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Exciton-phonon coupling functions in uniaxial crystals
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~Received 28 June 1996!

Explicit expressions are found for the coupling functions of Wannier excitons interacting with both the
longitudinal and transverse lattice vibrations in uniaxial crystals. The anisotropy in the effective mass of an
electron and a hole, static and high frequency dielectric constants, deformation-potential constants, and the
sound velocity in the crystal are all taken into consideration.@S0163-1829~97!05301-0#
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I. INTRODUCTION

Recently, there has been considerable interest in an
tropic and layered structures where exciton motion ess
tially differs from that in isotropic and bulk systems.1,2 These
structures are expected to have improved optical and tr
port properties with a large potential for future device app
cations. A number of effects, as it seems, are directly c
nected with anisotropy. It was shown, for instance, in Re
that crystal anisotropy of 6H-SiC is the reason for the n
line in the reflectivity spectrum. Giant energy splitting of th
2P exciton states of up to 7 meV due to anisotropy of t
crystal was observed in Ref. 4. Many other interesting effe
had been investigated in earlier publications~see, e.g., Refs
5–9!.

In many studies of exciton-phonon interaction in cryst
the coupling function is used in a simplest form applica
only for qualitative estimates. To study the structure of lig
absorption bands and its dependence on temperature, to
culate the exciton lifetime, free path, etc., it is necessary
know the explicit form of the coupling function.10 Some de-
tails of this problem were reviewed in Refs. 11 and 12.

A general expression for the exciton-phonon coupl
functions of the isotropic ionic crystal was derived b
Ansel’m and Firsov13,14and also by Toyozawa.15 This prob-
lem for anisotropic crystals was considered most thoroug
by Fock, Kramer, and Bu¨tner16 for excitons interacting with
optical phonons. An isotropic effective potential with ave
aged material parameters has been found.

In the present paper we will obtain the explicit expre
sions for the coupling functions of Wannier excitons w
both the longitudinal and transverse optical and acou
phonons, taking into consideration the anisotropy in the
fective mass, dielectric and deformation potential consta
and the sound velocity in the crystal. We limit ourselves
the case of cylindrical symmetry.

The paper is organized as follows. Section II develops
formalism for determining the coupling function of excito
with the optical vibrations in uniaxial crystal. In Section I
the coupling functions of exciton with the acoustic vibratio
are derived using the deformation potential approach. S
tion IV contains our summary.

II. EXCITON COUPLING WITH OPTICAL PHONONS

Exciton interaction with optical vibrations of the anis
tropic polar lattice will be considered as an independent
550163-1829/97/55~2!/888~6!/$10.00
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teraction of an electron and a hole with longitudinal optic
~LO! and transverse optical~TO! phonons. This interaction is
realized by means of an electric field of the polarizati
wave. The energy operator of such interaction may be p
sented as17

Ĥ~re ,rh!52eŵ~re ,ze!1eŵ~rh ,zh!, ~1!

where$ri ,zi%[r i are the cylindrical coordinates of the ele
tron (i5e) or of the hole (i5h) with the cylinder axis along
z, and ŵ is electrostatistical potential operator of the pola
ization field which can be expanded in Bloch series as
lows

ŵ~ri ,zi !5
1

AV(
qiq'

~ ŵqiq'
ei ~q'ri1qizi !1ŵqiq'

1 e2 i ~q'ri1qizi !!,

~2!

whereV is the volume of the crystal. The summations in~2!
have to be performed over all possible values of both lon
tudinal and transverse components of the vibration w
vector q. The operatorsŵqiq'

1 , ŵqiq'
may be expressed in

terms of Bose operators of creationb̂1 and annihilationb̂ of
the vibration quanta. Proportional to the amplitude of t
vibrations there arises a polarization field that for nonm
netic medium without electrical currents is given by

P~ri ,zi !5
1

AV(
qiq'

~F ieqi

i 1F'eq'

' !~ b̂qiq'
ei ~q'ri1qizi !

1b̂qiq'

1 e2 i ~q'ri1qizi !!, ~3!

whereei, e' are unit polarization vectors of phonons, an
F i ,F' represent certain parameters to be defined. To do
we start from the relationship

P~ri ,zi !5
1

4p
gradw~ri ,zi !. ~4!

Substituting Eqs.~2!, ~3! in Eq. ~4! yields

ŵqiq'
524p i

F i'

Aq'
21qi

2
b̂qiq'

. ~5!

Further, we will make use of the expression for the energy
Coulomb interaction of two charges in anisotropic crystalli
media. In order to account for the uniaxial symmetry of t
888 © 1997 The American Physical Society
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55 889EXCITON-PHONON COUPLING FUNCTIONS IN . . .
media under consideration, we introduce anisotropic die
tric constants« j

i , « j
' ( j50,̀ ), whose components are pa

allel and perpendicular to the main axis of the crystal~or to
the z axis!. Then in accordance with Fresnel equations
have for a uniaxial crystal the solutions

« j5« j
' , ~6!

that corresponds to the ordinary ray, and

1

« j
5
sin2u

« j
i 1

cos2u

« j
' , ~7!

for the extraordinary ray, where sinu5q' /uqu, cosu5qi /uqu,
uqu5Aqi

21q'
2 . Equation~7! may be rewritten otherwise as

1

« j
5

1

uqu2 S q'
2

« j
i 1

qi
2

« j
'D . ~8!

This allows us to specify the mean value of« j as

«̄ j5
« j

i« j
'

« j
5

1

uqu2 ~« j
'q'

21« j
iqi

2!. ~9!

Such form of« j is convenient in applications and has be
used by Fock, Kramer, and Bu¨tner16 for the effective poten-
tial of exciton-phonon interaction. We will take« j in the
form of Eq. ~8!.

In the case when the lattice vibrations vectore is directed
transversely to the wave propagation vectorq one can rep-
resent Eq.~8! as follows:18

1

« j
5
q'qi

uqu2 S 1« j
' 2

1

« j
i D . ~10!

As the static dielectric constants («0
i ,«0

') are due to both
the electronic and ionic polarizations, while the dynam
~high-frequency! dielectric constants («`

i ,«`
') are caused by

the electronic polarization only, one may suppose that
difference in the energy of Coulomb interaction of tw
charges in dielectric media with«0 and«`

2
e2

«0udr u
1

e2

«`udr u
5E, ~11!

where

udr u5Aure2rhu21uze2zhu2, ~12!

will coincide with the energy of polar displacement of io
Eion ,

19 which is represented above by the opera
Ĥ(re ,rh) of Eq. ~1!. Owing to the small displacement of ion
one may estimate this energy by means of the perturba
theory

Eion5E~1!1E~2!1•••. ~13!

Obviously, the first-order correction to the energyE(1) that
goes from the average of the operator~1! over the wave
functions of phonon vacuum, is equal to zero. The sec
order one is determined by
c-

e

e

r

n

d

E~2!

5 (
qiq'

^0uĤ~reze ,rhzh!uqiq'&^qiq'uĤ1~reze ,rhzh!u0&
v~qi ,q'!20

,

~14!

where u0& corresponds to the wave function of the phon
vacuum,uqi ,q'& refers to the wave function of the state
one virtually excited phonon with components of wave ve
tor (qi ,q') and with the energyv(qi ,q'). Substituting Eq.
~5! into Eq. ~2!, Eq. ~2! into Eq. ~1! and supposing the non
dispersiveness of the optical modes~Holstein model!

v~qi ,q'![V i ,' , ~15!

one obtains

Ei ,'
~2! 52

~4peFi ,'!2

VV i ,'
(
qiq'

1

qi
21q'

2 ~22eiq'~re2rh!1 iq i~ze2zh!

2eiq'~rh2re!1 iq i~zh2ze!!. ~16!

HereE(2) tends to zero, whenze⇒zh and re⇒rh simulta-
neously.

In a more general case, whenzeÞzh andreÞrh , chang-
ing the coordinates of the electron and hole in Eq.~16!, and
making use of

E
0

`

q'dq'E
2`

`

dqi E
0

2p

dw
eiq'ure2rhucosw1 iq iuze2zhu

qi
21q'

2

5
2p2

Aure2rhu21uze2zhu2
, ~17!

one can findEi ,'
(2) to be

Ei ,'
~2! 5

8pe2F i ,'
2

V i ,'Aure2rhu21uze2zhu2
. ~18!

Taking into account Eq.~8! in Eq. ~11!, as well as Eq.~18!
on the right-hand side of Eq.~11!, one arrives at the fina
form for F5AF i

21F'
2 :

F5
1

uquA 1

8p FV iq'
2 S 1«`

i 2
1

«0
i D 1V'qi

2S 1«`
' 2

1

«0
'D G[Fqiq'

L .

~19!

This form ofF is valid for the longitudinal lattice vibration
Substituting Eq.~10! in Eq. ~11! in an analogous manner it i
easy to show that for transverse vibrations mode one ge

F5
1

uquAq'qi

8p FV'S 1«`
' 2

1

«0
'D 2V iS 1«`

i 2
1

«0
i D G[Fqiq'

T .

~20!

Now, when all the parameters of Eq.~1! are defined, let us
crossover in Eq.~1! to the second quantization picture wit
respect to exciton variables. To do this, it is convenient
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introduce, at first, the center-of-mass and relative coordin
for the system with cylindrical symmetry:

Ri ,'5
me

i ,'re
i ,'1mh

i ,'rh
i ,'

me
i ,'1mh

i ,' , r i
'5ri , r i

i5zi , ~ i5e,h!

r'5re2rh , r i5ze2zh . ~21!

Then the electron and hole coordinates may be expresse

r SehD
i ,'

5Ri ,'6
mSheD
M i ,'ri ,' , ~22!

M5me1mh ,

whereme refers to the electron andmh the hole mass. Here
and below the upper~lower! symbol in parentheses on th
left-hand side of the equation corresponds with the up
~lower! sign on the right-hand side of the equation. Sub
tuting Eqs.~20!, ~18!, ~5!, ~4! into Eq. ~1! we come to the
Hamiltonian

Ĥ~R,r!5
4p ie

AV (
qiq'

Fqiq'

L,T

Aqi
21q'

2 ~ b̂qiq'

1b̂2qi2q'

1 !ei ~q'R'1qiRi !

3@eiq'r'~mh
'/M'!1 iqiri~mh

i /M i !

2e2 iq'r'~me
'/M'!2 iqiri~me

i /M i !#. ~23!

The wave function of the Wannier exciton corresponding
the hydrogenlike model for the uniaxial crystal with the an
er

io
ic
il

-
in
es

as

er
i-

o
-

ogy to the one used in Refs. 13, 20 we choose the form

uk' ,ki&5
1

Apaex
2 bex

e2Ar'
2 /aex

2
1r i

2/bex
2 1

AV
ei ~k'R'1kiRi !.

~24!

Hereaex andk' are the exciton Bohr radius and the excito
quasimomentum in the plane (x,y), respectively,bex andki
refer to the same parameters in thez direction.

Thus, the operator of exciton-phonon interaction in t
second quantization representation accounting for linear
erators only will be read as

V̂ex-ph5 (
kik'

ki8k'8

Škik'uĤ~R,r!uk8ik8'&âkik'

1 âki8k'8
, ~25!

where ak'ki

1 (ak'ki
) are creation~annihilation! operators of

exciton with quasimomentum componentsk' ,ki . Using
Eqs.~23!, ~24! in Eq. ~25! and carrying out the integration in
cylindrical coordinate system over all the possible values
parametersr i , r' , Ri , R' , as over angles between vecto
(q'`r') and (R'`q'1k'1k'8 ) ~Ref. 21!, we obtain

V̂ex-ph52 i
~2p!3

V (
qiq'

kik'

FL,T~qi ,q'!âk'ki

1 âk'1q' ,ki1qi

3~ b̂qiq'
1b̂2qi ,2q'

1 !, ~26!

with
Fop
L ~qi ,q'!5A2pe2

V

AV'qi
2S 1«`

' 2
1

«0
'D 1V iq'

2 S 1«`
i 2

1

«0
i D

qi
21q'

2 H 1

Ze
2~q' ,qi!

2
1

Zh
2~q' ,qi!

J ~27!

for exciton coupling with longitudinal optical phonons, and

Fop
T ~qi ,q'!5A2pe2

V
AV'S 1«`

' 2
1

«0
'D 2V iS 1«`

i 2
1

«0
i D Aq'qi

qi
21q'

2 H 1

Ze
2~q' ,qi!

2
1

Zh
2~q' ,qi!

J ~28!
the
ys-

d
ith

ng
by
for exciton coupling with transverse optical phonons, wh

Z
SehD

~q' ,qi!511S aex
2
q'

mSehD
'

M'
D 2

1S bex
2
qi

mSehD
i

M i D 2

.

~29!

The exciton-phonon interaction operator~26! describes the
elastic and inelastic scattering of excitons with the emiss
or absorption of phonons in uniaxial crystals. As in isotrop
crystals10 the number of excitons remains unchanged wh
the number of phonons changes. The functionsFL(qi ,q')
andFT(qi ,q') represent the exciton LO- and exciton TO
phonon coupling functions for anisotropic ionic crystals
e

n

e

explicit form. This function tends to zero withqi ,q'→0,
and has a maximum at small values ofqi ,q' . It does not
depend on the quasimomenta of excitons as well as on
exciton band width. In the absence of the anisotropy of cr
tal (mi

i5mi
' , « j

i5« j
' , aex5bex, andV i5V') the coupling

function ~27! coincides with the one found in Refs. 13 an
15 for isotropic crystals. The energy coupling of exciton w
the transverse optical phonons, as it is seen from Eq.~28!,
tends to zero for isotropic crystal.

III. EXCITON COUPLING WITH ACOUSTIC PHONONS

A general expression for the exciton-phonon coupli
function of an isotropic nonpolar crystal was derived
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55 891EXCITON-PHONON COUPLING FUNCTIONS IN . . .
Ansel’m and Firsov14 as well as by Toyozawa.15 Below we
will obtain the explicit expression for the coupling functio
of Wannier excitons with acoustic phonons taking into co
sideration the anisotropy in the effective mass, deforma
potential constants, and sound velocity in crystal. We lim
ourselves to the case of cylindrical symmetry.

Exciton interaction with vibrations of the anisotropic no
polar lattice will be treated as an independent interaction
an electron and a hole with longitudinal and transve
acoustic phonons. We shall apply the deformation-poten
method22 to write the energy of interaction of excitons wit
acoustic vibrations. The fundamental idea of t
deformation-potential approach introduced by Shockley
Bardeen23 consists in calculating the electron scattering
lattice waves by taking as the interaction potential,V(r ), the
shift in energy bandE1(r ) resulting from dilation. The jus-
tification for this assumption can be easily generalized
anisotropic nonpolar crystals to include scattering of an
citon by transverse as well as longitudinal acoustical mod
When the dilation of the band-edge points is expressed w
help of the field of displacementU(r ), the Hamiltonian of
exciton-phonon interaction then becomes

Ĥ~re ,rh!52SpCe
nmenm~rj ,zj !1SpCh

nmenm~rj ,zj !,
~30!

whereCj
nm is the tensor of the deformation potential for a

electron (j5e) or of the hole (j5h), enm refers to the tenso
function of the mechanical strain,$rj ,zj%5r j are the cylin-
drical coordinates of the chargej with cylinder axis along
z. Above, repeated indexes are to be summed on. The s
bol Sp means that summation is carried out over diago
elements of matrices product. For the case of cylindri
symmetry these matrices are written as

Cj5SCj
' 0

0 Cj
i D , e5S e' 0

0 e i
D . ~31!

Instead of deformation potential componentsC', C' often
has been used as the componentsJd5C' and
Ju5Ci2C'.

The strain tensor components for the case of low de
mation are given by

e'~rj ,zj !5
]U'~rj ,zj !

]r
, e i~ri ,zi !5

]Ui~rj ,zj !

]z
,

~32!

whereU' , Ui are the' andi components of the vector fiel
of displacement, which in quantum representation may
expanded as follows

U~rj ,zj !5A \

2rV(
q'qi

1

~q'
21qi

2!1/4
ei ~q'rj1qizj !

3S eq'

AS'

1
eqi

ASi
D ~ b̂qiq'

1b̂2qi ,2q'

1 !, ~33!

whereeq'
andeqi

are the unit vectors of displacement in'

andi to the crystal axis directions,S' andSi refers to trans-
verse and longitudinal sound velocity in the crystal, cor
spondingly,r is the density of the material,bq'qi

1 (bq'qi
)

-
n
t

f
e
al

d

r
-
s.
th

m-
l
l

r-

e

-

means the same as in Sec. II, the operator of the crea
~annihilation! of a phonon with quasimomentum componen
$q' ,qi%5q. Here we suppose that the frequency depende
of an acoustic phonon ofsth branch on the wave vector ma
be represented as

vs~q!5Ssuqu. ~34!

Using Eqs.~32!, ~33! the Hamiltonian~30! for the deforma-
tion potential can be rewritten in the form

Ĥ~re ,rh!52 iA \

2rV(
q'qi

1

~q'
21qi

2!1/4

3@ei ~q're1qize!we~q' ,qi!

2ei ~q'rh1qizh!wh~q' ,qi!#~ b̂qiq'
1b̂2qi ,2q'

1 !.

~35!

Here

wj~q' ,qi!5
Cj

'

AS'

~eq'
q'!1

Cj
i

ASi
~eqi

qi!. ~36!

As usual, the product of unit vectors obeys the followi
equation:

eq'
eqi

5d',i , ~37!

where d',i denotes Kronecker symbol. We should expe
that scattering of excitons will occur due to longitudinal a
transverse waves. For purely longitudinal modes~the direc-
tion of displacementewhich coincides with the direction o
wave propagationq) the components of the unit vector ca
be determined as

eq,L5
1

Aq'
21qi

2 H q'

qi .
~38!

Equation~36! for longitudinal vibrations then reads

wj ,L~q' ,qi!5
1

Aq'
21qi

2 S Cj
'q'

2

AS'

1
Cj

iqi
2

ASi
D . ~39!

For purely transverse modes (e'q), obviously, the equality
must hold that

eq'
q'1eqi

qi50. ~40!

Hence, the components of the unit vector for the transve
mode are

eq,T5
1

Aq'
21qi

2 H 1qi

2q' .
~41!

Inserting Eq.~41! in Eq. ~36! the value ofw for a transverse
modes becomes

wj ,T~q' ,qi!5
q'qi

Aq'
21qi

2 S Cj
'

AS'

2
Cj

i

ASi
D . ~42!



o
s

in
he
h
io

te

-
n

on

f

s

In
.

ct-

nd
at

the
ys-

5
the
ten-

is

i-
nter-
eir
n-

em-
tc.,
n
tal,
lest
ns
s-

892 55NICOLAS GRIGORCHUK
It should be noted here that if the difference of modules
terms in parentheses of Eq.~42! is negative, then it become
necessary to change the signs of the values ofq' andqi in
Eq. ~41!.

To define the operator of the exciton-acoustic-phonon
teraction for uniaxial crystal it is convenient to introduce t
center-massR and relativer coordinates in the system wit
cylindrical symmetry as it was done in the previous sect
by Eq. ~21!. Hence, substituting Eq.~21! into Eq. ~35! we
obtain

Ĥac~R,r!2 iA \

2rV(
q'qi

1

~q'
21qi

2!1/4
ei ~q'R'1qiRi !

3@eiq'r'~mh
'/M'!1 iq ir i~mh

i /M i !we~q' ,qi!

2e2 iq'r'~me
'/M'!2 iq ir i~me

i /M i !

3wh~q' ,qi!#~ b̂qiq'
1b̂2qi ,2q'

1 !. ~43!

This is a quite general expression for the deformation po
tial coupling.

Now, using the wave function given by Eq.~24!, we can
average Hamiltonian~43! upon exciton variables. Account
ing only for the linear terms in the operator upon excito
phonon variables, the matrix element@on the right-hand side
of Eq. ~25!#, which is taken between the anisotropic excit
states, can be written as

^k'kiuĤac~R,r!uk'8 ki8&

52 iA \

2rV

1

paex
2 bex

1

V(
q'qi

1

~q'
21qi

2!1/4

3I R~ I r
ewe2I r

hwh!~ b̂qiq'
1b̂2qi ,2q'

1 !, ~44!

where the parametersI R and I r in cylindrical system are
represented as

I R5E
2`

`

dRi E
0

`

R'dR'E
0

2p

duexp@ iR'~q'1k'2k'8 !cosu

1 iRi~qi1ki2ki8!#, ~45!

I r

SehD
5E

2`

`

dr i E
0

`

r'dr'E
0

2p

dwe22Ar'
2 /aex

2
1r i

2/bex
2

3expS iq'r'

mSheD
'

M' cosw2 iq ir i

mSheD
i i

M i D . ~46!

Performing integrations, one gets the explicit expressions
these triple integrals

I R5~2p!3d~q'1k'2k'8 !d~qi1ki2ki8!, ~47!

I r

SehD
516paex

2 bexF41S aexq'

mSehD
'

M'
D 2

1S bexqi

mSehD
i

M i D 2G22

,

~48!
f

-

n

n-

-

or

whered is the Dirac delta function. Inserting Eqs.~47! and
~48! into Eq. ~44! and Eq.~44! into Eq. ~25! we can obtain
the operator of exciton-phonon interaction~26! with

Fac
L ~q' ,qi!5A \

2rV

1

~q'
21qi

2!3/4
S q'

2
Ce

'

AS'

1qi
2
Ce

i

ASi

Ze
2~q' ,qi!

2

q'
2
Ch

'

AS'

1qi
2
Ch

i

ASi

Zh
2~q' ,qi!

D , ~49!

for exciton coupling with longitudinal acoustic vibration
and

Fac
T ~q' ,qi!5A \

2rV

q'qi

~q'
21qi

2!3/4
S Ce

'

AS'

2
Ce

i

ASi

Ze
2~q' ,qi!

2

Ch
'

AS'

2
Ch

i

ASi

Zh
2~q' ,qi!

D , ~50!

for exciton coupling with transverse acoustic vibrations.
Eqs.~49! and ~50! the functionZ is presented above by Eq
~29!. The functionFL,T(qi'qi) represents in explicit form
the exciton-phonon coupling function for excitons intera
ing with longitudinal ~L! and transverse~T! acoustic
phonons in uniaxial nonpolar crystals. These functions te
to zero withq' ,qi→0, simultaneously, and have maxima
small values of bothqi andq' . The functionsFL andFT do
not depend on quasimomenta of excitons as well as on
exciton band width. In the absence of the anisotropy of cr
tal (mi

'5mi
i , Cj

'5Cj
i , S'5Si, andaex5bex) the coupling

function ~49! coincide with the one found in Refs. 14 and 1
for isotropic crystals. There may be a discrepancy by
factor of 2/3, because in these papers the deformation po
tial constant is chosen to be 2/3C instead ofC. For the case
of coupling with transverse vibrations this function, as it
seen from~50!, is equal to zero.

IV. SUMMARY

The exciton-phonon interaction in the anisotropic sem
conductor has been extensively investigated because of i
est in their fundamental physical properties as well as in th
device applications. A number of effects are directly co
nected with the anisotropy of this interaction.3–8To study the
structure of light absorption bands, its dependence on t
perature, and to calculate the exciton lifetime, free path, e
it is necessary to know the explicit form of the interactio
energy of excitons with phonons in an anisotropic crys
rather than one which usually has been used in simp
form. In this paper we have obtained the coupling functio
for excitons interacting with both the longitudinal and tran
verse optical and acoustic phonons.
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