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Exciton-phonon coupling functions in uniaxial crystals
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Explicit expressions are found for the coupling functions of Wannier excitons interacting with both the
longitudinal and transverse lattice vibrations in uniaxial crystals. The anisotropy in the effective mass of an
electron and a hole, static and high frequency dielectric constants, deformation-potential constants, and the
sound velocity in the crystal are all taken into considerati@®163-1827)05301-(

[. INTRODUCTION teraction of an electron and a hole with longitudinal optical
(LO) and transverse optic&lO) phonons. This interaction is
Recently, there has been considerable interest in aniseealized by means of an electric field of the polarization
tropic and layered structures where exciton motion esserwave. The energy operator of such interaction may be pre-
tially differs from that in isotropic and bulk systemhéThese  sented &<
structures are expected to have improved optical and trans- .
port properties with a large potential for future device appli- H(re,rn)=—eo(pe.ze) +eo(pn.zn), (D)
cations. A number of effects, as it seems, are directly con- N :
nected with anisotropy. It was shown, for instance, in Ref. j/vher_e{pi Zij=r; are the cyImdrlc_:aI coordl_nates of_the elec-
that crystal anisotropy of 6H-SIiC is the reason for the new"on (=€) or of the hole {(=h) with the cylinder axis along
line in the reflectivity spectrum. Giant energy splitting of the 2 gnd ® 1S elec_trostatlstlcal potential PF’erator of t.he polar-
2P exciton states of up to 7 meV due to anisotropy of thelzation field which can be expanded in Bloch series as fol-
crystal was observed in Ref. 4. Many other interesting effectdOWS
had been investigated in earlier publicatideee, e.g., Refs.

1 , .
5-9. o(p Z)=—— C el@upitaz) 4 o+  ag-iaLet+az)
In many studies of exciton-phonon interaction in crystals e(piz) \/Vq%m (<PquL Foja, )
the coupling function is used in a simplest form applicable (2

only for qualitative estimates. To study the structure of light
absorption bands and its dependence on temperature, to cfl
culate the exciton lifetime, free path, etc., it is necessary t
know the explicit form of the coupling functiof. Some de-
tails of this problem were reviewed in Refs. 11 and 12. -
A general expression for the exciton-phonon couplingterms of Bose operators of creatibii and annihilatiorb of
functions of the isotropic ionic crystal was derived by the vibration quanta. Proportional to the amplitude of the
Ansel’'m and Firso¥**and also by Toyozaw®. This prob-  Vibrations there arises a polarization field that for nonmag-
lem for anisotropic crystals was considered most thoroughlyetic medium without electrical currents is given by
by Fock, Kramer, and Bmer'® for excitons interacting with

hereV is the volume of the crystal. The summationg2h

ave to be performed over all possible values of both longi-
Qudinal and transverse components of the vibration wave
vector g. The operatorsfo%‘qﬂ ‘:"qu% may be expressed in

optical phonons. An isotropic effective potential with aver- o i | - i(q, p+az)
aged material parameters has been found. P(pi.zi)= \N% (FHGIquLFi eéL)(quqie s

In the present paper we will obtain the explicit expres- ) '
sions for the coupling functions of Wannier excitons with +b;, e Amtaz)y 3)

. . . . q9
both the longitudinal and transverse optical and acoustic I

phonons, taking into consideration the anisotropy in the efwhere €, - are unit polarization vectors of phonons, and
fective mass, dielectric and deformation potential constantd; | .F . represent certain parameters to be defined. To do that
and the sound velocity in the crystal. We limit ourselves towe start from the relationship
the case of cylindrical symmetry. 1

The_ paper is organ_lz_ed as follows_. Sectlon_ Il develop_s the P(pi,z)= —grads(p; ,Z). (4
formalism for determining the coupling function of exciton 4m
with the optical vibrations in uniaxial crystal. In Section IlI S P : :

; . . ) O ubstituting Eqs(2), (3) in Eq. (4) yields

the coupling functions of exciton with the acoustic vibrations g Eas2), 3 a4y
are derived using the deformation potential approach. Sec- =
tion IV contains our summary. —4i B

mb%. 5

Further, we will make use of the expression for the energy of
Exciton interaction with optical vibrations of the aniso- Coulomb interaction of two charges in anisotropic crystalline
tropic polar lattice will be considered as an independent inimedia. In order to account for the uniaxial symmetry of the

Paja, —
II. EXCITON COUPLING WITH OPTICAL PHONONS
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media under con3|derat|on we introduce anisotropic dielecg(2)
tric constants;” ( j=00), whose components are par-
allel and perpendlcular to the main axis of the crystalto

the z axig). Then in accordance with Fresnel equations we

:2 <0|H(peze1thh)|quJ_><quJ_|H (peze1phzh)|0>

have for a uniaxial crystal the solutions qa; w(q),9.)—0 "
gj =£J-L , (6) .
where|0) corresponds to the wave function of the phonon
that corresponds to the ordinary ray, and vacuum,|qy,q, ) refers to the wave function of the state of
one virtually excited phonon with components of wave vec-
1 sifd cogo tor (q;,0,) and with the energy(q,q,). Substituting Eq.
8_]_: _sﬂ_+ PRI () (5) into Eq.(2), Eqg. (2) into Eq. (1) and supposing the non-

] dispersiveness of the optical mod@#olstein model

for the extraordinary ray, where glsq, /|q|, cog9=q/|q|,

|al=a?+q7. Equation(7) may be rewritten otherwise as 0(G.0)=0y . . 15
1 1 (qf qf one obtains
& |Q|2( ST)' ®
J : P (47TeFHYL)2 1 N
! . Eﬁi):_ 5 (2— 'L (Pe™Pn) 1) (Ze~2n)
This allows us to specify the mean valuegfas ' VO . aja. QH +ar
le} _ ald (ph=pe) +idy(zn—2e)
2% 1 12 [ ~2 e Lthn I(Zh=2e)y. (16)
8= g g e drt e 9
€ |al

Here E tends to zero, whem,=z, and p,= p;, simulta-
Such form ofe; is convenient in applications and has beenneously.

used by Fock, Kramer, and Bier'® for the effective poten-  In @ more general case, wheg#z, and pe# p,, chang-
tial of exciton-phonon interaction. We will take; in the  Ing the coordinates of the electron and hole in Ed), and
form of Eq. (8). making use of
In the case when the lattice vibrations vectéas directed ) )
transversely to the wave propagation veajoone can rep- » * 2m  gldilpemplcosytigylze=z|
resent Eq(8) as follows?8 f qquLf quJ de tﬁﬂlf
1 qu( 1 1) 22
—=— T =] (10 = , 1
R oo Pl 22l 1
As the static dielectric constantso( gy) are due to both  one can fm(EhZ) to be
the electronic and ionic polarlzatlons while the dynamic
(high-frequency dielectric constantSa@ eL) are caused by 87e?E2
the electronic polarization only, one may suppose that the Eﬁ2ﬁ= L ) (18
difference in the energy of Coulomb interaction of two T Qo Vpe— pnl 1 ze— 24/

charges in dielectric media witky ande., o )
Taking into account Eq8) in Eq. (11), as well as Eq(18)

e? e? on the right-hand side of Eq11), one arrives at the final
“adler] Teer] B 1) form for F=F{+FZ:
where Fl\/lﬂzl N N1
“7qf Var | ol g~ o) i 5T mor ) | =P
|6t = \Tpe— prlZ+ 12— 2], (12 d b o7

will coincide with the energy of polar displacement of ions
Eion,™ which is represented above by the operator
H(re,ry) of Eq.(1). Owing to the small displacement of ions
one may estimate this energy by means of the perturbation
theory

Th|s form of F is valid for the longitudinal lattice vibration.
Substituting Eq(10) in Eq.(11) in an analogous manner it is
easy to show that for transverse vibrations mode one gets

1 1 1 1
( oL 8—) QI(T T)
Obviously, the first-order correction to the enerfg{"’ that
goes from the average of the operatd) over the wave Now, when all the parameters of E({) are defined, let us
functions of phonon vacuum, is equal to zero. The secondrossover in Eq(1) to the second quantization picture with
order one is determined by respect to exciton variables. To do this, it is convenient to

T
Fquqi

\/qu
Eign=EM+E?@+.... (13 “dl
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introduce, at first, the center-of-mass and relative coordinatesgy to the one used in Refs. 13, 20 we choose the form
for the system with cylindrical symmetry:

Lt 4l LN pye g TR
me I’e +mh I‘h . |k ,k =——@8 Py l8gy | ex—e'( LRy I H)
Ru=——tr— 1 fi=p, f=z, (i=eh) Lokp JmaZbey W
Me™ M (24)
PL=Pe™Pny P|=Ze 2n- (2D Herea,, andk, are the exciton Bohr radius and the exciton

Then the electron and hole coordinates may be expressed ggasimomentum in the plang,f/), respectivelybe, andk
refer to the same parameters in théirection.
HL mh) Thus, the operator of exciton-phonon interaction in the
( ) =R, = —n_Pu L (22 second quantization representation accounting for linear op-
erators only will be read as

M=mgs+my,

wherem, refers to the electron anm,, the hole mass. Here Vexph= E (kjk, [H(R,p)|K’ |k’ )aka akH (25)

and below the uppeflower) symbol in parentheses on the H L

left-hand side of the equation corresponds with the upper ik

(lower) sign on the right-hand side of the equation. Substi- . I

tuting Egs.(20), (18), (5), (4) into Eq. (1) we come to the where ak K (akLkH) are creation(annihilation operators of

Hamiltonian exciton Wlth quasimomentum componerks ,k;. Using
Egs.(23), (24) in Eqg. (25 and carrying out the integration in

. Amie Fgg R cylindrical coordinate system over all the possible values of
H(R,p)= 2H L (D, parameterg|, p, , R|, R, , as over angles between vectors
W da Jaf+a? (q,/\p,) and R,/\q, +k, +k!) (Ref. 21, we obtain
+biqH RE el(@R+aR) (2 2
~ [
Veyon= ®-T(qp,q,)a; a
X[eiqim(mh/MlHqupH(mu]/M”) ex-ph %l (9.9.) Kk @k+a, kgt
kik
[I*L
_ a—igqy p, (MEME) —iqupy(mlmly -
e 1P (Mg P (Mg ] (23) ><(quqL birq” 7qi) (26)

The wave function of the Wannier exciton corresponding to
the hydrogenlike model for the uniaxial crystal with the anal-with

\/ (1 1
2me? Q.07 2 +Q”ql el €] 1 1
D (0).0,)= ququ - 27

Zi(a,.q)  Za(a..qp)

for exciton coupling with longitudinal optical phonons, and

. \/27762 1 1 1 1
Pop(a1,9)= Ny~ | T o Al T

©

Yagf 1 - ] 29)

qf+a? | Z2(a, .qp Z3(q, qp)

for exciton coupling with transverse optical phonons, whereexplicit form. This function tends to zero withy ,q, —0,
and has a maximum at small valuesaf,q, . It does not

Mie 2 m“e 2 depend on the quasimomenta of excitons as well as on the
Z (q..q)=1+ Xq [h} %q n| exciton band width. In the absence of the anisotropy of crys-
i 2 "t Mt 2 "Ml tal (m{=mi", el=c!, ag,=be, andQ=0,) the coupling

(290  function (27) coincides with the one found in Refs. 13 and
15 for isotropic crystals. The energy coupling of exciton with
The exciton-phonon interaction operat@6) describes the the transverse optical phonons, as it is seen from(E8),
elastic and inelastic scattering of excitons with the emissionends to zero for isotropic crystal.
or absorption of phonons in uniaxial crystals. As in isotropic
crystalg® the number of excitons remains unchanged while
the number of phonons changes. The functldﬂt{qH a,)
and®’ (qy,q9.) represent the exciton LO- and exciton TO- A general expression for the exciton-phonon coupling
phonon coupling functions for anisotropic ionic crystals infunction of an isotropic nonpolar crystal was derived by

IIl. EXCITON COUPLING WITH ACOUSTIC PHONONS



55 EXCITON-PHONON COUPLING FUNCTIONSN. . .. 891

Ansel'm and Firso¥ as well as by Toyozaw®.Below we means the same as in Sec. Il, the operator of the creation
will obtain the explicit expression for the coupling function (annihilation of a phonon with quasimomentum components
of Wannier excitons with acoustic phonons taking into con-{q, ,q}=q. Here we suppose that the frequency dependence
sideration the anisotropy in the effective mass, deformatiorf an acoustic phonon afth branch on the wave vector may
potential constants, and sound velocity in crystal. We limitbe represented as
ourselves to the case of cylindrical symmetry.
Exciton interaction with vibrations of the anisotropic non- w()=S,/q|. (34

olar lattice will be treated as an independent interaction of , . _—
gn electron and a hole with Iongitu%inal and transvers Llsmg Eqs._(32), (33) the H_amﬂtpnlan(30) for the deforma-
acoustic phonons. We shall apply the deformation-potentiaIon potential can be rewritten in the form
method? to write the energy of interaction of excitons with 7
acoustic vibrations. The fundamental idea of the ﬁ(re,rh): —i/
deformation-potential approach introduced by Shockley and
BardeeR® consists in calculating the electron scattering by
lattice waves by taking as the interaction potentifl;), the
;hift i.n energy_bancEl(r) resulting from dilation. Thg jus- —el@emtazy, (g, ,qH)](Bq q +6fq )
tification for this assumption can be easily generalized for I (R
anisotropic nonpolar crystals to include scattering of an ex- (35
citon by transverse as well as longitudinal acoustical modes.
When the dilation of the band-edge points is expressed with'e"®
help of the field of displacemend(r), the Hamiltonian of n I
exciton-phonon interaction then becomes Cj c

w,-(ql,q>=E(eqiql>+T;|<eqlq>. (36)

1
2PV(uE¢1\| (97 +ap)™

% [ei (CILPe+ qHZe)We( qJ_ ' qH)

H(re,rn)=—SpG"e,.(p;,2)) + SpGlre,u(p; 2, _ _
(300  As usual, the product of unit vectors obeys the following

whereC;* is the tensor of the deformation potential for an equation:

electron {=e) or of the hole (=h), €,, refers to the tensor & & =5, (37)
function of the mechanical straifip; ,z;}=r; are the cylin- L

drical coordinates of the chargewith cylinder axis along \here 5, | denotes Kronecker symbol. We should expect
z. Above, repeated indexes are to be summed on. The synat scattering of excitons will occur due to longitudinal and
bol Sp means that summation is carried out over diagona{ransverse waves. For pure'y |Ongitudina| mo@m direc-
elements of matrices product. For the case of cylindrication of displacemene which coincides with the direction of

symmetry these matrices are written as wave propagatiom) the components of the unit vector can
C Ji 0 e 0 be determined as
0o Ct 0 ¢ 1 q
o 1 (39)
Instead of deformation potential componefis, C' often ' \/qEJrqu q-
has been used as the componeng,=C* and ) o ] )
EUZCH_CL. Equation(36) for longitudinal vibrations then reads
The strain tensor components for the case of low defor- L 2
mation are given by 1 Ciar  Cqi
wiL(a,q)= N ANy + s (39)
(o 2y ) ienz) A
LiP-4 ap 0 1A oz For purely transverse modeal(q), obviously, the equality

(32 must hold that

whereU, , U are thel and|| components of the vector field
of displacement, which in quantum representation may be
expanded as follows

e, d1 +equ||=0. (40

Hence, the components of the unit vector for the transverse

U(p;.z) =\ " > — ! T ICARAR mode e
2pVig (a7 +aj) . 1 +q )
T
eql eqH ~ ~ 4 ql+qH a.-
o e S < | |
Vs, Vs T I Inserting Eq.(41) in Eq. (36) the value ofw for a transverse

. . . modes becomes
WhereeqL and & are the unit vectors of displacement.in

and| to the crystal axis direction§, andS; refers to trans- a.q ct  cl
verse and longitudinal sound velocity in the crystal, corre- W (9, ,9) == 1 —') (42
spondingly, p is the density of the materiab;iq”(bqlqu) Vai +q; \/§ \/ﬁ
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It should be noted here that if the difference of modules ofwhere § is the Dirac delta function. Inserting Eg&l7) and
terms in parentheses of E@?2) is negative, then it becomes (48) into Eq. (44) and Eq.(44) into Eq. (25 we can obtain
necessary to change the signs of the valueg,oéndq in  the operator of exciton-phonon interacti@6) with

Eq. (41).

To define the operator of the exciton-acoustic-phonon in- ol cl
teraction for uniaxial crystal it is convenient to introduce the 9 e +qz_e
center-mas® and relativep coordinates in the system with % 1 L NS I \/ﬁ
cylindrical symmetry as it was done in the previous section acdL.qp) 20V (F + )7 ZZ )
by Eq. (21). Hence, substituting Eq21) into Eq. (35) we pYAALTA eld..q

obtain L C”
o =+l =
1
A MmN o
Hao(R,p) —i E (AR +qR) ZXq, .qp) /'
aclR,p quH (qL+q|)1’4 h(dL . q)
><[ei%m(mn/MlH'qHPH<mh”\"”)we(qL .qp) for exciton coupling with longitudinal acoustic vibrations
- TR and
— e~ iaLpL (Mg/MT) —iqyp (me/MT)
XWi(dy ,0)](Dgq, +b7g q)- (43 C. ol
. . _ _ T fi q.q Vs, s
This is a quite general expression for the deformation poten-  @,q(d.,G)= \/5 VE+a)™\ 24 )
tial coupling. pV QL Tq (AL q)
Now, using the wave function given by E®4), we can c C”
average Hamiltoniari43) upon exciton variables. Account- — 1
ing only for the linear terms in the operator upon exciton- \/§ \/—
phonon variables, the matrix elemégpn the right-hand side Zh(Ch -qH) (50)

of Eq. (25)], which is taken between the anisotropic exciton

states, can be written as . . . S
for exciton coupling with transverse acoustic vibrations. In

Egs.(49) and(50) the functionZ is presented above by Eg.

(k kj|Hao(R,p)[K K[ ) (29). The function®" (g, q;) represents in explicit form
the exciton-phonon coupling function for excitons interact-
— / h 1 i 1 ing with longitudinal (L) and transverse(T) acoustic
2pV Tragxbex Vi (qf+qﬁ)1/4 phonons in uniaxial nonpolar crystals. These functions tend
h - . to zero withq, ,q;— 0, simultaneously, and have maxima at
X1 R(1we =1 wh)(bgq, + bqu —q,) (44)  small values of botlg andg, . The functionsp, and®+ do

not depend on quasimomenta of excitons as well as on the
where the parameteri; and |, in cylindrical system are exciton band width. In the absence of the anisotropy of crys-
tal(m=ml, ct=cl, s = dag,=bey th l
represented as al (my =mj, C; i» SL=9, andae,=be,) the coupling
function (49) coincide with the one found in Refs. 14 and 15
o for isotropic crystals. There may be a discrepancy by the
IR=f dR”J R, dR, doexdiR, (g, +k, —k])cosd factor of 2/3, because in these papers the deformation poten-
0 tial constant is chosen to be Z3nstead ofC. For the case

: / of coupling with transverse vibrations this function, as it is
+ + - ’

iR (ay+kj—k{)] 45 ceen from(50), is equal to zero.

(e 0 0 2
'Lh]:J defo p.dp, fo dee2Vrilag pjlb, IV. SUMMARY

The exciton-phonon interaction in the anisotropic semi-
conductor has been extensively investigated because of inter-
(46) est in their fundamental physical properties as well as in their
device applications. A number of effects are directly con-
Performing integrations, one gets the explicit expressions forected with the anisotropy of this interactitif. To study the
these triple integrals structure of light absorption bands, its dependence on tem-
perature, and to calculate the exciton lifetime, free path, etc.,
IR:(2w)35(qi+ki—ki)5(qH+k“— k), (47) it is necessary to know the explicit form of the interaction
energy of excitons with phonons in an anisotropic crystal,
-2 rather than one which usually has been used in simplest
form. In this paper we have obtained the coupling functions
' for excitons interacting with both the longitudinal and trans-
(48  verse optical and acoustic phonons.

xexp| igq.p. MJ_COSP IQHPH—W

1
me)

2

[“J 167-raexb.[4+ el T
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