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We report spin wave and density-matrix renormalization-grddpIRG) studies of the ground and low-
lying excited states of uniform and dimerized alternating spin chains. The DMRG procedure is also employed
to obtain low-temperature thermodynamic properties of the system. The ground stathl apnZystem with
spin-1 and spirg alternating from site to site and interacting via an antiferromagnetic exchange is found to be
ferrimagnetic with total spirsg=N/2 from both DMRG and spin wave analysis. Both the studies also show
that there is a gapless excitation to a state with spjrr1 and a gapped excitation to a state with spin
sg+ 1. Surprisingly, the correlation length in the ground state is found to be very small from both the studies
for this gapless system. For this very reason, we show that the ground state can be described by a variational
ansatz of the product type. DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls’
instability. The DMRG studies of magnetization, magnetic susceptibijfy, @&nd specific heat show strong
magnetic-field dependence. The prodydt shows a minimum as a function of temperatuii® (@t low-
magnetic fields and the minimum vanishes at high-magnetic fields. This low-field behavior is in agreement
with earlier experimental observations. The specific heat shows a maximum as a function of temperature and
the height of the maximum increases sharply at high-magnetic fields. It is hoped that these studies will
motivate experimental studies at high-magnetic fie]8€163-1827)00913-3

[. INTRODUCTION ladder with hole doping is predicted to support hole binding
based on exchange energy considerations as two holes occu-
The low-dimensional magnetic systems exhibit a wide vapying the same rung of the ladder would be energetically
riety of exotic physical phenomena. Many of these interestfavored, if the exchange constant for the rung is larger than
ing phenomena were first predicted from theoretical studiethat along the leg. These systems are hence expected to ex-
on spin systems in one dimensibr. Fascinating amongst hibit non-BCS type of superconductivify.
these have been the spin-Peierls instability and the Haldane Yet another challenge in the area of molecular magnetism
conjecture. These predictions motivated a number of experihas been to synthesize a molecular ferromagnet. While there
mental efforts towards synthesis of low-dimensional maghave been many models for ferromagnetic exchange in mo-
netic systems. The experimental measureniénten lecular systemsthe actual synthesis of molecular ferromag-
some of these systems have provided support for the Haldamets has been relatively recent. The search for molecular fer-
conjecture and also for the existence of spin-Peierlsomagnet has led to the discovery of many interesting
instability in quasi-one-dimensional systems. While molecular magnetic systems. In recent years, quasi-one-
experimental studiéS of the spin-1 antiferromagnet dimensional bimetallic molecular magnets, with each unit
Ni(C,HgN ) sNO,(CIO,) clearly show the existence of cell containing two spins of different spin value have been
Haldane gap, the measurement of the magnetic properties synthesized® These systems contain two transition metal
a series of quasi-one-dimensional compounds confirm thsns per unit cell and have the general formula
presence of spin-Peirels instability at low temperatlres. ACu(pbaOH(H,0)3.2H,0 with pbaOH=2-hydroxo-1,3-
recent years, purely inorganic systems that show lowpropylenebisoxamatd andA = Mn, Fe, Co, Ni and belong
dimensional behavior have also been synthesized. The conp the alternating or mixed spin chain famffy These alter-
pound CuGeQ@ has been shown to be a quasi-one-nating spin compounds are seen to exhibit ferrimagnetic be-
dimensional system exhibiting spin-Peierls instabifity. havior. The ferromagnetic or ferrimagnetic alignment of
Another class of compounds that have become important ispins in molecular systems is usually difficult to achieve due
recent years are the systems with spin ladders. The conte the diffused nature of the molecular orbit@i4O’s) which
pound that closely approximates a spin ladder is vanadythe unpaired electrons occupy. The direct exchange integrals
pyrophosphate with molecular formu(&#O),P,05. A spin  involving MO’s are much smaller than that found in transi-
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tion metal ions. However, even with the smaller exchangen; andn, are the number of sites on each of the sublattices
integral, we could have a ferro or ferri magnetic spin align-in a unit cell and\N is the number of unit cells in the system.
ment if the molecules are so arranged as to yield a smalh these systems, within each unit cell, the total spin of the
intermolecular transfer integral. In such a situation, the ki-Sites on a given sublattice is conserved. However, there is no
netic stabilization of the electrons is rather small and paralleBxchange interaction between the sites of the same type as
alignment of the effective spin of the electrons on the mol-these are non-nearest neighbor sites. This is the essential
ecules is favored leading to a magnetic ground state. difference between these purely sgisystems and the alter-
Thermodynamic properties of these alternating spin comnating spin-1/spiry system. In the latter, it is tacitly as-
pounds show very interesting behavidr3In very low mag-  sumed that the direct exchange interaction between the two
netic fields, these systems show one-dimenside@imag-  electrons that contribute to the spin-1 particle is much larger
neticbehavior. TheyT vs T () is the magnetic susceptibility than the energy scales of the intersite exchange interactions.
andT is the temperatupeplots show a rounded minimum. As Thus, in the pure spig-system we can envisage excitations
the temperature is increaseg] decreases sharply, goes in which the total spin on the equivalent sites in a unit cell is
through a minimum before increasing gradually. The tem{ess than the maximum possible. However, such a situation
perature at which the minimum occurs differs from com-cannot arise in the alternating spin model. The low-lying
pound to compound. The behavior of field induced magneti€xcitations and the susceptibility of the ground state to spin-
zation with temperature is also quite interesting as thePeierls’ distortion in this type of pure spisystem have
ground state of the system is a magnetic state. At moderagarlier been reported in detail elsewhée.
magnetic fields, with increase in temperature, the magnetiza- The spin wave analysis, in this paper, is followed by a
tion slowly increases, shows a broad peak and then deeport of our results from extensive DMRG studies on the
creases. Such behavior is conjectured to be due to irregul@iternating spin system. The DMRG calculations have been
variation in the spin multiplicities of the energy levels of the carried out on chains/rings with alternate spin-1 and gpin-
system. Theoretically, there has been an earlier study of thgites. Studies on the ground state and low-lying excited states
alternating spin sytem in three dimensions that focuses oare reported in detail. Furthermore, by resorting to full di-
the dependence of Curie temperature on the anisotropy of trggonalization of the DMRG Hamiltonian matrix in different
spins* total M sectors, we have also obtained the low-temperature
Motivation for the present study comes from the abovethermodynamic properties of the alternating spin chain with
experimental observations on the quasi-one-dimensional aperiodic boundary condition. The thermodynamic properties
ternating spin systems. Theoretical studies of spin chains soe discuss will include low and high field magnetization,
far have however been concerned mainly with the antiferromagnetic susceptibility and specific heat at low temperatures.
magnetic spin systems with unique site spin, exceptions beFhese properties are compared with experimental studies on
ing dilute spin impurity problems. In this study, we first ana- bimetallic chains.
lyze the ground and low-lying excited states of the mixed or The paper is organized as follows. In the next section, we
alternating antiferromagnetic spin chain by employing a spirpresent properties of the ground and low-lying excited states
wave theory. The spin wave theory is, however, not as accuwebtained from spin wave analysis and DMRG calculations
rate as the recently developed density matrix renormalizatioen long alternating spin chain with and without dimerization.
group (DMRG) method which has proved to be the bestWe also show that the short correlation length allows the
numerical tool for one-dimensional spin systefi&round — ground state to be approximated by a variational ansatz. In
state energy per site, the spin excitation gap and the two-spiine third section, we present the low-temperature thermody-
correlation functions obtained from this method have beemamic properties of the alternating spin chain. We end the
found to be accurate to several decimal places, in the case paper with a summary of all the results.
the spins Heisenberg antiferromagnet which is amenable to
exact study. In the DMRG method, spin parity symmetry can II. PROPERTIES OF THE GROUND
be used to characterize the spin states along wittsihes AND LOW-LYING EXCITED STATES
the good quantum numbet¥There have been many inter-
esting studies of spig-and spin-1 chains in recent years,
employing the DMRG techniqu¥. The spinj and spin-1 We begin with the Hamiltonian for a chain with spins
dimerized Heisenberg chains with nearest neighbor and nes ands, on alternating sites,
nearest neighbor antiferromagnetic interactions have been re-
cently studied by us by this powerful technigtiéChere have
also been some recent studies on a system with one or more
spin- impurities embedded randomly in a spin-1 chin,
and solution of spin models dynamically coupled to disper-Where the total number of sitésr bonds is 2N, and we use

A. Spin-wave analysis

H:\]; [él,n'éz,n+é2,n'§1,n+1]v @

sionless phonof% by the DMRG method. periodic boundary conditions in this section with
While the alternating spin-1/spifi-chain is a ferrimag- S;n.1=5;1.
netic system, there also exist pure spisystems with only The notation is illustrated in Fig. 1. We assume that

antiferromagnetic nearest neighbor interactions whose;>s,, and will use spin wave thedfyto compute the lead-
ground state is a high spin state. These systems have tlieg order corrections to the state shown in Fig. 1, where the
topology of a bipartite lattice with odd number of sites perz component of the spin is; for the spins; sites and—s,

unit cell. Ovchiniko#! has shown that for this type of system for spins, sites. The Holstein-Primakoff transformations
the spin of the ground state is given PBy(n,—n,)|, where take the form
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FIG. 1. Schematic picture of the arrangement of sgipand
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The ground staté,) is the state annihilated by all the
operators, andd,, becausev;, andw, are positive for all
k. We see that the modes denoted by, are gapless at
k=0, where they have a ferromagnetic dispersiop~ k2.
The modesw,, are gapped for alk, with a minimum gap
A=2J(s;—s,) atk=0.

The ground state energy per bond is given by

1 (=dk
2 o T

S, on a chain with interactions discussed by the Hamiltonian in Eq.

1.
Asin =s;-ajay,
8t=(\25,-a]a)an,

§,=al(V2s, - a/a,) @

for the spins; sites, and
Sn=—5,+blby,
§),=bl(\2s,~bby),
§,n=(\25,~b}b,)b, 3)

Fors;=1 ands,=3, we gete,=—0.718). The spin wave
ground statd ;) can also be shown to be an eigenfunction

of the éfot operator with the eigenvaludl(s;—s,). The
sublattice magnetizations are given by the expectation values

of S, andS5,,

~ _ 1 1 de(sl+32)\]
<Si,n>—(31+§>—§fo?w—k,
<§é,n>zsl_32_<§in>' 9
For s,=1, s,=3 we find (&f,)=0.695 and

for the spins, sites. We then rewrite the Hamiltonian in <§§Yn>=—o.195. The operator

terms of the bosonic operataag, b,,, a', andb!, expand to
guadratic order and Fourier transform to get

H=—2NJs;S,+23> 567 D_y+ a8,
k

+/s;s,coqki2) (ab_ + élf)i Wl (4)

This can be transformed using the Bogoliubov transforma

tion, in the form
C=aycoshy + b’ sinhg,
dy=b_,coshg, +a/sinhg,,

2\s1S,
5 +5, cogk/2). (5)

tanh(26,) =

We then get
H:_ZNJs_I_Sz‘l'Z [wlkalek—l— wZKaIak-i-Zk], (6)
k

where the mode energies;, and zero-point energy, are
given by

0 =J(—S1+Sp) + wy,
0o =J(S1—S;) + wy,

Z,=—J(s1+5p) + wy,

w=J(s;—S,)2+4s;s,5iP(k/2). 7)

C%&:g (B, (V25,) +an(1251)1=Cov2N(s; — 5,),

(10

to linear order in the bosonic operators. Since this annihilates
| o), which is an eigenstate &,, we conclude thaty)

has so= Sr= N(S1—S,). Thus the ground state is a ferri-
magnet.

We can show that the, modes are created by acting on
[ o)y with S =(LWVN)= (S, +S,,) e ", wherek+#0. The
resultant states hawsg,=N(s;—s,)—1 and are also annihi-
lated by S, Therefore we conclude that these states have
Stot= Stor= N(S1—S) — 1. Sincew, is a gapless branch, we
further conclude that the system has gapless excitations to
states with spilN(s;—s,)— 1. Similarly, thew,, modes are
created by acting on|ygo) with §=(1AN)=. (S,
+S;)e k", wherek+0. By a similar argument, we can
show that these states hagg,=s;,,=N(s;—s,)+1. The
branch w,, is separated from the ground state by a gap
A=2J(s;—s,). Figure 2 shows these two excitation
branches fos; =1 ands,= 3.

Finally, we can calculate the two-spin correlation func-
tions. There are three kinds of functions one can consider,
namely(S; o Sy n), (Sz.0' S, aNd(S 0 S0). We will con-
sider only the first case as an illustrative example. Since the
ground state has long range orddwith S=Spy,
=N(s;—5s,)], we consider the subtracted correlation func-
tion
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B. Variational calculation

The short correlation length found above for the alternat-
ing spin-1/spins chain suggests that @roduct wave
functior?* could be a good variational trial state for obtaining
the ground state properties. We work in the Fock space basis
of the alternating spin chain. We are interested in a varia-

tional wave function in which the state

|--- 1 -3 1 —% -..) of Fig. 1 is expected to have the

largest amplitude, say, 1. We can then show that a state in
which there aren spins on the spin-1 sublattice in the state
I s?=0 must have a real amplitude with the sign 1)". This
QSO ‘ O ‘ 180 sign rule (which is analogous to the Marshall sign rule for
h 4 the spini chairf®) can be proved by using the Perron-
Kk (indegrees) Frobenius theorem and the fact that the states with an odd
number of spins in the?’=0 state are connected to states
FIG. 2. The two branches of the spin wave dispersion curvesyith an even number of spins in th&=0 states by the
@y andwy [Eq. (7)], in units ofJ, for the alternating spin system  gneration of an odd number of exchange terms in the Hamil-

with s;=1 ands,= 1. tonian[Eq. (1)].
Let us now introduce the following real and positive am-
<§1,0‘ §1,n>—<§1,o>'(%,n>231<¢o|éoaz+égén|!/fo> plitudes for the §|x stat_es pOSS|bIel for a nee;rest neighbor
bond, namely, unit amplitude foi,— 3) and|—1,3), an am-
=Jslfﬂ%((sl+sz)cfj<n, plitude 7, for |0,—3) and |0,3) and amplitude», for
0 k |

—1,—3) and|1,3). Now, we consider a variational wave
(11  function of the form

For n—o, we can show that the leading behavior of this is
given by an exponentially decaying facter "¢, where |W(71,72)= 2, Caltha), (15
& 1=In(s,/sy). Fors;=1, s,=3, we geté=1.44. This re- 2

markably short correlation length agrees well with numerlcalWherea runs over all the B possible states of N spin-1 and

results as will be seen later. It may also be compared to thgpin—l sites andC,=(—1)"; o where the product is
H 2 a— jPa,j

much larger values for the pure spin-1 antiferromagnet in . . ,
which 536 2426 404 the purr)e spig- antiferromagne? i over all the N bonds,w, ; is the amplitude of the bong

which ¢=c andn denotes the number of spins in tee=0 state in the

. . . hain statea.
We can use spin wave theory to study a dimerized model . . . .
described by the Hamiltonian The state| W (#4,7,)) is translationally invariant. How-

ever, it is not an eigenstate of the total s{8f, or even
o o 8, further, since it includes statgs?} and {—s?} with
HIJ; [(1+0)S1n Sont (1= 8)Szn Sinvals (120 equal amplitude, the expectation valueSt, or &, is zero
for any siten. In spite of these drawbacks, we will see below

that the|W(7,,7,)) gives a good variational ground state

where the dimerization parametérlies in the rangd 0,1]. | )
ergy for an appropriate choice gf and 7.

We find that the ground state and low-energy excitations ar" lculati S volvi h

qualitatively similar to the undimerized casi=0. Namely, . Calculations involving the statel’ (71, 7)) can be car-

the ground state hasg,=N(s;—s,). There is a gapless ried out using the transfer matrix method. For instance, the
o .

branch of excitationssy, with S,=N(s;—s,)—1 and dis- Probabilites of the six possible bonds fof3,n)

persion ®(1,n+1]| are given by the X3 matrix
w1 =J(—S1+55) +IV(S;—5,)°+45;5,(1— 5%)sirP(k/2), (773 7 1 )
13 A: 1
13 1 % 7
and a gapped branch of excitationsv,, with
Si=N(S;—S,)+1 and whose dispersion is while the probabilities of the bond&,n)®(3,n| are given by
the  3x2 matrix AT.  Then the  norm
W= w1+ 2J(S,—S,). 14 V(1. m)|V(71,72))=Tr(AAT)N. The matrix AAT has

the eigenvalues\ , = (1+ 73)?+277 and A_=(1—73)2.
To this order in spin wave theory, the gagkat 0 is given by~ Hence,(¥ (71, 72)|¥ (71, 72)) =AY +\", which is domi-
A=2J(s;—s,) independent ob. Numerically, however, we nated byA" asN—o,
will see below that the gap increases almost linearly with We can now calculate the variational energy per bond
for the spin-1/spin alternating spin chain. €(71,7,) through the expression
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1
(1, m2)(V (72, 72) |V (71, 72)) = 5 (W (72, m2) |H|W (771, 72)) (16)
This is equal to(‘lf(nl,r;z)lél,nélvnﬂhlf(nl,nz)) by translational invariance. We find that

— 31+ 9D)%(A— 93— 2721+ 9d) nina(1+ my) — i (1— 73) — 23293(1+ )]
[(1+ 75)%+277]?

€(71,m2)=J : (17)

We now minimize this function ofy; and 7,, and find that density matrices for these two halves have to be constructed
the minimum occurs atn,;=0.842, 7,=0.445, giving at every iteration of the calculations. The DMRG results re-
e=—0.701). This compares favorably with the spin wave ported in this paper are all specialized to the case;efl
result of —0.718). and s,=1. The ground state of the chain lies in the

We can compute the two-spin _correlation functjon andM =N(s;—5s,) sector for a N sites system and we cannot
determine how it decays asympotically at large distances. S 1 2 . :
. . S use spin parity symmetry in this sector. In general, by
The correlation lengtl§ for_the asymptotic decay is given by +0, parity cannot be exploited, keepi, a good guantum
£ 1=In(\,/\_). Hence¢ is 0.749 at the values of;, 7, ’ ’

given above. This is even shorter than the value of 1.4 urEber. The grounfd stz:]te_ 'Sf cqnflrrfned to b.e n
found from the spin wave theory. s=N(s;—s,) sector for a chain of R sites from extensive

We can improve the variational calculation by allowing checks carried out by obtaining the low-energy eigenstates in
o ] ) s differentMg sectors of a 20-site chain. A state corresponding
the five independenttaking the amplitude fof1,—3)=1) (g the lowest energy iM.=N(s,—s,) is found in all sub-
real amplitudes for the different possible states of the nearegpaces with|M¢<N(s;—s,) and is absent in subspaces
neighbour bonds rather than only two amplitudes,(72) @  with M >N(s,—s,). This shows that the spin in the ground
used above. However we will not do so here as such a caktate s, =N(s,—s,). In Fig. 3, we show the extrapolation of
culation would be tedious and the two-amplituaiesatzhas  the energy per site as function of inverse system size. The
already given us a good understanding of the short correlasnergyysite,,, extrapolates to-0.72704 for the ground

tion length and the ground state energy. state of the system. The spin wave analysis value of
—0.718) for € is higher than the DMRG value. It is worth
C. DMRG studies mentioning at this point that the DMRG ground state energy/

We have performed DMRG calculations on alternatingSite agrees to better than 10with the exact solution in the
spin-1/spink chain with open boundary condition for the case of uniform spir- Heisenberg antiferrpmagn?é’t.lﬁ Itis
Hamiltonian in Eq.(1). We compute the ground state prop- interesting to note that, in the alternating spin case, .the
erties by studying chains of up to 50 to 100 sites. The numenergysite lies in between the values for the pure gpin-
ber of dominant density matrix eigenstates, that we have uniform chain (-0.443147) (Ref. 29 and the pure spin-1
retained at each DMRG iteration is between 80 to 100. Thainiform chain (-1.401484).™ . .

DMRG procedure follows the usual steps for chains dis- !N Fig. 4, we show the spin-density at all the sites of a
cussed in earlier papérst’*8except that the chains do not chain of 100 sites. The spin-density is uniform on each of the
have the symmetry between the left and right halves and thsublattices in the chain. The expectation valueSpfat the

| IO o

-0.7271 | \j

|
I ',‘

\”H\\
iR

(@ 1 “‘ “‘}H‘
w H ‘MU
_ ‘\‘ \;:“ il
L gl
-0.7273 | | il
{ H I
i \ i
T [
i , ‘ O
0 0.05 0.1 0.15 . |
(2N)” n
FIG. 3. Extrapolation of the ground state energy/sig){ in FIG. 4. Expectation value of thecomponent of the site spin vs

units of J, as a function of inverse system size, for the uniform site index, n. The upper and lower points are for the spin-1
alternating spin-l/spié-chain. (i=1) and the spiré (i=2) sites, respectively.



55 LOW-LYING EXCITED STATES AND LOW-. .. 8899

Ac_ 0} poomomoooTTm A i () H
'*(‘/; / N“‘:" 0.01 06 L
2 o -
V0,002 © 0 Srrrrrrerrerrrrreees W)
l (a) \ T 0.4 r o
0 10 20 30 40 50 0 10 20 30 40 50 O
n n z
w 0.2
< [H:/j
0 [anm=m=mnanssssmnEmns] [
O ﬁ,

0 0.1 02 03
(eN)”

< 821 0 SzZ.n >
S
=)
X

-0.08 ©
B FIG. 6. Energy gafunits of J) from the ground state to the
0 10 20 30 40 50 . . . .
n lowest state with spirs=sg—1 as a function of inverse system
size.sg is the total spin of the ground state.

FIG. 5. Subtracted two-spin correlation functiqagfined in the
text) as a function of distance between the two spif@.spin-1
spin-1 correlations(b) spin- spin- correlations, andc) spin-1
spin+ correlations.

could be compared with the behavior of the correlation func-
tion at the Majumdar-Ghosh poffitfor the pure sping
Heisenberg chain with nearest and next nearest neighbor an-
tiferromagnetic exchange interactiond;J, model at
spin-1 site reduces from the classical value of 1 toJ>=0.5];). The AKLT model at the exactly solvable paifit
0.79248, while, at the spigsite, it is—0.29248. This can be in the case of a pure spin-1 chain described by a bilinear-
compared with spin wave values of 0.695 and.195 for ~ biquadratic Hamiltonian also has a very short correlation
spin-1 and spirg sites, respectively. We note that the spinlength (€=0.91). Both the cases compared above, however,
wave analysis overestimates the quantum fluctuations. It i§ave one property in common, i.e., the exactly solvable point
very interesting to note that the spin-density distribution inin both models lie in the gapped phase.
alternating spin chain behaves more like in a ferromagnetic The lowest spin excitation of the alternating spin chain is
chain than like in an antiferromagnet, with the net spin ofto a state withs=sg—1. To get this state, we target the
each unit cell perfectly alignetbut with small fluctuations second state iMs=sg—1 sector of the chain. To confirm
on the individual sublattices In a ferromagnetic ground that this state is the=sg—1 state, we have computed the
state the spin-density at each site has the classical value apnd state inM =0 sector and find that it also has the same
propriate to the site spin, whereas for an antiferromagnegnergy. However, the corresponding state is abserl in
this averages out to zero at each site as the ground state 3gctors withM o>|sg—1|. Besides, from exact diagonaliza-
nonmagnetic. From this viewpoint, the ferrimagnet is similartion of all the states of an alternating spin chain with 8 sites,
to a ferromagnet and is quite unlike an antiferromagnet. Thave find that the ordering of the state is such that the lowest
spin wave analysis also yields the same physical picture. excitation is to the state with spis=sg—1. We have ob-
Owing to the alternation of the spin-1 and sgirsites  tained the excitation gap of the alternating spin chain in the
along the chain, one has to distinguish betwééﬁogin>, limit of infinite chain length by extrapolating from the plot of

oz & oz & . . spin gap vs the inverse of the chain lengfig. 6). We find
<S§'0$v”>’ and(SLqSin) paur correl_at|ons. we calculate all that this excitation is gapless in the infinite chain limit. This
the three correlation functions with the mean values sub

tracted out as in Eq11), since the mean values are non ero'rs very unusual in that the correlation function in the ground
tracted ou N =420, sl . values NONZETO o te decays exponentialfin fact £<1) but the system has
in this system unlike in a pure antiferromagnetic spin chain

a gapless excitation, in agreement with the spin wave analy-
In the DMRG procedure, we have computed these correl 2. gap 9 P Y

miﬁiggtlngngﬁ?a|t§r§fses|r!nzierteg %céhel;ﬁ;get@‘g?sn’i;o Motivated by the spin-wave calculation, we also have
' 9. 9 P P computed the energy of thee=sg+ 1 state by targetting the

g?srtfﬁtéogewecéf?ﬁe'gthe ground state as.afunctlon_ of th‘?ﬁ:)west state inM =sg+1 sector. In Fig. 7, we plot the
pins for an open chain of 100 sites. All. -~ . -
three correlation functions decay rapidly with distance FromeXC'tat'.O n gap to t_he— Set 1 state frpm the ground state as
i o & - a function of the inverse of the chain length. The gap satu-
the figure it is clear that, except @S] ;S;,) correlation, rates to a finite value of (1.27850.0001). The S, expec-
other correlations are almost zero even for the shortest pogation values computed in this state are found to be uniform
sible distances. ThéS] (S; ) correlation has a finite value on each of the sublatticégdependent of the sitand lead-
(—0.094) only for the nearest neighbors. This rapid decay ofng us to believe that this excitation is not a magnonlike
the correlation functions do not easily allow one to find theexcitation (quantized in a boxas has been observed for a
exact correlation lengtl¥ for a lattice model though it is spin-1 chain in the Haldane pha¥e.
clear that¢ is very small(i.e., less than one unitAs men- It would be interesting to know the total spin of the states
tioned earlier, spin wave theory gives=1.44 while the as a function of their energies. For a smaller alternating spin

variational calculation give§=0.75. This type of decay system, it is possible to characterize all the states by their
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FIG. 7. Excitation gagunits of J) from the ground statéspin
s=sg) to the state with spis=sg+1 as a function of the inverse FIG. 9. Gain in magnetic energunits of J) associated with
system size. The convergence to the infinite system is much fastefimerization vs the inverse system size for three different values of
for this gapped excitation, as compared to the gapless excitation ifimerizations. (a) §=0.025,(b) §=0.05, and(c) 5=0.075.
Fig. 6.

d total spi lue. b g t ¢ di tions of the ferrimagnet to spin stateg,<sg is ferromag-
energy and total spin value, by resorting 1o an exact diagoqaticiike and to states with,>Sg is antiferromagneticlike,
nalization scheme. The total spin value of a state is naturall¥0r finite systems
fixed.if we explqit the total s.pin conservqtion property of the We have also studied the dimerized alternating spin chain
Hamiltonian while constructing the Hamiltonian matrix. This &4 by the HamiltoniafEq. (12)] with 5, the dimeriza-
Can.’ggor example, be ach|e.ved. by using a valence bonaon parameter, in the range<0s<1. Earlier’ works on spin
basis™for setting up the HamHto_man matrix. Alternately,_we chaing® have revealed that with the alternatiérin the ex-
can aIsp comput_e the expgctanon value of the total SPin Opc'hange parameter, the half integer spin chain will have an
er?rt]olr Ln Iefacr:h elaenfsttﬁte Lnttmﬁohsidc;r |:ov\f)r8\{[li?e|att unconditional spin-Peierls transition whereas for integer spin
spin 1abet for éach of the stales. We have 1olowed e 1alteg,, i, the transition is conditional. This conclusion has been
procedure. In Fig. .8' we present the energy 'e"?'s as a fun%’rawn from the fact that, with the inclusion &f the mag-
tion of the total spin of the states for an eight site ferrlmag-netic energy gain\E can ,be defined as
netic ring and twelve site spififerromagnetic and antiferro-
magnetic rings. We find that the spin of the state appears to 1
vary irregularly with energy unlike in the case of pure spin- AE(2N,68)==—[E(2N,8)—E(2N,0)] (18)
1_ . . . H 2N i) H il
5 ferro and antiferromagnet§ig. 8). Careful comparison of

the three plots in the figure shows that the low-lying excita- ] .
where E(2N, §) is the ground state energy of théXsites

system with alternationd in the exchange integral and
E(2N,0) is the ground state energy of the uniform chain of
2N sites. For the pure spin chain, if we assume th&
varies ass” for small 8, we find thaty=4/3 for the spin3
chain andv=2 for the spin-1 chaif® Thus, for the spir;
chain, the stabilization energy always overcomes the elastic
energy, whereas for the spin-1 case, it depends on the stiff-
ness of the lattice.

We have employed DMRG calculations to obtain
AE(2N,6), for small values ofé for the alternating spin
@ chain. To determine the exact functional form of the mag-
netic energy gain, we varied the chain length from 50 sites to
100 sites and alsm( the number of states retained in each
DMRG iteration) from 80 to 100 to check the convergence
of AE with the chain length. The dependence of
AE(2N, 8) on 3N is linear for thes values we have studied.
Figure 9 gives a sample variation &fE(2N,5) upon 3N.
This allows us to extrapolat® E(2N, §) to the infinite chain

FIG. 8. Plot of energy(units of J) vs the total spin quantum limit reliably. In Fig. 10, we show the plot AE(2N, d) vs
number of the complete spectrum () an 8 site ring with an & for finite 2N values and also the extrapolated infinite
alternating spin-1/spig-arrangement(b) a ring of 12 site spirg ~ chain. We see that there is a gain in magnetic energy upon
antiferromagnet, an¢c) a ring of 12 site spin% ferromagnet. The dimerization even in the infinite chain limit. To obtain the
states with very high energies are not shown,(rand(c). exponenty, we plot IPAE(2N,6) vs Iné for the infinite chain
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FIG. 10. Magnetic energy gainE(2N,d) (units of J) as a
function of dimerization parametef for different system sizes. In

the figur(_a AN=50 (s_quare}s 2N =100 (circles and extrapolated Ill. LOW-TEMPERATURE PROPERTIES
values withN—« (triangles are shown.

FIG. 12. Excitation gap(units of J) to the state with spin
s=sg+1 from the ground statesEsg) as a function ofs for the
dimerized alternating spin-l/spﬁﬂehain.

In this section, we present results of our DMRG calcula-
tions of the thermodynamic properties of the alternating spin
system. The size of the system varies from 8 to 20 sites. We
f_mpose periodic boundary conditions to minimize finite size
effects. We set up the Hamiltonian matrices in the DMRG
“basis for all allowedV ¢ sectors for a ring of R sites. We
can diagonalize these matrices completely to obtain all the
eigenvalues in each of thelg sectors. As the number of
(lj)MRG basis states increases rapidly with increasmgve
retain a smaller number of dominant density matrix eigen-
vectors in the DMRG procedure, i.e, S0n<65, depending

(Fig. 11. From this figure, we find that in the alternating
spin case, for the infinite chailE~ 620091 Thus, the
spin-Peierls transition appears to be close to being cond
tional in this system. The magnetic energy gain/site for finit
chains is larger than that of the infinite chain for ahyalues
(Fig. 10. It is possible that the distortion in finite chain is
unconditional while that of the infinite chain is conditional.
We have also studied the spin excitations in the dimerize
alternating spin-1/spig-chain. We calculate the lowest spin

excitation to thes=sg — 1 state from the ground state. We on theM, sector as well as the size of the system. We have
i e ) s X
find that thes=s;—1 state is gapless from the ground Statechecked to find the dependence of properéigh m in the

for all § values. This result agrees with the spin wave analy- nge 56m=65) for the system sizes we have studied
sis. The system remains gapless even while dimerized unlikg <2N=20) and have confirmed that the properties do not

h if in chains. There i .
the pure antiferromagnetic dimerized spin chains. There is vary significantly for the temperatures at which they are

i i itati + . X
smooth increase of the spin excitation gafstese + 1 state computed. The above extension of the DMRG procedure is

from ground state with increasing We have plotted this found to be accurate by comparing with exact diagonaliza-
gap with & in Fig. 12. The gap shows almost a linear thav_tion results for small s )étemsplt m?i appear sur r?sin that
ior as a function ofs, with an exponent of 1.070.01. The Y : Y app prising

spin wave analysis however shows that this excitation gap itshe DMRG technique which esser)tially targets a single state,
independent ob usua_IIy the lowest energy state in a ch.oser! sector, should
' provide accurate thermodynamic properties since these prop-
erties are governed by energy level spacings and not the
absolute energy of the ground state. However, there are two
-6 DD/EPD reasons why the DMRG procedure yields reasonable thermo-
: dynamic properties. First, the projection of the low-lying ex-
. cited state eigenfunctions on the DMRG space in which the
Ot ground state is obtained is substantial and hence these ex-
cited states are well described in the chosen DMRG space.
The second reason is that the low-lying excitations of the full
10l system are often lowest energy states in different sectors in
B DMRG procedure and thus their energies are quite accurate
I even on an absolute scale.
I The canonical partition functioB for the 2N site ring can
-15 5 ‘ W ‘ > be written as

Ln(J)

LN (AE(=,5))

z=2, e PEBMY), (19
J

FIG. 11. Log-log plot of extrapolated magnetic energy gain )
(units of J) for infinite system size and dimerization parameter ~Where the sum is over all the DMRG energy levels of the
The slope is calculated to be 2:60.01. 2N site system in all thé/ ¢ sectorsE; and (M), are energy
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FIG. 13. Plot of magnetization/site as a function of temperature ~ FIG. 14. Magnetization/site vs the magnetic field strergttin
T for five different values of magnetic field8. Squares are for Units of J/gug, for four different temperature$. T=0.3)/kg re-
B=0.1)/gug, circles forB=0.5)/gug, triangles forB=J/gug,  Sults are given by square$=0.5)/kg by circles, T=0.7/kg by
diamonds forB=2J/gug, and inverse triangles fd=3J/gusg . triangles, andl = J/kg by diamonds.

and z component of the total spin of the stateB is the  understood from the type of spin excitations present in the
strength of the magnetic field in units dfgug (g is the  system. The lowest energy excitation at low magnetic fields
gyromagnetic ratio angkg is the Bohr magnetgnalongz  is to a state with spis less tharsg. Therefore, the magne-
direction and@=J/kgT with kg andT being the Boltzmann tization initially decreases at low temperatures. As the field
constant and temperature, respectively. The field inducedtrength is increased, the gap to spin states witis; de-
magnetization{M), can be defined as creases as the Zeeman coupling to these states is stronger
than to the states wite<sg. The behavior of the system at
even stronger fields turns out to be remarkable. The magne-
tization in the ground statel=0) shows an abrupt increase
signalling that the ground state at this field strength has
) -t M¢>sg. The temperature dependence of the magnetization
In magnetization, shows a broad maximum indicating the presence of states
_ 2 5 with even higher spin values lying above the ground state in

X=BLMH=(M)] 21) the presence of th?s strong figld.gOnIy at ver)(‘/:J intense fields
and similarly the specific hea€, by relating it to the fluc- do we find the magnetization decreasing with increasing
tuation in energy, can be written as temperature. This happens because at such large field
strengths, the ground state is the highest spin state possible
for the system.

The dependence of magnetization on the magnetic field is
shown at different temperatures in Fig. 14. At low tempera-

The dimensionalities of the DMRG Hamiltonian matrices ture the magnetization shows a plateau. The width of the
that we completely diagonalize vary from 2500 to 3000, deplateau decreases as the temperature is raised and eventually
pending upon the DMRG parameter and theM value of  the plateau disappears. The existence of the plateau shows
the targetted sector, for rings of sizes greater than 12. Thedbat the higher spin states are not accessible at the chosen
matrices are not very sparse, owing to the cyclic boundaryemperature. At higher fields, the larger Zeeman splittings of
condition imposed on the system. The DMRG propertiehigher spin states become accessible leading to an increase in
compare very well with exact results for small system sizeghe magnetization. All these curves intersectBat J/gug
amenable to exact diagonalization studies. In the discussioand B=2.5J/gug and these fields are close to the field
to follow, we present results on the 20-site ring although allstrengths at which the ground state switches from bhe
calculations have been carried out for system sizes from 8 tgalue to another higher value.
20 sites. This is because the qualitative behavior of the prop- The dependence ofT/2N on temperature for different
erties we have studied are similar for all the ring sizes in thidield strengths are shown in Fig. 15. For zero field, the zero
range. temperature value ofT is infinite in the thermodynamic

We present the dependence of magnetization on temperéimit and for finite rings is finite and equal to the fluctuation
ture for different magnetic field strengths in Fig. 13. At low in magnetization. For the ferrimagnetic ground state
magnetic fields, the magnetization shows a sharp decrease @t/2N, asT—0, is given bysg(sg+1)/6N. As the tem-
low temperatures and shows paramagnetic behavior at higberature increases, this product decreases and shows a mini-
temperatures. As the field strength is increased, the magneium aroundkgT=0.5] before increasing again. The mini-
tization shows a slower decrease with temperature and fanum manifests due to the states wiM <sg getting
field strength comparable to the exchange constant, the magepulated at low-temperatures. These states in the infinite
netization shows a broad maximum. This behavior could behain limit turn out to be the gapless excitations in the spec-

>i(M ).e*B(Ej*B(Ms)J‘)
(M)=—"—"— (20

the magnetic susceptibility;, by relating it to the fluctuation

c=Lrern - @2
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0.4|

CIZ2N

0.2]

FIG. 15. xT (defined in the tejtper site as a function of tem-
peratureT for various magnetic field strength, Zero field results
are shown by squareB,=0.01)/gug by circles,B=0.1)/gug by
triangles, andB=J/gug by diamonds.

FIG. 16. Specific heat/site as a function of temperaflirfor
four different values of magnetic field®. Zero field data are
shown by square®8=0.01J/gug by circles,B=0.1/gug by tri-
angles, and=J/gug by diamonds.

trum. The subsequent increase in §ieproduct is due to the
mgrheearsgqﬁr'?e);n?)g?a{:f:elgxsppel?irr?ztaa;[fasllyacifﬁzzet?eévr;t?oLl;réhi%lirengths' In zero and weak magnetic fields, the specific heat
the bimetallic chain compounds that the temperature a hows a broad maximum arouri;T=0.6). At strong-

. L . magnetic field B=J), there is a dramatic increase in the
which the minimum occurs in thgT product depends upon :
the magnitude of the spirs ands,.*® The Ni'-Cu" bime- peak height at about the same temperature, although the

tallic chain shows a minimum i T/2N at a temperature qualitative dependence is still the same as at low-magnetic

corresponding to 55 ciit (80 K) and independent estimate fields. This indica_te_s that the higher energy high-s_pin states
of the exchange constant in this system is 1007 ¢t This &€ brought to withirkgT of the ground state at this mag-

is in very good agreement with the minimum theoretically "etic field strength. - . , _ ,
found at temperature (0250.1)J. The minimum inyT/2N _Stud|e_s on dimerized alterna_mng spln_chams_ s_how quali-
vanishes atB=0.1J/gug corresponding to~10T and it tatively similar trends as the uniform chains. This is not sur-
would be interesting to study the magnetic susceptibility ofPrising as the low-energy spectrum of the system does not
other systems experimentally under such high fields. Th&hange qualitatively upon dimerization.

low-temperature zero-field behavior of our system can be

compared with the one-dimensional ferromagnet. In the lat-

ter, the spin wave analysis shows that th€ product in-

creases as T/at low temperature® IV. SUMMARY
In finite but weak field, the behavior ofT is different. ) . ) . .
The magnetic field opens up a gap ap@l goes exponen- We have studied the alternating spin-1/spimodel in

tially to zero for temperatures less than the gap in the applied€tail. The ground and low-lying excited states have been
field. Even in this case a minimum is found at the samenalyzed by using a spin wave theory as well as DMRG
temperature as in the zero-field case, for the same reas@&@lculations. Both the methods predict a ground state with
discussed in the zero field case. spinsg=N(s;—5,) for a 2N site system. They also predict
In stronger magnetic fields, the behavioryof from zero  a gapless excitation to a state with-sg— 1 in the infinite
temperature up t&gT=0.5 is qualitatively different. The chain limit. The lowest gapped excitations are to states with
minimum in this case vanishes. In these field strengths, thepin s=sgz+1. The very short correlation length in the
states with higherM4 values are accessed even belowground state of the system motivated its description by a
kgT=0.5]. The dependence of T abovekgT=0.5] is the variational trial function of the product type. Interestingly,
same in all cases. In even stronger magnetic fields, the initighe spectrum is qualitatively unchanged upon dimerization.
sharp increase is suppressed. At very low temperature, tHEhe dimerization is itself conditional in the infinite chain
xT product is nearly zero and increases linearly vilitbver  limit.
the temperature range we have studied. This can be attrib- The DMRG technique is also employed to obtain the low-
uted to a switch in the ground state at this field strength. Théemperature thermodynamic properties. The magnetic sus-
very high temperature behavior T should be independent ceptibility shows very interesting magnetic field dependence.
of field strength and should saturate to the Curie law valu&he xT vs T plot shows a minimum at low-magnetic fields.
corresponding to the mean of spin-1 and spialues which  This minimum vanishes at high-magnetic fields. The specific
is 11/24. heat shows a maximum as a function of temperature at all
The temperature dependence of specific heat also shoviields. The height of the maximum shows a dramatic increase
marked dependence on the magnetic field at strong fieldsit high-magnetic field. Experimental systems describable by
This dependence is shown in Fig. 16 for various fieldthis model exist and have been studied quite extensively. It
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is hoped that our studies will motivate experimental studies ACKNOWLEDGMENTS
of these systems in high magnetic fields.
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alternating spin system by both analytiqg@pin-wave and are grateful to Dr. R. Chitra and Y. Anusooya for many
matrix product methodsand numerical(quantum Monte helpful discussions. The present work has been supported by
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