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Density-functional theory of freezing of quantum liquids at zero temperature
using exact liquid-state linear response
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We apply density-functional theory to study the freezing of superfluid4He, charged bosons, and charged
fermions at zero temperature. We employ accurate quantum Monte Carlo data for the linear-response function
in the uniform phase of these systems, a quantity that has different behavior for large values of the wave vector
than previously assumed. We find that, as a result of thisexactbehavior, different approximations in the
density-functional theory of freezing that involve linear response, all fail to correctly describe the crystalliza-
tion in three dimensions, while yielding satisfactory predictions intwo dimensions. This demonstrates the
shortcomings of the currently popular density-functional approximate theories to describe 3d freezing in the
quantum regime. We also investigate the consequences of the exact asymptotic behavior of response functions
on the form of effective interactions and polarization potentials in the electron gas, at small distances.
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I. INTRODUCTION

The modern density-functional theory~DFT!, which is
employed in the theoretical investigations of freezing of b
quantal and classical systems, is based on an exact c
spondence between equilibrium one-particle densities
external potentials.1,2 In particular, if we denote byn(r ) the
one-particle density of the system~i.e., the statistical averag
of the one-particle density operator! the system can be cha
acterized by an appropriate thermodynamic potential wh
attains its minimum value for the correct~equilibrium! pro-
file n0(r ). For the study of crystallization, the relevant the
modynamic potentials are the grand potentialV and the in-
trinsic Helmholtz free energyF, the latter being aunique
functionalof the one-particle density.1,2 If m is the chemical
potential of the system at some temperatureT andvext(r ) is
an arbitrary external potential, then the quantity:

Ṽ@n,u#5F@n#2E drn~r !u~r !, ~1.1!

whereu(r )5m2vext(r ), is aminimumfor givenu(r ) at the
equilibrium densityn0(r ). The quantityV@u#5Ṽ@n0 ,u# is
then the grand potential of the system. Clearly, the equi
rium condition reads as

dF@n#

dn~r !
un0~r !5u~r !. ~1.2!

For vanishing external potential and fixed particle num
N, the intrinsic free energyF@n# is a minimum at the equi-
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librium density, with respect to variations of theshapeof the
density profile. It is customary to separateF@n# into a con-
tribution from the noninteracting system under a suitable
ternal potential that makesn(r ) the equilibrium density,
F id@n#, and an excess partFex@n#, i.e., F@n#5F id@n#
1Fex@n#. The determination ofFid is not complicated, for
both classical and quantum systems: in the former caseF id

is known explicitly as a functional of the density.3 In the
latter case, the statistics appears explicitly in the construc
of F id , and for given external potential one can constru
both the equilibrium density andF id in a straightforward
manner. Therefore, the art of density-functional theo
amounts to the invention of approximate functionals for t
excess part. In the classical regime, there has been exte
work in this direction during the last 15 years.4 Relatively
less has been done in the quantum regime, with which we
concerned in this work.

The development of quantum DFT of freezing has f
lowed two alternative routes: In one case,5 suitable for finite
temperatures, a mapping of the quantum particles into c
sical polymer rings is invoked; in the other, which is bett
suited for zero temperature, the Hohenberg-Kohn-Sh
formalism1,6 is used, and the problem is reduced to a se
consistent band-structure calculation.7–9 Here we follow the
second approach, since we are interested inT50 freezing. In
this case,F@n# is simply the intrinsic ground-state energ
E@n#. The ideal partF id@n# reduces to the kinetic energy o
noninteracting particlesT0@n#, and the remainderFex@n# is
the excess energyEex@n#. A brief summary of this formalism
will be presented below.
8867 © 1997 The American Physical Society
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Within certain classes of approximate functionals, an
sential ingredient for the practical implementation of this a
proach is the linear-response functionx(r ;n) of the fluid, or
its Fourier transformx̃(q;n) where q is the wave-vector
magnitude andn is the average density. In particular, wh
is important is the ‘‘quantum’’ direct correlation functio
~dcf!, i.e., the differencebetween the inverse linear-respon
functions of the interacting and noninteractin
systems, K̃(q,n)5x̃ 21(q;n)2x̃ 0

21(q;n). In previous
applications7–10 it was assumed that this difference is asym
totically vanishing ~maybe in an oscillatory manner! for
large values of the wave vector. However, recent ex
results,11,12 and associated quantum Monte Carlo~QMC!
calculations13–15 show that this is not the case: instead, t
aforementioned difference approaches apositive constantas
q→`. In this paper, we revisit the DFT of freezing, usin
the correct liquid-state input. We examine the performa
of the perturbative second-order theory16 ~SOT! and the non-
perturbative modified weighted density approximati
~MWDA !.17 For a variety of systems, and irrespective of t
range of the interaction and the statistics~superfluid 4He,
charged bosons and fermions!, we find that thisexactlarge-
q behavior has drastic consequences in three spatial dim
sions: the crystal is predicted to be the stable phase for
density. The SOT-functional is affected by this behav
most dramatically: it becomes unbounded from below as
density becomes more localized around the lattice sites
thus it has a minus-infinity minimum at a perfectly localiz
density. The MWDA, on the other hand, does not suffer fro
this extreme pathology: the MWDA functional is bound
from below, but the~finite! minimum of the energy always
occurs for a modulated~crystal! phase. In two dimensions
the effect is much less drastic, in the sense that for dens
relevant to crystallization the SOT functional continues to
bounded from below, yielding satisfactory predictions for t
freezing of the electron gas.

The rest of this paper is organized as follows: in Sec
we present a summary of the DFT formalism; in Sec. III w
survey the liquid-state input and discuss its implications
the behavior of the ‘‘quantum’’ direct correlation function
as well as on effective interactions—in the electrons gas
Sec. IV we apply the SOT and in Sec. V the MWDA to th
problem of freezing of different quantum liquids. Finally,
Sec. VI we summarize and conclude.

II. QUANTUM DENSITY-FUNCTIONAL THEORY
OF FREEZING

The quantum DFT formalism employed in this work h
been presented in detail in Refs. 7 and 9. Here we give o
an outline and refer the reader to the above papers for de
Writing E@n#5T0@n#1Eex@n# and using Eqs.~1.1! and
~1.2! we see that anecessarycondition for equilibrium is

FdT0@n#

dn~r !
1

dEex@n#

dn~r ! G
n0~r !

5m2vext~r !, ~2.1!

for the case of interacting particles. This is formally equiv
lent to the condition of equilibrium fornoninteractingpar-
ticles ~for which E@n#5T0@n#) under the influence of an
effective external potential
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veff~r !5
dEex@n#

dn~r !
1vext~r !. ~2.2!

Note that the effective potential is itself a functional of th
one-particle density, through the dependence ofEex@n# on
n(r ). Therefore, one is faced with aself-consistencycalcula-
tion which in practice proceeds as follows: an initial guess
made for the density profile, which yields an initial form fo
the effective potential. Then the one-particle Schro¨dinger
equations~Kohn-Sham equations!

F2
\2

2m
¹21veff~r !Gc i~r !5« ic~r ! ~2.3!

are solved, yielding the eigenfunctionsc i(r ) and the associ-
ated energy eigenvalues« i . From the former, a new one
particle density is constructed through

n~r !5(
i
ni uc i~r !u2, ~2.4!

whereni are the occupation numbers suitable for the giv
statistics~Bose or Fermi!. The new density serves for th
construction of the new effective potential, and the cycle
continued until a self-consistent solution has been fou
Once the self-consistent orbitalsc i(r ) and the associated e
genvalues« i and densityn0(r ) are known, the ideal kinetic
energyT0 is given by

T05(
i
niE drc i* ~r !S 2

\2

2m
¹2Dc i~r !

5(
i
ni« i2E drn0~r !veff~r !. ~2.5!

The formulation presented above isexact, providedv repre-
sentability holds.18 Approximations enter through the exce
energy functionalEex@n# which is not known exactly. In the
following subsections we present two common schem
which both rely on the knowledge of the second function
derivative of this functional with respect to the density at t
uniform limit. This quantity is in turn directly related to th
density-density linear-response function.

A. Second-order theory

One usual approximation is the so-called second or
theory~SOT! or quadratic approximation. Here, one expan
functionally the unknown functional about a uniform fluid o
densitynl , keeping terms up to second-order only. Expl
itly,

Eex@n#5Eex~nl !1E dr
dEex@n#

dn~r ! U
nl

dn~r !

1
1

2E E drdr 8
d2Eex@n#

dn~r !dn~r 8! U
nl

dn~r !dn~r 8!,

~2.6!

with dn(r )5n(r )2nl and Eex(nl) the excess intrinsic en
ergy of the uniform liquid, afunction of nl . Due to the
translational and rotational invariance of the liquid, the fi
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functional derivative in the right-hand side~rhs! of Eq. ~2.6!
is just a position-independent constant, equal to the ex
chemical potential of the homogeneous liquid. The sec
functional derivative is a function ofur2r 8u only; both de-
pend onnl , of course. We define, from now on,

d2Eex@n#

dn~r !dn~r 8! U
nl

[2K~ ur2r 8u;nl !. ~2.7!

The functionK(r ;n) is the excess part of the linear stat
inverse response function of the homogeneous liquid,
can also be expressed as7

K~r ;n!5x21~r ;n!2x0
21~r ;n!, ~2.8!

wherex21(r ;n) andx0
21(r ;n) are the functional inverses19

of the density-density static linear-response functions of
interacting and noninteracting liquid, respectively.

Such an approximation is nota priori guaranteed to have
any validity, since there is no ‘‘small parameter’’ guiding th
expansion. Its widespread use is due on the one han
practical limitations, as third- and higher-order functional d
rivatives of Eex@n# are poorly known even in the uniform
phase, and on the other hand, in the relative success th
has had, at least in the classical regime, in predicting
freezing parameters of simple liquids.4 The function
K(r ;nl) is formally the quantum analog of the classic
Ornstein-Zernicke direct correlation function~dcf!.20

We setvext(r )50 from now on. In the quadratic approx
mation for the excess part of the energy functional, the
fective potential which enters in the Kohn-Sham calculat
is periodic with Fourier components

veff~Q!5dnQ@2x̃21~Q;nl !1x̃ 0
21~Q;nl !#, ~2.9!

whereQ is a reciprocal-lattice vector~RLV! of the given
lattice anddnQ is the Fourier component of the period
function dn(r )[n(r )2nl , and x̃ 21(q;nl) is the Fourier
transform of the functionx21(r ;nl).

For systems of neutral particles, the choice of the den
nl of the reference liquid is arbitrary, although the usu
choice is to consider a liquid at the same chemical poten
as the solid. Moreover, for a Bose system atT50 the kinetic
energy of independent particles vanishes in the unifo
limit. Thus, the difference between the grand potential21 of
the solid and the liquid is10

DV@n#5T0@n#2
1

2E E drdr 8K~ ur2r 8u;nl !dn~r !dn~r 8!

5T0@n#2
V

2
K̃~0;nl !~ns2nl !

2

2
V

2(
QÞ0

unQu2K̃~Q;nl !. ~2.10!

In Eq. ~2.10!, V is the volume of the system,ns is the aver-
age density of the solid,K̃(q;n) denotes the Fourier trans
form of K(r ;n) at wave vectorq, and nQ is the Fourier
component of the periodic density at RLVQ. In practice,
one changesm ~or, equivalently,nl) and minimizesDV@n#
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with respect ton(r ). Freezing occurs when min$DV@n#% van-
ishes. For min$DV@n#%.0 (,0) the liquid ~solid! is stable.

For systems composed of particles carrying a charge
and interacting via the Coulomb potentialvc(r )5e2/r , the
presence of a uniform, rigid, neutralizing background of o
posite charge guarantees the stability of the system.
presence of the background imposes the constraint tha
freezing transition now takes placeat constant density~iso-
choric freezing!. The relevant thermodynamic potential
now the total energyE@n#; the phase with the lowestE@n# is
the thermodynamically stable one. It is customary for su
systems to separate the excess energy into a Hartree co
bution and an ‘‘exchange-correlation’’ contribution, i.e.,
write

Eex@n#5
e2

2 E E drdr 8
dn~r !dn~r 8!

ur2r 8u
1Exc@n#, ~2.11!

wheredn(r )5n(r )2n̄ and n̄ is the average density. If we
now define

d2Exc@n#

dn~r !dn~r 8!U
nl

[2Kxc~ ur2r 8u;nl !, ~2.12!

then Eqs.~2.7! and ~2.11! imply

K~ ur2r 8u;nl !52vc~ ur2r 8u!1Kxc~ ur2r 8u;nl !. ~2.13!

In Fourier space, one writes the Fourier transfo
K̃xc(q;n) of Kxc(r ;n) as K̃xc(q;n)5vc(q)G(q;n), where
vc(q) is the Fourier transform of the Coulomb potenti
@vc(q)54pe2/q2 in three dimensions and 2pe2/q in two
dimensions# andG(q;n) is the so-calledlocal-field factor.22

Finally we have

2K̃~q;n!5vc~q!@12G~q;n!#. ~2.14!

Due to the long-range nature of the Coulomb potent
the functional expansion of the energy of the inhomogene
phase can now be performed only about a liquid whose d
sity nl is equal to the average densityn̄[ns of the solid.
Using Eqs.~2.6!, ~2.7!, ~2.13!, and~2.14! we obtain the dif-
ference between the energy21 of the solid and the liquid
phases as

DE@n#5T0@n#2
d

d12
NeF

1
V

2(
QÞ0

unQu2vc~Q!@12G~Q;ns!#. ~2.15!

Equation~2.15! above is valid for fermions ind dimensions
with eF being the Fermi energy of noninteracting particles
the liquid phase. For bosons, this equation remains valid w
the omission of the second term in the rhs.

As mentioned above, the lack of a small parameter in
functional expansion of the excess energy~at least as far as
the freezing problem is concerned! has cast some doubt o
the validity of the quadratic theory. This observation has
to the development of a class of nonperturbative approxim
tions, which approximate the excess energy of the solid
that of a liquid. The density of the latter is a weighted av
age of the true density of the solid. Of particular interest, d
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to its computational simplicity and its success in describ
bulk freezing for certain model systems in the classical
gime, is the modified weighted density approximati
~MWDA ! of Denton and Ashcroft,17 presented in the follow-
ing subsection.

B. Modified weighted density approximation

The MWDA amounts to the approximation of the exce
energy of the modulated system by that of a uniform sys
at a weighted density17,9 with the latter being evaluated as
weighted average over the real density of the crystal i
self-consistent way. In other words, one writes

Eex@n#'Eex
MWDA@n#5Ne~ n̂!, ~2.16!

where e(n) is the excess energy per particle of a unifo
liquid of densityn. The effective densityn̂ is evaluated as a
weighted average over the spatially-varying densityn(r ) of
the crystal and is defined by

n̂5
1

NE E drdr 8n~r !n~r 8!w~r2r 8;n̂!, ~2.17!

where the weight functionw(r2r 8;n̂), which depends on the
weighted density itself is determined by requiring that t
MWDA functional is exact to second-order in a function
expansion around a uniform liquid. The derivation of t
expression for the weight function has been presented in
tail elsewhere9,17 and so here we show only the final resu
which read as

w~r ;n̂!52
1

2e8~ n̂!
S K~r ;n̂!1

n̂

V
e9~ n̂! D ~2.18!

and

n̂5ns1
1

ns
(
QÞ0

unQu2
@2K̃~Q;n̂!#

2e8~ n̂!
. ~2.19!

The effective potential for the MWDA is readily calculate
as9

veff~r !5e~ n̂!1e8~ n̂!
dn̂

dn~r !
, ~2.20!

and the corresponding expression in Fourier space, whic
necessary for the solution of the MWDA-Kohn-Sham equ
tions can be found in Ref. 9. The MWDA excess ener
functional is exact to second order in a functional expans
about a reference liquid, but also includes contributions fr
all higher orders. In this sense, the MWDA is a nonpert
bative approximate scheme for the calculation of the exc
part of the energy.

C. The Gaussian ansatz

The self-consistent solution of the Kohn-Sham equati
is sometimes avoided by taking advantage of the fact tha
the solid phase, the particles are well localized around
lattice sites. This leads to the introduction of the followin
g
-

s
m

a

e-

is
-
y
n

-
ss

s
in
e

Gaussian ansatz. One constructs normalized Bloch orb
ck(r ) from a single Gaussian per site,f(r )5(2a/
p)d/4e2ar2, according to23

ck~r !5
1

ANP0~k!
S 2a

p D d/4(
R

eik•Re2a~r2R!2, ~2.21!

where$R% is the set of Bravais lattice vectors and

Pm~k!5(
R

Rmeik•R2aR2/2. ~2.22!

After some algebra, we arrive at the following explicit e
pressions for the noninteracting kinetic energyT0 and the
Fourier component of the densitynQ :

T0@n#5N
\2

2m
@da2a2m2~a!# ~2.23!

and

nQ5nse
2Q2/8amQ , ~2.24!

where

m25
s

N(
k

P2~k!

P0~k!
, mQ5

s

N(
k

P0~k2Q/2!

P0~k!
. ~2.25!

Note thatT0@n# remains positive definite for all values o
a, asa2m2(a)→0 for strong localization (a large!. Equa-
tions ~2.23!–~2.25! above, are valid for fermions;s denotes
the number of particles in each occupied orbital:s51 for
spin-polarized ands52 for unpolarized particles. Thek
sums extend over the occupied orbitals only. For bosons,
have to put all the particles in the same orbital,k50. In this
case Eqs.~2.23! and ~2.24! remain valid with the identifica-
tion:

m25
P2~0!

P0~0!
, mQ5

P0~Q/2!

P0~0!
. ~2.26!

Substituting the appropriate expression forT0 and nQ into
Eqs. ~2.10! or ~2.15! above, one directly obtains the differ
ence of the appropriate thermodynamic potential between
solid and the liquid, within the SOT. In the MWDA, th
additional self-consistent solution of Eq.~2.19! is required to
get the excess energy of Eq.~2.16!. In both cases one end
up with differences of thermodynamic potentials as a fu
tion of a, ns , andnl . One then variesa ~andns for neutral
particles! until a minimum is found. By repeating the proce
dure for different values ofnl one can determine the phas
diagram of the system at hand.

We are going to present results obtained mainly throu
the use of the Gaussian ansatz, rather than the full s
consistent calculation. The reason is that, if a minimum
ists when the Gaussian ansatz is employed, then the full
culation can only yield a lower minimum since the class
Gaussian densities is only a subclass of all the possible
files. Since our calculations yieldtoo low minima, the self-
consistent calculation is for most purposes redundant. Mo
over, the Gaussian ansatz allows for analytical estimate
the magnitudes of the ideal and excess terms in Eq.~2.10! or
~2.15!.
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The excess liquid-state linear static inverse-response f
tion K(r ;n) plays, evidently, a central role in the impleme
tation of the approximate schemes presented above. In
following section we discuss the form and asymptotic beh
ior of this function.

III. LIQUID-STATE INPUT, QUANTUM DIRECT
CORRELATION FUNCTION,

AND EFFECTIVE INTERACTIONS

For classical liquids, the Fourier transform of the dcf
related to the experimentally measured structure fa
S(q) by a simple algebraic relation,20 by virtue of the
fluctuation-dissipation theorem. For quantum systems, on
other hand, the theorem relates dynamical quantities, and
relation between static quantities is not simple any more.7 As
a result, various approximations for the static linear-respo
function x̃(q) have been developed.

Superfluid 4He is a test case. This is a fluid of neutr
particles whose interactions can be accurately describe
the so-called Aziz potential.24,25 In the absence of accurat
data forx̃(q), one often resorts to the Feynman approxim
tion to obtain a relation betweenx̃(q) and S(q),10 which
reads as

x̃F~q;nl !5x̃0~q;nl !S
2~q!, ~3.1!

wherex̃0(q;nl)524mnl /\
2q2 is the static susceptibility o

the ideal boson gas. The ensuing approximate dcf

K̃F~q;nl !5
\2q2

4mnl
S 12

1

S2~q! D ~3.2!

has been employed in density-functional theories of freez
of 4He ~Refs. 10,26! or Bose hard spheres8 albeit with an
appropriate ‘‘rescaling’’ which was employed in an empi
cal way. This rescaling has been avoided in a recent den
functional study of quantum hard-sphere freezing.27 How-
ever, accurate data forx̃(q) have now been obtained from
diffusion Monte Carlo calculations.13 In Fig. 1 we show plots
of this accuratedirect correlation function for three differen
densities of the liquid. A comparison with the Feynm
approximation10 shows immediately that whereas the lat
has an oscillatory behavior about zero, the exact dcf is ne
tive for almost all values ofq.2 Å21. An additional impor-
tant difference concerns the large-q behavior of the dcf. Al-
though the Monte Carlo data are limited to valuesq,426
Å 21, exact theoretical calculations12 imply that the
q→`-limit of 2K̃(q,nl) is a negative number~see below!,
and not zero as in the Feynman approximation28 Eq. ~3.2!. In
particular, the response functionx̃(q;nl) is given for large
q by12

x̃~q;nl !52
4mnl
\2q2 F11

8m

3\2q2
^KE&1O~q24!G , ~3.3!
c-

he
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r

e
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se

by

-

g

ty-

r
a-

From Eqs. ~2.8!, ~3.3! and using the resul
x̃0(q;nl)524mnl /\

2q2 for the static susceptibility of the
ideal boson gas, we obtain

2nlK̃~`;nl !52 2
3 ^KE&, ~3.4!

where^KE& is the expectation value of the kinetic energy
the liquid phase. These features of the exact dcf have im
tant consequences on the performance of DFT’s of freez
as will be shown below.

Charged fermions or bosons are another example of qu
tum liquids. The former is just the usual system of electro
in a uniform background~jellium! and the latter is a mode
system of spinless particles of electronic chargee and mass
m in a background, but obeying Bose statistics. A natu
length scale for these systems is the so-called Wigner-S
radiusr 0 defined as the radius of a sphere which contains
average, one particle, i.e., for a system of densityn in d
dimensions we have

n5
3

4pr 0
3 ~d53!, n5

1

pr 0
2 ~d52!. ~3.5!

A convenient dimensionless measure of the density
r s[r 0 /a0, where a0 is the Bohr radius. A widely used
scheme to relate the local-field factorG(q) with the structure
factor has been introduced by Singwi, Tosi, Land, a
Sjölander29 ~STLS!. This has been employed in DFT’s o
freezing of jellium in a number of cases.7,9 An important
feature of the STLS scheme is that in the limit of large-q the
local-field factorG(q) approaches unity and this implies th
2K̃(q;nl) approaches zero in that limit@see Eq.~2.14!#. In
this respect, the STLS scheme for systems of charged
ticles has the same features as the Feynman approxima
However, it has been shownexactlythat in the large-q limit,
G(q) goes likeq2 in three dimensions;11,12moreover it can

FIG. 1. The function2nlK̃(q;nl) ~in mRy! of superfluid4He as
obtained from simulations~Ref. 13!, for three different fluid densi-
ties. Solid line: nl50.026 22 Å23; dashed line:nl50.021 86
Å23; dash-dotted line:nl50.019 64 Å23. The very accurate kinetic
energies of Ref. 41 yield 2nlK̃(`;nl)(mRy)520.0815,
20.0593,20.0493, in order of decreasing density.
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easily be shown that it scales likeq in two dimensions.30 In
particular, for charged bosons atd53 it is known that15 for
largeq,

G~q;nl !5
2^KE&q2

3mvpl
2 1

2

3
@12g~0!#1

16̂ ~KE!2&
5\2vpl

2

2
16̂ KE&2

9\2vpl
2 1O~q22!, ~3.6!

wherevpl5A4pnle
2/m is the plasma frequency andg(0) is

the value of the pair distribution function of the liquidg(r )
at zero separation. From Eqs.~2.14! and ~3.6! we find once
more

2nlK̃~`;nl !52
2

3
^KE&, ~3.7!

as in Eq.~3.4! above.
For fermions in three dimensions, the largeq local-field

factor reads as11,31

G~q;nl !5
2~^KE&2^KE&0!q

2

3mvpl
2 1

2

3
@12g~0!#

1
16~^~KE!2&2^~KE!2&0!

5\2vpl
2

2
16~^KE&22^KE&0

2!

9\2vpl
2 1O~q22!, ~3.8!

where^•••&0 denotes a noninteracting average, and the
efficient of theq2 term—the difference in the kinetic energ
per particle between the interacting and the noninterac
system—is a positive quantity.11,31Note that the differences
between Eq.~3.8! and Eq.~3.6! arise from the different mo-
mentum distributions of the noninteracting Fermi and Bo
systems. Using Eqs.~2.14!, ~3.8! we finally obtain

2nlK̃~`;nl !52 2
3 ~^KE&2^KE&0!. ~3.9!

In Fig. 2 we show the direct correlation function o
charged bosons for a number of different densities as
tained from quantum Monte Carlo simulations.15 In Fig. 3
we show the same function for fully polarized charged f
mions at r s5100, which has also been obtained fro
QMC.32 In both cases, it is clearly seen that at large value
q the function2K̃(q;nl) tends to a negative constant. In th
system of point charged particles, by virtue of the virial the
rem, this constant may be expressed most simply as

2nlK̃~`;nl !5
2

3

d~r sE!

drs
, ~3.10!

with E5ec(r s) the correlation energy per particle, for ferm
ons, andE5e(r s) the energy per particle, for bosons.

In two dimensions, the situation is quite similar. For fe
mions, using the asymptotic behavior of the static line
response function,33 it has been shown30 that the local-field
factor scales linearly withq, asq→`, namely,
-

g

e

b-

-

f

-

-

G~q;nl !5
~^KE&2^KE&0!

2pe2nl
q112g~0!1O~q21!.

~3.11!

From Eqs.~2.14! and ~3.11! we obtain

2nlK̃~`;nl !52~^KE&2^KE&0!. ~3.12!

In Fig. 4 we show the direct correlation function of full
polarized electrons in two dimensions, near freezing, i.e.
r s540, as obtained from quantum Monte Car
simulations.32 Again, the saturation ofK̃(q,nl) to a
constant—which may be conveniently expressed as

2nlK̃~`;nl !52~^KE&2^KE&0!5
d~r sec!

drs
, ~3.13!

FIG. 2. The function2nlK̃(q;nl) ~in mRy! of charged bosons
as obtained from simulations~Ref. 15!: solid line: r s520; dashed
line: r s550; dash-dotted line:r s5100; dotted line:r s5160. The
virtually exact kinetic energies of Ref. 15 yiel
2nlK̃(`;nl) (mRy)525.27,21.67,20.665,20.345, in order of
increasingr s .

FIG. 3. The function2nlK̃(q;nl) ~in mRy! of spin-polarized
charged fermions, as obtained from simulations~Ref. 32!, at
r s5100. The very accurate kinetic energy obtained from the fit
Ref. 39 yields2nlK̃(`;nl)520.527 (mRy).
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with ec(r s) the correlation energy per particle—is eviden
We note that the large-q behavior of2nlK̃(q,nl) for all the
systems considered above is given by

2nlK̃~q,nl !52
2

d
~^KE&2^KE&0!1O~q2d11!1O~q22!,

~3.14!

and evidently for the noninteracting Bose syste
^KE&050. In fact one may easily show34,12,27that Eq.~3.14!
above is valid for any quantum liquid interacting with pa
potentials, both in three and two dimensions, provided
second term on the rhs is only retained for Coulombic s
tems (1/r interaction! in two dimensions.

The short-wavelength behavior of2K̃(q;nl) described
above, implies that in real space the function2K(r ;nl) has
a d-function contribution at the origin with negative weigh
as is clear from Eq.~3.14!. We shall therefore define a regu
lar dcf K̃R(q;nl), decaying to zero asq→`, by setting

K̃~q;nl !5K̃R~q;nl !1
2

nld
~^KE&2^KE&0!. ~3.15!

This implies in real space

K~r ;nl !5KR~r ;nl !1U0~nl !d~r !nl
21

[KR~r ;nl !1KS~r ;nl !, ~3.16!

with the strength of the singular partKS(r ;nl) given by

U0~nl !5
2

d
~^KE&2^KE&0!.0. ~3.17!

Before investigating the consequences of this unexpected
havior of 2K(r ;nl) on the density functional theories o
freezing, we shall pause here to briefly discuss its impli
tions on effective interparticle interactions in the liqu
phase. As an example we shall consider spin-unpolar
electrons in three dimensions.

Within the dielectric formalism, the number and sp
linear-response functions of the normal electron fluid may

FIG. 4. The function2nlK̃(q;nl) ~in mRy! of spin-polarized
charged fermions in 2d, as obtained from simulations~Ref. 32! at
r s540. The very accurate kinetic energy of Ref. 43 yiel
2nlK̃(`;nl)521.88 (mRy).
.
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cast in a mean-field, random-phase-approximation-like fo
by defining appropriate polarization potentials.35 In the static
limit to which we shall restrict here, the number and sp
response functions read, respectively,

x̃~q!5
x̃0~q!

12Vs~q!x̃0~q!
~3.18!

and

x̃s~q!52mB
2 x̃0~q!

12Va~q!x̃0~q!
, ~3.19!

with mB the Bohr magneton andVs(q) andVa(q) the sym-
metric and asymmetric polarization potentia
respectively.35,33 From Eqs.~2.8! and ~2.14! it follows that

Vs~q!52K̃~q,nl !5vc~q!@12Gs~q,nl !#, ~3.20!

with Gs(q,nl)[G(q,nl). In a similar fashion one can set33

Va~q!52vc~q!Ga~q,nl !, ~3.21!

which defines the asymmetric local-field factorGa(q,nl),
whose behavior for largeq is easily obtained from the
known asymptotic expansions ofx̃s(q) ~Ref. 33! as

Ga~q,nl !5Gs~q,nl !2112g~0!1O~q22!. ~3.22!

Interparticle polarization potentials for pairs of electro
with parallel or antiparallel spin projections are readily o
tained from their symmetric and asymmetric counterpa
Vs(q) andVa(q) via35

Vss8
pol

~q!5Vs~q!6Va~q!5vc@12Gs~q,nl !7Ga~q,nl !#,
~3.23!

where the upper sign corresponds toss85↑↑ and the lower
to ss85↑↓. For largeq, from Eqs. ~3.8! and ~3.22! one
obtains

V↑↑
pol~q!52

4

3nl
~^KE&2^KE&0!1O~q22! ~3.24!

and

V↑↓
pol~q!52g~0!vc~q!1O~q24!. ~3.25!

Equation ~3.24! implies the presence inV↑↑
pol(r ) of a term

22U0(nl)d(r )/nl , with U0(nl).0, given by Eq. ~3.17!
with d53. On the other hand, from Eq.~3.25! one obtains
that for r→0, V↑↓

pol(r )52g(0)e2/r . This looks quite strange
at first, as one would naively expect that at short dista
effective interelectronic interactions should be essentia
Coulombic. In fact, polarization potentials are not effecti
potentials, though at times this is not appreciated. We sho
also mention that in the approach of Refs. 35 and 36
polarization potentials were assumed regular at the ori
Vss8
pol (0)5e2qss8, with the screening wave vectorsqss8 of

the order of the Fermi wave vectorqF .
Effective electronic interactions were defined for the ele

trons gas by Kukkonen and Overhauser a long time ag37

using the polarization potential method but taking into a
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count particle indistinguishability. According to this stud
effective two-body electron-electron interactions may
written as

Vss8~q!5vc~q!@11Dss8~q!#, ~3.26!

where

Dss8~q!5
vc~q!@12Gs~q!#2x0~q!

12vc~q!@12Gs~q!#x0~q!

6
vc~q!@Ga~q!#2x0~q!

11vc~q!Ga~q!x0~q!
, ~3.27!

with the upper~lower! sign corresponding to parallel~anti-
parallel! spins. The large-q behavior ofDss8(q) is easily
obtained from Eqs.~3.8!, ~3.22!, and from the known asymp
totic behavior33 of the Lindhard function

x̃0~q;nl !q→`52
4mnl
\2q2

. ~3.28!

One finds thatD↑↓(q) vanishes asq
22 for q→`, while

D↑↑~q!q→`52
8

27
r s
3Fd~r sẽc!

drs
G2, ~3.29!

with ẽc(r s) the correlation energy per particle, in Rydberg
of the electron gas. ThusV↑↓(r )5e2/r for small r , while the
effective interaction between parallel spin is very sligh
reduced with respect to the bare Coulomb repulsi
V↑↑(r )5g(r s)e

2/r , with g(r s)511D↑↑(`)&1. In particu-
lar, in the metallic regime one obtains from the known eq
tion of state of the electron gas38,39g(r s)50.99 and 0.98 for
r s52 and 5. Thus, as we anticipated, effective interactio
do remain essentially Coulombic at short distances.

IV. SECOND-ORDER THEORY

A. Three dimensions

We begin with the application of the second-order the
~SOT! to the freezing of superfluid4He. Experimental re-
sults on the system show that4He crystallizes40 at a liquid
density nl50.0260 Å23 into an hcp-solid of density
ns50.0287 Å23. We employ the Gaussian ansatz for a fc
crystal density and apply Eq.~2.10! for the evaluation of the
grand-potential difference between the solid and the liqu
The value ofK̃(q,nl) at q50 which enters in this calcula
tion is related to the energy per particlee(nl) of the liquid
via the ‘‘compressibility sum rule,’’ namely

2K̃~0;nl !52e8~nl !1nle9~nl !, ~4.1!

where the primes denote differentiation with respect to
argument. For the quantitye(nl) we use an analytic fit base
on accurate diffusion Monte Carlo data.41

We try to minimizeDV@n# @Eq. ~2.10!# with respect to
a for a variety of different values of (ns ,nl). As can be seen
in Fig. 5 for the pair of values which are close to those
which freezing occurs in experiments,DV@n# has apparently
no minimum; it keeps getting lower without bound as th
localization increases. In the same figure it can be seen
for nl much lower than the freezing value,DV has a very
e

,

,

-

s

y

-

.

e

r

at

negative local minimum at strong localization~large values
of a), i.e., the solid is predicted to be too stable. With re
erence to Fig. 5, note that at freezing one would exp
as2'2, in order to obtain the correct ‘‘quantum’’ Linde
mann ratiog.0.3. (g is the ratio of the root-mean-squar
deviation about a site to the nearest-neighbor distance.! On
the contrary, the minima shown in the figure are
as2'10, implying a value ofg}1/Aa which is too small by
about a factor 2, being essentially classical. Unfortunate
the lack of Monte Carlo data for the dcf at large wave vect
does not allow us to examine the limit of strong localiz
tions, since asa grows we need more and more shells
RLV’s into the sum of Eq.~2.10! in order to achieve conver
gence. Nevertheless, it is clear from the shape
2K̃(q;nl) ~see Fig. 1! that the overestimation of the stabilit
of the solid is brought about by the fact that2K̃(q,nl) is
negativefor all values of the RLV’s; this way, the contribu
tion from the excess part of the energy, which is becom
lower with increasing localization, dominates over the co
tribution from the ideal energy, which grows with localiza
tion, to yield a total energy which istoo low. We will make
this statement more quantitative shortly.

Next, we look at the SOT freezing of charged boso
using the dcf-simulation results of Ref. 15. The system
known to undergo Wigner crystallization into a bcc-solid38 at
r s5160610. Once more, we employ the Gaussian ans
and try to minimizeDE@n# @Eq. ~2.15!# with respect toa at
various different values ofr s . Some of the results are show
in Fig. 6. The quantityDE@n# is clearly unbounded from
below, i.e. the absolute minimum lies at infinite localizatio
where the value ofDE@n# is minus infinity. There is a local
negative minimum atar 0

2'3 for r s550. This corresponds to
the correct quantum Lindemann ratio, and one might ar
that the SOT of freezing may only make sense for modu
tions that are not too large~i.e., moderate values ofa) and
near the freezing density. Even so, the predicted freez
density would be overestimated by a factor of about 30.

FIG. 5. Grand potential difference~Ref. 21! @Eq. ~2.10!# be-
tween a4He fcc-solid and a liquid at the same chemical potent
for different pairs (ns ,nl) in the second-order theory. Solid line
ns50.0287 Å23, nl50.0262 Å23; dashed line:ns50.0287 Å23,
nl50.0216 Å23; dash-dotted line:ns50.0275 Å23, nl50.019
Å23. Here,s52.556 Å.
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It becomes clear, therefore, that the SOT suffers from
pathology of producing an unbounded functional. Within t
framework of the Gaussian approximation, this feature
be clearly understood as follows. Take a solid whose lat
constant isa and consider the strong-localization limit, i.e
ã[aa2@1. In that case we have, with excellent accura
m250 andmQ51 for all Q’s @see Eq.~2.26!#. In d dimen-
sions, Eq.~2.23! gives

T0~ ã !

Vnl
U

ã@1

5~11h!
\2d

2ma2
ã, ~4.2!

wherens5(11h)nl (h50 for isochoric freezing!. On the
other hand, the excess energy contribution@i.e., the sum of
the terms beyondT0 on the rhs of Eq.~2.10! or Eq. ~2.15!#
may be conveniently broken into two contributions origin
ing, respectively, fromK̃R(q;nl) and K̃S(q;nl). The first
contribution is most easily treated in reciprocal space, wh
it takes the form

DEex
R ~ ã !

Vnl
U

ã@1

52
h2

2
nlK̃R~0;nl !

2
~11h!2

2 (
QÞ0

e2~Qa!2/4ãnlK̃R~Q;nl !,

~4.3!

and manifestly tends to a constant for large values ofa. The
second contribution is evaluated in real space, to lead
order, as

DEex
S ~ ã !

Vnl
U

ã@1

52
U0~nl !

2Vnl
2 E dr „dn~r !…2

52
U0~nl !~11h!

2nla
dpd/2 ãd/2, ~4.4!

using the fact that forã@1, the density reduces to a supe
position of nonoverlapping normalized Gaussia

FIG. 6. Ground-state energy difference~Ref. 21! @Eq. ~2.15!#
between a charged boson bcc-solid and the liquid, versus loca
tion at three different average densities, as obtained from
second-order theory. Solid line:r s5160; dashed line:r s5100;
dash-dotted line:r s550.
e
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e
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(2a/p)d/2exp$22ar2%, one per site. The lack of a lowe
bound ford53 can be now easily understood: since the id
energy scales likeã and the excess like2ã3/2 for largeã, it
is then clear that their sum will be dominated by the2ã3/2

term and will be unbounded from below. The analysis p
sented above is valid also for fermions.

If a minimization within the restricted space of Gaussi
profiles fails to yield a finite minimum, then theglobalmini-
mum of the unrestricted Kohn-Sham~KS! scheme, which
cannot be higher, will also be minus infinity. This does n
exclude, however, the possibility of obtaining, by means
solving the KS equations, somelocal minimum at a moder-
ate value of the localization; in the KS scheme there is
‘‘localization parameter’’ of course, but the Lindemann rat
for example, can be used as a measure of the spatial exte
the one-particle density around a lattice site. This possibi
is particularly interesting because it could be argued that
perturbative character of the SOT immediately limits its v
lidity to weakly modulated density profiles. In order to pu
sue this line, we have also performed the full, self-consist
calculation7,9 for both charged bosons and spin-polariz
electrons, within the SOT, at the densities for which the
is available~see Figs. 2 and 3 above!. However, no local
minimum was found, in either case. The large-q behavior of
the dcf and the number of space dimensions render the S
pathologicalin d53.

B. Two dimensions

In two dimensions, Eqs.~4.2! and~4.4! show that both the
ideal and excess term scale asã at strong localizations, the
former with a positive and the latter with a negative coe
cient. Therefore, the absolute values of the respective c
ficients are crucial in determining the existence of a low
bound for the sum of the two terms. Expressing energie
Rydbergs and making use of Eqs.~4.2!, ~4.4!, ~3.17!, and
~3.13!, we find for isochoric transitions (h50):

T0~ ã;r s!

N U
ã@1

52ãS a0a D 2 ~4.5!

and

DEex~ ã;r s!

N U
ã@1

5
1

2
r s
2d~r sẽc!

drs
ãS a0a D 2, ~4.6!

wherea is the lattice constant of the given crystal structu
andẽc the correlation energy per particle in Rydbergs. Th
at strong localizations

DE~ ã;r s!

N U
ã@1

}S 21
1

2
r s
2d~r sẽc!

drs
D ã. ~4.7!

For polarized fermions (s51) in 2d the available QMC
data42,43 show that the coefficient in Eq.~4.7! is positivefor
r s<59. Therefore, the SOT functional remains bound
from below for valuesr s<59. This is encouraging, given
that the polarized electron gas in two dimensions crystalli
into a triangular lattice at a value ofr s which is considerably
smaller than this ‘‘stability limit.’’

We have thus performed a full Kohn-Sham calculati
with the accurate liquid state input shown in Fig. 4, using

a-
e
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plane-wave basis set as explained at length elsewhere.7,9 We
have systematically checked convergence with respect to
plane-wave cutoff and the number ofk points in the Bril-
louin zone. As it can be seen in Fig. 7 atr s540, where we
have the dcf from QMC,32 the solid is still unstable, though
its energy is only 6 microRydbergs higher than that of
polarized liquid. On the ground that the explicit dependen
of G(q/qF ;r s) on r s should be very weak,32 we have ne-
glected it altogether to perform the calculations at the ot
values ofr s , using therefore the available local-field fact
G(q/qF ;r s540). This treatment predicts freezing from th
polarized fluid atr s542 which agrees within error bars wit
the QMC prediction of Tanatar and Ceperley42 r s53765
and is within two error bars from a more recent QM
prediction43 r s53464. We have also evaluated the Lind
mann ratiog, which is shown in Fig. 8 as function ofr s near
freezing. We findg50.33 atr s542, to be compared with an
accepted value for quantum freezing of about 0.3. We m
thus conclude that the SOT is capable of predicting freez
in two dimensions with good accuracy.

We have also investigated the effect of using a Gaus
ansatz for the Bloch orbitals~see, e.g., Sec. IIC!, as opposed

FIG. 7. Ground-state energy difference between triangular-s
and polarized liquid for electrons in 2d as function of the density
DE/N ~in mRy! was calculated within the SOT. The solid squar
are calculated points, with the line just a guide for the eye.

FIG. 8. Lindemann ratiog around freezing in the triangula
2d Wigner crystal, as predicted by the SOT. The solid squares
calculated points, with the line just a guide for the eye.
he
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e
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to the full Kohn-Sham calculation presented above. As
pected, this yields solid energies that are slightly higher, p
dicting freezing at a lower density, i.e., atr s550 with
g50.25. Though this is well out of the range predicted
QMC ~see above! it is still a substantial improvement with
respect to an earlier prediction23 of r s*80, using the Gauss
ian ansatz and an approximate local-field factor.

We should also mention results recently obtained us
another DFT scheme,44 in which a local-density approxima
tion ~LDA ! to the total energy of the modulated phase
augmented by gradient corrections45 ~GCDFT!. This ap-
proach yields crystallization atr s531, but with a density
which appears to be very little modulated. In fact we ha
repeated such calculations, solving the equivalent one-orb
self-consistent Kohn-Sham equations in full. We reprodu
the r s531 found in Ref. 44 and we findg50.369 which is
very close to the uniform limit ofg50.373. To give a more
direct idea of what this means in terms of localization, w
may look at the minimum in the density profile at half di
tance between a site and one of its nearest neighbors, in
of the on-site density,d5n(rNN/2)/n(0). Here rNN is the
nearest-neighbor distance. We find that the GCDFT pred
d50.92 at freezing, to compare withd50.30, which we
have obtained within the SOT, and an exact value which
likely to be even smaller. With respect to a convention
LDA ~Refs. 6 and 9! in which the noninteracting kinetic
energy is treated without approximation, the GCDFT is
troducing an overestimate of the kinetic cost of a modu
tion. For the small modulations predicted by the GCDF
this may easily be checked by comparing, for instance at
first RLV of the triangular crystal, the exact 2d noninteract-
ing response function46,30 with the one corresponding to th
GCDFT, x0

GC(q)52(sm/2p\2)/@11q2/2qF
2 #. One might

be tempted to argue that, for small modulations, the appro
of Ref. 44 would be more consistent than a conventio
LDA,47 in that it treats all the components of the energy
the same footing. However, the quality of the resulting de
sity profile, which is indeed very poor, pointing to a weak
first-order if not a second-order transition, contradicts suc
conclusion.

Returning to the effects of the large-q behavior of the
quantum dcf on freezing we may conclude that these are
less drastic in two dimensions than in three. Notice, ho
ever, that if one tried to apply the quadratic theory for sy
tems withr s.59, one would obtain, also in two dimension
the erroneous answer that the stable phase is a crystal
infinite localization. This demonstrates that the quadra
theory gives a reasonable description of solids whose t
modynamic parameters are not far away from the freez
ones. Deep inside the region of thermodynamic stability
the solid, the SOT loses its validity, even in those ca
where it succeeds in predicting freezing. Having conclud
the discussion of the quadratic theory in two and three
mensions, we now proceed with the nonperturbative
proach, i.e. the MWDA.

V. MODIFIED WEIGHTED DENSITY APPROXIMATION

In this section we will examine the behavior and perfo
mance of the MWDA for the case of systems of charg
particles. The general analysis will show that regardless

id

re
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55 8877DENSITY-FUNCTIONAL THEORY OF FREEZING OF . . .
statistics, the MWDA yields a functional which isbounded
from below, i.e., at the limit of large localizations the ener
difference between the solid and the liquid tends to1` and
not2` as in the case of the SOT. Then, we will present
application of the MWDA to the case of charged bosons,
which the availability of liquid-state input allows us to pe
form the MWDA calculation. We still find the stability of the
crystal to be overestimated, nevertheless.

The presence of a singular term in the dcfK(r ;nl) implies
the existence of a similar term in the weight functio
w(r ;n̂), as is clear from Eqs.~2.18! and ~3.16!. With a
straightforward analysis which closely parallels the one
veloped in the previous section for the excess energy on
led to the conclusion that for strong localizations~large val-
ues of the parametera), the weighted density is given t
leading order ina by

n̂5
U0~ n̂!

22n̂e8~ n̂!pd/2
ad/2, ~5.1!

suggesting thatn̂ grows with a as we shall demonstrat
shortly, provided that2n̂e8(n̂).0. We have verified tha
indeed2n̂e8(n̂)5(1/d)r ŝe8( r̂ s).0 for all the systems con
sidered below.42,39,15We shall examine the behavior ofn̂ in
two and three space dimensions separately.

A. Charged fermions in two dimensions

On account of Eq.~5.1! above, let us assume thatn̂ di-
verges witha and therefore thatr̂ s—the Wigner radius in
units of Bohr radii corresponding to the effective dens
n̂—goes to zero in the same limit. Using the definitions
the previous section we may eliminaten̂ in favor of r̂ s to
obtain

1

r̂ s
2

5
2„r̂ sec~ r̂ s!…8

r̂ se8~ r̂ s!

C

r s
2 ã, ~5.2!

with the prime denoting differentiation with respect tor̂ s and
C a constant which depends on the structure chosen for
solid. Hereec ande are, respectively, the correlation and t
excess energy~exchange plus correlation! of the two-
dimensional electron gas.

For smallr s the excess energy is given by43

e~ r̂ s!52Ar̂s
212B2Dr̂ slnr̂ s1 . . . , ~5.3!

with A,B,D positive constants which depend on the sp
polarization. The dominant,2 r̂ s

21 term is the exchange en

ergy and the remainder is the correlation energyec( r̂ s). Us-
ing the above equation and keeping only the leading term
the ratio appearing in Eq.~5.2! one obtains at once

r̂ s5~Ars
2/BC!1/3ã21/3. ~5.4!

Now, using Eq.~2.16! and since the excess energy of t
liquid scales like2 r̂ s

21 Eq. ~5.4! yields
e
r

-
is

f

he

in

Eex
MWDA~r s ,ã !

N
U

ã@1

52uE2d~r s!uã 1/3. ~5.5!

Since the ideal term scales asã, it dominates over the exces
one at largeã and thus the total energy tends to plus infin
at the limit of strong localization. Notice that in the SOT th
excess term scales as2ã, whereas here only as2ã1/3. The
MWDA makes the dependence of the excess energy on
localization parameter a lot weaker than the SOT. We w
see that this is also the case in three dimensions.

B. Charged bosons and fermions in three dimensions

In three dimensions, eliminatingn̂ in favor of r̂ s in Eq.
~5.1! yields

1

r̂ s
3

5
2„r̂ sec~ r̂ s!…8

r̂ se8~ r̂ s!

C

r s
3 ã 3/2, ~5.6!

where ec and e have the usual meaning for fermion
whereas for bosonsec coincides withe—the total energy per
particle. Again,C is a constant depending on the structu
assumed for the solid. As in two dimensions, we are led
assume thatr̂ s→0 asã→` and therefore we shall retain i
this limit only leading terms in Eq.~5.6!.

Charged bosons. As we have already mentione
ec( r̂ s)5e( r̂ s) in this case and asr̂ s→0, we have to domi-
nant ordere( r̂ s)520.8031r̂ s

23/4 Ry.15,48 Thus we obtain

r̂ s5~3/C!1/3r sã
21/2. ~5.7!

The energye( r̂ s) now scales as2 r̂ s
23/4 thus

Eex
MWDA~r s ,ã !

N
U

ã@1

52uEb~r s!uã 3/8. ~5.8!

The MWDA-excess energy per particle scales only
2ã 3/8 as opposed to2ã 3/2 in the SOT. Thus, the idea
energy which is linear inã dominates for strong localiza
tions, and the MWDA functional is free of the pathology
the SOT, i.e., it does have a lower bound.

The actual calculations that we carried out were for
case of bosons only; however, the same analysis can be
ried out for fermions, and the results for this case are p
sented below.

Charged fermions. The first few terms in the expansion o
the excess ground-state energy of the electron fluid for sm
r̂ s read as39

ẽ~ r̂ s!52Br̂s
211G lnr̂ s2D1O~ r̂ s!, ~5.9!

where all constants are positive. Once more, the term p
portional to2 r̂ s

21 is the exchange energy and the remaind
is the correlation energy. Using Eqs.~5.6! and ~5.9! we ob-
tain asr̂ s→0

1

r̂ s
3

5 r̂ su lnr̂ su
GC

B

1

r s
3 ã3/2. ~5.10!

To leading order asã→` we immediately obtain
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r̂ s5D~r s!
ã23/8

@ lnã#1/4
, ~5.11!

with D(r s)5@8Brs
3/3GC#1/4. Finally, since the excess en

ergy per particle scales as2 r̂ s
21 the MWDA functional

obeys the scaling

Eex
MWDA~r s ,ã !

N
U

ã@1

52uEf~r s!u@ lnã#1/4ã 3/8. ~5.12!

Thus, the MWDA is free of the unboundedness problem a
for fermions. It is interesting that the scaling of the exce
energy is now dependent on the statistics@see Eqs.~5.8! and
~5.12! above#, though very weakly, due to the logarithm
dependence inã present for fermions. This is at varianc
with the prediction of the SOT, where the same scaling w
found and it appears intriguing. In fact, naive consideratio
would suggest that the excess energy should scale in
same way for bosons and fermions at the strong localiza
limit since, in this case, each particle is confined to its o
cell and statistics becomes unimportant.

The existence of a lower bound for the MWDA function
is an improvement over the behavior of the SOT. Howev
this property guarantees neither the existence of a minim
at nonzero localization nor its correct location and behav
in terms of changes of the average density. If, for exam
the total energy is monotonically increasing as a function
a, then the only minimum will occur for the uniform liquid
On the other hand, it is possible that a minimum alwa
exists, for any value of the average density and is lower t
the liquid one; in this second case, we are led to the erro
ous prediction that the crystal is stable at all densities. In
following subsection we show the results of the full MWD
calculation for charged bosons and we find that, in fact,
second scenario materializes.

C. MWDA calculation for charged bosons

We have implemented the MWDA-self-consistency co
dition @Eq. ~2.19!# for the case of charged bosons for whi
there exist sufficient simulation data for the local-field fac
for a range of densities varying fromr s510 to r s5160 ~Ref.
15!. We have used an analytic fit to the equation of st
obtained from simulation.15 We limit our study to the
charged boson liquid because for polarized fermions the o
available Monte Carlo data are forr s5100 and the imple-
mentation of the MWDA requires the knowledge of the d
of the liquid over a wide range of densities.

We have carried out the MWDA calculation with th
Gaussian ansatz for three different values for the aver
density, namelyr s520, 50, and 100. The results are show
in Fig. 9. It can be seen immediately that, unlike the SO
the MWDA gives minima ofDE/N for finite values of the
localization parametera. Moreover, the trends of thes
minima are correct: they get deeper and also move tow
stronger localization as the average density decreases. H
ever, according to simulations38 the liquid is stable for
r s,160610, whereas the MWDA gives alower energy for
the bcc solid for values ofr s as low as 20. Thus we can sa
that although the MWDA is already much better than t
o
s
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SOT, it still predicts a solid that istoo stable. Even at high
densities the MWDA functional has a global minimum for
modulated phase.

VI. CONCLUSIONS

The implementation of the correct liquid-state input in
density-functional approach to the freezing of quantum l
uids brings about a remarkable new result, namely thain
three dimensionsthe standard SOT suffers from a lack of
lower bound and is alwaysstrictly minimized for infinitely
localized solids. As we have already mentioned, one mi
argue that the perturbative character of the SOT limits
validity to weakly modulated density profiles and thus loc
minima for finite localization should suffice. However, as w
have demonstrated above for4He and charged bosons, suc
minima—when they exist—still yield an incorrect descri
tion of freezing, predicting stability of the solid well insid
the region where the system in fact is liquid. Recourse
nonperturbative theories including certain classes of high
order terms, such as the MDWA, does not help much
practice. One gets rid of the extreme pathology of the S
theory in that the resulting functional is bounded from b
low, which is certainly satisfactory. However even th
MDWA predicts the crystal to be the stable phase deep
the region where the liquid should be stable.

FIG. 9. Ground-state energy difference~Ref. 21! between the
the charged boson bcc-solid and the liquid, versus localizatio
three different average densities, as obtained in the MWDA.~a!
Solid line: r s520; dashed line:r s550. ~b! r s5100.
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The asymptotic analysis in the localization parameteã
that we have carried out above for the MDWA is eas
generalized to the weighted density approximat
~WDA!,49,9 once it is realized that the weight functio
w̃(q;n) has in this case the same large-q limit as in the
MWDA, and therefore the same singular term in real spa
One obtains the same scalings as discussed in Sec. V a
and therefore bounded functionals. Whether the predicti
of the WDA for freezing will be any better than those of th
MWDA remains to be investigated, though we doubt it. T
conventional LDA~Refs. 6 and 9! also brings about bounde
functionals, as one may easily demonstrate, along sim
lines as those illustrated above for the MWDA and WD
The scaling is the same as for the MWDA for electrons
two dimensions and charged bosons in three dimensions;
different for electrons in three dimensions, for which t
exchange-correlation energy goes like2ã 1/2. Again, the
LDA is making the solid too stable in three dimensions.7

The situation in two dimensions appears specular to
one summarized above for three dimensions. In fact, ea
applications of the DFT theory of freezing with approxima
liquid dcf gave good results in three dimensions,7,8 while
failing in two dimensions.23 We have demonstrated abov
that the reverse is true, if more accurate liquid input is us
which obeys the exact large-q behavior discussed in Sec. II
In particular, in two dimensions the SOT provides bound
functionals, in the relevant region of density, and yields
good description on the freezing transition.

The recently obtained accurate information on the liqu
state linear-response functions gives rise, therefore, to a
problem: our favorite approximate density-function
-
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schemes which we have learned to trust from our experie
on classical systems, seem to fail when applied to quan
systems in three dimensions. There is a need for reexam
tion of the current formalism of quantum density-function
theory of freezing and the development of approxim
schemes which will be more appropriate to deal with t
peculiarities of quantum systems. In this respect, the us
direct correlation functions possessing the correct asympt
behavior is crucial, as is such a behavior that causes all
present troubles. At variance with the classical case we h
seen that quantum functionals tend to predict excess ene
~per particle! that negatively diverge at infinite localization
Though the MWDA produces a functional bounded fro
below, we speculate that the divergence of its excess pa
this limit could still be incorrect, as the potential energ
should remain finite, unless one can prove that it is the
netic contribution to the excess energy which is bringi
about this divergence.
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