the antisymmetric set.

V. ROTATIONAL NONLINEAR DIMER IMPURITY
IN A PERFECT CHAIN

We now consider the case wheref m(uCmu)
5uCmu2/(A11(x/D)2uCmu4) for m 5 0 and 1, and zero oth
erwise. In other words we have nonlinear dimer impurit
made up of so-called rotational nonlinear impurities.45 In this
casef056f1 also constitute a set of solutions. We foc
our attention on this set. A more general case will be c
sidered elsewhere. Here we have two cases, namely,
symmetric case, wheref05f1, and the antisymmetric cas
otherwise. For the symmetric case from the appropriate
sion of Eq.~40!, along with Eq.~34! we obtain
-
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4D2

x2 5~11h!2@D2h22~12h!2#5GD
1~h!. ~55!

Since the left-hand side of Eq.~55! is always positive, we
needh>1/(11D) but at the same time we needh<1. So
the condition onh is 1/(11D)<h<1. It is obvious that the
constraint is met for D>0. On the other hand
GD

1(1)54D2. Since GD
1(h) is monotonically increasing

function ofh for h in @0, 1#, 4D2 is the maximum permis-
sible value of the function. So, for a SL state to appear
needuxcru51. Since there is only one intersection of a lin
y54D2/x2 5 const with the curveGD

1(h) for h in @0, 1#
and uxu.1, we shall always obtain one and only one S
state from the symmetric case ifuxu>uxcru51.

For the antisymmetric case from the appropriate vers
of Eqs.~40! and ~34! we obtain

4D2

x2 5~12h!2@D2h22~11h!2#5GD
2~h!. ~56!

SinceGD
2(h) should be positive semidefinite in the permi

sible interval of h not exceeding @0, 1#, we need
hmin>1/(D21), since forh<1, we must haveD>2. We
note now thatGD

2(1)505GD
2(hmin). So, there must be a

least one maximum ofGD
2(h) with respect toh. Imposing

the condition of maximality onGD
2(h) with respect toh, we

obtain

hmax5
D212

2~D221!
. ~57!

It can be easily shown thathmax<1. Furthermore
hmax,hmin . Then by settinghmax5hmin51/(D21), we
again find thatDcr 5 2. We also note thatGD

2(h) has only
one allowed maximum forh in @hmin ,1#. Hence above this
maximum we shall not obtain any SL state. On the oth
hand, for 4D2/x2 lying below this maximum, we shall obtain
two SL states. The equation of the line separating these
regions is

uxcru5
2D

AGD
2~hmax!

. ~58!

We further note that Eqs.~56! and ~57! in the limit D→`
yield uxcru58. This is expected.

In Fig. 7 we shown graphically the existence or nonexi
ence of SL states for the antisymmetric case, withD54, for
example. The plot ofGD

2(h) is shown as a dotted curve
Along with that we have superimposed the lin
y54D2/x2 for three values ofx as shown in figure. The line
with uxu511.313 touches the maximum point of the dott
curve, and represents one SL state. So any line w
uxu,11.313 will not touch the dotted curve, and hence th
are no SL states foruxu,11.313~ for example the upper line
is for uxu59.65). On the other hand, the lines wit
uxu.11.313 will touch the line twice. Therefore there w
exist two SL states foruxu.11.313~for example, the third
line with uxu514.61). Therefore it is very transparent th
for this case withD54,uxcru511.313.

We next consider the full phase diagram obtained num
cally. This is shown in Fig. 8. Foruxu,1 we have a no-state
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region for anyD. For uxu.1 andD<2, we have a region
where one SL state exists~coming from symmetric set!. For
uxu.1 andD.2, we have two regions separated by a cr
cal line ~shown by solid line! in the (x,D) plane. Above this
critical line we have three SL states~one from symmetric se
and other two from antisymmetric set! but below this line we
have only one state~coming from the symmetric set!. On the
critical line only two SL states exist~one from the symmetric
set and the other one from the antisymmetric set!. The en-
ergy of SL states as a function ofx for D54 is shown in
Fig. 9. It shows the typical behavior.

VI. MODEL DERIVATION OF THE DNLSE
WITH GENERALIZED NONLINEARITIES

To start with, we consider a model potentialV(x) given
by

FIG. 7. The functionGD
2(h) is plotted as a function ofh ~dotted

curve!. The solid lines correspond to they54D2/x2 for uxu 5 9.65,
11.313, and 14.61, respectively. HereD54.

FIG. 8. The phase diagram for the perfect chain with a rotatio
nonlinear dimer impurity showing the number of SL states a
function ofx andD.
-

V~x!5kF12cos~2gx!

4g2 Gd. ~59!

Whend 5 1, we obtain the potential for the nonlinear pe
dulum. We also know that such a system exhibits two typ
of motion, namely, libration and rotation. Two regions a
separated by a critical line, called separatrix.47 A similar situ-
ation also occurs for generald. Whend5 1

2, the periodic part
of the potential is of sawtooth type, with kinks smoothed o
For d..1, the periodic part is more like a repeated ha
wall potential. These are shown in Fig. 10. We further no
that forg→0, V(x) '(k/2d)uxu2d. Ford 5 1, we obtain the
usual Hook spring. On the other hand, for generald the
spring deviates from the Hookian behavior.

We consider next a HamiltonianH given by

l
a

FIG. 9. The energy for SL states shown in Fig. 8 is plotted a
function ofx for D54.

FIG. 10. The potentialV(x)5k„@12cos(2gx)#/4g2
…

s is plotted
as a function ofx. The solid curve is fork51,g51, ands50.5,
and the dotted one is fork51,g51, ands52.



to
o
o
n

s
ng

ts
re

e
y

pr

a
th

pl
th

b-

55 903FORMATION OF STATIONARY LOCALIZED STATES . . .
H5
1

2 (
n51

N

@vn~xn!uCnu21~CnCn11
! 1Cn

!Cn11!#

1 (
n51

N F pn
2

2mn
1Vn~xn!G5H11H2 . ~60!

By defining positions (Qn) and momenta (Pn) by
Qn5(Cn1Cn

!)/2 and Pn5 i (Cn
!2Cn)/2 respectively, we

find that

H15
1

2 (
n

vn~xn!~Pn
21Qn

2!1(
n

~PnPn111QnQn11!.

~61!

SoH1 can be said to define the dynamics of a superoscilla
with 2N degrees of freedom. Furthermore, the frequency
the oscillator in a given direction is coupled to the motion
another oscillator defined byxn .

7 On the other hand, we ca
replaceCn(Cn

!) in H1 by the annihilation~creation! operator
Cn(Cn

†), such that@Cn
† ,Cn#5 i\. Cn(Cn

†) then defines the
annihilation ~creation! operator of a particle. Under thi
transformation it transforms to the usual tight-bindi
Hamiltonian of a particle moving on a ring ofN sites. Pa-
rametersxn then define the displacement of lattice poin
from their respective equilibrium positions. Although he
we consider the local displacement of atoms~optical
phonons!, the collective motion of atoms in the lattic
~acoustic phonon! can be incorporated in this formalism b
making appropriate modifications ofH.48 Now from Hamil-
ton’s principle we find that

iĊm52
]H

]Cm
! 5vm~xm!1Cm111Cm21 ~62!

ẋl5
]H

]pl
5

pl
ml

, ~63!

and

2 ṗl5
]H

]xl
5v l8~xl !uCl u21Vl8~xl !. ~64!

We now assume that the dynamical evolution ofxl occurs on
a much longer time scale compared to the time scale
Cl . So the dynamics of the other system is determined
marily by the adiabatic variation ofxn .

7 In the electron lat-
tice interaction language, the dynamics of the lattice is
sumed to be far slower compared to the dynamics of
electron. Since the adiabatic approximation forxl implies
ṗl50 for lPN, the equation for determiningxl is then

v l8~xl !uCl u252Vl8~xl !. ~65!

Consider, for example,Vl(xl)51/2klxl
2 and v l(xl)5Elxl .

Then from Eq.~65! we obtainxl5(El /kl)uCl u2. Introduction
of this into Eq. ~62! yields the DNLSE’s wheref l(uCl u)
5uCl u2 andx l5El

2/kl .
In principle vn(xn) can be a nonlinear function ofxn .

Furthermore, the overall dynamics ofxn can be quite com-
plicated, and yet can be physically realistic. A few exam
in this regard have already been considered in
r
f
f

of
i-

s-
e

e
e

literature.41–43,45We consider a situation, where fornPN,
Vn(xn) is given by Eq.~59!, and forv(x) we assume

v~x!5
E0

g S 12cos~2gx!

4g2 D d21

sin~2gx!. ~66!

Then from Eq.~65! we obtain

F12d2S d21

d D 2UCU4G tan2~2gx!22duCu2tan~2gx!

1d2S 2d21

d2 D uCu450, ~67!

where

d5
4E0g

k
5
4E0

2/k

E0 /g
5

x

D
. ~68!

Equation~67! then yields

tan~2gx!5
duCu2

y F11AS 12y
~2d21!

d2 D 1/2G ~69!

where

y512
x2

D2 S d21

d D 2uCu4. ~70!

Then for d 5 1 we have y 5 1. This in turn yields
tan(2gx)5duCu2. Then, after some simple algebra, we o
tain

v~x!52
xuCu2

A11S x

D D 2uCu4
. ~71!

We consider next the other limit whereg→0. Then from Eq.
~69! we obtain

x'
2E0

k
~2d21!uCu2. ~72!

This in turn yieldsv(x)52xsuCus, wheres52(2d21)
and

xs52F2d12UE0US uE0u~2d21!

k D 2d21G . ~73!

Then for d 5 1, we obtainv(x)5xuCu2. Introducing this
into Eq. ~62!, we obtain the desired DNLSE.

We consider another model where we takev(x)52E0x,
andV(x) is given in Eq.~59!. Then again from Eq.~65! we
obtain

E0uCu252kduxu2~d21!x. ~74!

This in turn yields

uxu5U E0

kdU
1/~2d21!

uCu2/~2d21!. ~75!

Consequently we have v(x)52x̃(s8)uCus, where
s852/(2d21) and
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904 55B. C. GUPTA AND K. KUNDU
x̃~s8!52uE0u UE0

kdU
1/~2d21!

. ~76!

Then insertingv(x) into Eq. ~62!, we obtain the desired se
of equations.

VII. CONCLUSION

The formation of stationary states due to a single non
ear impurity in a Caley tree and a dimeric nonlinear impur
in a perfect one-dimensional~1D! linear system are studie
here using the DNLSE. Two types of nonlinear impurities
namely, f (uCu)5uCus, wheres is arbitrary, and the rota
tional impurity are considered. Altogether four cases
studied. Important features of these problems are thorou
discussed in the text. Whenever necessary, analytical a
ments in support of numerical results are provided. So
important aspects of this paper are elucidated further be

In this paper a very useful synthesis of the usual Gree
function approach and the ansatz approach is made, to g
better understanding of the problems. Because of synth
we are able to derive many important results. For exam
in the case of a nonlinear dimer withf (uCu)5uCus, at
s52 and uxu.8/3 a stationary localized state in whic
uf0uÞuf1u is obtained. However, fors51,3, and 4, no such
xcr is found. So, it appears that, for this nonlinear dim
s52 is a very special case. Of course, further analysis
required, and this will be presented elsewhere.

For the nonlinear dimer problem,uxcru ;2 and 3.6 have
been reported in the literature. These values ofuxcru separate
the whole of thes52 line into three regions, having no S
state, one SL state, and two SL states, respectively. On
other hand our analysis gives three values ofuxcru, namely, 1,
8/3, and 8. Furthermore, from our analysis we do not fi
uxcru;3.6. It is not clear from Ref. 40 what is the characte
gy
s
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estic of the extra state that appears foruxu>3.6. We also
have auxcru at 8 separating two-SL-state and four-SL-sta
regions, with three SL states at that point.

For the monomer problemuxcru 5 8 does not exist. How-
ever, one obtainsuxcru52 which separates the no-SL-sta
and two-SL-state regions. The analytical reason behind
is discussed here. Furthermore, the equation for the crit
line separating these regimes is analytically derived. In fa
equations describing various critical lines are derived from
general analytical approach. Our numerical results also a
very well with our analytical results. We further note that f
the dimer problem thisuxcru is 1. So it appears that for a
cluster ofN sites, thisuxcru will go as 1/N. This assertion,
however, needs a thorough investigation.

Another interesting feature of this problem is the possib
ity of more localized states than the number of impurities
certain situations. This happens due to multiple permiss
values of the amplitude at the impurity sites. Furthermo
the localization length of one set of states increases, w
this length in the other set of states decreases as the stre
of the nonlinearity parameter (x) increases. Hence, in con
trast to the static impurity case, the system here can ass
more than one configuration.

Physically, the effect of localized states is manifested
transport properties of the material. However, a system c
taining a finite number of impurities can only produce a
nite number of such states. So the probability that th
states will exert their influence on transport properties of
system is very small, if not unlikely. On the other hand, fo
thorough understanding of properties of a disordered sys
comprising nonlinear impurities and perfect sites, a criti
understanding of these problems is essential. So the im
tance of the problems presented here should be understo
this context.
-
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