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Density-functional theory of freezing of quantum liquids at zero temperature
using exact liquid-state linear response
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We apply density-functional theory to study the freezing of superffiié, charged bosons, and charged
fermions at zero temperature. We employ accurate quantum Monte Carlo data for the linear-response function
in the uniform phase of these systems, a quantity that has different behavior for large values of the wave vector
than previously assumed. We find that, as a result of elxect behavior, different approximations in the
density-functional theory of freezing that involve linear response, all fail to correctly describe the crystalliza-
tion in three dimensionswhile yielding satisfactory predictions itwo dimensionsThis demonstrates the
shortcomings of the currently popular density-functional approximate theories to desdriipee2ing in the
guantum regime. We also investigate the consequences of the exact asymptotic behavior of response functions
on the form of effective interactions and polarization potentials in the electron gas, at small distances.
[S0163-18207)04310-5

I. INTRODUCTION librium density, with respect to variations of tehapeof the
density profile. It is customary to separ&gn] into a con-
The modern density-functional theofpFT), which is  tribution from the noninteracting system under a suitable ex-
employed in the theoretical investigations of freezing of bothternal potential that makes(r) the equilibrium density,
quantal and classical systems, is based on an exact corres[n], and an excess parE.fn], i.e., F[n]=Fi[n]
spondence between equilibrium one-particle densities and g _rn]. The determination of 4 is not complicated, for
external potentials? In particular, if we denote by(r) the  poth classical and quantum systems: in the former dage,
one-particle density of the systefire., the statistical average g known explicitly as a functional of the denstyin the

of the one-particle density operatdhe system can be char- |5yer case, the statistics appears explicitly in the construction
acterized by an appropriate thermodynamic potential Wh'CQ)f Fiq, and for given external potential one can construct

a_lttalns its minimum value for the porre(ﬂthbnum) PIO" hoth the equilibrium density an&,4 in a straightforward

file ng(r). For the study of crystallization, the relevant ther- : .

modynamic potentials are the grand potenfiabnd the in- manner. Therefore, the art of density-functional theory

trinsic Helmholtz free energf, the latter being ainique amounts to the invention of approximate functionals for the

functional of the one-particle dénsit’y? If 4 is the chemical ~E*CeSS part. In the classical regime, there has been extensive
work in this direction during the last 15 yedr&Relatively

g(r:tzrr]tgli?rlacr); tgstesr{]s;?rgogtnst%rmhtgr &22?;?;:;”“) 'S less has befen dpne in the quantum regime, with which we are
concerned in this work.
~ The development of quantum DFT of freezing has fol-
Q[n,u]= F[n]—f drn(rju(r), (1.)  Jowed two alternative routes: In one casgyitable for finite
temperatures, a mapping of the quantum patrticles into clas-
whereu(r) = u—ver), is aminimumfor givenu(r) at the  sical polymer rings is invoked; in the other, which is better
equilibrium densityny(r). The quantityQ[u]=Q[ny,u] is  suited for zero temperature, the Hohenberg-Kohn-Sham
then the grand potential of the system. Clearly, the equilibformalism*® is used, and the problem is reduced to a self-

rium condition reads as consistent band-structure calculatior.Here we follow the
second approach, since we are interesteti=0 freezing. In

SF[n] this case,F[n] is simply the intrinsic ground-state energy

m|n0(r):u(r). (1.2 E[n]. The ideal parF,4[n] reduces to the kinetic energy of

noninteracting particle3g[n], and the remaindef /[ n] is
For vanishing external potential and fixed particle humbeithe excess enerdy,, n]. A brief summary of this formalism
N, the intrinsic free energ¥[n] is a minimum at the equi- will be presented below.
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Within certain classes of approximate functionals, an es- SEeln]
sential ingredient for the practical implementation of this ap- Ver(r) = () TUex(r). 2.2
proach is the linear-response functigfr;n) of the fluid, or
its Fourier transformy(q;n) where q is the wave-vector Note that the effective potential is itself a functional of the
magnitude and is the average density. In particular, what one-particle density, through the dependenceEgfn] on
is important is the “quantum” direct correlation function n(r). Therefore, one is faced withself-consistencgalcula-
(dcf), i.e., the differencebetween the inverse linear-responsetion which in practice proceeds as follows: an initial guess is
functions of the interacting and noninteracting made for the density profile, which yields an initial form for
systems, R(q,n)=}‘1(q;n)—}al(q;n). In previous the effective potential. Then the one-particle Sclimger

applicationd it was assumed that this difference is asymp-eduationgKohn-Sham equations
totically vanishing (maybe in an oscillatory mannefor
large values of the wave vector. However, recent exact

i(r)=g¥(r) 2.3
results'®*? and associated quantum Monte Cafl@MC) i ¥

calculations®** show that this is not the case: instead, there solved, yielding the eigenfunctionis(r) and the associ-
aforementioned difference approachesaaitive constanas 44 energy eigenvalues. From the former, a new one-

g—oe. In thi§ paper, we revisit the DFT of freezing, using particle density is constructed through
the correct liquid-state input. We examine the performance

of the perturbative second-order theSrSOT) and the non- )
perturbative modified weighted density approximation n(r)=2> nifgi(n? (2.4
(MWDA).Y" For a variety of systems, and irrespective of the '
range of the interaction and the statistissiperfluid ‘He,  wheren; are the occupation numbers suitable for the given
charged bosons and fermignsve find that thisexactlarge-  statistics(Bose or Fermi The new density serves for the
g behavior has drastic consequences in three spatial dimegenstruction of the new effective potential, and the cycle is
sions: the crystal is predicted to be the stable phase for amgontinued until a self-consistent solution has been found.
density. The SOT-functional is affected by this behaviorOnce the self-consistent orbitajg(r) and the associated ei-
most dramatically: it becomes unbounded from below as thgenvalues; and densityny(r) are known, the ideal kinetic
density becomes more localized around the lattice sites anehergyT, is given by
thus it has a minus-infinity minimum at a perfectly localized
density. The MWDA, on the other hand, does not suffer from
this extreme pathology: the MWDA functional is bounded
from below, but the(finite) minimum of the energy always
occurs for a modulateécrysta) phase. In two dimensions,
the effect is much less drastic, in the sense that for densities
relevant to crystallization the SOT functional continues to be ) ) )
bounded from below, yielding satisfactory predictions for the The formulation presented aboveasact providedu repre-
freezing of the electron gas. sentability h(_)ldé. Approxm_1at|<_)ns enter through the excess
The rest of this paper is organized as follows: in Sec. 11€N€rgy functionaEe,{n] which is not known exactly. In the
we present a summary of the DFT formalism; in Sec. 11l wefollowing subsections we present two common schemes
survey the liquid-state input and discuss its implications onvhich both rely on the knowledge of the second functional
the behavior of the “quantum” direct correlation functions, derivative of this functional with respect to the density at the
as well as on effective interactions—in the electrons gas; itiniform limit. This quantity is in turn directly related to the
Sec. IV we apply the SOT and in Sec. V the MWDA to the density-density linear-response function.
problem of freezing of different quantum liquids. Finally, in

hZ
— 5 VEHven(r)

ﬁZ
TOZEi nif drdfi*(r)(_%vz)dfi(r)

=Ei nisi—f drng(Nve(r). (2.5

Sec. VI we summarize and conclude. A. Second-order theory
One usual approximation is the so-called second order
Il. QUANTUM DENSITY-FUNCTIONAL THEORY theory(SOT) or quadratic approximation. Here, one expands
OF FREEZING functionally the unknown functional about a uniform fluid of

The quantum DFT formalism employed in this work has d€NSitYMi, keeping terms up to second-order only. Explic-

been presented in detail in Refs. 7 and 9. Here we give onli}ly’

an outline and refer the reader to the above papers for details. SEon]
Writing E[n]=Tg[n]+E{Nn] and using Egs.(1.1) and Eex[n]zEex(m)Jrf dr Bn(r) on(r)
(1.2) we see that amecessaryondition for equilibrium is n
1 5%Eg N]
6Toln] | OEein] +—J’ Jdrdr’; sn(r)ysn(r’
5n(r) + 5n(r) ::U’_vext(r)v (21) 2 5n(r)5n(l") n| ( ) ( )’

ng(r)

for the case of interacting particles. This is formally equiva- (2.6
lent to the condition of equilibrium fononinteractingpar-  with dn(r)=n(r)—n, and E¢(n,) the excess intrinsic en-
ticles (for which E[n]=Tgy[n]) under the influence of an ergy of the uniform liquid, afunction of n,. Due to the
effective external potential translational and rotational invariance of the liquid, the first
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functional derivative in the right-hand sidehs) of Eq. (2.6) with respect tan(r). Freezing occurs when n{isQ[n]} van-
is just a position-independent constant, equal to the excesshes. For mifAQ[n]}>0 (<0) the liquid (solid) is stable.
chemical potential of the homogeneous liquid. The second Eor systems composed of particles carrying a charge
functional derivative is a function df —r’| only; both de- gnd interacting via the Coulomb potentigl(r)=e%r, the

pend onn;, of course. We define, from now on, presence of a uniform, rigid, neutralizing background of op-
) posite charge guarantees the stability of the system. The
O0°Eed N] presence of the background imposes the constraint that the

— _ -
=—Kdr=r"ln). 27 freezing transition now takes plaa constant densityiso-

choric freezing. The relevant thermodynamic potential is
The functionK(r;n) is the excess part of the linear static "W the total energf[ n]; the phase with the lowe&n] is
inverse response function of the homogeneous liquid, ante thermodynamically stable one. It is customary for such

on(r)yén(r’) n

can also be expressed’as systems to separate the excess energy into a Hartree contri-
bution and an “exchange-correlation” contribution, i.e., to
K(rin)=x"*(r;n)—xo (r;n), (2.9 ~ write
where y~1(r;n) and xg X(r;n) are the functional invers&s ezj J on(r)on(r’)
. A0 AT , Eoln]= = drdr’'————+E,[n], (2.11)
of the density-density static linear-response functions of the 2 [r—r’|

interacting and noninteracting liquid, respectively.

Such an approximation is natpriori guaranteed to have
any validity, since there is no “small parameter” guiding the
expansion. Its widespread use is due on the one hand to E,In]
practical limitations, as third- and higher-order functional de- W
rivatives of E¢,/n] are poorly known even in the uniform
phase, and on the other hand, in the relative success that,j :
has had, at least in the classical regime, in predicting th(E,-Hen Eqs(2.7) and (2.1 imply

where én(r)=n(r)—n andn is the average density. If we
now define

—Ky([r=r'[;n)), (2.12

n

freezing parameters of simple liquiis.The function K(lr=r'l;n)=—vc(|r—r'])+Ky(Jr=r'];n). (2.13
K(r;n;) is formally the quantum analog of the classical ) , ,
Ornstein-Zernicke direct correlation functiédcf).?° In Fourier space, one_writes the Fourier transform

We setvg,(r)=0 from now on. In the quadratic approxi- Kxc(d:n) of Ky(r;n) as Ky(a;n)=vc(q)G(qg;n), where
mation for the excess part of the energy functional, the efv<(d) is the Fourier transform of the Coulomb potential

fective potential which enters in the Kohn-Sham calculatioriv<(Q) =4€’/g’ in three dimensions and-&%/q in two
is periodic with Fourier components dimension$ andG(q;n) is the so-calledocal-field factor?
Finally we have

ver(Q) =Nl —X HQ;n)+Xo QD] (2.9

—K(a;m=ve(@[1-G(g;n]. (2.14
where Q is a reciprocal-lattice vectofRLV) of the given

lattice and dng, is the Fourier component of the periodic Due to the long-range nature of the Coulomb potential,
function sn(r)=n(r)—n,, and Y ~X(q;n,) is the Fourier the functional expansion of the energy of the inhomogeneous

transform of the functiory " (r:n,). phase can now be performed only about a liquid whose den-

- - _sity n, is equal to the average density=n, of the solid.
For systems of neutral particles, the choice of the density'Y " s X
n, of the reference liquid is arbitrary, although the usual2Sin9 EAs{(2.6), (2.7, (2.13, and(2.14 we obtain the dif-

choice is to consider a liquid at the same chemical potentiaflerence between the enefgyof the solid and the liquid

as the solid. Moreover, for a Bose systenTat0 the kinetic phases as

energy of independent particles vanishes in the uniform d

limit. Thus, the difference between the grand poteftiaf AE[N]=Tg[n]— w—5Ner
the solid and the liquid 18 d+2

\%
+= 2 -G(Q;ny)]. (2.
A= Ty(n] ;f J drdrK(r—r s encr)onee’ 2;0 INol20o(Q)[1-G(Q;ng]. (2.15
Equation(2.15 above is valid for fermions inl dimensions
—To[n]— YR(O'n )(Ne— )2 with e being the Fermi energy of noninteracting particles in
0 2 A s the liquid phase. For bosons, this equation remains valid with
v the omission of the second term in the rhs.
_ Y 2% O- As mentioned above, the lack of a small parameter in the
ZQZO Ingl™K(Qimy)- (2.19 functional expansion of the excess enefgyleast as far as
the freezing problem is concernedas cast some doubt on
In Eqg. (2.10, V is the volume of the systemms is the aver-  the validity of the quadratic theory. This observation has led
age density of the solid{(q;n) denotes the Fourier trans- to the development of a class of nonperturbative approxima-
form of K(r;n) at wave vectorq, and nq is the Fourier tions, which approximate the excess energy of the solid by
component of the periodic density at RL. In practice, that of a liquid. The density of the latter is a weighted aver-
one changeg (or, equivalently,n;) and minimizesAQ[n] age of the true density of the solid. Of particular interest, due
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to its computational simplicity and its success in describingGaussian ansatz. One constructs normalized Bloch orbitals
bulk freezing for certain model systems in the classical re+,(r) from a single Gaussian per sitep(r)=(2a/
gime, is the modified weighted density approximation 7T)d/4e—ar2' according té®

(MWDA) of Denton and Ashcroft! presented in the follow-

ing subsection.

; eik-Refa(rfR)z, (221)

1
lﬁk(f)—m( -

sWhere{R} is the set of Bravais lattice vectors and

2a)d/4

B. Modified weighted density approximation

The MWDA amounts to the approximation of the exces
energy of the modulated system by that of a uniform system

at a weighted density® with the latter being evaluated as a P(k)= Y, RMglk-R-aR?2 (2.22
weighted average over the real density of the crystal in a R
self-consistent way. In other words, one writes After some algebra, we arrive at the following explicit ex-
pressions for the noninteracting kinetic enerfyy and the
Ee{n]~EMVPAIN]=Ne(n), (2.16  Fourier component of the density,:
where €(n) is the excess energy per particle of a uniform h? )
liquid of densityn. The effective density is evaluated as a Toln]=Nzqlda=apa(a)] (223

weighted average over the spatially-varying denaity) of

the crystal and is defined by and

.1 . ”Q:”se_QzlgaﬂQ* (2.24
nzﬁf Jdrdr n(rn(rw(r—r"n),  (2.17

where

where the weight functiow(r —r’;n), which depends on the B 02 Pa(k) _ Uz Po(k—=Q/2) 2
weighted density itself is determined by requiring that the K2m N4 Po(k)' HOTN% ~ Pok) (2.29
MWDA functional is exact to second-order in a functional
expansion around a uniform liquid. The derivation of theNote thatTe[n] remains positive definite for all values of
expression for the weight function has been presented in det, as a”u,(a)—0 for strong localization ¢ large). Equa-
tail elsewherg'” and so here we show only the final results tions (2.23—(2.29 above, are valid for fermionsr denotes
which read as the number of particles in each occupied orbitak=1 for
spin-polarized andr=2 for unpolarized particles. Thk

) 1 . n . sums extend over the occupied orbitals only. For bosons, we
w(rn)=——-= (K(r;n)+ ve”(n) (2.18 have to put all the particles in the same orbikak 0. In this
2¢€'(n) case Eqs(2.23 and(2.24) remain valid with the identifica-
tion:
and
~ . P2(0) Po(Q/2)

- 1 —K(Q;n Mor==——~, MOo= 5 A - (2.26

Amnet =3 g2l (@M1 (2.19 27P40)" M7 TPy0)
NsQ#0 2€'(n)

Substituting the appropriate expression gy and ng into
The effective potential for the MWDA is readily calculated Eds.(2.10 or (2.15 above, one directly obtains the differ-
ad ence of the appropriate thermodynamic potential between the
solid and the liquid, within the SOT. In the MWDA, the
A sh additional self-consistent solution of EQ.19 is required to
Veil(r) =€(N)+ €' (N)——, (2.20  get the excess energy of E@.16). In both cases one ends
on(r) up with differences of thermodynamic potentials as a func-

and the corresponding expression in Fourier space, which 0N of @, ns, andn, . One then varies (andn; for neutral
necessary for the solution of the MWDA-Kohn-Sham equa_partlcles u.nt|l a minimum is found. By repeatllng the proce-
tions can be found in Ref. 9. The MWDA excess energyd_ure for different values ofi; one can determine the phase
functional is exact to second order in a functional expansioffidgram of the system at hand. _ _

about a reference liquid, but also includes contributions from W€ are going to present results obtained mainly through
all higher orders. In this sense, the MWDA is a nonpertur-N€ use of the Gaussian ansatz, rather than the full self-
bative approximate scheme for the calculation of the excessonsistent calculation. The reason is that, if a minimum ex-
part of the energy. ists vyhen the Gaus.3|an ansatz is 'efnployeq, then the full cal-
culation can only yield a lower minimum since the class of
Gaussian densities is only a subclass of all the possible pro-
files. Since our calculations yieldbo low minima the self-

The self-consistent solution of the Kohn-Sham equationgonsistent calculation is for most purposes redundant. More-
is sometimes avoided by taking advantage of the fact that, inver, the Gaussian ansatz allows for analytical estimates of
the solid phase, the particles are well localized around théhe magnitudes of the ideal and excess terms in(E40Q or
lattice sites. This leads to the introduction of the following (2.15.

C. The Gaussian ansatz
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The excess liquid-state linear static inverse-response func-

tion K(r;n) plays, evidently, a central role in the implemen- 0.6 - ' 7
tation of the approximate schemes presented above. In the
following section we discuss the form and asymptotic behav- =
ior of this function. aé 0.4 | .
>
lll. LIQUID-STATE INPUT, QUANTUM DIRECT &
CORRELATION FUNCTION, s 220 }
AND EFFECTIVE INTERACTIONS Ig“’
For classical liquids, the Fourier transform of the dcf is 0 g _
related to the experimentally measured structure factor N \/
S(q) by a simple algebraic relatidfl, by virtue of the o ' é ' 4 ' .

fluctuation-dissipation theorem. For quantum systems, on the 1

other hand, the theorem relates dynamical quantities, and the g (&)

relation between static quantities is not simple any nidks. _

a result, various approximations for the static linear-response FIG. 1. The function-n,K(q;n;) (in mRy) of superfluid*He as

function’y(q) have been developed. obtained from simulation&Ref. 13, for three different fluid densi-
Superfluid “He is a test case. This is a fluid of neutral ties. Solid line: n,=0.026 22 A"3; dashed line:n;=0.021 86

particles whose interactions can be accurately described Hy °; dash-dotted linen;=0.019 64 A"2. The very accurate kinetic

the so-called Aziz potentidf-?° In the absence of accurate energies of Ref. 41 yield —nK(%;n)(mRy)=—0.0815,

data fory(q), one often resorts to the Feynman approxima-—0-0593;-0.0493, in order of decreasing density.

tion to obtain a relation betweeg(q) and S(q),'° which

reads as
From Egs. (2.8, (3.3 and wusing the result
Yo(q;n))=—4mn /#2qg? for the static susceptibility of the
~ ~ e ideal boson gas, we obtain
XE(din) = xo(d;n)S(q), (3.0
wherexo(q;n) = —4mn, /%2q? is the static susceptibility of —niK(e;n))=— §(KE), (3.4

the ideal boson gas. The ensuing approximate dcf where(KE) is the expectation value of the kinetic energy in

the liquid phase. These features of the exact dcf have impor-
tant consequences on the performance of DFT’s of freezing,
~ h2q? as will be shown below.
Ke(qin) = m( 1- %) (3.2 Charged fermions or bosons are another example of quan-
tum liquids. The former is just the usual system of electrons
a uniform backgroundjellium) and the latter is a model

has been employed in density-functional theories of freezin%{' . ) )
of “He (Refs. 10,26 or Bose hard spherémlbeit with an ystem of spinless particles of electronic chaggend mass

appropriate “rescaling” which was employed in an empiri- ™ in a background, but obeyin_g Bose statistics. A nature_ll
cal way. This rescaling has been avoided in a recent densityndth scale for these systems is the so-called Wigner-Seitz
functional study of quantum hard-sphere freeZhgHow- radiusr y defined as the rad|us of a sphere which contains, on
ever, accurate data fof(q) have now been obtained from average, one particle, i.e., for a system of densityn d
diffusion Monte Carlo calculationi€ In Fig. 1 we show plots dimensions we have

of this accuratedirect correlation function for three different

densities of the liquid. A comparison with the Feynman n:i
approximatioh® shows immediately that whereas the latter 4t}
has an oscillatory behavior about zero, the exact dcf is nega- ) ) ) o
tive for almost all values of>2 A 1. An additional impor- A convenient dlmen_5|onless measure of th_e density is
tant difference concerns the largebehavior of the dcf. Al-  Ts=To/@0, where a, is the Bohr radius. A widely used
though the Monte Carlo data are limited to valugs4—6 scheme to relate the local-field fac@_(q) v_\nth the_: structure
A1 exact theoretical calculatios imply that the factor hag been introduced by Singwi, Tosi, Land, and
g—oe-limit of —R(q,m) is a negative numbeisee belowy; Sldaf‘de? (.ST.LS)' .Th's has been empéogyed In DFT's of
and o e s 1 e Feynman approsimain (32 In (09,5 LT 8 pomber of e e
saggi:zular, the response functior(q; i) is given for large local-field factorG(q) approaches unity and this implies that
—K(q;n;) approaches zero in that linfisee Eq.2.14]. In

this respect, the STLS scheme for systems of charged par-
ticles has the same features as the Feynman approximation.
However, it has been shovexactlythat in the largeg limit,

G(q) goes likeg? in three dimension$**? moreover it can

d=3 _ !
( - )1 n_ﬂ'rg

(d=2). (3.5

_ 4mny 8m -4
x(aim) == 5707 | 1 g (KB FO@ )| 33
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easily be shown that it scales likgin two dimensions? In
particular, for charged bosons @t 3 it is known that® for

largeq, 5 |
=
L 2AKE) 2 16((KE)?) E
G(q,m)—mgl—Jrg[l—g(o)]JrShTwm :é
16(KE)? , S
- - ]
9ﬁ2w2 + O(q )l (36) I:N

pl

wherewp = Jamne?/m is the plasma frequency amg0) is
the value of the pair distribution function of the liquidr)

at zero separation. From Eg2.14) and(3.6) we find once
more

~ 2 ~
—nK(oo;n))=— §<KE), (3.7 FIG. 2. The function—n;K(g;n,) (in mRy) of charged bosons
as obtained from simulation®&Ref. 15: solid line: r¢=20; dashed
as in Eq.(3.4) above. Ii_ne: rs=>50; dash-do_tted_ linet = 10_0; dotted liners=160. Th_e
For fermions in three dimensions, the largdocal-field virtually exact  kinetic energies  of = Ref. _ 15 yield
factor reads a<3! —nK(%;n)) (mRy)=-5.27,—-1.67,—0.665,—0.345, in order of
increasingr.

2((KE)—(KE)o)q* 2

G(g;n) = +=[1—qg(0 KE)—(KE
(am) 3mop 31790 G(q;n|)=«zlr#qﬂ—g(OHO(q‘l).
. 16(((KE)?) = ((KE)?)) (3.11
2 2
Sh%wp) From Egs.(2.14 and(3.11) we obtain
16((KE)?—(KE)§) . 3
T entaf 0@ @9 —nK(=in)=—(KE)~(KE)p). (312

where(- - - ), denotes a noninteracting average, and the co- |n Fig. 4 we show the direct correlation function of fully
efficient of theq? term—the difference in the kinetic energy polarized electrons in two dimensions, near freezing, i.e., at
per particle between the interacting and the noninteracting.=40, as obtained from quantum Monte Carlo
system—is a positive quantity:* Note that the differences gimylations?? Again, the saturation ofK(q,n) to a

between Eq(3.8) and Eq.(3.6) arise from the different mo-  ~qnstant—which may be conveniently expressed as
mentum distributions of the noninteracting Fermi and Bose

systems. Using Eq$2.14), (3.8) we finally obtain _ d(ree,)
—nK(;n))=—((KE)—(KE)g) = djsc , (3.13

—nK(e;n) = — 2 ((KE)—(KE)g). (3.9

In Fig. 2 we show the direct correlation function of T T
charged bosons for a number of different densities as ob- |
tained from quantum Monte Carlo simulatiofisin Fig. 3

we show the same function for fully polarized charged fer- E
mions at r,=100, which has also been obtained from E
QMC22In both cases, it is clearly seen that at large values of -~ .
g the function—K(q;n,) tends to a negative constant. In the i
system of point charged particles, by virtue of the virial theo- 5
rem, this constant may be expressed most simply as I:“
(o) 2 d(rgE) 31
r-]| (Ooyn|)_§ dl‘s ’ ( . @

20

with E= e.(r¢) the correlation energy per particle, for fermi-
ons, andE=¢€(rg) the energy per particle, for bosons.

In two dimensions, the situation is quite similar. For fer-  FIG. 3. The function—n;K(q;n,) (in mRy) of spin-polarized
mions, using the asymptotic behavior of the static linearcharged fermions, as obtained from simulatiofigef. 32, at
response functioft it has been showf that the local-field r.=100. The very accurate kinetic energy obtained from the fit of
factor scales linearly witly, asqg— <, namely, Ref. 39 yields—n,K(;n,)= —0.527 (MRYy).
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cast in a mean-field, random-phase-approximation-like form,

® ' ' by defining appropriate polarization potentiidn the static
. limit to which we shall restrict here, the number and spin-
& 4 . response functions read, respectively,
E -
s ~ Xo(Q)
g 2r 1 X(Q)=—————— (3.18
5 i ] 1-V(a)xo(a)
<
3 0 A\ and
_ _ - Xo(a)
_2 \/ \/— Xe(Q) = —p—— (3.19
) ®1-VA(@)Xo(a)

qr, with ug the Bohr magneton ands(q) a_nd\(a(q) the sym-
metric  and asymmetric polarization potentials,

— : 5,33 H
FIG. 4. The function—n,K(q:n,) (in mRy) of spin-polarized respectively*> From Eqs.(2.8) and(2.14) it follows that

charged fermions in @ as obtained from simulation&Ref. 32 at

rs=40. The very accurate kinetic energy of Ref. 43 yields V(@)= —K(a,n)=v()[1-Ca,n)],  (3.20
—niK(;n)=-1.88 (mRy). with G%(q,n)=G(q,n,). In a similar fashion one can $&t
with e.(rs) the correlation energy per particle—is evident. V&)= —v(q)G*q,n)), (3.21

We note that the largg-behavior of—n;K(q,n,) for all the

systems considered above is given by which defines the asymmetric local-field fact&®(q,n)),

whose behavior for large is easily obtained from the
_ 2 known asymptotic expansions gf(q) (Ref. 33 as
—n|K(q,n|)=—a(<KE>—<KE>o)+O(q’d“)+0(q’2),

(3.19
and evidently for the noninteracting Bose systems Interparticle polarization potentials for pairs of electrons
(KE)o=0. In fact one may easily shdtt22'that Eq.(3.14) with parallel or antiparallel spin projections are readily ob-
above is valid for any quantum liquid interacting with pair tasmed fromathelr.s?)’gmmetrlc and asymmetric counterparts
potentials, both in three and two dimensions, provided the/ (4) andV#(a) via
second term on the rhs is only retained for Coulombic sys- _
tems (1f interaction in two dirr):ensions. g Voo (@)= V(@) = VA(@) =0 1= G(a.m) ¥ G(a.m)],

The short-wavelength behavior ofR(q;n,) described (3.23
above, implies that in real space the functiedK(r;n;) has  where the upper sign correspondsste’ =11 and the lower
a s-function contribution at the origin with negative weight, to oo’=1]. For largeq, from Egs.(3.8) and (3.22 one
as is clear from Eq(3.14). We shall therefore define a regu- obtains
lar dcf Kg(g;n,), decaying to zero ag—, by setting

G?q,n))=G%q,n;)—1+29(0)+0(q 3. (3.22

4
- - 2 VEY(a) == 3 ((KE)=(KE)o)+0(a™?)  (3.24
K(gim) =Kr(@in) + 75 ((KE)=(KE)o).  (3.19 !

and
This implies in real space
V(@) =29(0)uc(q)+0(q*). (3.29
K(r;m)=Kg(r;m)+Uo(n) S(r)m; _ o ool
Equation (3.24 implies the presence W?‘T’(r) of a term
=Kg(r;n)+Kg(r;ny), (316  —2Uy(n)8(r)/ny, with Uy(n,)>0, given by Eq.(3.17)

with d=3. On the other hand, from E¢3.25 one obtains
that forr—0, V?j"(r):29(0)e2/r. This looks quite strange
2 at first, as one would naively expect that at short distance
Uo(n|)=a(<KE)—<KE>O)>0. (3.17  effective interelectronic interactions should be essentially
Coulombic. In fact, polarization potentials are not effective
Before investigating the consequences of this unexpected bgotentials, though at times this is not appreciated. We should
havior of —K(r;n;) on the density functional theories of &S0 mention that in the approach of Refs. 35 and 36 the
freezing, we shall pause here to briefly discuss its implicaPolarization potentials were assumed regular at the origin,
tions on effective interparticle interactions in the liquid Vo (0)=€?q,,, with the screening wave vectogs,, of
phase. As an example we shall consider spin-unpolarizethe order of the Fermi wave vectgg .
electrons in three dimensions. Effective electronic interactions were defined for the elec-
Within the dielectric formalism, the number and spin trons gas by Kukkonen and Overhauser a long time®ago,
linear-response functions of the normal electron fluid may beising the polarization potential method but taking into ac-

with the strength of the singular pafig(r;n,) given by
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count particle indistinguishability. According to this study —_—

effective two-body electron-electron interactions may be 0 P====a
written as S
_ =~ -005F -
Vo(r’(q)_Uc(q)[l+A(r(r’(q)]1 (326 é’
where @ 0.1 _ _
= o 1
ve(D[1-G%(q)1%x0(q) g 3 ]
A ’ - _ L -
7D 1 (@I G Ixo(@) S oI5|
a 2 [ ]
ivc(OI)[G (2)] Xo(Q) ’ (3.27 —02 | ]
1+vc(q)G*(a)x0(q) S T R
with the upper(lower) sign corresponding to parallé€hnti- > 5 10
og

paralle) spins. The larger behavior of A,/ (q) is easily
obtained from Eq93.8), (3.22, and from the known asymp-

totic behavio?® of the Lindhard function FIG. 5. Grand potential differencRef. 21 [Eq. (2.10] be-

tween a*He fcc-solid and a liquid at the same chemical potential,

amn for different pairs g,n;) in the second-order theory. Solid line:
Xo(AiN)gee=— Pl (3.289  ng=0.0287 A3, n,=0.0262 A 3; dashed lineny=0.0287 A3,
q n=0.0216 A 3; dash-dotted line:ng=0.0275 A 3, n,;=0.019
One finds that\; (q) vanishes ag 2 for g—c, while A~ Here,0=2.556 A.

2 . . .
(3.29 negative local minimum at strong localizatidiarge values

of a), i.e., the solid is predicted to be too stable. With ref-
erence to Fig. 5, note that at freezing one would expect

8 [d(ree)
Ay (@goe=— 2_7"2{ dr,

with e.(r¢) the correlation energy per particle, in Rydbergs, 2 o . # oo
of the electron gas. Thug; (r) =e?r for smallr, while the ~ ©7 2. In order to obtain the correct “quantum” Linde-

effective interaction between parallel spin is very slightly Mann ratioy=0.3. (y is the ratio of the root-mean-square
reduced with respect to the bare Coulomb repulsionfjev'at'on about a site to the nearest-neighbor distar@e.

Vi (r)= y(r)€?lr, with y(rd= 1+A,(=)=<1. In particu- the contrary, the minima shown in the figure are at
lar, in the metallic regime one obtains from the known equa«o®~ 10, implying a value ofyx 1/\/a which is too small by

tion of state of the electron g&s® y(r)=0.99 and 0.98 for about a factor 2, being essentially classical. Unfortunately,
r<=2 and 5. Thus, as we anticipated, effective interactionghe lack of Monte Carlo data for the dcf at large wave vectors

do remain essentially Coulombic at short distances. does not allow us to examine the limit of strong localiza-
tions, since asx grows we need more and more shells of
IV. SECOND-ORDER THEORY RLV’s into the sum of Eq(2.10 in order to achieve conver-

gence. Nevertheless, it is clear from the shape of
—R(q;m) (see Fig. 1that the overestimation of the stability
We begin with the application of the second-order theoryyt the solid is brought about by the fact thatk(q,n,) is
(SOT) to the freezing of superfluidHe. I_Exp%rlment_al '€~ negativefor all values of the RLV’s; this way, the contribu-
sults on the system show théHe crystallize®’ at a liquid  (ion from the excess part of the energy, which is becoming

. _ _3 . . .
defsny ”'—2;2260 A Ilntoh an hcp-solid of denS|tfy lower with increasing localization, dominates over the con-
ns=0.0287 A™". We employ the Gaussian ansatz for a fCC-yi tion from the ideal energy, which grows with localiza-

e o e on 0 ild a (talenergy v 10 o e il make
9 P ~ AUl%his statement more guantitative shortly.

'I_'he _value ofk(q,n) atq=0 which e_nters in this C?"Clﬂ'a' Next, we look at the SOT freezing of charged bosons,
tion Is rleated to the_ energy per eartlden,) of the liquid using the dcf-simulation results of Ref. 15. The system is
via the “compressibility sum rule,” namely known to undergo Wigner crystallization into a bcc-stiet
e~y " rs=160+10. Once more, we employ the Gaussian ansatz
—KOsm)=2€" () e, 4D and try to minimizeAE[n] [Eq. (2.15] with respect tow at
where the primes denote differentiation with respect to thevarious different values afs. Some of the results are shown
argument. For the quantity(n,) we use an analytic fit based in Fig. 6. The quantityAE[n] is clearly unbounded from
on accurate diffusion Monte Carlo ddta. below, i.e. the absolute minimum lies at infinite localization,
We try to minimizeAQ[n] [Eq. (2.10] with respect to where the value oAE[n] is minus infinity There is a local
a for a variety of different values offi,n,). As can be seen negative minimum air 3~3 for r=50. This corresponds to
in Fig. 5 for the pair of values which are close to those forthe correct quantum Lindemann ratio, and one might argue
which freezing occurs in experiments{)[n] has apparently that the SOT of freezing may only make sense for modula-
no minimum it keeps getting lower without bound as the tions that are not too largé.e., moderate values af) and
localization increases. In the same figure it can be seen thaear the freezing density. Even so, the predicted freezing
for n, much lower than the freezing valuA() has a very density would be overestimated by a factor of about 30.

A. Three dimensions
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(2al ) ¥%exp{—2ar?}, one per site. The lack of a lower
bound ford=3 can be now easily understood: since the ideal
energy scales likee and the excess like a@®?for large, it

is then clear that their sum will be dominated by th@®?

term and will be unbounded from below. The analysis pre-
sented above is valid also for fermions.

If a minimization within the restricted space of Gaussian
profiles fails to yield a finite minimum, then thggobal mini-
mum of the unrestricted Kohn-ShafKS) scheme, which
cannot be higher, will also be minus infinity. This does not
exclude, however, the possibility of obtaining, by means of
L . solving the KS equations, sonhecal minimum at a moder-
-ttt ate value of the localization; in the KS scheme there is no
2 “localization parameter” of course, but the Lindemann ratio,

for example, can be used as a measure of the spatial extent of
) the one-particle density around a lattice site. This possibility

FIG. 6. Ground-state energy differendef. 2D [Eq. (215] g harticularly interesting because it could be argued that the
t.’etween a Charged boson bec-solid ar_".j the liquid, versus localiz yerturbative character of the SOT immediately limits its va-
tion at three different average densities, as obtained from the .. . .
second-order theory. Solid ling:;=160; dashed liner,=100; idity tc.) Weakly modulated density profiles. In order to pur-
dash-dotted liner .= 50, sue thIS'|In%, we have also performed the full, self-consistent

calculatiod® for both charged bosons and spin-polarized
glectrons, within the SOT, at the densities for which the dcf

pathology of producing an unbounded functional. Within the|s'a'vallable(see Flgs.. 2 gnd 3 abopetHowever, no local
framework of the Gaussian approximation, this feature cafinimum was found, in either case. The _Iar(g;é)ehawor of

be clearly understood as follows. Take a solid whose Iatticéxhe dcf apd Fhe number of space dimensions render the SOT
constant isa and consider the strong-localization limit, i.e., pathologicalin d=3.

a=aa’>1. In that case we have, with excellent accuracy,
u=0 andug=1 for all Q's [see Eq(2.26]. In d dimen-

AE/N (mRy)

It becomes clear, therefore, that the SOT suffers from th

B. Two dimensions

sions, Eq.(2.23 gives In two dimensions, Eq$4.2) and(4.4) show that both the
_ ) ideal and excess term scale @sat strong localizations, the
To(e)| 1+ hed (4.7 former with a positive and the latter with a negative coeffi-
vn |- =(1+7) 2ma " ' cient. Therefore, the absolute values of the respective coef-

a>1 .. . . .. .
ficients are crucial in determining the existence of a lower

whereng=(1+ #7)n, (»=0 for isochoric freezing On the  bound for the sum of the two terms. Expressing energies in
other hand, the excess energy contribufibe., the sum of Rydbergs and making use of Eq#.2), (4.4), (3.17, and
the terms beyond, on the rhs of Eq(2.10 or Eq.(2.19]  (3.13, we find for isochoric transitionsz=0):

may be conveniently broken into two contributions originat- .

ing, respectively, fromKg(q;n;) and Kg(q;n,). The first To(asrs) _~[% @
contribution is most easily treated in reciprocal space, where N a>1_ “ 3 -9
it takes the form
and
AER(@ 2 _ _ _
Ve—l)’(](|) B :_%nIKR(O;nI) AEg(a;rs) :lrzd(rsec)a @ 2 4.6
a>1 N ~, 2% drg al’ '
(1+ 7])2 _ 25 = . . .
- > e Qa%iqm K (Q:n)), wherea is the lattice constant of the given crystal structure
2§70 ande. the correlation energy per particle in Rydbergs. Thus,
(4.3 at strong localizations
and manifestly tends to a constant for large valuea.ofhe AE(a;ry) 1 2d(rS'EC) -
second contribution is evaluated in real space, to leading - N . ° 2+§rs dr. |% (4.7
order, as a>1 °
For polarized fermions ¢=1) in 2d the available QMC
AE(@) Uo(n)) ) datd?“3show that the coefficient in E¢4.7) is positivefor
Vo |- 2vr? f dr(an(r)) re<59. Therefore, the SOT functional remains bounded
a1 from below for valuesrg=<59. This is encouraging, given
Uo(n)(1+7) _y), that the polarized electron gas in two dimensions crystallizes
== W“ ) (4.4 into a triangular lattice at a value of which is considerably

smaller than this “stability limit.”
using the fact that forr>1, the density reduces to a super- We have thus performed a full Kohn-Sham calculation
position of nonoverlapping normalized Gaussianswith the accurate liquid state input shown in Fig. 4, using a
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to the full Kohn-Sham calculation presented above. As ex-

0.02 —— ——
' ' pected, this yields solid energies that are slightly higher, pre-

-\_\_\\ 1 dicting freezing at a lower density, i.e., at=50 with
0 v=0.25. Though this is well out of the range predicted by

QMC (see abovgit is still a substantial improvement with
respect to an earlier predictithof r =80, using the Gauss-
—0.02 - ian ansatz and an approximate local-field factor.

We should also mention results recently obtained using
another DFT schenf¥,in which a local-density approxima-
—-0.04 . tion (LDA) to the total energy of the modulated phase is
augmented by gradient correcti6hSGCDFT). This ap-
proach vyields crystallization at;=31, but with a density
-0 tme—a—a—r»~ L which appears to be very little modulated. In fact we have

40 g 45 repeated such calculations, solving the equivalent one-orbital
self-consistent Kohn-Sham equations in full. We reproduce

FIG. 7. Ground-state energy difference between triangular-solidn® =31 found in Ref. 44 and we fingi=0.369 which is
and polarized liquid for electrons ind2as function of the density. Very close to the uniform limit ofy=0.373. To give a more
AE/N (in mRy) was calculated within the SOT. The solid squaresdirect idea of what this means in terms of localization, we
are calculated points, with the line just a guide for the eye. may look at the minimum in the density profile at half dis-

tance between a site and one of its nearest neighbors, in units

plane-wave basis set as explained at length elsewhane  of the on-site densityg=n(ryy/2)/n(0). Here ryy is the
have systematically checked convergence with respect to tHiearest-neighbor distance. We find that the GCDFT predicts
plane-wave cutoff and the number kfpoints in the Bril- 6=0.92 at freezing, to compare with=0.30, which we
louin zone. As it can be seen in Fig. 7rat=40, where we have obtained within the SOT, and an exact value which is
have the dcf from QM2 the solid is still unstable, though likely to be even smaller. With respect to a conventional
its energy is only 6 microRydbergs higher than that of theLDA (Refs. 6 and 9in which the noninteracting kinetic
polarized liquid. On the ground that the explicit dependenceenergy is treated without approximation, the GCDFT s in-
of G(g/qge;rs) on rg should be very weaf we have ne- troducing an overestimate of the kinetic cost of a modula-
glected it altogether to perform the calculations at the othefion. For the small modulations predicted by the GCDFT,
values ofr, using therefore the available local-field factor this may easily be checked by comparing, for instance at the
G(q/qF Te= 40) This treatment predicts freezing from the firSt RLV of the triqngular .Crystal, the exaCﬁmoni.nteraCt'
polarized fluid at .= 42 which agrees within error bars with ing response functiéfi** with the one corresponding to the
the QMC prediction of Tanatar and Cepefley =37+5  GCDFT, xg%(q)=— (om/2m#%)/[1+9%2q]. One might
and is within two error bars from a more recent QMC be tempted to argue that, for small modulations, the approach
predictiorf® r,=34+4. We have also evaluated the Linde- Of Ref. 44 would be more consistent than a conventional
mann ratioy, which is shown in Fig. 8 as function of near  LDA,*” in that it treats all the components of the energy on
freezing. We findy=0.33 atr ;= 42, to be compared with an the same footing. However, the quality of the resulting den-
accepted value for quantum freezing of about 0.3. We maypity profile, which is indeed very poor, pointing to a weakly
thus conclude that the SOT is capable of predicting freezinéirst-order if not a second-order transition, contradicts such a
in two dimensions with good accuracy. conclusion.

We have also investigated the effect of using a Gaussian Returning to the effects of the largpbehavior of the

ansatz for the Bloch orbitalsee, e.g., Sec. Il)Cas opposed dquantum dcf on freezing we may conclude that these are far
less drastic in two dimensions than in three. Notice, how-

ever, that if one tried to apply the quadratic theory for sys-

L tems withr .>59, one would obtain, also in two dimensions,
] the erroneous answer that the stable phase is a crystal with
infinite localization. This demonstrates that the quadratic
theory gives a reasonable description of solids whose ther-
modynamic parameters are not far away from the freezing
: 1 ones. Deep inside the region of thermodynamic stability of
0.3 - the solid, the SOT loses its validity, even in those cases

- 1 where it succeeds in predicting freezing. Having concluded
the discussion of the quadratic theory in two and three di-
mensions, we now proceed with the nonperturbative ap-
proach, i.e. the MWDA.

AE (mRy)

0.35 -

0.25 | .
L s s | s s L s | L s '
40 . 45
s V. MODIFIED WEIGHTED DENSITY APPROXIMATION

FIG. 8. Lindemann ratioy around freezing in the triangular In this section we will examine the behavior and perfor-

2d Wigner crystal, as predicted by the SOT. The solid squares argnance of the MWDA for the case of systems of charged
calculated points, with the line just a guide for the eye. particles. The general analysis will show that regardless of
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statistics, the MWDA yields a functional which Bounded EMWPA(r @) _
from below, i.e., at the limit of large localizations the energy B VE— = —|Epq(ro)|a . (5.5
difference between the solid and the liquid tends-te and a>1

not — as in the case of the SOT. Then, we will present thegjnce the ideal term scales @sit dominates over the excess
application of the MWDA to the case of charged bosons, fofgne at largér and thus the total energy tends to plus infinity

which the availability of liquid-state input allows us to per- 4 the Jimit of strong localization. Notice that in the SOT the
form the MWDA calculation. We still find the stability of the oycess term scales asa. whereas here only asa*3 The
crystal to be overestimated, nevertheless. MWDA makes the dependence of the excess energy on the

The presence of a singular termin the #df ;n)) implies |ocalization parameter a lot weaker than the SOT. We will
the existence of a similar term in the weight function gae that this is also the case in three dimensions.

w(r;ﬁ), as is clear from Eqs(2.18 and (3.16. With a
straightforward analysis which closely parallels the one de-
veloped in the previous section for the excess energy one is . .
led to the conclusion that for strong localizatioiterge val- In three dimensions, eliminating in favor of rg in Eq.
ues of the paramete), the weighted density is given to (5.1 yields

leading order ina by

B. Charged bosons and fermions in three dimensions

1 —(rees(ry)’ C_
o (S C( S)) a3/2,

T (5.6
rg rsfr(rs) I's

AU?(T) —a? (5.1)
—2ne’'(n)m where €, and € have the usual meaning for fermions,

) . ) whereas for bosons. coincides withe—the total energy per
suggesting than grows with o as we shall demonstrate particle. Again,C is a constant depending on the structure

shortly, provided that-ne’(n)>0. We have verified that assumed for the solid. As in two dimensions, we are led to
indeed—ne’(n)=(1/d)rse’ (ry)>0 for all the systems con- assume that.—0 asa—o and therefore we shall retain in
sidered belov#?3°*>We shall examine the behavior ofin  this limit only leading terms in Eq(5.6).

ﬁ:

two and three space dimensions separately. Charged bosons As we have already mentioned
e.(rg)=¢€(rg) in this case and as,—0, we have to domi-
A. Charged fermions in two dimensions nant ordere(r¢) = —0.8031 ; ¥* Ry.}>*® Thus we obtain
On account of Eq(5.1) above, let us assume thatdi- FS:(3/C)1/3rS'571/2_ (5.7)

verges witha and therefore that.—the Wigner radius in R ~an
units of Bohr radii corresponding to the effective density The energye(rs) now scales as-rg " thus

n—goes to zero in the same limit. Using the definitions of EMWDA
ex

- , — - (rs,a)
the previous section we may eliminatein favor of rg to

—— 1 =-IE(rola® (5.9
obtain N a1 °

The MWDA-excess energy per particle scales only as
—2%® as opposed to- @2 in the SOT. Thus, the ideal
energy which is linear inx dominates for strong localiza-
tions, and the MWDA functional is free of the pathology of
with the prime denoting differentiation with respectitoand ~ the SOT, i.e., it does have a lower bound.

C a constant which depends on the structure chosen for the '€ actual calcullations that we carried out were for the
solid. Heree, ande are, respectively, the correlation and the @€ Of bosons only; however, the same analysis can be car-

excess energy(exchange plus correlatipnof the two- ried out for fermions, and the results for this case are pre-

1 —(rees(ry)’ C_
1 Tty oo 52
s rse’(rg) s

dimensional electron gas. sented below. _ _ .
For smallr, the excess energy is given®y Charged fermionsThe first few terms in the expansion of
s the excess ground-state energy of the electron fluid for small
e(f)=—Af1—B-Drdnigt ..., (53 ls'eada®
~ " _ ~—1 ~ _ ~
with A,B,D positive constants which depend on the spin €(rg)=—Brg "+ I'nrs—A+0O(ry), 5.9

polarization. The dominant-r_* term is the exchange en- where all constants are positive. Once more, the term pro-

ergy and the remainder is the correlation enefgsfs). Us-  portional to—F;1 is the exchange energy and the remainder
ing the above equation and keeping only the leading terms iis the correlation energy. Using Eq&.6) and (5.9) we ob-

the ratio appearing in Eq5.2) one obtains at once tain asfs—>0
rs=(Ar3/BC)3a 13, (5.4 1 . . TCc1_,,
E—fs||nrs| B3 (5.10

Now, using Eq.(2.16 and since the excess energy of the
liquid scales Iike—F;1 Eq. (5.9 yields To leading order as— we immediately obtain
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5—3/8

rs=D(ry) (5.1 :' T '(;)_

[Ina]l/ll'
with D(rg)=[8Br2/3rC]¥ Finally, since the excess en-

ergy per particle scales as?gl the MWDA functional
obeys the scaling

0.05 N

AE/N (mRy)

EMWDA(r ) I
| =" IErolinal* e, (5.12 . N

a>1 r N A

Thus, the MWDA is free of the unboundedness problem also -0o05p o~
for fermions. It is interesting that the scaling of the excess 0
energy is now dependent on the statisfmse Eqs(5.8) and
(5.12 abovg, though very weakly, due to the logarithmic
dependence i present for fermions. This is at variance
with the prediction of the SOT, where the same scaling was
found and it appears intriguing. In fact, naive considerations
would suggest that the excess energy should scale in the
same way for bosons and fermions at the strong localization
limit since, in this case, each particle is confined to its own
cell and statistics becomes unimportant.

The existence of a lower bound for the MWDA functional I
is an improvement over the behavior of the SOT. However, 015 |
this property guarantees neither the existence of a minimum ’
at nonzero localization nor its correct location and behavior
in terms of changes of the average density. If, for example,
the total energy is monotonically increasing as a function of 0
a, then the only minimum will occur for the uniform liquid.

On the other hand, it is possible that a minimum always

exists, for any value of the average density and is lower than FIG. 9. Ground-state energy differen@ef. 21) between the
the liquid one; in this second case, we are led to the erronahe charged boson bce-solid and the liquid, versus localization at
ous prediction that the crystal is stable at all densities. In théhree different average densities, as obtained in the MWIZA.
following subsection we show the results of the full MWDA Solid line: rg=20; dashed linet ;=50. (b) rs=100.

calculation for charged bosons and we find that, in fact, this

second scenario materializes. SOT, it still predicts a solid that i®o stable Even at high
densities the MWDA functional has a global minimum for a
modulated phase.

~0.05 [

AE/N (mRy)
&

C. MWDA calculation for charged bosons

We have implemented the MWDA-self-consistency con-
dition [Eq. (2.19] for the case of charged bosons for which VI CONCLUSIONS
there exist sufficient simulation data for the local-field factor The implementation of the correct liquid-state input in a
for a range of densities varying from=10 tors=160(Ref.  density-functional approach to the freezing of quantum lig-
15). We have used an analytic fit to the equation of stataiids brings about a remarkable new result, namely that
obtained from simulatio®> We limit our study to the three dimensionshe standard SOT suffers from a lack of a
charged boson liquid because for polarized fermions the onljower bound and is alwaystrictly minimized for infinitely
available Monte Carlo data are fog=100 and the imple- localized solids. As we have already mentioned, one might
mentation of the MWDA requires the knowledge of the dcfargue that the perturbative character of the SOT limits its
of the liquid over a wide range of densities. validity to weakly modulated density profiles and thus local

We have carried out the MWDA calculation with the minima for finite localization should suffice. However, as we
Gaussian ansatz for three different values for the averageave demonstrated above féiHe and charged bosons, such
density, namely ;= 20, 50, and 100. The results are shownminima—when they exist—still yield an incorrect descrip-
in Fig. 9. It can be seen immediately that, unlike the SOT tion of freezing, predicting stability of the solid well inside
the MWDA gives minima ofAE/N for finite values of the the region where the system in fact is liquid. Recourse to
localization parameterr. Moreover, the trends of these nonperturbative theories including certain classes of higher-
minima are correct: they get deeper and also move towardsrder terms, such as the MDWA, does not help much in
stronger localization as the average density decreases. Hoywractice. One gets rid of the extreme pathology of the SOT
ever, according to simulatioffs the liquid is stable for theory in that the resulting functional is bounded from be-
r<<160+ 10, whereas the MWDA gives lawer energy for  low, which is certainly satisfactory. However even the
the bcc solid for values af as low as 20. Thus we can say MDWA predicts the crystal to be the stable phase deep into
that although the MWDA is already much better than thethe region where the liquid should be stable.
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The asymptotic analysis in the localization parameier schemes which we have learned to trust from our experience
that we have carried out above for the MDWA is easily on classical systems, seem to fail when applied to quantum
generalized to the weighted density approximationsystems in three dimensions. There is a need for reexamina-
Q/VDA).49’9 once it is realized that the weight function tion of the current formalism of quantum density-functional
w(q;n) has in this case the same largdimit as in the theory of freezing and the development of approximate
MWDA, and therefore the same singular term in real spaceschemes which will be more appropriate to deal with the
One obtains the same scalings as discussed in Sec. V aboy@culiarities of quantum systems. In this respect, the use of
and therefore bounded functionals. Whether the predictiongjrect correlation functions possessing the correct asymptotic
of the WDA for freezing will be any better than those of the pehavior is crucial, as is such a behavior that causes all the
MWDA remains to be investigated, though we doubt it. Thepresent troubles. At variance with the classical case we have
conventional LDA(Refs. 6 and Palso brings about bounded seen that quantum functionals tend to predict excess energies
functionals, as one may easily demonstrate, along similafper particle that negatively diverge at infinite localization.
lines as those illustrated above for the MWDA and WDA. Though the MWDA produces a functional bounded from

The scaling is the same as for the MWDA for electrons inpelow, we speculate that the divergence of its excess part in
two dimensions and charged bosons in three dimensions; it s limit could still be incorrect, as the potential energy

different for electrons in three dimensions, for which theShou|d remain finite, unless one can prove that it is the ki-
exchange-correlation energy goes likéa 2. Again, the netic contribution to the excess energy which is bringing
LDA is making the solid too stable in three dimensidns.  apout this divergence.

The situation in two dimensions appears specular to the
one summarized above for three dimensions. In fact, earlier
applications of the DFT theory of freezing with approximate
liquid dcf gave good results in three dimensidfiswhile
failing in two dimension€3 We have demonstrated above ~We would like to thank Professor S. Stringari both for
that the reverse is true, if more accurate liquid input is usedhelpful discussions and for sending us unpublished material
which obeys the exact largpbehavior discussed in Sec. Ill. and Dr. A. R. Denton for sending us a copy of Ref. 27 prior
In particular, in two dimensions the SOT provides boundedo publication. S.M. and G.S. also acknowledge fruitful col-
functionals, in the relevant region of density, and yields alaboration with Dr. A. Debernardi in early work on the freez-
good description on the freezing transition. ing of the A electron gas. C.N.L. has been supported by the

The recently obtained accurate information on the liquid-Human Capital and Mobility Programme of the Commission
state linear-response functions gives rise, therefore, to a neef the European Communities, Contract No. ERBCH-
problem: our favorite approximate density-functional BICT940940.
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