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Path renormalization of quasiperiodic generalized Fibonacci chains

Dieter Walther and Ralph v. Baltz
Institut für Theorie der Kondensierten Materie, Universita¨t Karlsruhe, 76128 Karlsruhe, Germany

~Received 5 September 1996!

A renormalization group is introduced which is based upon a real-space rescaling procedure of the Dyson
equation for one-band tight-binding models of generalized Fibonacci quasicrystals. We present an approach for
finding possible successions of given elementary rescaling transformations to calculate thediagonalelements
of the Green function for all sites.@S0163-1829~97!05613-0#
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I. INTRODUCTION

Inspired by the discovery of quasicrystals by Shechtm
et al.,1 quasiperiodic structures have attracted much intere2

In particular one-dimensional~1D! quasiperiodic system
such as the Fibonacci chain have been theoretically inve
gated in great detail, e.g., Refs. 3–6. Moreover, in the p
few years an understanding of a close connection betw
the structural description of the different classes of qua
crystals and the theory of‘‘the isomorphic group of the free
group’’ developed by Nielsen7 in 1918/24 came forward.8

In this context, generalized Fibonacci chains~GFC! play
an important role in the development of an adequate m
ematical apparatus for the computation of physical quanti
such as the density of states or conductivity. Analyti
methods, based upontrace maps4 in the framework of the
transfer-matrix approach and real-space decimation
techniques,5,6 are central to the understanding of the physi
properties of these systems. Unfortunately, a drawback of
renormalization schemes, as presented in Refs. 5 and 6, i
absence of an algorithm which determines the correla
between the diagonal elements of the Green function an
possible choice of the successional rescaling transformat
decimating the Dyson equation. It will be apparent that o
approach yields just this missing algorithm. In doing so,
objective of this and a further article9 is to exhibit the rela-
tionship between the geometric structure of a class of G
~represented by the so-called positive primitive elements
the free groupF2), and the abstract group of automorphism
F25Aut(F2) on the one hand, and the renormalizati
group RG(F2) associated with a tight-binding Hamiltonia
on the free groupF2 of rank 2 on the other. The latter pro
vides the tool for solving the Dyson equation for the Gre
function. Our main issue is to construct a renormalizat
scheme for a class of GFC via a real-space decimation t
nique on graphs~path renormalization!. In this article we
will present that part of our approch which yields thediag-
onal elements of the Green function.

We will go into the presentation of thepath renormaliza-
tion scheme as follows. In Sec. II we consider the geome
cal structure of the GFC and the physical model. In the fi
part of Sec. III we address severalformal aspects of the
structural description of the quasiperiodic chains and its
lation to the group of automorphismsF2. In the second par
we introduce a number system which is related to the G
These concepts form the foundation for the following s
550163-1829/97/55~14!/8852~15!/$10.00
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tions. Section IV is devoted to the construction of the re
space rescaling procedure. We will show that the set of
so generated renormalization transformations~RT! defines a
group that we denote the renormalization grou
RG↓x,y,RG(F2). The computation of the diagonal elemen
of the Green function and the local density of states~LDOS!
is presented in Sec. V. In Sec. VI we introduce thepath
renormalizationscheme and examine its properties. Final
in Secs. VII and VIII numerical results and a summary a
given.

II. FIBONACCI CHAINS

We consider 1D quasiperiodic systems with two differe
types of nearest neighbor interactions specified bytL , and
tS , respectively. One may describe the geometric structur
such lattices bywords w(L,S), i.e., strings in the symbols
L,S representing the corresponding linear arrangement of
long and short bondsL andS. These words obey the follow
ing recursion law:

wn5~wn21!
Mn2sn * wn22 * ~wn21!

sn, ~1!

wherew215S, w05L, MnPN1, and snP$0,1, . . . ,Mn%.
TheNielsen transformationis given by

X̂Mn2sn ,sn
~wn21 ,wn22!5~wn ,wn21!. ~2!

The length uwnu5Fn , i.e., the power sum of symbolsL and
S in wn(L,S),

10 satisfies the recursion relation for the gene
alized Fibonacci numbers

Fn5MnFn211Fn22 , F215F051. ~3!

The group product* is defined as the concatenation of tw
strings. The corresponding generalization is (wn)

Mn

5wn*wn* •••*wn . To lighten the notation, the asteris
symbol will be left out in the following. The special cas
Mn51,sn50, ;n, yields the standard Fibonacci chain.

Alternatively to the Nielsen transformations~2!, the GFC
can be generated bysubstitutions~morphisms!, which oper-
ate on the symbolsL,S rather than on wordswn(L,S). Start-
ing with w0(L,S)5L, the sequential operationX̂Nn2r n ,r n

on

L andS

X̂Nn2r n ,r n
: L→LNn2r nSLrn, S→L,
8852 © 1997 The American Physical Society
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FIG. 1. Fifth generation standard Fibonacci latticew55LSLLSLSLLSLLS(F5513). The arrows over the parameterseg serve to
emphasize the border of the unit cell with the quasiperiodic structure@compare with Fig. 3~a!#.
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X̂Nn2r n ,r n
~wn21~L,S!!5wn21~L

Nn2r nSLrn,L !5wn~L,S!,
~4!

with NnPN1 and r nP$0,1, . . . ,Nn% generates the same s
of wordswn(L,S) as Eq.~2!. Note thereversed orderof the
substitutions when compared with the Nielsen transform
tions, i.e.,

Nn[~N1 ,N2 , . . . ,Nn!5~Mn ,Mn21 , . . . ,M1!,

Rn[~r 1 ,r 2 , . . . ,r n!5~sn ,sn21 , . . . ,s1!. ~5!

In the following, we will specifically use the lettersMk ,sk
for the Nielsen transformations~as well as for theinverse
substitutions which will be introduced in the following se
tion!, and the lettersNk ,r k for the morphisms.

In our study, we employ the following one-particle tigh
binding Hamiltonian

H5(
m

um&em^mu1 (
^m,n&

um&tm,n^nu, ~6!

whereum& are Wannier states~atomiclike orbitals! centered
at sitesm. emP$ea ,eb ,eg ,ed%, tm,m11 P{ tL,tS} denote the
site energy and the nearest neighbor transfer integrals
spectively, with

em5ea if tm21,m5tm,m115tL ,

em5eb if tm21,m5tL and tm,m115tS ,

em5eg if tm21,m5tS and tm,m115tL ,

em5ed if tm21,m5tm,m115tS . ~7!

The one-particle Green function is defined throu
(z2H)G(z)51 and obeys the Dyson equation

~z2em!Gmn~z!5dmn1tmm21Gm21n~z!1tmm11Gm11n~z!,
~8!

with z5E1 ih. In particular, the local density of state
~LDOS! at sitem is given by

rm~E!52
1

p
ImGmm~E1 i01!. ~9!

III. COMBINATORIAL STRUCTURAL DESCRIPTION

A. Group theoretical description

Mathematical tools for analyzing aperiodic structures
found in the mathematical discipline of combinatorial gro
theory, as laid down, e.g., in Ref. 11. The GFC are spe
cases, which may be described by wor
w5$ym%m51

k [y1 . . . yk in the symbolsymPA2 over a two-
-

re-

e

al

element setA2 ~‘‘alphabet’’!. The set of all words overA2
together with the product* defined in the last section create
the free semigroupF2

1 . Appending the empty word
1:1w5w15w as well as the inverse elementsym

21 :
ym

21ym5ymym
2151, ymPA2, we extendF2

1 to the group
F25^L,S& with the generating elementsL,S. Except for the
trivial relationsLL215L21L51 andSS215S21S51 there
are no defining relations between the generating eleme
i.e., F2 is a free group.

We assign~cf. Fig. 1! to a wordwPF2, a dual word
S5$sm%m50

N , where a symbolsP$a i
j ,b i

j ,g i
j ,d i

j% will be
related to each pair (ym ,ym11) by the map
(LiL j ,LiSj ,SiL j ,SiSj )↔(a i

j ,b i
j ,g i

j ,d i
j ), i , jP$21,11%,

e.g., the dual word pertaining tow5 in Fig. 1 is
S55gbgabgbgabgab. As a rule, we will use the abbre
viations a5a1

1 ,b5b1
1 ,g5g1

1 ,d5d1
1 . As we limit our-

selves to the case ofperiodic boundary conditionthis map is
unique. LetSu ,Sv , andSw be the dual words ofu,v, and
w5uv, respectively. We define the product of two du
words bySuSv5Sw .

In the following, we will employ exclusivelypresenta-
tions of groupsin the form of generators and a complete s
of defining relations. Consider~cf. Ref. 12! the following
presentation of the automorphism groupF2 of F2 found by
Nielsen in 1924.7,11 It will be apparent thatF2 is isomorphic
to the renormalization groupRG↓x,y which will be intro-
duced in the following section:

F25^P̂,Ô,ÛuP̂25Ô25~ÔP̂!45~P̂ÔP̂Û!2

5~ÔP̂Û!35@Û,ÔÛÔ#51&. ~10!

P̂,Ô, andÛ are the generating elements ofF2 represented
by

P̂: L→S, S→L S 0 1

1 0D ,
Ô: L→L21, S→S S 21 0

0 1D ,
Û61: L→LS61, S→S S 1 61

0 1 D . ~11!

The corresponding substitution matrices are elements of
unimodular group GL(2,Z) ~cf. Refs. 11 and 13!.
@x,y#[xyx21y21 is the group commutator ofx andy. Note,
the group of Nielsen transformations of rank 2,G2, is
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8854 55DIETER WALTHER AND RALPH v. BALTZ
antiisomorphic to the automorphism groupF25Aut(F2)
@Ref. 11, cf. Eq.~5!#. Later, we will frequently encounter
second ‘‘elementary automorphism’’

Â615ÔÛ71Ô: L→S61L, S→S. ~12!

F2 alternatively can be generated by the automorphis
P̂,Â, and Û or by the automorphismsP̂,L̂5P̂Â and
R̂5P̂Û, whereL̂ andR̂ are the generators of all cycli
permutations of the standard Fibonacci chain. Note thatÂ
and Û correspond to the same element ofGL(2,Z). Adding
the relationÛ5Â5ÔÛ21Ô or

~ÔÛ!251 ~13!

to the set of relations~10! yields a presentation o
GL(2,Z), where its generatorsP̂,Ô, and Û may be repre-
sented by the substitution matrices~11!. It is also well known
that theprojective unimodular groupPGL(2,Z) is defined by
the system of relations~10! and ~13! along with a further
relation

~ÔP̂!251. ~14!

Thus, if the matrix

B̂5S a b

c dD
represents an element ofGL(2,Z), then6B̂ determine an
elementB̂(z)5(az1b)/(cz1d) in PGL(2,Z),7,11 The us-
age of the same letters for elements of different gro
should not cause any confusion.

We now turn to the geometric structures considered
Sec. II. All corresponding lattices may be described
words of the form w(L,S)5B̂(L)PF2

1 with B̂PF2
1 ,

where the semigroupF2
1(F2

2),F2 is the set of all positive

~negative! words inP̂,Â, andÛ. One definesw(P̂,Â,Û)
as a positive ~negative! word if no P̂k,Âk, or Ûk with
k,0 (k.0) occur inw. We found the following presenta
tion:

F2
15^P̂,Â,Û;P̂251,ÛÂ5ÂÛ,

ÛP̂ÛkP̂Â5ÂP̂ÂkP̂Û, kPN1&. ~15!

G2
1 is the pendant ofF2

1 in G2.

Since P̂251, and becauseÂ commutes with Û,
each automorphism B̂PF2

1 has the form B̂
5P̂p1X̂(r n•••r1)

P̂p2,piP$1,2%, where12

X̂~r n•••r1!5)
k51

n

X̂Nk2r k ,r k
PF2

1 ~16!

denotes the product of the automorphisms

X̂N2r ,r5P̂ÂN2rÛr : SN5SN 1

1 0D ,;r ~17!

defined in Eq.~4!. The substitution matrix corresponding
Eq. ~16! is given by
s

s

n
y

S~Nn!5)
k51

n

SMk
5S Pn Qn

Pn21 Qn21
D PGL~2,Z!. ~18!

Pn (Qn) is the number of the symbolsL (S) in wn(L,S).
They obey the recursion relation (Pn ,Qn)
5Mn(Pn21 ,Qn21)1(Pn22 ,Qn22) @cf. Eq. ~5!# with
(P21 ,Q21)5(0,1) and (P0 ,Q0)5(1,0).

Thus, in the following we may restrict ourselves to th
investigation of those lattices which may be described by
words

wn
rn•••r1~L,S!5X̂~r n•••r1!~L !, ~19!

wherew05L,w215S. Let us consider an important proper
of these words. By induction, we found for givenNn the
following correspondence between the words belonging
differentRn:

wn
rn•••r15vn

21wn
0•••0vnPF2

1 , ~20!

with

vn5F )
i51

n21

~wi
0•••0!r n2 iG ~w0!

r nPF2
1 . ~21!

As a result, the morphismsX̂(r n•••r1)
generate all cyclical

permutations of the standard GFC obeying the standard
cursion relationwn5(wn21)

Mnwn22 with sn50 @cf. Eq.
~1!#.

All relations between the different automorphismsB̂,B̂8
PF2 are reducible to the defining relations ofF2. But
B̂ÞB̂8PF2 does not necessarily imply B̂(L)ÞB̂8(L)
PF2. The reason is found in a further relation

B̂P̂Û~L !5B̂Â~L !, ;B̂PF2 , ~22!

which is not contained in the system of relations~10!. Note
that Eq.~22! is a relation betweenwords. Together with the
system of defining relations~15! we have thus found all in-
dependent relations between thepositive wordsB̂(L)PF2

1

with B̂PF2
1 .

B. A number system—representation of Eq.„16…
by integers j „n…

It will be apparent that a link between the real-space r
caling, which will be introduced in Sec. IV, on the one han
and the following ideas on the other hand, will yield fo
given GFC a correspondence between the choice of the in
m of the diagonal elements of the Green function and a p
sible succession of rescaling transformations determin
Gmm(E) ~cf. Sec. V!.

We define T̂Fn(y1y2 . . . yFn)5y2 . . . yFny1 ,ymP$L,S%
with length uwnu5Fn5Pn1QnPN1, defined in Sec. II.
From Eq.~20! it follows

wn
rn•••r1~L,S!5T̂Fn

j~n!
~wn

0•••0!, ~23!

where
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FIG. 2. For given n to each symbolsm in the dual word of w corresponds one equation(z2em)Gmn5 . . . . Obviously,
w5 . . .SLS21SLS. . .5 . . .SLLS. . .5w8. Thus the homogeneous part of the Dyson equation corresponding to a wordw must be
equivalent to the homogeneous part of the Dyson equation corresponding to thefreely reducedword pertaining tow. From Eq.~29! it
follows thatG4,n[G6,n , and consequentlyeb25ea2eg1z.
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j~n!5 (
k51

n

r kFn2k ~24!

takes all numbers in the interva
I n : 0<j (n)<Fn1Fn2122. Relations~23! and ~24! have
been found by Wai-fong Chuan14 for the special case
Mk51,;k, by using another approach.

Using the fact thatgcd(Fn ,Fn21)51, n>3, one gets

Nn
~1!5Nm

~2!⇔S~Nn
~1!!5S~Nm

~2!! . ~25!

From Eqs.~15!, ~23!, and~25!, for givenNn we discover the
following important relation:

j1
~n!5j2

~n!⇔X̂~r n
~1!

•••r
1
~1!!5X̂~r n

~2!
•••r

1
~2!! . ~26!

It guarantees the existence and uniqueness of the repres
tion of the morphismsX̂(r n•••r1)

by the integersj (n). As a

result, it will be possible to defineX̂j(n) as a representativ
of the set ofequivalentsubstitutions

X̂j~n!PH X̂~r n•••r1!Uj~n!5 (
k51

n

r kFn2kJ . ~27!

As stated above the substitutionsX̂j(n),0<j (n)<Fn

1Fn2122, generate all cyclic permutations ofwn
0•••0 One

can show thatX̂j(n)(L)5X̂j(n)1Fn
(L), which follows from

Eqs.~15! and ~22!, providedj (n)1FnPI n .
Now let int(x) be the integer part of x, and

j (n)5mmodFn ~cf. Sec. V!, respectively. It can be show
that

sk5 intF ~j~k!modFk!

Fk21
G , j~k21!5j~k!2skFk21 , ~28!

for k5n,n21, . . . ,1, successively yields, for givenj (n)

PI n a possible solutionRn of Eq. ~24! determining the sub-
stitutionX̂(r n•••r1)

5X̂j(n). In this manner one can determin

the representativesX̂j(n) for all j (n)PI n.

1

nta-

IV. REAL –SPACE RESCALING — THE
RENORMALIZATION GROUP RG↓x,y

In this section we introduce, in a generalized form, a we
known real-space rescaling method developed by de S
and Koiller.15 The fundamental idea of the real-space resc
ing is to achieve a reduction of degrees of freedom throu
appropriate elimination of equations from the set of eq
tions ~8!. In the scope of aperiodic 1D systems, applicatio
of this approach were found in a number of works~e.g., in
Refs. 5 and 6!, considering explicitly the symmetry of th
lattices by the corresponding elimination steps. The adv
tage is clear; the number of parametersea , . . . ,tS remains
constant. We generalize that real-space rescaling proce
as follows. In a first step, by means o
tL↔L, . . . ,tS21↔S21 and z2es↔sP$a, . . . ,d2

2% we
represent the set of equations (z2em)Gmn5dmn1•••,
where n is fixed, by the wordsw(L, . . . ,S21), and
S(a, . . . ,d2

2), respectively~cf. Fig. 2!. Thus, for givenn to
each symbolsm in the dual word ofw correspondsone
equation (z2em)Gmn5dmn1•••. Note, only the correspon
dence between thehomogeneouspart of the Dyson equation
and the wordw is unique. As a result, we extend the origin
set of binary chains described bywPF2

1 to a set offictitious
chains withfour different hopping elementstL ,tL21,tS , and
tS21 described by wordsw of the free groupF2, rather than
of thesemigroupF2

1 . Next, we will consider only such res
caling transformations, which donot eliminate the equation
(z2em)Gmm511••• containing the inhomogeneous part
the Dyson equation.16 A succession of these transformatio
will just yield thediagonal elementsof the Green function. A
generalization of this method to obtain the nondiagonal e
mentsGmn @i.e., the extention ofRG↓x,y to the total renor-
malization group RG(F2) and its generalization to
RG(Fn)# will be presented elsewhere.9

In the following we require that thehomogeneouspart of
the set of equations which corresponds to a given wordw
PF2 must be equivalent to thehomogeneouspart of another
set of equations, which belongs to the freely reduced w
w8 pertaining tow ~compare Fig. 2!. A word w is called
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freely reducedif no ym
k ,ym

2k with k561,ymP$L,S% follows
one another inw. This precondition has far-reaching cons
quences for the concrete choice of the parame
ea

6
7 , . . . ,tS21. One can show that these parameters must

isfy the following conditions:

ed
6
75z, ea

6
75z, tL2152tL , tS2152tS , ~29!

z2ea
2
25ea2z, z2ed

2
25ed2z, z2eb

7
65eg

7
62z,

z2eb
6
65eg

7
72z, ed

6
65eb

6
61eg

6
72z, ~30!

as well as

ea5eb1eg2ed . ~31!

From Eqs.~29!–~31! one recognizes that only the paramete
tL ,tS ,eb ,eg , andea ~or ed) can be chosen independently.
these parameters are defined all other parameters in
Dyson equation~8! are fixed.

Let us consider the tight-binding model for a linear cha
described by anarbitrary word wPF2. We introduce the
rescaling transformationsRP̂,RÔ, and RÛ21 of the param-
etersea , . . . ,tL21, which are induced by the elementary a
tomorphismsP̂,Ô, and Û21. In observing the relations
~29!–~31!, we can limit ourselves to the examination of th
transformation behavior of the parameterstL ,tS ,eb ,eg , and
ea , where, for reasons of convenience, we include alsoed .
A representation ofRP̂5RP̂21 is given by

eauP̂5ed , ebuP̂5eg , eguP̂5eb , eduP̂5ea ,

tLuP̂5tS , tSuP̂5tL , ~32!

and for RÔ5RÔ21 one obtains@cf. Eqs.~29! and ~30!#

eauÔ52z2ea , ebuÔ5z1ed2eg , eguÔ5z1ed2eb ,

eduÔ5ed , tLuÔ52tL , tSuÔ5tS . ~33!

Let %l
21 :L°LSS21,S°S be an ‘‘inverse reduction pro-

cess,’’ and let Ū21:LS°L,S°S be adeflation operation.
%l

21 induces a ‘‘lifting’’ of the Dyson equation correspond
ing to the freely reduced wordw8 to the Dyson equation
corresponding tow ~cf. Fig. 2!, where the parameter
ea , . . . ,tS21 are determined by Eqs.~29!–~31!.16 Thus,
Û215Ū21%l

21 induces RÛ21, which possesses the repr
sentation

eauÛ215eg1
tL
21tS

2

z2eb
, ebuÛ215ed1

tS
2

z2eb
,

eguÛ215eg1
tL
2

z2eb
, eduÛ215ed ,

tLuÛ215
tLtS
z2eb

, tSuÛ215tS . ~34!
-
rs
t-

s

he

One obtainsRÂ21 from Eq.~34! by interchanging the sym
bols b and g. Let %r

21 :L°LS21S,S°S and

Ū:LS21°L,S°S. ThusÛ5Ū%r
21 . As a result, one obtains

as a representation forRÛ

eauÛ5eg2ed1z2
tL
21tS

2

eb2ed
, ebuÛ52

tS
2

eb2ed
1z,

eguÛ5eg2
tL
2

eb2ed
, eduÛ5ed ,

tLuÛ5
tLtS

eb2ed
, tSuÛ5tS . ~35!

Obviously, RÛ21+RÛ5RÛ+RÛ2151 holds.
Note that RX̂j ,i

21 ,i , jPZ ~!!, are determined by means o
these three generating RT,

eauX̂
j ,i
215ea1tL

J i21,j1J i , j21

J i , j
, eduX̂

j ,i
215ea ,

ebuX̂
j ,i
215ea1tL

J i21,j

J i , j
, eguX̂

j ,i
215ea1tL

J i , j21

J i , j
,

tLuX̂
j ,i
215

tS
J i , j

, tSuX̂
j ,i
215tL . ~36!

Thereby, the polynomials

J i , j5Fz2eg

tL
Ui2Ui21GFz2eb

tL
Uj2Uj21G2

tS
2

tL
2UiUj ~37!

were introduced with theChebyshev polynomialsof the sec-
ond kindUn5Un(xa/2).

17 J i , j5J i , j (xa/2) fulfill the recur-
sion formulas

J i , j115xaJ i , j2J i , j21 , J i11,j5xaJ i , j2J i11,j ,
~38!

yet with the initial values

J0051, J105
z2eg

tL
, J015

z2eb

tL
,

J115
~z2eb!~z2eg!2tS

2

tL
2 , ~39!

and with the abbreviationxa5(z2ea)/tL .
We denote the parameter space

Pe5$e5(ea ,eb ,eg ,tL ,tS)uea ,eb ,eg ,tL ,tSPC%. Each au-
tomorphismB̂PF2 corresponds uniquely to onerenormal-
ization transformation (RT)RB̂PRG↓x,y ~i.e., a homomor-
phism ofPe into itself!, which converts the set of equation
with the parametersePPe into a new set of equations with
new parameterse8PPe

RB̂: e°e85euB̂[
RB̂~e! ~40!

~generalized real-space rescaling method!. Now, it will be
possible to define the renormalizationgroup. The product of
two RT is given through
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R~B̂2B̂1!5RB̂2+
RB̂1 : euB̂2B̂15~euB̂1! uB̂2. ~41!

The RT RB̂PRG↓x,y satisfy the same system of relations
the accompanying automorphismsB̂PF2. ThusRG↓x,y is
isomorphic toF2 (RG↓x,y>F2), generated by the three R
RP̂,RÔ ~linear! and RÛ ~nonlinear!.
Note, employing the simple mapea85z2ea ,eb85z

2eb ,eg85z2eg ,tL85tL ,tS85tS to Eqs. ~32!–~35! yields
equivalent parameter transformations where the energz
does not occur explicitly. Thus theRT considered as homo

morphismsRB̂:Pe°Pe8 are independent upon the energ
Remarkably, the parametersea and tL satisfy yet another

relation, which is the pendant to Eq.~22!, but does not fol-
low from the relations definingRG↓x,y @cf. Eq. ~10!#:

eauÂ21P̂B̂215eauÛ21B̂21, tLuÂ21P̂B̂215tLuÛ21B̂21. ~42!

for all B̂21PF2. The remaining parameterseb ,eg ,ed , and
tS , however, donot fulfill such a relation.

In the remainder of this section we employ the followin
map of the parameter spacePe°Px,y#Pe onto itself,
which reveals some new properties of the RT. We have
troduced the Cartesian productPx,y5Px3Py of
Px5$X5(xd ,xa ,xa8 )uxd ,xa ,xa8PC% with

xd5
z2ed

tS
, xa5

z2ea

tL
,

xa85
~z2eb!~z2eg!2tL

22tS
2

tLtS
5xauÂ215xauÛ21, ~43!

andPy5$Y5(yS ,yL ,yb ,yg)uyS ,yL ,yb ,ygPC% with

yS5
1

tS
, yL5

1

tL
, yb5yLuÛ215

z2eb

tLtS
5
1

2
~x1D!,

yg5yLuÂ215
z2eg

tLtS
5
1

2
~x2D!, ~44!

where D2[x224h5(yb2yg)
2, x5xayS1xdyL , and

h5ySyLxa81yL
21yS

2 .
It will be instructive to examine the transformation beha

ior of the new parameters underRP̂,RÂ21, and RÛ21. One
obtains for the parameter tupleX

XuP̂5~xa ,xd ,xa8 !, XuÂ215XuÛ215~xd ,xa8 ,xdxa82xa!.
~45!

This dynamical system possesses aninvariant,18 i.e., the
quantity

L5xd
21xa

21xa8
2
2xdxaxa8 ~46!

obeysL5L uB̂21 for all B̂21PF2.
We define therestriction RB̂↓x of the RT

RB̂ to Px as the

RT RB̂ with the domain Px,Px,y . For all XPPx ,
RB̂↓x(X)5

RB̂(X)[XuB̂ . From Eq. ~45! it is apparent that

the restriction ofRÂ and RÛ toPx yields
RÂ↓x5

RÛ↓x, i.e.,
it induces a homomorphismRG↓x,y→GL(2,Z) @cf. Eq. ~13!#.
-

-

There is oneadditional relation (RP̂↓x+
RÔ↓x)

251 @but

(P̂Ô)2521# not contained in the presentation ofRG↓x,y .
As a result, the restrictionRG↓x of RG↓x,y to Px is isomor-
phic toPGL(2,Z) rather than toGL(2,Z) @cf. Eq. ~14!#.

Note the formal correspondence between Eqs.~45! and
~46! to the so-called trace map as well as to the accompa
ing invariant~see, e.g., Refs. 4, 8, and 19!. In contrast to the
transfer matrix method, the invariant~46! depends upon the
energy. An exception is the so-calledoff diagonalmodel
(ea5•••5ed5e), for which L5(tL /tS1tS /tL)

2>4 is
valid.

The transformations ofY lead to

YuP̂5~yL ,yS ,yg ,yb!,

YuÂ215~yS ,yg ,xa8yS1yL ,xdyg2yL!,

YuÛ215~yS ,yb ,xdyb2yL ,xa8yS1yL!. ~47!

From Eq.~44! it is obvious thatyb andyg are not indepen-
dent parameters.

Contrary to the rescaling transformations conside
above, the parameters (X,Y) are polynomials in the energy
These polynomials have an important property. They can
represented byorthogonal polynomials. Therefore, in the re-
mainder of this section, we will represent our renormaliz
tion theory from a slightly different point of view.

Consider the tridiagonalJacobi matrix @ tm5tmm11; cf.
Eq. ~7!#

J~S!5S e0 2t0 0 0 0

2t0 e1 2t1 ••• 0 0

0 2t1 e2 0 0

A � A A

0 0 0 ••• eN22 2tN22

0 0 0 ••• 2tN22 eN21

D
~48!

associated with the dual wordS5s0s1•••sN21 of the
freely reduced wordu5B̂(L)PF2 ,B̂PF2. LetSu ,Sv , and
Sw be the dual words ofu,v, andw5uv, respectively. We
defineJ(SuSv)5J(Sw). The associated monic orthogona
polynomialsmay be defined by~cf., e.g., Ref. 20!

pS,N
~k! 5det„z12J@T̂N

k ~S!#…. ~49!

satisfying the recurrence relation

pS,i11
~k! 5~z2e i1k!pS,i

~k!2t i1k
2 pS,i21

~k! , pS,21
~k! 50,pS,0

~k! 51
~50!

~remember,sk5sk1N). For convenience we introduce th
polynomials

PS,i
~k!5

pS,i
~k!

Pp50
i t p1k21

. ~51!

Let S8 be the dual word of the freely reduced wo

v5B̂(S) with norm M5ivi ~cf. Ref. 10!. Then, the rela-
tions
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FIG. 3. ~a! Standard Fibonacci chain@cf. Eq. ~19!# w5(L,S)5w5
00000(L,S). The arrows over the symbolss0

(5)5g ands13
(5)5g serve to

emphasize the border of the unit cell containing the quasiperiodic structure. The arrows below the symbolsa serve to emphasize the borde

of the unit cell of the latticeT̂ 1323
„w5(L,S)…5w5

11000(L,S)5w5
00100(L,S). The first symbol of the dual word pertaining to the latter wo

corresponds tos3
(5) of the dual lattice of w5

00000. ~b! The lattices X̂1,0
21
„w5

00000(L,S)…5w5
00000(S,S21L)5w4

0000(L,S), and

X̂j50
21 (w5

00000)5L, respectively.~c! The latticesX̂0,1
21
„w5

11000(L,S)…5w5
11000(S,LS21)5w4

1000(L,S) andX̂j53
21 (w5

11000)5L, respectively.
e-

ha

os

e

to

on

-
n
of
yLuB̂215PS,N21
~1! , xauB̂215t21~PS,N

~0! 2PS,N22
~1! ! ~52!

and xa8 uB̂215t218 (PSS8,M1N
(0)

2PSS8,M1N22
(1) ), xduB̂21

5t218 (PS8,M
(0)

2PS8,M22
(1) ) as well as ySuB̂215PS8,M21

(1) ,

ybuB̂215PSS8,M1N21
(1) , yguB̂215PSS8,M1N21

(M11) are valid.
From this point of view,real-space rescalingyields

PS,NuB̂21
~0!

5P B̂~S!,N8
~0! , ~53!

whereN85iB̂(S)i . Taking into account Eq.~52!, therenor-
malization transformationsare given by Eq.~45!, and Eq.
~47!, respectively. Finally, we note a relation which corr
sponds to Eq.~68!

t21~PS,N
~0! 2PS,N22

~1! !5tk21~PS,N
~k! 2PS,N22

~k11! !. ~54!

V. DETERMINATION OF Gµ,µ

Periodic approximants of the GFC have the property t
the wordswn

s1•••sn with given Nn , but differentRn , are
equivalent to one another. Thus we distinguish only th
chains which can be described by words of the form

w`~L,S!5 lim
n→`

lim
p→`

„wn
0•••0~L,S!…p ~55!

@and P̂(w`(L,S)) respectively#, defining the limiting pro-
cess mentioned in Sec. II.

Let r5n2k11. X̂Mk2sk ,sk
21 induces onwr

r r•••r1(L,S) a

deflation operation LMk2skSLsk→L,L→S such that
wr
r r•••r1→wr21

r r21•••r1PF2
1 will be accomplished. Thus on

may interpretwr21
r r21•••r1 as a sublattice ofwr

r r•••r1 .

The transformationX̂j(n)
21 eliminates in the dual word

Sn
rn•••r15s0

(n)s1
(n)
•••sFn21

(n) , corresponding town
rn•••r1 , all
t

e

symbols except for its first ones0
(0) . According to the peri-

odic boundary condition~i.e., sm
(r)5sm1Fr

(r) ) these transfor-

mations eliminate in the dual word, corresponding
wn
0•••0 ~!!, all symbols exceptsj(n). Note that we set

sj(k)[sj(k)
(k) ~cf. Fig. 3!.

We now come back to the relation between the Dys
equation and the associated dual words. Let the indexn in
the Green functionGm,n equaln5j[j (n). By so doing, we

guarantee that the RTRX̂j
21 eliminates all equations, asso

ciated with the unit cell, except the equatio
(z2ej8)Gjj511•••, containing the inhomogeneous part
Eq. ~8! corresponding to the symbolsj . Thus the RT
RX̂j

21PRG↓x,y maps Eq.~8! to the Dyson equation of a
chain,

@z2e8~z!#Gzj~z!5dzj1t8~z!@Gz1Fn ,j
~z!1Gz2Fn ,j

~z!#,
~56!

with only onesite energye8(z)5eauX̂
j
21, and asinglehop-

ping integral t8(z)5tLuX̂
j
21 ~now dependentupon the en-

ergy!, which are for given j independent from
z[j(modFn). The solution of Eq.~56! is well known:21

Gz,z
1 ~E!5 lim

h→01

1

A@z2e8~z!#224t8
2
~z!

5 lim
h→01

uPS,Fn21
~1! u

At21
2 ~PS,Fn

~0! 2PS,Fn22
~1! !224

. ~57!
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FIG. 4. The subgraph~bold! of G(V,E) which connects the pointsRX̂j(k)
21 and RX̂j(k21)

21 corresponds to the edgeRX̂4,2
21 @cf. Eq. ~ 58!#:

RX̂j(k)
21

5RX̂4,2
21sRX̂j(k21)

21 .
a

io

n

ns
s of
the
,
e

the
s
t

Thus the exact diagonal elements of the Green function h
been found.

As an example we consider the fifteenth generat
Fibonacci lattice @i.e., N155(1, . . . ,1)#, of length
uw15u5F1551597. Numerical results for the LDOS are give
in Fig. 10 where j[j (15)58885(k51

15 skFk215F2

1F41F71F111F13. The Fibonacci numbersFk have been
determined via the recursion formula~3!. Iterating the algo-
rithm ~28! with the initial valuem5j (15)5888 yields all
sk . Thus the inverse substitutionsX̂j5888

21 have been fixed
and we eventually get the desired RT@cf. Eqs.~5! and~17!#:
RX̂j5888

21 5RX̂1,0
21+RX̂0,1

21+•••+RX̂0,1
21+RX̂1,0

22 .
ve

n

VI. A GRAPH THEORETICAL APPROACH—
PATH RENORMALIZATION

Let us study in some detail the intertwined connectio
between the single GFC and the accompanying element
the renormalization group. For this purpose we represent
group structure ofG2, andRG↓x,y , respectively, by a graph
i.e., a setG(V,E) with two types of elements which ar
designated aspoints sPV, and edgesePE, respectively.
From the statements made in Sec. III it is clear that
semigroupsG2

1 ,F2
2 , and RG↓x,y

2 ~analogously defined a
F2

2) are isomorphic to each other. Le
V5RG↓x,y

2 >F2
2>G2

1 . The different pointssPV corre-
FIG. 5. G(WN5,EN5) for the case of a fifth generation standard Fibonacci lattice@i.e., N55(1,1,1,1,1)#. Set of bold edges: Tree

T(W̄N5,ĒN5),G(WN5,EN5)
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spond directly to the elements ofRG↓x,y
2 . We link a genera-

tor of RG↓x,y
2 with each edge. This means, that any tup

(RB̂1
21 ,RB̂2

21 ;RĜ21) can connect with each edgee, where
RB̂i

21PRG↓x,y
2 , i51,2 are the initial point, and end poin

of the edge respectively, andRĜ21P$RP̂,RÂ21,RÛ21% is
the respective generator ofRG↓x,y

2 for which RB̂2
215Ĝ21

+RB̂1
21 is valid. A sequence of edgesP5enen21 . . .e1

where the end points8 of em for m51, . . . ,n21, is con-
nected with the initial points of em11 is called apath in a
graph. Since a presentation ofRG↓x,y

2 results immediately
from our presentation stated in Eq.~15!, the construction of
G(V,E) is basically trivial.

A common factor is seen when considering the followi
subgraphs. We define for any givenNn the following point
set:VNn5øk51

n $RX̂j(k)
21 u;j (k)PI k%,V and the setENn of all

tuples (RX̂j(k)
21

5RX̂Mk2sk ,sk
21 +RX̂j(k21)

21 ,RX̂j(k21)
21 ) of VNn, for

which sk50, . . . ,Mk andk51, . . . ,n is valid. Note that we
identify the subgraph ofG(V,E) which connects both point
RX̂j(k21)

21 and RX̂j(k)
21 with one edgeRX̂Mk2sk ,sk

21 PENn ~cf.

Fig. 4! in the ‘‘new’’ graphG(VNn,ENn) ~cf. Fig. 5!.
The procedure above itself suggests the following co

spondences@cf. ~24!, ~5!, and~27! as well as~2!#:

~58!

with j (k)PI k . The meaning of sj(k)

PWNn5øp51
n $sj(p)u;j (p)PI p% is manifold. It represents

the corresponding elements ofRG↓x,y
2 ~which decimatethe

lattice wk
s1 . . . sk), and G2

1 ~which generate the lattice

wk
s1 . . . sk), respectively, as points in the graphG(WNn,ENn)

which is obviously isomorphic toG(VNn,ENn). But it also

represents thej (k)th symbol of the dual word pertaining t

wk
0 . . . 05T̂ Fk

2j(k)(wk
s1 . . . sk).22 Finally, one may identifysj(k)

with the renormalized parameterseuX̂
j
21,j5j (k). For sake of

ease, we will unite all these objects in the symbolsj(k).
-

The importance of the graphsG(WNn,ENn) results from
their hierarchical structure which manifests itself through
following recursive construction law.Let

j~k!5skFk211j~k21!, j~1!5s1F0 , ~59!

@cf. Eq. ~24!# and let the map YMk
,MkPN1 with

sk50, . . . ,Mk , be defined as follows:

~60!

with (s,s̃)P$(a,g),(g,a)%,

~61!

with (s,s̃)P$(a,b),(b,a)% and

~62!

with sP$a,b,g%. We have used the abbreviation
u5j (k21), v 5 j (k), w5j (k), x5j (k) 1 Fk , . . . , y5j (k)

1(Mk1121)Fk , andz5j (k)1Mk11Fk . Each defining re-
lation of the presentation ofRG↓x,y corresponds to a close
path in the graphG(V,E). In the now-to-be-generated grap
G(WNn,ENn) we consider these throughout the process,

which we still must attach to the mapYMk
an additional

condition
~63!
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Here we have used the abbreviationsu5j (k21), u8
5j (k21)1sk21Fk22, with sk2151, . . . ,Mk21, and v
5j (k21), v85u81MkFk21, as well as w5j (k21),
x5j (k21)1Fk , . . . , y5j (k21)1(Mk1121)Fk , and z
5j (k21)1Mk11Fk . As a result the graphG(WNn,ENn) is
generated as follows:

~64!

wherey5M121 andz5M1 ~cf. Fig. 5!.
It may be instructive to compare our general results p

sented here with similar considerations about the ‘‘genealogy
of a Fibonacci lattice’’ as presented in Ref. 6. Moreover, th
so-calledkey sites, corresponding to a power of an arbitra
~but finite! product ofP̂,Â, andÛ, introduced in Ref. 5 are
found within our approach as special paths in the gra
G(WNn,ENn),Nn5(1,1,1,. . . ).

We stated in Sec. IV thatB̂1ÞB̂2 always impliesRB̂1

ÞRB̂2. But as it has been stressed in Sec. III,B̂ÞB̂8PF2

doesnot necessarily implyB̂(L)ÞB̂8(L)PF2, i.e., the two
lattices described byB̂(L) and B̂8(L) are not necessarily
distinct from each other. This is a direct consequence of
~22!. Its pendant in the renormalization group is Eq.~42!.
From Eq.~57! it is obvious that in the calculation ofGmm

only eauX̂
j
21 andtLuX̂

j
21 enter. ThusRX̂j

21 and RX̂j1Fn
21 yield

actually the same result forGmm ,m5j modFn .
It suggests itself to build this fact into the constructi

law of appropriate chosen subgraphs ofG(WNn,ENn), which

we want to generate as follows. LetỸMk
be the map which

one obtains from Eqs.~60!–~62! omitting the edge connect
ing s̃v with sz in Eq. ~61!, as well as the edge connectin
sv with sz in Eq. ~62!. The correspondence~58! is extended
by

euX̂
j
21↔«j~k!

[~xauX̂
j
21,yLuX̂

j
21!

↔S xauX̂
j
21,Gjj5

uyLuX̂
j
21u

A~xauX̂
j
21!224D , ~65!

with 0<j[j (k),Fk . Then,

~66!

is a connected circuit-free@i.e., there are no closed paths
the treeT(W̄Nn,ĒNn)# subgraph~‘‘ tree,’’ set of bold edges in
Fig. 5! from G(WNn,ENn) with the center ~root! a0 where

W̄Nn5øp51
n $sj(p)u0<j (p),Fp%,WNn. ĒNn,ENn is de-

fined analogously toENn.
-

h

q.

In G(WNn,ENn), and therefore in the treeT(W̄Nn,ĒNn),
each path

Pa
0
~0!→sj~k!↔RX̂Mk2sk ,sk

21 +•••+RX̂M12s1 ,s1
21 ~67!

corresponds respectively to a sequence of RT wh
uniquely determines the parameters of the Dyson equa
~8! ~path renormalization!. By this means, the diagonal ele
ments of the Green function are determined. It may be
structive to compare from this point of view the examp
considered at the end of Sec. V and Fig. 5. Note that
procedure introduced here offers itself as a very effici
basis for the numerical calculation ofGmm .

In the remainder of this section we will confine ourselv
to RT corresponding to Eq.~16!. To lighten the notation we
abbreviateyuX̂

(r n•••r1)
21 by yusn•••s1

andyuX̂
j
21 by yuj(k), etc. We

will determine the tuple«uj(k) ~65! recursively on the path
Pa

0
(0)→sj(k)

in the graphG(WNn,ENn).

For givenNn and sk50, . . . ,Mk ,k51, . . . ,n, one gets
from Eq. ~45!

xausk•••s1
5xauMk•••M1

[xa
~k! . ~68!

xa8
(k) possesses the same property. Thus the iteration ofxa

(k)

is independent of the choice of the path inG(WNn,ENn).

From Eqs.~45! and ~47! one obtains, withx5xa
(k21)/2

and 2Tk5Uk112Uk21,
17 for givenNn ,

xa
~k!5xa8

~k21!UMk
~x!2xa

~k22!UMk21~x!, ~69!

yLuj~k!5yLuj~k21!Rsk21
1yLuj~k22!TMk22sk

~x!

1D uj~k21!UMk22sk
~x!, ~70!

with the initial conditionsxa
(21)5xd ,xa

(0)5xa , as well as
yS ,yL . D uj(k) andxa8

(k) are recursively defined via

D uj~k![6Ax uj~k!
2

24h uj~k!5F12 yLuj~k21!Qk21

2~x221!yLuj~k22!GUMk22sk
~x!2D uj~k21!TMk22sk

~x!

~71!

and

xa8
~k!5xa8

~k21!UMk11~x!2xa
~k22!UMk

~x!, ~72!

with xa8
(0)5xa8 . We have used

Rsk
5Qk21UMk2sk

~x!Usk~x!1
xa

~k22!

2
UMk

~x! ~73!

and

Qk5xa8
~k!2

xa
~k!xa

~k21!

2
. ~74!

Taking into account the invariant mentioned in Sec. IV,
can be shown that Eqs.~69! and ~70! are actually two-term
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recursion relationsYMk
:(«uj(k22),«uj(k21))→(«uj(k21),«uj(k))

as we have stated in Eqs.~60!–~62!.

VII. NUMERICAL RESULTS AND DISCUSSION

It may be instructive to consider first theperiodic case,
i.e., tL5tS and ea5eb5eg . In the following ~cf. Ref. 17!,
we setj5j (n). It can be shown thatxa

(n)(E)52TFn(xa/2)

52cos(Fnk), and xa8
(n)(E)52TFn1Fn21

(xa/2), respectively,

with cos(k)5(E2ea)/2tL . Moreover, one obtainsyLuj(E)
5yLUFn(xa/2) and ybuj(E)5yLUFn1Fn21

(xa/2)5yguj(E).
It is obvious that Eq.~57! yields the well known result for
the periodic tight-binding model~cf., e.g., Ref. 21!.

In contrast toyLuj the iteration ofxa
(n)(E) is independent

of the concrete choice of the path inG(WNn,ENn) @cf. Eq.

~68!#. Hence, for a givenNn the factor 1/A42(xa
(n))2 in Eq.

~57! is the same for allGjj , independent from the indexj. It
determines the spectrum of the different GFC~55! ~cf. Fig. 6
and Fig. 7! which is a Cantor set.23

The local properties, as described by the LDOS, a
caused through the modulation of this root factor by the
thogonal polynomials yLuj(E)5PS,Fn21

(j11) . The zeros

Em
(j) ,m51,2, . . . ,Fn21, of yLuj ~which corresponds to the

poles of the renormalized hopping element! are all real,
single, and lay in the gaps of the spectrum or coincides w
band edges. These properties are an immediate consequ
of the orthogonality of yLuj(E). The zeros Em

6 ,m

FIG. 6. The regionuxa
(8)u<2 ~spectrum! for the standard Fi-

bonacci latticew8 as function of the hopping energytL (tS51) for
the parameter tuple:em521. ~Periodic case is obtained fo
tL51.)
-

h
nce

FIG. 7. The regionuxa
(8)u<2 ~spectrum! for the standard Fi-

bonacci latticew8 as function of the hopping energytL (tS51) for
the parameter tuple:ea52eb52eg51.

FIG. 8. LDOSrj(E), at sitej5111, for the standard Fibonacc
latticew15 with parameterstL51.5, tS51, andem521.
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51,2, . . . ,Fn , of xa
(n)62 are also real but may be single

double@cf. Ref. 20~b!, pp. 46–48#. A zeroEm
6 can only be

double~i.e., band degeneracy! if Em
15Em21

(j) or Em
25Em21

(j) .
In general, the reversal is obviously not true. LetEm

6 be a
single zero coinciding with a zero ofyLuj(E). In this case,
the LDOS vanishes at the band edge~as indicated by an
arrow in Figs. 8 and 10!. If Em

6 is double, then the LDOS
possesses a finite value~i.e., it is not singular!. In Figs. 8–11
we present the LDOS for two different sitesj. Note that the
support ofr111(E) coincides with the support ofr888(E).

We remark that it is apparent from Eqs.~52! and ~57!
that uxa

(n)u→` rather than the limit tLuj→0 implies
Gjj→1/uE2eauju. Thus the investigation of the convergen
of the renormalization procedure seems to be much m
complicated than in the standard belief. A serious investi
tion of the asymptotic properties of the renormalized ho
ping elementtLuj(E) and of the LDOS for any infinite suc
cesion of RT, however, is beyond the scope of this art
and is left for further studies.

We wish to point out a further relation betweenxa
(k) and

yLuj(k). Using Eq.~66!, one gets

(
j~k!50

Fk21

yLuj~k!5 (
sk50

Mk21

(
j~k21!50

Fk2121

yLusk ,j
~k21!

1 (
j~k22!50

Fk2221

yLuMk ,sk21
~0! ,j~k22! ~75!

(sk
(0)50,;k). Thus, by induction,

FIG. 9. Enlarged part of the LDOS presented in Fig. 8~bold
line!. Dot-dashed line: The corresponding renormalized inve
hopping energy2uyLuj(E)u.
re
-
-

e

e

FIG. 10. LDOS rj(E), at site j5888, for the standard Fi-
bonacci latticew15 with parameterstL51.5, tS51, andem521.

FIG. 11. Enlarged part of the LDOS presented in Fig. 10~bold
line!. Dot-dashed line: The corresponding renormalized inve
hopping energy2uyLuj(E)u.
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FIG. 12. The polynomial X(E)[xa
(7) in the cases ~a!

tL5tS51, and~b! tL5tS ,tL51.5 (em50).

FIG. 13. Total density of states~DOS! for the standard Fi-
bonacci latticew15 (tL51.5,tS51,em521).
]xa
~k!

]z
5 (

j50

Fk21

yLuj~n!. ~76!

Since the polynomialsyLuj(k) have the same sign within th
energy spectrum ofH for all j (k), 0<j (k),Fk , the density
of states~DOS! is given by

N~E!52
1

pFn
(
m

ImGm,m~E1 i01!

5
1

pFnA42~xa
~n!!2

U ]xa
~n!

]E
U, ~77!

where

cos@FnK~E!#5
1

2
xa

~n! ~78!

~cf. Fig. 12!.
K(E) represents the integrated DOS@*`N(E8)dE851#

K~E!5pE
2`

E

N~E8!dE8. ~79!

Numerical results are displayed in Figs. 13 and 14.

VIII. SUMMARY

Starting with the presentation ofF25Aut(F2) introduced
by Nielsen,7 we found a complete system of defining rel
tions for the semigroupF2

1,F2 whose elements genera

FIG. 14. Enlarged part of the DOS displayed in Fig. 13.
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all cyclic permutations of the generalized Fibonacci cha
~GFC!.

The renormalization groupRG↓x,y,RG(F2) was intro-
duced, which is generated by three elementary renorma
tion transformations~RT! RP̂,RÔ, and RÛ. We found that
RG↓x,y>Aut(F2). We presented an algorithm to find a po
sible succession of the RTRP̂,RÔ, and RÛ, to calculate the
diagonalelementsGmm of the Green function for all indices

FIG. 15. Summary of the algebraic properties of the RTRB̂
PRG↓x,y and their connection to the substitutions introduced
Sec. III. Note that the first line presents the relevant physical qu
tities, which are determined through the corresponding RT.
e

on
s-

.
,

u

c.

i-

B

s

a-

m. Several characteristics of the RT were examined. Fig
15 summarizes the relationship between the geometric st
ture of the GFC, the renormalization group, and the cor
sponding physical quantities.

Based upon our presentation ofF2
1 , we constructed a

recursive scheme for all subgraphs of the graphG(V,E) of
the renormalization groupRG↓x,y which are relevant for the
calculation of the diagonal elementsGmm . Each path in
G(V,E) defines a succession of individual renormalizati
steps, converting the Dyson equation for any diagonal e
mentGmm to the Dyson equation of a periodic tight-bindin
model with one renormalized site energy and one renorm
ized hopping element each dependent upon the energy~path
renormalization!.

Finally, we presented some numerical results.
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