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Low-lying excited states and low-temperature properties of an alternating spin-1–spin-1/2 chain:
A density-matrix renormalization-group study
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We report spin wave and density-matrix renormalization-group~DMRG! studies of the ground and low-
lying excited states of uniform and dimerized alternating spin chains. The DMRG procedure is also employed
to obtain low-temperature thermodynamic properties of the system. The ground state of a 2N spin system with
spin-1 and spin-12 alternating from site to site and interacting via an antiferromagnetic exchange is found to be
ferrimagnetic with total spinsG5N/2 from both DMRG and spin wave analysis. Both the studies also show
that there is a gapless excitation to a state with spinsG21 and a gapped excitation to a state with spin
sG11. Surprisingly, the correlation length in the ground state is found to be very small from both the studies
for this gapless system. For this very reason, we show that the ground state can be described by a variational
ansatz of the product type. DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls’
instability. The DMRG studies of magnetization, magnetic susceptibility (x), and specific heat show strong
magnetic-field dependence. The productxT shows a minimum as a function of temperature (T) at low-
magnetic fields and the minimum vanishes at high-magnetic fields. This low-field behavior is in agreement
with earlier experimental observations. The specific heat shows a maximum as a function of temperature and
the height of the maximum increases sharply at high-magnetic fields. It is hoped that these studies will
motivate experimental studies at high-magnetic fields.@S0163-1829~97!00913-2#
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I. INTRODUCTION

The low-dimensional magnetic systems exhibit a wide
riety of exotic physical phenomena. Many of these intere
ing phenomena were first predicted from theoretical stud
on spin systems in one dimension.1–3 Fascinating amongs
these have been the spin-Peierls instability and the Hald
conjecture. These predictions motivated a number of exp
mental efforts towards synthesis of low-dimensional m
netic systems. The experimental measurements4,5 on
some of these systems have provided support for the Hald
conjecture and also for the existence of spin-Peie
instability in quasi-one-dimensional systems. Wh
experimental studies4,5 of the spin-1 antiferromagne
Ni~C2H8N2) 2NO2~ClO4) clearly show the existence o
Haldane gap, the measurement of the magnetic propertie
a series of quasi-one-dimensional compounds confirm
presence of spin-Peirels instability at low temperatures.6 In
recent years, purely inorganic systems that show lo
dimensional behavior have also been synthesized. The c
pound CuGeO3 has been shown to be a quasi-on
dimensional system exhibiting spin-Peierls instabilit7

Another class of compounds that have become importan
recent years are the systems with spin ladders. The c
pound that closely approximates a spin ladder is vana
pyrophosphate with molecular formula~VO! 2P2O7. A spin
550163-1829/97/55~14!/8894~11!/$10.00
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ladder with hole doping is predicted to support hole bindi
based on exchange energy considerations as two holes o
pying the same rung of the ladder would be energetica
favored, if the exchange constant for the rung is larger th
that along the leg. These systems are hence expected t
hibit non-BCS type of superconductivity.8

Yet another challenge in the area of molecular magnet
has been to synthesize a molecular ferromagnet. While th
have been many models for ferromagnetic exchange in
lecular systems,9 the actual synthesis of molecular ferroma
nets has been relatively recent. The search for molecular
romagnet has led to the discovery of many interest
molecular magnetic systems. In recent years, quasi-o
dimensional bimetallic molecular magnets, with each u
cell containing two spins of different spin value have be
synthesized.10 These systems contain two transition me
ions per unit cell and have the general formu
ACu~pbaOH!~H2O! 3.2H2O with pbaOH52-hydroxo-1,3-
propylenebis~oxamato! andA 5 Mn, Fe, Co, Ni and belong
to the alternating or mixed spin chain family.11 These alter-
nating spin compounds are seen to exhibit ferrimagnetic
havior. The ferromagnetic or ferrimagnetic alignment
spins in molecular systems is usually difficult to achieve d
to the diffused nature of the molecular orbitals~MO’s! which
the unpaired electrons occupy. The direct exchange integ
involving MO’s are much smaller than that found in trans
8894 © 1997 The American Physical Society
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55 8895LOW-LYING EXCITED STATES AND LOW- . . .
tion metal ions. However, even with the smaller exchan
integral, we could have a ferro or ferri magnetic spin alig
ment if the molecules are so arranged as to yield a sm
intermolecular transfer integral. In such a situation, the
netic stabilization of the electrons is rather small and para
alignment of the effective spin of the electrons on the m
ecules is favored leading to a magnetic ground state.12

Thermodynamic properties of these alternating spin co
pounds show very interesting behavior.11,13In very low mag-
netic fields, these systems show one-dimensionalferrimag-
neticbehavior. ThexT vsT (x is the magnetic susceptibility
andT is the temperature! plots show a rounded minimum. A
the temperature is increased,xT decreases sharply, goe
through a minimum before increasing gradually. The te
perature at which the minimum occurs differs from co
pound to compound. The behavior of field induced magn
zation with temperature is also quite interesting as
ground state of the system is a magnetic state. At mode
magnetic fields, with increase in temperature, the magne
tion slowly increases, shows a broad peak and then
creases. Such behavior is conjectured to be due to irreg
variation in the spin multiplicities of the energy levels of th
system. Theoretically, there has been an earlier study of
alternating spin sytem in three dimensions that focuses
the dependence of Curie temperature on the anisotropy o
spins.14

Motivation for the present study comes from the abo
experimental observations on the quasi-one-dimensiona
ternating spin systems. Theoretical studies of spin chain
far have however been concerned mainly with the antife
magnetic spin systems with unique site spin, exceptions
ing dilute spin impurity problems. In this study, we first an
lyze the ground and low-lying excited states of the mixed
alternating antiferromagnetic spin chain by employing a s
wave theory. The spin wave theory is, however, not as ac
rate as the recently developed density matrix renormaliza
group ~DMRG! method which has proved to be the be
numerical tool for one-dimensional spin systems.15 Ground
state energy per site, the spin excitation gap and the two-
correlation functions obtained from this method have be
found to be accurate to several decimal places, in the cas
the spin-12 Heisenberg antiferromagnet which is amenable
exact study. In the DMRG method, spin parity symmetry c
be used to characterize the spin states along with thestot.

z as
the good quantum numbers.16 There have been many inte
esting studies of spin-12 and spin-1 chains in recent year
employing the DMRG technique.17 The spin-12 and spin-1
dimerized Heisenberg chains with nearest neighbor and
nearest neighbor antiferromagnetic interactions have bee
cently studied by us by this powerful technique.18 There have
also been some recent studies on a system with one or m
spin-12 impurities embedded randomly in a spin-1 chain19

and solution of spin models dynamically coupled to disp
sionless phonons20 by the DMRG method.

While the alternating spin-1/spin-12 chain is a ferrimag-
netic system, there also exist pure spin-1

2 systems with only
antiferromagnetic nearest neighbor interactions wh
ground state is a high spin state. These systems have
topology of a bipartite lattice with odd number of sites p
unit cell. Ovchinikov21 has shown that for this type of syste
the spin of the ground state is given byuN(n12n2)u, where
e
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n1 andn2 are the number of sites on each of the sublatti
in a unit cell andN is the number of unit cells in the system
In these systems, within each unit cell, the total spin of
sites on a given sublattice is conserved. However, there i
exchange interaction between the sites of the same typ
these are non-nearest neighbor sites. This is the esse
difference between these purely spin-1

2 systems and the alter
nating spin-1/spin-12 system. In the latter, it is tacitly as
sumed that the direct exchange interaction between the
electrons that contribute to the spin-1 particle is much lar
than the energy scales of the intersite exchange interacti
Thus, in the pure spin-12 system we can envisage excitatio
in which the total spin on the equivalent sites in a unit cel
less than the maximum possible. However, such a situa
cannot arise in the alternating spin model. The low-lyi
excitations and the susceptibility of the ground state to sp
Peierls’ distortion in this type of pure spin-1

2 system have
earlier been reported in detail elsewhere.22

The spin wave analysis, in this paper, is followed by
report of our results from extensive DMRG studies on t
alternating spin system. The DMRG calculations have b
carried out on chains/rings with alternate spin-1 and spi1

2

sites. Studies on the ground state and low-lying excited st
are reported in detail. Furthermore, by resorting to full
agonalization of the DMRG Hamiltonian matrix in differen
totalMs sectors, we have also obtained the low-temperat
thermodynamic properties of the alternating spin chain w
periodic boundary condition. The thermodynamic propert
we discuss will include low and high field magnetizatio
magnetic susceptibility and specific heat at low temperatu
These properties are compared with experimental studie
bimetallic chains.

The paper is organized as follows. In the next section,
present properties of the ground and low-lying excited sta
obtained from spin wave analysis and DMRG calculatio
on long alternating spin chain with and without dimerizatio
We also show that the short correlation length allows
ground state to be approximated by a variational ansatz
the third section, we present the low-temperature thermo
namic properties of the alternating spin chain. We end
paper with a summary of all the results.

II. PROPERTIES OF THE GROUND
AND LOW-LYING EXCITED STATES

A. Spin-wave analysis

We begin with the Hamiltonian for a chain with spin
s1 ands2 on alternating sites,

H5J(
n

@Ŝ1,n•Ŝ2,n1Ŝ2,n•Ŝ1,n11#, ~1!

where the total number of sites~or bonds! is 2N, and we use
periodic boundary conditions in this section wi
Ŝ1,N115Ŝ1,1.

The notation is illustrated in Fig. 1. We assume th
s1.s2, and will use spin wave theory

23 to compute the lead-
ing order corrections to the state shown in Fig. 1, where
z component of the spin iss1 for the spin-s1 sites and2s2
for spin-s2 sites. The Holstein-Primakoff transformation
take the form
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Ŝ1,n
z 5s12ân

†ân ,

Ŝ1,n
1 5~A2s12ân

†ân!ân ,

Ŝ1,n
2 5ân

†~A2s12ân
†ân! ~2!

for the spin-s1 sites, and

Ŝ2,n
z 52s21b̂n

†b̂n ,

Ŝ2,n
1 5b̂n

†~A2s22b̂n
†b̂n!,

Ŝ2,n
2 5~A2s22b̂n

†b̂n!b̂n ~3!

for the spin-s2 sites. We then rewrite the Hamiltonian i
terms of the bosonic operatorsân , b̂n , ân

†, andb̂n
† , expand to

quadratic order and Fourier transform to get

H522NJs1s212J(
k

@s1b̂2k
† b̂2k1s2âk

†âk

1As1s2cos~k/2!~ âkb̂2k1âk
†b̂2k

† !#. ~4!

This can be transformed using the Bogoliubov transform
tion, in the form

ĉk5âkcoshuk1b̂2k
† sinhuk ,

d̂k5b̂2kcoshuk1âk
†sinhuk ,

tanh~2uk!5
2As1s2
s11s2

cos~k/2!. ~5!

We then get

H522NJs1s21(
k

@v1kĉk
†ĉk1v2kd̂k

†d̂k1zk#, ~6!

where the mode energiesv ik and zero-point energyzk are
given by

v1k5J~2s11s2!1vk ,

v2k5J~s12s2!1vk ,

zk52J~s11s2!1vk ,

vk5JA~s12s2!
214s1s2sin

2~k/2!. ~7!

FIG. 1. Schematic picture of the arrangement of spinss1 and
s2 on a chain with interactions discussed by the Hamiltonian in
~1!.
-

The ground stateuc0& is the state annihilated by all th
operatorsĉk andd̂k , becausev1k andv2k are positive for all
k. We see that the modes denoted byv1k are gapless a
k50, where they have a ferromagnetic dispersionv1k;k2.
The modesv2k are gapped for allk, with a minimum gap
D52J(s12s2) at k50.

The ground state energy per bond is given by

e05
E0

2N
52Js1s21

1

2E0
pdk

p
@2J~s11s2!1vk#. ~8!

For s151 ands25
1
2, we gete0520.718J. The spin wave

ground stateuc0& can also be shown to be an eigenfuncti
of the Ŝtot

z operator with the eigenvalueN(s12s2). The
sublattice magnetizations are given by the expectation va
of Ŝ1,n

z and Ŝ2,n
z ,

^Ŝ1,n
z &5S s11 1

2D2
1

2E0
pdk

p

~s11s2!J

vk
,

^Ŝ2,n
z &5s12s22^Ŝ1,n

z &. ~9!

For s151, s25
1
2, we find ^Ŝ1,n

z &50.695 and

^Ŝ2,n
z &520.195. The operator

Ŝtot
1 5(

n
@ b̂n

1~A2s2!1ân~A2s1!#5 ĉ0A2N~s12s2!,

~10!

to linear order in the bosonic operators. Since this annihila
uc0&, which is an eigenstate ofŜtot

z , we conclude thatuc0&
has stot5stot

z 5N(s12s2). Thus the ground state is a ferr
magnet.

We can show that thev1k modes are created by acting o
uc0& with Ŝk

25(1/AN)(n(Ŝ1,n
2 1Ŝ2,n

2 )eikn, wherekÞ0. The
resultant states havestot

z 5N(s12s2)21 and are also annihi

lated by Ŝtot
1 Therefore we conclude that these states h

stot5stot
z 5N(s12s2)21. Sincev1k is a gapless branch, w

further conclude that the system has gapless excitation
states with spinN(s12s2)21. Similarly, thev2k modes are
created by acting onuc0& with Ŝk

15(1/AN)(n(Ŝ1,n
1

1Ŝ2,n
1 )e2 ikn, where kÞ0. By a similar argument, we ca

show that these states havestot5stot
z 5N(s12s2)11. The

branchv2k is separated from the ground state by a g
D52J(s12s2). Figure 2 shows these two excitatio

branches fors151 ands25
1
2.

Finally, we can calculate the two-spin correlation fun
tions. There are three kinds of functions one can consi
namely^Ŝ1,0•Ŝ1,n&, ^Ŝ2,0•Ŝ1,n&, and^Ŝ2,0•Ŝ2,n&. We will con-
sider only the first case as an illustrative example. Since
ground state has long range order@with stot5stot

z

5N(s12s2)#, we consider the subtracted correlation fun
tion

.
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^Ŝ1,0•Ŝ1,n&2^Ŝ1,0&•^Ŝ1,n&5s1^c0uâ0ân
†1â0

†ânuc0&

5Js1E
0

pdk

p
~s11s2!

coskn

vk
.

~11!

For n→`, we can show that the leading behavior of this
given by an exponentially decaying factore2n/j, where

j215 ln(s1 /s2). For s151, s25
1
2, we getj51.44. This re-

markably short correlation length agrees well with numeri
results as will be seen later. It may also be compared to
much larger values for the pure spin-1 antiferromagne
which j'6,24,26 and the pure spin-12 antiferromagnet in
which j5`.

We can use spin wave theory to study a dimerized mo
described by the Hamiltonian

H5J(
n

@~11d!Ŝ1,n•Ŝ2,n1~12d!Ŝ2,n•Ŝ1,n11#, ~12!

where the dimerization parameterd lies in the range@0,1#.
We find that the ground state and low-energy excitations
qualitatively similar to the undimerized case,d50. Namely,
the ground state hasstot5N(s12s2). There is a gapless
branch of excitationsv1k with stot5N(s12s2)21 and dis-
persion

v1k5J~2s11s2!1JA~s12s2!
214s1s2~12d2!sin2~k/2!,

~13!

and a gapped branch of excitationsv2k with
stot5N(s12s2)11 and whose dispersion is

v2k5v1k12J~s12s2!. ~14!

To this order in spin wave theory, the gap atk50 is given by
D52J(s12s2) independent ofd. Numerically, however, we
will see below that the gap increases almost linearly withd
for the spin-1/spin-12 alternating spin chain.

FIG. 2. The two branches of the spin wave dispersion curv
v1k andv2k @Eq. ~7!#, in units ofJ, for the alternating spin system

with s151 ands25
1
2.
l
e
n

el

re

B. Variational calculation

The short correlation length found above for the altern
ing spin-1/spin-12 chain suggests that aproduct wave
function24 could be a good variational trial state for obtainin
the ground state properties. We work in the Fock space b
of the alternating spin chain. We are interested in a va
tional wave function in which the stat

u••• 1 2 1
2 1 2 1

2 •••& of Fig. 1 is expected to have th
largest amplitude, say, 1. We can then show that a stat
which there aren spins on the spin-1 sublattice in the sta
sz50 must have a real amplitude with the sign (21)n. This
sign rule ~which is analogous to the Marshall sign rule f
the spin-12 chain25! can be proved by using the Perro
Frobenius theorem and the fact that the states with an
number of spins in thesz50 state are connected to stat
with an even number of spins in thesz50 states by the
operation of an odd number of exchange terms in the Ham
tonian @Eq. ~1!#.

Let us now introduce the following real and positive am
plitudes for the six states possible for a nearest neigh

bond, namely, unit amplitude foru1,2 1
2& andu21,12&, an am-

plitude h1 for u0,2 1
2& and u0,12& and amplitudeh2 for

u21,2 1
2& and u1,12&. Now, we consider a variational wav

function of the form

uC~h1 ,h2!&5(
a

Cauca&, ~15!

wherea runs over all the 6N possible states of N spin-1 an
spin-12 sites andCa5(21)n) jva, j , where the product is
over all the 2N bonds,va, j is the amplitude of the bondj
andn denotes the number of spins in thesz50 state in the
chain statea.

The stateuC(h1 ,h2)& is translationally invariant. How-
ever, it is not an eigenstate of the total spinŜtot

2 or even

Ŝtot
z ; further, since it includes states$sn

z% and $2sn
z% with

equal amplitude, the expectation value ofŜ1,n
z or Ŝ2,n

z is zero
for any siten. In spite of these drawbacks, we will see belo
that theuC(h1 ,h2)& gives a good variational ground sta
energy for an appropriate choice ofh1 andh2.

Calculations involving the stateuC(h1 ,h2)& can be car-
ried out using the transfer matrix method. For instance,

probabilities of the six possible bonds foru 12,n&
^ ^1,n11u are given by the 233 matrix

A5S h2
2 h1

2 1

1 h1
2 h2

2D ,
while the probabilities of the bondsu1,n& ^ ^ 1

2,nu are given by
the 332 matrix AT. Then the norm
^C(h1 ,h2)uC(h1 ,h2)&5Tr(AAT)N. The matrix AAT has
the eigenvaluesl15(11h2

2)212h1
4 and l25(12h2

2)2.
Hence,^C(h1 ,h2)uC(h1 ,h2)&5l1

N1l2
N , which is domi-

nated byl1
N asN→`.

We can now calculate the variational energy per bo
e(h1 ,h2) through the expression

s,
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e~h1 ,h2!^C~h1 ,h2!uC~h1 ,h2!&5
1

2N
^C~h1 ,h2!uHuC~h1 ,h2!&. ~16!

This is equal tô C(h1 ,h2)uŜ1
2,n•Ŝ1,n11uC(h1 ,h2)& by translational invariance. We find that

e~h1 ,h2!5J
@2 1

2 ~11h2
2!3~12h2

2!22A2~11h2
2!h1

2h2~11h2!2h1
4~12h2

4!22A2h1
6~11h2!#

@~11h2
2!212h1

4#2
. ~17!
e
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We now minimize this function ofh1 andh2, and find that
the minimum occurs ath150.842, h250.445, giving
e520.701J. This compares favorably with the spin wav
result of20.718J.

We can compute the two-spin correlation function a
determine how it decays asympotically at large distanc
The correlation lengthj for the asymptotic decay is given b
j215 ln(l1 /l2). Hencej is 0.749 at the values ofh1, h2
given above. This is even shorter than the value of 1
found from the spin wave theory.

We can improve the variational calculation by allowin

the five independent~taking the amplitude foru1,2 1
2&51)

real amplitudes for the different possible states of the nea
neighbour bonds rather than only two amplitudes (h1, h2) as
used above. However we will not do so here as such a
culation would be tedious and the two-amplitudeansatzhas
already given us a good understanding of the short corr
tion length and the ground state energy.

C. DMRG studies

We have performed DMRG calculations on alternati
spin-1/spin-12 chain with open boundary condition for th
Hamiltonian in Eq.~1!. We compute the ground state pro
erties by studying chains of up to 50 to 100 sites. The nu
ber of dominant density matrix eigenstates,m, that we have
retained at each DMRG iteration is between 80 to 100. T
DMRG procedure follows the usual steps for chains d
cussed in earlier papers15,17,18except that the chains do no
have the symmetry between the left and right halves and

FIG. 3. Extrapolation of the ground state energy/site (e0), in
units of J, as a function of inverse system size, for the unifo
alternating spin-1/spin-12 chain.
s.

4

st

l-

a-

-

e
-

e

density matrices for these two halves have to be constru
at every iteration of the calculations. The DMRG results
ported in this paper are all specialized to the case ofs151

and s25
1
2. The ground state of the chain lies in th

Ms5N(s12s2) sector for a 2N sites system and we canno
use spin parity symmetry in this sector. In general, forMs
Þ0, parity cannot be exploited, keepingMs a good quantum
number. The ground state is confirmed to be
Ms5N(s12s2) sector for a chain of 2N sites from extensive
checks carried out by obtaining the low-energy eigenstate
differentMs sectors of a 20-site chain. A state correspond
to the lowest energy inMs5N(s12s2) is found in all sub-
spaces withuMsu<N(s12s2) and is absent in subspace
with Ms.N(s12s2). This shows that the spin in the groun
state,sG5N(s12s2). In Fig. 3, we show the extrapolation o
the energy per site as function of inverse system size.
energy/site,e0, extrapolates to20.72704J for the ground
state of the system. The spin wave analysis value
20.718J for e0 is higher than the DMRG value. It is worth
mentioning at this point that the DMRG ground state ener
site agrees to better than 1027 with the exact solution in the
case of uniform spin-12 Heisenberg antiferromagnet.15,16 It is
interesting to note that, in the alternating spin case,
energy/site lies in between the values for the pure sp12
uniform chain (20.443147J) ~Ref. 27! and the pure spin-1
uniform chain (21.401484J).16

In Fig. 4, we show the spin-density at all the sites of
chain of 100 sites. The spin-density is uniform on each of
sublattices in the chain. The expectation value ofŜz at the

FIG. 4. Expectation value of thez component of the site spin v
site index, n. The upper and lower points are for the spin
( i51) and the spin-12 ( i52) sites, respectively.
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spin-1 site reduces from the classical value of 1
0.79248, while, at the spin-12 site, it is20.29248. This can be
compared with spin wave values of 0.695 and20.195 for
spin-1 and spin-12 sites, respectively. We note that the sp
wave analysis overestimates the quantum fluctuations.
very interesting to note that the spin-density distribution
alternating spin chain behaves more like in a ferromagn
chain than like in an antiferromagnet, with the net spin
each unit cell perfectly aligned~but with small fluctuations
on the individual sublattices!. In a ferromagnetic ground
state the spin-density at each site has the classical value
propriate to the site spin, whereas for an antiferromag
this averages out to zero at each site as the ground sta
nonmagnetic. From this viewpoint, the ferrimagnet is simi
to a ferromagnet and is quite unlike an antiferromagnet. T
spin wave analysis also yields the same physical picture

Owing to the alternation of the spin-1 and spin-1
2 sites

along the chain, one has to distinguish between^Ŝ1,0
z Ŝ1,n

z &,

^Ŝ2,0
z Ŝ2,n

z &, and ^Ŝ1,0
z Ŝ2,n

z & pair correlations. We calculate a
the three correlation functions with the mean values s
tracted out as in Eq.~11!, since the mean values are nonze
in this system unlike in a pure antiferromagnetic spin cha
In the DMRG procedure, we have computed these corr
tion functions from the sites inserted at the last iteration
minimize numerical errors. In Fig. 5, we plot the two-sp
correlation functions in the ground state as a function of
distance between the spins for an open chain of 100 sites
three correlation functions decay rapidly with distance. Fr
the figure it is clear that, except for^Ŝ1,0

z Ŝ2,n
z & correlation,

other correlations are almost zero even for the shortest
sible distances. ThêŜ1,0

z Ŝ2,n
z & correlation has a finite value

(20.094) only for the nearest neighbors. This rapid decay
the correlation functions do not easily allow one to find t
exact correlation lengthj for a lattice model though it is
clear thatj is very small~i.e., less than one unit!. As men-
tioned earlier, spin wave theory givesj51.44 while the
variational calculation givesj50.75. This type of decay

FIG. 5. Subtracted two-spin correlation functions~defined in the
text! as a function of distance between the two spins.~a! spin-1
spin-1 correlations,~b! spin-12 spin-12 correlations, and~c! spin-1
spin-12 correlations.
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could be compared with the behavior of the correlation fu
tion at the Majumdar-Ghosh point28 for the pure spin-12
Heisenberg chain with nearest and next nearest neighbo
tiferromagnetic exchange interactions (J12J2 model at
J250.5J1). The AKLT model at the exactly solvable point24

in the case of a pure spin-1 chain described by a biline
biquadratic Hamiltonian also has a very short correlat
length (j50.91). Both the cases compared above, howe
have one property in common, i.e., the exactly solvable po
in both models lie in the gapped phase.

The lowest spin excitation of the alternating spin chain
to a state withs5sG21. To get this state, we target th
second state inMs5sG21 sector of the chain. To confirm
that this state is thes5sG21 state, we have computed th
2nd state inMs50 sector and find that it also has the sam
energy. However, the corresponding state is absent inMs
sectors withMs.usG21u. Besides, from exact diagonaliza
tion of all the states of an alternating spin chain with 8 sit
we find that the ordering of the state is such that the low
excitation is to the state with spins5sG21. We have ob-
tained the excitation gap of the alternating spin chain in
limit of infinite chain length by extrapolating from the plot o
spin gap vs the inverse of the chain length~Fig. 6!. We find
that this excitation is gapless in the infinite chain limit. Th
is very unusual in that the correlation function in the grou
state decays exponentially~in fact j,1) but the system has
a gapless excitation, in agreement with the spin wave an
sis.

Motivated by the spin-wave calculation, we also ha
computed the energy of thes5sG11 state by targetting the
lowest state inMs5sG11 sector. In Fig. 7, we plot the
excitation gap to thes5sG11 state from the ground state a
a function of the inverse of the chain length. The gap sa
rates to a finite value of (1.279560.0001)J. TheSz expec-
tation values computed in this state are found to be unifo
on each of the sublattices~independent of the site! and lead-
ing us to believe that this excitation is not a magnonli
excitation ~quantized in a box! as has been observed for
spin-1 chain in the Haldane phase.16

It would be interesting to know the total spin of the stat
as a function of their energies. For a smaller alternating s
system, it is possible to characterize all the states by t

FIG. 6. Energy gap~units of J) from the ground state to the
lowest state with spins5sG21 as a function of inverse system
size.sG is the total spin of the ground state.
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energy and total spin value, by resorting to an exact dia
nalization scheme. The total spin value of a state is natur
fixed if we exploit the total spin conservation property of t
Hamiltonian while constructing the Hamiltonian matrix. Th
can, for example, be achieved by using a valence b
basis29 for setting up the Hamiltonian matrix. Alternately, w
can also compute the expectation value of the total spin
erator in each eigenstate in theMs50 sector to provide a
spin label for each of the states. We have followed the la
procedure. In Fig. 8, we present the energy levels as a fu
tion of the total spin of the states for an eight site ferrima
netic ring and twelve site spin-12 ferromagnetic and antiferro
magnetic rings. We find that the spin of the state appear
vary irregularly with energy unlike in the case of pure sp
1
2 ferro and antiferromagnets~Fig. 8!. Careful comparison of
the three plots in the figure shows that the low-lying exci

FIG. 7. Excitation gap~units of J) from the ground state~spin
s5sG) to the state with spins5sG11 as a function of the inverse
system size. The convergence to the infinite system is much fa
for this gapped excitation, as compared to the gapless excitatio
Fig. 6.

FIG. 8. Plot of energy~units of J) vs the total spin quantum
number of the complete spectrum of~a! an 8 site ring with an
alternating spin-1/spin-12 arrangement,~b! a ring of 12 site spin-12
antiferromagnet, and~c! a ring of 12 site spin-12 ferromagnet. The
states with very high energies are not shown, for~b! and ~c!.
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tions of the ferrimagnet to spin statesstot,sG is ferromag-
neticlike and to states withstot.sG is antiferromagneticlike,
for finite systems.

We have also studied the dimerized alternating spin ch
defined by the Hamiltonian@Eq. ~12!# with d, the dimeriza-
tion parameter, in the range 0,d<1. Earlier works on spin
chains30 have revealed that with the alternationd in the ex-
change parameter, the half integer spin chain will have
unconditional spin-Peierls transition whereas for integer s
chain the transition is conditional. This conclusion has be
drawn from the fact that, with the inclusion ofd, the mag-
netic energy gainDE can be defined as

DE~2N,d!5
1

2N
@E~2N,d!2E~2N,0!#, ~18!

whereE(2N,d) is the ground state energy of the 2N sites
system with alternationd in the exchange integral an
E(2N,0) is the ground state energy of the uniform chain
2N sites. For the pure spin chain, if we assume thatDE
varies asdn for small d, we find thatn54/3 for the spin-12
chain andn52 for the spin-1 chain.30 Thus, for the spin-12
chain, the stabilization energy always overcomes the ela
energy, whereas for the spin-1 case, it depends on the s
ness of the lattice.

We have employed DMRG calculations to obta
DE(2N,d), for small values ofd for the alternating spin
chain. To determine the exact functional form of the ma
netic energy gain, we varied the chain length from 50 site
100 sites and alsom~ the number of states retained in ea
DMRG iteration! from 80 to 100 to check the convergenc
of DE with the chain length. The dependence
DE(2N,d) on 1

2N is linear for thed values we have studied
Figure 9 gives a sample variation ofDE(2N,d) upon 1

2N.
This allows us to extrapolateDE(2N,d) to the infinite chain
limit reliably. In Fig. 10, we show the plot ofDE(2N,d) vs
d for finite 2N values and also the extrapolated infini
chain. We see that there is a gain in magnetic energy u
dimerization even in the infinite chain limit. To obtain th
exponentn, we plot lnDE(2N,d) vs lnd for the infinite chain

ter
in

FIG. 9. Gain in magnetic energy~units of J) associated with
dimerization vs the inverse system size for three different value
dimerizationd. ~a! d50.025,~b! d50.05, and~c! d50.075.
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~Fig. 11!. From this figure, we find that in the alternatin
spin case, for the infinite chainDE'd2.0060.01. Thus, the
spin-Peierls transition appears to be close to being co
tional in this system. The magnetic energy gain/site for fin
chains is larger than that of the infinite chain for anyd values
~Fig. 10!. It is possible that the distortion in finite chain
unconditional while that of the infinite chain is conditiona

We have also studied the spin excitations in the dimeri
alternating spin-1/spin-12 chain. We calculate the lowest sp
excitation to thes5sG21 state from the ground state. W
find that thes5sG21 state is gapless from the ground sta
for all d values. This result agrees with the spin wave ana
sis. The system remains gapless even while dimerized un
the pure antiferromagnetic dimerized spin chains. There
smooth increase of the spin excitation gap tos5sG11 state
from ground state with increasingd. We have plotted this
gap withd in Fig. 12. The gap shows almost a linear beha
ior as a function ofd, with an exponent of 1.0760.01. The
spin wave analysis however shows that this excitation ga
independent ofd.

FIG. 10. Magnetic energy gainDE(2N,d) ~units of J) as a
function of dimerization parameterd for different system sizes. In
the figure 2N550 ~squares!, 2N5100 ~circles! and extrapolated
values withN→` ~triangles! are shown.

FIG. 11. Log-log plot of extrapolated magnetic energy ga
~units of J) for infinite system size and dimerization parameterd.
The slope is calculated to be 2.0060.01.
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III. LOW-TEMPERATURE PROPERTIES

In this section, we present results of our DMRG calcu
tions of the thermodynamic properties of the alternating s
system. The size of the system varies from 8 to 20 sites.
impose periodic boundary conditions to minimize finite si
effects. We set up the Hamiltonian matrices in the DMR
basis for all allowedMs sectors for a ring of 2N sites. We
can diagonalize these matrices completely to obtain all
eigenvalues in each of theMs sectors. As the number o
DMRG basis states increases rapidly with increasingm, we
retain a smaller number of dominant density matrix eige
vectors in the DMRG procedure, i.e, 50<m<65, depending
on theMs sector as well as the size of the system. We ha
checked to find the dependence of properties~with m in the
range 50<m<65) for the system sizes we have studi
(8<2N<20) and have confirmed that the properties do
vary significantly for the temperatures at which they a
computed. The above extension of the DMRG procedur
found to be accurate by comparing with exact diagonali
tion results for small systems. It may appear surprising t
the DMRG technique which essentially targets a single st
usually the lowest energy state in a chosen sector, sh
provide accurate thermodynamic properties since these p
erties are governed by energy level spacings and not
absolute energy of the ground state. However, there are
reasons why the DMRG procedure yields reasonable ther
dynamic properties. First, the projection of the low-lying e
cited state eigenfunctions on the DMRG space in which
ground state is obtained is substantial and hence these
cited states are well described in the chosen DMRG sp
The second reason is that the low-lying excitations of the
system are often lowest energy states in different sector
DMRG procedure and thus their energies are quite accu
even on an absolute scale.

The canonical partition functionZ for the 2N site ring can
be written as

Z5(
j
e2b„Ej2B~Ms! j …, ~19!

where the sum is over all the DMRG energy levels of t
2N site system in all theMs sectors.Ej and (Ms) j are energy

FIG. 12. Excitation gap~units of J) to the state with spin
s5sG11 from the ground state (s5sG) as a function ofd for the
dimerized alternating spin-1/spin-1

2 chain.
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8902 55SWAPAN K. PATI, S. RAMASESHA, AND DIPTIMAN SEN
and z component of the total spin of the statej , B is the
strength of the magnetic field in units ofJ/gmB (g is the
gyromagnetic ratio andmB is the Bohr magneton! along z
direction andb5J/kBT with kB andT being the Boltzmann
constant and temperature, respectively. The field indu
magnetization,̂M &, can be defined as

^M &5
( j~Ms! je

2b„Ej2B~Ms! j …

Z
~20!

the magnetic susceptibility,x, by relating it to the fluctuation
in magnetization,

x5b@^M2&2^M &2# ~21!

and similarly the specific heat,C, by relating it to the fluc-
tuation in energy, can be written as

C5
b

T
@^E2&2^E&2#. ~22!

The dimensionalities of the DMRG Hamiltonian matric
that we completely diagonalize vary from 2500 to 3000, d
pending upon the DMRG parameterm and theMs value of
the targetted sector, for rings of sizes greater than 12. Th
matrices are not very sparse, owing to the cyclic bound
condition imposed on the system. The DMRG propert
compare very well with exact results for small system si
amenable to exact diagonalization studies. In the discus
to follow, we present results on the 20-site ring although
calculations have been carried out for system sizes from
20 sites. This is because the qualitative behavior of the p
erties we have studied are similar for all the ring sizes in t
range.

We present the dependence of magnetization on temp
ture for different magnetic field strengths in Fig. 13. At lo
magnetic fields, the magnetization shows a sharp decrea
low temperatures and shows paramagnetic behavior at
temperatures. As the field strength is increased, the ma
tization shows a slower decrease with temperature and
field strength comparable to the exchange constant, the m
netization shows a broad maximum. This behavior could

FIG. 13. Plot of magnetization/site as a function of temperat
T for five different values of magnetic fields,B. Squares are for
B50.1J/gmB , circles forB50.5J/gmB , triangles forB5J/gmB ,
diamonds forB52J/gmB, and inverse triangles forB53J/gmB .
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understood from the type of spin excitations present in
system. The lowest energy excitation at low magnetic fie
is to a state with spins less thansG . Therefore, the magne
tization initially decreases at low temperatures. As the fi
strength is increased, the gap to spin states withs.sG de-
creases as the Zeeman coupling to these states is stro
than to the states withs<sG . The behavior of the system a
even stronger fields turns out to be remarkable. The mag
tization in the ground state (T50) shows an abrupt increas
signalling that the ground state at this field strength h
Ms.sG . The temperature dependence of the magnetiza
shows a broad maximum indicating the presence of st
with even higher spin values lying above the ground state
the presence of this strong field. Only at very intense fie
do we find the magnetization decreasing with increas
temperature. This happens because at such large
strengths, the ground state is the highest spin state pos
for the system.

The dependence of magnetization on the magnetic fiel
shown at different temperatures in Fig. 14. At low tempe
ture the magnetization shows a plateau. The width of
plateau decreases as the temperature is raised and even
the plateau disappears. The existence of the plateau sh
that the higher spin states are not accessible at the ch
temperature. At higher fields, the larger Zeeman splittings
higher spin states become accessible leading to an increa
the magnetization. All these curves intersect atB5J/gmB
and B52.5J/gmB and these fields are close to the fie
strengths at which the ground state switches from oneMs
value to another higher value.

The dependence ofxT/2N on temperature for differen
field strengths are shown in Fig. 15. For zero field, the z
temperature value ofxT is infinite in the thermodynamic
limit and for finite rings is finite and equal to the fluctuatio
in magnetization. For the ferrimagnetic ground sta
xT/2N, as T→0, is given bysG(sG11)/6N. As the tem-
perature increases, this product decreases and shows a
mum aroundkBT50.5J before increasing again. The min
mum manifests due to the states withMs,sG getting
populated at low-temperatures. These states in the infi
chain limit turn out to be the gapless excitations in the sp

e FIG. 14. Magnetization/site vs the magnetic field strengthB, in
units of J/gmB , for four different temperaturesT. T50.3J/kB re-
sults are given by squares,T50.5J/kB by circles,T50.7J/kB by
triangles, andT5J/kB by diamonds.
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55 8903LOW-LYING EXCITED STATES AND LOW- . . .
trum. The subsequent increase in thexT product is due to the
higher energy and higher spin states accessed with fur
increase in temperature. Experimentally, it has been foun
the bimetallic chain compounds that the temperature
which the minimum occurs in thexT product depends upo
the magnitude of the spinss1 ands2.

13 The NiII-CuII bime-
tallic chain shows a minimum inxT/2N at a temperature
corresponding to 55 cm21 ~80 K! and independent estimat
of the exchange constant in this system is 100 cm21.31 This
is in very good agreement with the minimum theoretica
found at temperature (0.560.1)J. The minimum inxT/2N
vanishes atB50.1J/gmB corresponding to;10T and it
would be interesting to study the magnetic susceptibility
other systems experimentally under such high fields. T
low-temperature zero-field behavior of our system can
compared with the one-dimensional ferromagnet. In the
ter, the spin wave analysis shows that thexT product in-
creases as 1/T at low temperatures.32

In finite but weak field, the behavior ofxT is different.
The magnetic field opens up a gap andxT goes exponen-
tially to zero for temperatures less than the gap in the app
field. Even in this case a minimum is found at the sa
temperature as in the zero-field case, for the same re
discussed in the zero field case.

In stronger magnetic fields, the behavior ofxT from zero
temperature up tokBT50.5J is qualitatively different. The
minimum in this case vanishes. In these field strengths,
states with higherMs values are accessed even belo
kBT50.5J. The dependence ofxT abovekBT50.5J is the
same in all cases. In even stronger magnetic fields, the in
sharp increase is suppressed. At very low temperature,
xT product is nearly zero and increases linearly withT over
the temperature range we have studied. This can be at
uted to a switch in the ground state at this field strength. T
very high temperature behavior ofxT should be independen
of field strength and should saturate to the Curie law va
corresponding to the mean of spin-1 and spin-1

2 values which
is 11/24.

The temperature dependence of specific heat also sh
marked dependence on the magnetic field at strong fie
This dependence is shown in Fig. 16 for various fie

FIG. 15. xT ~defined in the text! per site as a function of tem
peratureT for various magnetic field strengths,B. Zero field results
are shown by squares,B50.01J/gmB by circles,B50.1J/gmB by
triangles, andB5J/gmB by diamonds.
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strengths. In zero and weak magnetic fields, the specific
shows a broad maximum aroundkBT50.6J. At strong-
magnetic field (B5J), there is a dramatic increase in th
peak height at about the same temperature, although
qualitative dependence is still the same as at low-magn
fields. This indicates that the higher energy high-spin sta
are brought to withinkBT of the ground state at this mag
netic field strength.

Studies on dimerized alternating spin chains show qu
tatively similar trends as the uniform chains. This is not s
prising as the low-energy spectrum of the system does
change qualitatively upon dimerization.

IV. SUMMARY

We have studied the alternating spin-1/spin-1
2 model in

detail. The ground and low-lying excited states have be
analyzed by using a spin wave theory as well as DMR
calculations. Both the methods predict a ground state w
spin sG5N(s12s2) for a 2N site system. They also predic
a gapless excitation to a state withs5sG21 in the infinite
chain limit. The lowest gapped excitations are to states w
spin s5sG11. The very short correlation length in th
ground state of the system motivated its description b
variational trial function of the product type. Interestingl
the spectrum is qualitatively unchanged upon dimerizati
The dimerization is itself conditional in the infinite cha
limit.

The DMRG technique is also employed to obtain the lo
temperature thermodynamic properties. The magnetic
ceptibility shows very interesting magnetic field dependen
ThexT vs T plot shows a minimum at low-magnetic field
This minimum vanishes at high-magnetic fields. The spec
heat shows a maximum as a function of temperature a
fields. The height of the maximum shows a dramatic incre
at high-magnetic field. Experimental systems describable
this model exist and have been studied quite extensively

FIG. 16. Specific heat/site as a function of temperatureT for
four different values of magnetic fields,B. Zero field data are
shown by squares,B50.01J/gmB by circles,B50.1J/gmB by tri-
angles, andB5J/gmB by diamonds.
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is hoped that our studies will motivate experimental stud
of these systems in high magnetic fields.

Note added in proof.Recently, two papers33 came to our
notice which deal with the same system. They study the lo
lying excited states of the one-dimensional spin-1–spin-
alternating spin system by both analytical~spin-wave and
matrix product methods! and numerical~quantum Monte
Carlo! techniques. A few of their results overlap with o
work, although we emphasize totally different aspects of
problem.
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