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Path renormalization of quasiperiodic generalized Fibonacci chains
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A renormalization group is introduced which is based upon a real-space rescaling procedure of the Dyson
equation for one-band tight-binding models of generalized Fibonacci quasicrystals. We present an approach for
finding possible successions of given elementary rescaling transformations to calculdisgth&lelements
of the Green function for all site$S0163-182807)05613-0

[. INTRODUCTION tions. Section IV is devoted to the construction of the real-
space rescaling procedure. We will show that the set of the
Inspired by the discovery of quasicrystals by Shechtmarso generated renormalization transformatitR3) defines a
et al,! quasiperiodic structures have attracted much intérestgroup that we denote the renormalization group
In particular one-dimensionallD) quasiperiodic systems RG,,<RG(F;). The computation of the diagonal elements
such as the Fibonacci chain have been theoretically investpf the Green function and the local density of state30S)
gated in great detail, e.g., Refs. 3—6. Moreover, in the pagé presented in Sec. V. In Sec. VI we introduce {heth
few years an understanding of a close connection betweei¢normalizationscheme and examine its properties. Finally,
the structural description of the different classes of quasiin Secs. VIl and VIII numerical results and a summary are
crystals and the theory ¢the isomorphic group of the free given.
group” developed by Nielsérnin 1918/24 came forwardl.
In this context, generalized Fibonacci chai@FC) play II. FIBONACCI| CHAINS
an important role in the development of an adequate math- ) o ) )
ematical apparatus for the computation of physical quantities W€ consider 1D quasiperiodic systems with two different
such as the density of states or conductivity. AnalyticaltyPeS of nearest neighbor interactions specifiedt,by and
methods, based updnace map$ in the framework of the ts: respe_ctlvely. One may desc_nbe th(_e geometric structure of
transfer-matrix approach and real-space decimation Such lattices bywords wW(L,S), i.e., strings in the symbols
techniques® are central to the understanding of the physicall.S representing the corresponding linear arrangement of the
properties of these systems. Unfortunately, a drawback of th#®ng and short bonds andS. These words obey the follow-
renormalization schemes, as presented in Refs. 5 and 6, is tHtd recursion law:
absence of an algorithm which determines the correlation
between the diagonal elements of the Green function and a
pos;ible_ choice of the succe;sional rgscaling transformationgare W_;=S, Wo=L, M,eN*, ands,e{0,1,... M.}
decimating _the D_yson equation. It will .be apparent that OUMThe Nielsen transformatiofis given by
approach yields just this missing algorithm. In doing so, the
objective of this and a further articlés to exhibit the rela-
tionship between the geometric structure of a class of GFC
(represented by the so-called positive primitive elements Ofl’helength|wn|=Fn, i.e., the power sum of symbols and

g:e_frie gILOUFFZ)' ";‘]”d the aﬁstrgct grgup;]of automorlphls_mss in wy(L,S)," satisfies the recursion relation for the gener-
2=Aut(F;) on the one hand, and the renormalization ;i;eq Fibonacci numbers

group RG(F,) associated with a tight-binding Hamiltonian

on the free groug-, of_ rank 2 on the other: The latter pro- Fo=M,Fn_1+Fn 5, F_1=Fo=1. 3)
vides the tool for solving the Dyson equation for the Green

function. Our main issue is to construct a renormalizationThe group product is defined as the concatenation of two
scheme for a class of GFC via a real-space decimation teclstrings. The corresponding generalization isv,Mn

Wn:(anl)Mn_Sn * Wpp * (Wn—l)snu (1)

),\(Mn—sn,sn(wn—lvwn—z):(wn:Wn—l)- 2

nique on graphgpath renormalizatiop In this article we =w,*xw,*---*w,. To lighten the notation, the asterisk

will present that part of our approch which yields tti@g-  symbol will be left out in the following. The special case

onal elements of the Green function. M,=1s,=0, Vn, yields the standard Fibonacci chain.
We will go into the presentation of thgath renormaliza- Alternatively to the Nielsen transformatiof), the GFC

tion scheme as follows. In Sec. Il we consider the geometrican be generated ksubstitutionsmorphismg, which oper-
cal structure of the GFC and the physical model. In the firstate on the symbolk, S rather than on worde/,(L,S). Start-
part of Sec. Ill we address severirmal aspects of the jng with wy(L,S)=L, the sequential operatioy,__, , on
structural description of the quasiperiodic chains and its ' ands nonen
lation to the group of automorphisnd,. In the second part

we introduce a number system which is related to the GFC.

. Np—r r
These concepts form the foundation for the following sec- L—L S, S—L,

rn-

XNn_rn'
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FIG. 1. Fifth generation standard Fibonacci lattisg=LSLLSLSLLSLLYF5=13). The arrows over the parameters serve to
emphasize the border of the unit cell with the quasiperiodic stru¢amepare with Fig. &)].

5(N (Wi g(L,9) =W (LN TS L) =w,(L,S), element setd, (“alphabet”). The set of all words over,
nonen (4)  together with the produet defined in the last section creates
. - the free semigroupF, . Appending the empty word
with N,e N™ andr,€{0,1,... ,N,} generates the same set 1.q,,—\wi=w as well as the inverse elemenlys;l:
of wordsw,(L,S) as Eq.(2). Note thereversed ordenf the y;ly#:yﬂy;lzly y €A, we extendF, to the group

substitutions when compared with the Nielsen transformai:2:<|_,S> with the generating elements S, Except for the

tions, .., trivial relationsLL " '=L"!L=1andSS '=S1S=1 there
No=(Ny,N,, N)=(M, M, _4, M), are no defining relations between the generating elements,
i.e.,F, is afree group
Ro=(I1,2, ) =(Sn,Sn_1, - S1). (5) We assign(cf. Fig. 1) to a wordwe F,, a dual word

, _ - S ={o,}N_o, Where a symbolre{al,B!,v!,8]} will be
In the following, we will specifically use the letteMd,,Sc  related to each pair Y. .Ya:1) by the map
for the Nielsen transformation@s well as for thanverse (LiLI, LIS, SLi,S9) < (al , B, ] ’3;') ijel—1,+1}

substitutions which will be introduced in the following sec- e.g. “the dual word pl)ért:':liniln'g toxv; in Fi’g. 1 s
tion), and the letter&N,,r, for the morphlsms. _ . Sco=yByaByByaByap. As a rule, we will use the abbre-

In our study, we employ the following one-particle tight- viations a=a* ,B=B" ,y=y",5=6". As we limit our-

sl ; ; +1 + 1 +1 +
binding Hamiltonian selves to the case gkriodic boundary conditiothis map is
unique. Let¥,,%,, and,,, be the dual words ofi,v, and

H= |y e, (ml+ > lu)t,, (vl (6)  w=uv, respectively. We define the product of two dual
" (w.v) words by 3, =3,,.
where|u) are Wannier stategtomiclike orbital} centered In the following, we will employ exclusivelypresenta-

at sitesu. €, e {€,,€5,€,,€5, t, .01 {1t ts} denote the tions of groupdn the form of generators and a complete set
site energy and the nearest neighbor transfer integrals, r&f defining relations. Conside(cf. Ref. 12 the following

spectively, with presentation of the automorphism grodp of F, found by
Nielsen in 1924 It will be apparent that, is isomorphic
€,=€, f t, 1,=t, . 1=tL, to the renormalization groupRG,, , which will be intro-

duced in the following section:
6#:€B if t,u,*l,;,L:tL and t/.L,,tL+l:tS’

— /D A 14 D2— A2 — ( DD\ — (DAYDT 42
€, — € |f tM—l,M:tS and t;L,M+1:tL’ (D2_<P’O’u|P _O _(OP) _(POW)

® Y
=€ M L1,=lun=ts, ™ =(OPW3=[U,OUO]=1). (10
The one-particle Green function is defined through A
(z—H)G(z) =1 and obeys the Dyson equation P,0O, andU are the generating elements®f, represented
by
(Z_ GM)G/LV(Z):5,uv+t,u,uflG//,flv(z)+t,u,u+lG//,+lv(z)!
8
. 0
with z=E+i». In particular, the local density of states P:. L—S, S—L (1 O)’
(LDOS) at siteu is given by
1 - ) -1 0

11l. COMBINATORIAL STRUCTURAL DESCRIPTION +1
Yo +1 -
A. Group theoretical description U L—-LS - S-S (O 1 ) (11)

Mathematical tools for analyzing aperiodic structures are
found in the mathematical discipline of combinatorial groupThe corresponding substitution matrices are elements of the
theory, as laid down, e.g., in Ref. 11. The GFC are specialinimodular group GL(2,Z) (cf. Refs. 11 and 13
cases, which may be described by words[x,y]=xyx 'y !isthe group commutator of andy. Note,
w={yﬂ}‘;=lzy1 .. .Y in the symbolsy, € A, over atwo- the group of Nielsen transformations of rank By, is
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antisomorphic to the automorphism grou@,=Aut(F,)
[Ref. 11, cf. Eq.(5)]. Later, we will frequently encounter a
second “elementary automorphism”

Pn Qn

S(Nn):kljl SMk:(P Qn-1

S 1 P, (Q,) is the number of the symbols (S) in w,(L,S).

AT=0UTO: L-STL, S8 (12 They obey the recursion relation P{,Q,)

®, alternatively can be generated by the automorphisms=M,(P,_1,Qn_1)+(Pn-2,Qn_2) [cf. Eqg. (5] with

P, A, andU or by the automorphism$®, L=PA and (P-1,Q-1)=(0,1) and Po,Q0)=(1,0).

R =P, where £ and R are the generators of all cyclic . 11US: in the following we may restrict ourselves to the
. . . . s investigation of those lattices which may be described by the

permutations of the standard Fibonacci chain. Note fAat words

andi/ correspond to the same elementGif(2,7). Adding

the relationd= A= OU 1O or

) eGL(27). (18
n—1

Wy LS = A (L), (19

(OU)2=1 (13

to the set of relations(10) yields a presentation of
GL(27), where its generator®,®, andi{ may be repre-
sented by the substitution matricddd). It is also well known

that theprojective unimodular groupPGL(2,7) is defined by o T1_ =100

wherew,=L,w_;=S. Let us consider an important property
of these words. By induction, we found for givexi, the
following correspondence between the words belonging to
different R,

4
the system of relation§l0) and (13) along with a further Wi n Wn UneFy, (20)
relation with

(OP)?=1 (14) n-1
Thus, if the matrix Un= iﬂl (Wio'“o)r”i}(wo)rne Fs. (22)

. a b LA .

= g As a result, the morphism&, ...r,) generate all cyclical
C n

permutations of the standard GFC obeying the standard re-

represents an element GIL(27), then + B determine an cursion relationw,=(w, 1)"w, , with s,=0 [cf. Eq.

elementB(z) = (az+b)/(cz+d) in PGL(27),"1 The us- (D} , . L
age of the same letters for elements of different groups All relations between the different automorphisisis
should not cause any confusion. e ®, are reducible to the defining relations df,. But

We now turn to the geometric structures considered inB+B' e ®, does not necessarily imply B(L)#B’(L)
Sec. II. All corresponding lattices may be described bye F,. The reason is found in a further relation

words of the formw(L,S)=B(L)eF; with Be®;,
where the semigroug, (®,) C®, is the set of all positive
(negative words inP, A, andi4. One defines(P,.A,U)
as a positive (negative word if no P¥ A%, or T with

k<0 (k>0) occur inw. We found the following presenta-

tion:
®; =(P, AU,P’=1UA= AU,

UPUPA= APAPU, keN*). (15
I'; is the pendant o, in I',.

Since P?=1, and becauseA commutes with 4,
each automorphism Be®; has the form B

=P,y PP2pic{1.2, wheré?

n

;‘c’(rn_..rl):k];[l Xy, 1, €PF (16)
denotes the product of the automorphisms
A “ - A N 1

Xy =PAN U S= 1 0 Vr (17)

defined in Eq.(4). The substitution matrix corresponding to

Eq. (16) is given by

BPUL)=BA(L), VBed,, (22)
which is not contained in the system of relatiqid§). Note
that Eq.(22) is a relation betweewords Together with the

system of defining relation€l5) we have thus found all in-
dependent relations between thesitive wordsB(L) e Fa
with Be ®; .

B. A number system—representation of Eq.(16)
by integers £M

It will be apparent that a link between the real-space res-
caling, which will be introduced in Sec. IV, on the one hand,
and the following ideas on the other hand, will yield for
given GFC a correspondence between the choice of the index
wn of the diagonal elements of the Green function and a pos-
sible succession of rescaling transformations determining
G,.(E) (cf. Sec. V.

We define 'i—lrn()ﬁyz - YE)=Y2- - YE Y1.Y,e{L.S}
with length |w,|=F,=P,+Q,eN", defined in Sec. Il.
From Eq.(20) it follows

Wi L9 =TE" (w0, 23

where
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is ts

A (Z—-¢)Gru = t1Gsy + t5Gs, B (Z-¢3)Gr, = t1Gs, +15Gs,
i ir

v & (Z — €y )Gﬁ,u = tSGS,u + tLG?',u a @ ( Z - GQ)GG’V = tLG3,V + tLG7,u
ts

it 9 (Z = €5+)Gs, = t5-1Gay + t5Gs =
ts—l tL

By L (2 - f‘a;)GtL,u = 11Gsu +15-:Gs,,
tL

v I (Z — €y )G3,l/ = tSGZ,u + tLG4,u b (Z — €y )Ga’,, = tng,,,-i- tLGS,u
ts rts

FIG. 2. For given v to each symbolo, in the dual word of w corresponds one equati¢p—e,)G,,= ...

. Obviously,

w=...SLSISLS...=...SLLS...=w'. Thus the homogeneous part of the Dyson equation corresponding to awvordst be
equivalent to the homogeneous part of the Dyson equation corresponding fieehereducedword pertaining tow. From Eq.(29) it

follows thatG,,=Gsg,,, and consequentlyﬁ; =€, €,TZ

n

M= rFnx (24)
k=1
takes all numbers in the interval

l,: 0=<¢MW<F +F,_;—2. Relations(23) and (24) have
been found by Wai-fong Chuédh for the special case
M, =1\¥Vk, by using another approach.
Using the fact thagcd(F,,,F,_1)=1, n=3, one gets
M1)=Mr§)@S(A/§]1)>=S(Mj>>- (25)
From Egs.(15), (23), and(25), for given\,, we discover the
following important relation:

g(ln): g(zn)@x(rgl). )= X(rf)- Lri2)y - (26)

IV. REAL —SPACE RESCALING — THE
RENORMALIZATION GROUP RG,

In this section we introduce, in a generalized form, a well-
known real-space rescaling method developed by de Silva
and Koiller!® The fundamental idea of the real-space rescal-
ing is to achieve a reduction of degrees of freedom through
appropriate elimination of equations from the set of equa-
tions (8). In the scope of aperiodic 1D systems, applications
of this approach were found in a number of wofksg., in
Refs. 5 and § considering explicitly the symmetry of the
lattices by the corresponding elimination steps. The advan-
tage is clear; the number of parameteys . . . ts remains
constant. We generalize that real-space rescaling procedure

It guarantees the existence and uniqueness of the representapresent the set of equationg—e€,)G,,=3d,,+ -,

tion of the morphismsX}, ..., ) by the integer£(™. As a

result, it will be possible to definéc’g(n) as a representative
of the set ofequivalentsubstitutions

n

gm=>3 ran—k]- (27)

k=1

Xen € { Xy

As stated above the substitutionsac'g(n),Osg(”)sFn
+Fn_1—2, generate all cyclic permutations wf "° One
can show thatXm(L) = Xgm ¢ (L), which follows from
Egs.(15) and(22), providedé™+F el,.

Now let int(x) be the integer part ofx, and
éMW=ymodF, (cf. Sec. V), respectively. It can be shown
that

(f(k)mOd:k)

F , V=g F 4,
k-1

S=int (28

for k=n,n—1,...,1, successively yields, for give("
e |, a possible solutiork,, of Eq. (24) determining the sub-
stitution X}, .., y= X In this manner one can determine

the representative&,m for all éMel,.

as follows. In a first step, by means of
t,—L,...ts1=S 1 and z— €;—oeia, ..., 0_} we
where v is fixed, by the wordsw(L,...,S %), and

3(a, ...,52), respectively(cf. Fig. 2. Thus, for givenv to
each symbolo, in the dual word ofw correspondsone
equation ¢—€,)G,,=4,,+ ---. Note, only the correspon-
dence between thieomogeneoupart of the Dyson equation
and the wordv is unique. As a result, we extend the original
set of binary chains described lye F; to a set offictitious
chains withfour different hopping elements ,t, -1,tg, and
ts-1 described by wordsv of the free groupF,, rather than
of the semigroupF, . Next, we will consider only such res-
caling transformations, which doot eliminate the equation
(z—€,)G,,=1+--- containing the inhomogeneous part of
the Dyson equatiol A succession of these transformations
will just yield thediagonal elementsf the Green function. A
generalization of this method to obtain the nondiagonal ele-
mentsG,,, [i.e., the extention oRG, , to the total renor-
malization group RG(F,) and its generalization to
RG(F,)] will be presented elsewhefe.

In the following we require that theomogeneoupart of
the set of equations which corresponds to a given werd
e F, must be equivalent to theomogeneoupart of another
set of equations, which belongs to the freely reduced word
w’ pertaining tow (compare Fig. 2 A word w is called
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freely reducedf no y¥ ,y, “ with k==1y,e{L,S} follows  One obtains®. A1 from Eq.(34) by interchanging the sym-
one another irw. This precondition has far-reaching conse-hols g and y. Let Q[l:LHLS‘ls,SHS and

quences for the concrete choice of the parameterg,.| g-1, .| g.g Thust{=Uo
€,7, .. . ts-1. One can show that these parameters must sag ' ’ '

isfg/ the following conditions:

1. As aresult, one obtains
s a representation foiA

t2+ 12 t2
LTls S Ly
F= = = — = — € 7/ —€,—€EstZ— y €Epli/— — y
66: Z, Gat Z, t|_ 1 t|_, ts 1 ts, (29) ali y S 6ﬁ_ €5 BlU 6,8_65
2
Z—€,=€,~2, I—€5=€51 I—€g-=€,—1, tr
- - = * €. /=€,— , Esi=€gs,
ylu y €s—€s S\u Pl
Z-€pr=€,7—2, €5r=€grte, L, (30 -
F + Lis
tLopm——— tgi—ts. (395
as well as €g— €5

Obviously, R~ YRiy= iRt 1=1 holds.

Note thatRX[ !,i,jeZ (1), are determined by means of
From Eqs(29)—(31) one recognizes that only the parametersthese three generating RT,
t,,ts,€5,€,, ande, (or €;) can be chosen independently. If . _
these parameters are defined all other parameters in the o Sio1jtEij-1 o
Dyson equatior(8) are fixed. €ali 1= €atlL =M v €AY T Ca

Let us consider the tight-binding model for a linear chain
described by ararbitrary word we F,. We introduce the Hi_1j Hij-1
rescaling transformation®P,R®, and R4~ * of the param-
eterse,, ...t -1, which are induced by the elementary au-
tomorphismsP,®, and &4 *. In observing the relations o o
(29—(31), we can limit ourselves to the examination of the tLP‘[il_E_ij' i 1=t (36)
transformation behavior of the parametgrsts,eg,€,, and '
€,, Where, for reasons of convenience, we include algo

A representation ofP=RP~1 is given by

€,=€gte, €. (31

Thereby, the polynomials

_ [z, tg
Sij= U= Ui, — Ul (37)
t 2

1)

Z— EB
U=l
€alP= €51 €GP €y, EYPTEp,  Egp= €a, -
were introduced with th€hebyshev polynomiats the sec-
tp=ts, tgp=tL, (320 ond KindU,=Un(X,/2).}" E; ;=E; j(X,/2) fulfill the recur-
R R sion formulas
and for RO=RO ! one obtaingcf. Egs.(29) and(30)]

Ei,j+1:XaEi,j_Ei,j—1’ Ei+1,j:XaEi,j_Ei+l,jr
€,0=22—€,, €gop=21T€s—€,, €,0=2t€5~¢€g, 39
yet with the initial values
€50= €5, tLo=—tL, lgo=ls. (33 , ,
— € — €
= —_ Y _ B
Let ¢ 1:L—>LSS1,S—>S be an ‘inverse reduction pro- Eoo=1, Ei10= LT

cess,” and letid 1:LS—L,S—S be adeflation operation

Qfl induces a “lifting” of the Dyson equation correspond- (z—€p)(z— ey)—té

ing to the freely reduced word/’ to the Dyson equation 1= tf ' (39
corresponding tow (cf. Fig. 2, where the parameters

€a, ... ts-1 are determined by Eqs29)-(31).'° Thus, and with the abbreviatiom,=(z—€,)/t, .

U =1 Yo ! inducesRU( L, which possesses the repre-  We ~ denote  the  parameter  space by
I.={e=(e,.€5,€,.t_ ,t5)|€,,€5,€,,t ,tse C}. Each au-

I

sentation AEa) .
tomorphismB € ®, corresponds uniquely to orrenormal-
t2+13 t2 ization transformation (RTBeRG,, (i.e., a homomor-
Eali 1= €T 5 & Epli1= €51 ST &5 phism ofIL, into itself), which converts the set of equations

with the parameterge I1, into a new set of equations with
new parameterg’ e I,

tf
T + , A = , A ~
ATy Z—€g o€ RB: ﬁ6’=€|BERB(G) (40
- (generalized real-space rescaling mehddow, it will be
LS (34)  Possible to define the renormalizatigroup The product of

tyy-1=——, tgi-1=tg. St
Wt z—egr SOTTS two RT is given through



R(BB)="ByRB1: epp=(€3)p, (41

The RT RBeRG,, satisfy the same system of relations asag 4 result, the restrictioRGy, of RG

the accompanying automorphisnie @,. Thus RG, is
isomorphic to®, (RG, ,=®,), generated by the three RT
RP RO (linean and R4 (nonlineay.

Note, employing the simple mape,=z—¢,,e5=2
—€g,€,=2—€,,t =t ,tg=ts to Egs. (32—(35 yields
equivalent parameter transformations where the energy
does not occur explicitly. Thus tHeT considered as homo-

morphismsRB:I1_—1II,, are independent upon the energy.
Remarkably, the paramete¢g andt, satisfy yet another

relation, which is the pendant to E2), but does not fol-

low from the relations defininRGy , [cf. Eq. (10)]:

(42)

€q| A-1PpE-1= €gli-15-1 T a-1pB-1= 1 151

for all B~1e ®,. The remaining parametets; €, , €5, and
ts, however, danot fulfill such a relation.
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There is oneadditional relation F’IADLXOR(ADlX)Zzl [but
PO)2=—1] not contained in the presentation B, , .
y to I, is isomor-
phic to PGL(2,7) rather than t(GL(Z Z) [cf Eq. (14)].

Note the formal correspondence between E¢S) and
(46) to the so-called trace map as well as to the accompany-
ing invariant(see, e.g., Refs. 4, 8, and)1®n contrast to the
transfer matrix method, the invariatt6) depends upon the
energy. An exception is the so-calledf diagonal model
€,= --=€z=¢€), for which A=(t_ /tg+ts/t)?=4 is
valid.

The transformations of lead to

YUB: (yL 1ySIyy !y,B)v
Yia-1=(Ys,Yy XoYst YL XsYy— Y1),

Yii-1=(Ys,Yg XY~ YL XoYstyu). (47)

In the remainder of this section we employ the following From Eq.(44) it is obvious thaty; andy, are not indepen-

map of the parameter spadd.—1Il, ,CII, onto itself,

which reveals some new properties of the RT We have in-

troduced the Cartesian productl, ,=IL,<II, of
IL={X=(Xg,Xq,X)|X5,Xq,X., € C} with
2_65 _Z_fa
Xs= tS ' Xo= t|_ y
(z—€p)(z—€,)—t7—13
o= tLtsy =X 4-1= Xoli-1, (43
andHy:{Y:(ySIyLlyﬁryy)|ySIyL1y,81y'yEC}With
1 1 z—ep 1 LA
ys_ts’ yL_tLa Y=Yt X —2()( )
Cyim T 44
yy—yuml—E—E(X ) (44)
where AZ_X 47] (Yp— 7)2. X=X.YstXsy,, and

=YY X, +YE+YE.

It will be instructive to examine the transformation behav-

ior of the new parameters und&®,R.A 1, and Rt/ L. One

obtains for the parameter tupl¥e

Xip=(Xg:X5:Xp) s Xja-1=Xji-1= (X5, X}, XX [, — X))

(49)

This dynamical system possesses iamariant'® i.e., the

guantity

2
A=X3+ X2+ X, = XXX, (46)

obeysA=A -1 for all B~ e ®,.

We define theestriction *B, of the RTRB to I, as the
RT RB with the domain IL,CII,,. For all Xell,,
RB| (X)=RB(X)=X3. From Eq.(45) it is apparent that
the restriction of*. A and "/ to I, yields R.A| =Rl ,ie.,
itinduces a homomorphisRG,, ,— GL(2,7) [cf. Eq.(13)].

dent parameters.

Contrary to the rescaling transformations considered
above, the parameterX(Y) are polynomials in the energy.
These polynomials have an important property. They can be
represented bgrthogonal polynomialsTherefore, in the re-
mainder of this section, we will represent our renormaliza-
tion theory from a slightly different point of view.

Consider the tridiagonalacobi matrix[t,=t,, 1 cf.
Eq. (7]
e ~—t, O 0
-ty €& -t 0 0
0o - 0 0
%)= Lo ;
0o o0 o en2  —tyo
o o0 o —tno2  En-1
(48)
associated with the dual worl =og04---on_1 Of the

freely reduced wordi=B(L) e F,,Be ®,. Lets,,3, , and
3. be the dual words ofi,v, andw=uv, respectively. We
define J(2,2,)=J(3,,). The associated monic orthogonal
polynomialsmay be defined bycf., e.g., Ref. 2D

= detzl- I TH(Z))). (49)
satisfying the recurrence relation
W(zk)wl (z— E|+k)772|_t2 k77(2k)| 1 Ow(k) =
(50)

(remember,o = o, n). For convenience we introduce the
polynomials

(51)

Let 3’ be the dual word of the freely reduced word

v=B(S) with norm M=|v| (cf. Ref. 19. Then, the rela-
tions
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5
4 ‘7(() r)nod 13

Bo 0o a11 Bra v B v «

SLSLL(5§LSLLSLLSLSLL

03 mod 13
(4) 4)
*l' o ‘L 0.(() mod 8
b) _:o B1 v :3 Ba s Bs 7 o B -~
L L S L L S L S L L S L
ap o
. —o °
% oo L O
0 1 o® %0 mod 1 (4)
a1 ‘Jf 0-1 mod 8
C) :o B1 2 .as Ba s Be 1 a B
—» ——» 4—» ——
L L S L L S L S L ¢ L S
axQ {4
& o—
L 4+ 6 L L (0)
oy T 00 mod 1

FIG. 3. (a) Standard Fibonacci chalief. Eq. (19)] wg(L,S) =w2°°°%L,S). The arrows over the symbotg” = y and o{3) = y serve to
emphasize the border of the unit cell containing the quasiperiodic structure. The arrows below the sysdrubsto emphasize the border

of the unit cell of the latticel 2 (ws(L,S))=wz'%YL,S)=w2%°%L,S). The first symbol of the dual word pertaining to the latter word

corresponds too$) of the dual latice of w2°°%. (b) The

lattices X g(wg?°°YL,S))=w2%%°%s, S L) =wi*%UL,S), and

X 1wl =L, respectively(c) The Iattlces.Xfll(wélooo(L,S))=WélOOO(S,LS H=w;*°UL,S) and X, L5(wz' %) =L, respectively.

[

Xa|2r1:t—1(H(0) [yn-2) (52

. _a
yLlB’l_H(E )N—ll

(0) (1) .
and XalB 1= tll(szy M+N szr M+N— 2) 1)(5|B’:L
:t’_l(l‘[(o)l)_H(E)M ,) as Well( a?)ys‘g 1= H(E’),M—l'
yﬁliﬁfl_nzz'_,mm—y Yy5-1= HEE’ M+N-1 are valid.
From this point of viewyreal-space rescallnglelds

H(O)

B(2),N"" (53)

whereN’ =||B(2)||. Taking into account Eq52), therenor-
malization transformationsre given by Eq(45), and Eq.

(47), respectively. Finally, we note a relation which corre-

sponds to Eq(68)

t o (MO - TN =t (T -TIEY,). (54

V. DETERMINATION OF G, ,

symbols except for its first one(o) According to the peri-
odic boundary conditiorii.e., cr(”)—a(”) ) these transfor-
p

mations eliminate in the dual word, corresponding to
w9 % (1), all symbols excepto.m. Note that we set
T ()= 0'(;;)0 (cf. Fig. 3.

We now come back to the relation between the Dyson
equation and the associated dual words. Let the indéx
the Green functiorG,, , equalv= &= &M, By so doing, we
guarantee that the R*F}c‘gl eliminates all equations, asso-
ciated with the wunit cell, except the equation
(z— eé)G§§=1+ - - -, containing the inhomogeneous part of
Eq. (8) corresponding to the symba¥,. Thus the RT
Rr.]i:'éile RG,,y maps Eq.(8) to the Dyson equation of a
chain,

Periodic approximants of the GFC have the property that[Z—€'(2)]G;(2) = S+t (2)[Gyrr (2 + G-k (2],

the wordsw™* " with given A,, but differentR,,, are

(56)

equivalent to one another. Thus we distinguish only those

chains which can be described by words of the form

W,(L,S)=lim lim w2 °(L,S))P

n—oe p%oo

(59

[and P(w..(L,S)) respectively, defining the limiting pro-
cess mentioned in Sec. Il.

Let p=n—k+1. Xyl g o induces onw'» "}(L,S) a
deflation operation l‘_"k skSLSk—>L,L—>S such that
wLP"'r1—>WLPj11'”r1e F5 will be accomplished. Thus one
may interprelw:f_*ll'”rl as a sublattice avaf""rl

The transformationﬁc';(%) eliminates in the dual word

s =ofVo{V. .o, corresponding tav,” 1, all

with only one site energye’(z)zeapcgl, and asingle hop-
ping integralt’(z)ztu;(gl (now dependentupon the en-

ergy, which are for given ¢ independent from
{=&(modF,). The solution of Eq(56) is well known?!

1
G} (E)= lim
YT o [z- e (P-4t (2)

gk

2 0 1
\/t—l(H(E,Ln_ H(E,)Fn—

(57)

= lim
n—07"

))2—4
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Teik)

O'E(k—l)

FIG. 4. The subgrapkbold) of G(V,E) which connects the point@i";(% and R.i‘gi_l) corresponds to the edd&X; ; [cf. Eq. ( 58)]:
RX =", 30X 1y .

Thus the exact diagonal elements of the Green function have VI. A GRAPH THEORETICAL APPROACH—
been found. PATH RENORMALIZATION

As an example we consider the fifteenth generation
Fibonacci lattice [i.e., Njs=(1,...,1)], of length
|w,g =F15=1597. Numerical results for the LDOS are given
in Fig. 10 where ¢=¢19=888=32° sF,_ 1=F,
+F4+F;+F.1+Fq3. The Fibonacci numbeis, have been
determined via the recursion formuld). Iterating the algo- designated agoints oV, and edgesec E, respectively.
rithm (28) with the initial value u=£(19=888 yields all  From the statements made in Sec. lll it is clear that the
Sk- Thus the inverse substitution?k"g:l888 have been fixed semigroupsI’; ,®, , and RG|,, (analogously defined as
and we eventually get the desired REF. Egs.(5) and(17)]:  &,) are isomorphic to each other. Let
R Lges= R goR X 1o - - oRAG 1oRA €. V=RG|, ,=®,=T; . The different pointsaecV corre-

Let us study in some detail the intertwined connections
between the single GFC and the accompanying elements of
the renormalization group. For this purpose we represent the
group structure of’,, andRG, ,, respectively, by a graph,
i.e.,, a setG(V,E) with two types of elements which are

FIG. 5. G(WN-E,ENS) for the case of a fifth generation standard Fibonacci lattiee, AV5=(1,1,1,1,1). Set of bold edges: Tree
T(Wi, Enp) CG(Wy, Eny)
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spond directly to the elements BG, ,. We link a genera-
tor of RG|, ,
(RB; L RB,1:RG~Y) can connect with each edge where
"B 'eRG,, i=
of the edge respectively, amig e {RP,RA LR 1 is
the respective generator &G, , for which *B;'=G*
ORB[1 is valid. A sequence of edgeH=¢,6,_1...€
where the end poing’ of e, for u=1,... n—1, is con-
nected with the initial pointr of e, is called apathin a
graph. Since a presentation BG,, , results immediately

from our presentation stated in E(¢5), the construction of
G(V,E) is basically trivial.

A common factor is seen when considering the following

subgraphs. We define for any givé, the following point
set:V,, = u{gzl{Rﬁc;(&)Ng(k) el }CV and the seE, of all

tuples (Qk;(;}):Rk&i,sk'SkoRi‘;(&—l)yRk;(&fl)) of V., for

whichs,=0, ... M, andk=1, ... nis valid. Note that we
identify the subgraph oB(V,E) which connects both points
R.ft’g(i_l) and Rx (k) with one edgeRA;,? 5.5, €Ex;, (cf.

Fig. 4) in the “new” graph G(V . ,Ex) (cf F|g 5.

The procedure above itself suggests the following corre-

spondencefcf. (24), (5), and(27) as well as(2)]:

=1

RX& € € g

<
\ H?:l XMe—ss,s,'

wipt” Pk g O (k)

(58)

with Nel,. The meaning of o
eWy =Up_{owm|VEP el } is manifold. It represents
the corresponding elements BIG|, , (which decimatethe
lattice w,' %), and I'; (which generate the lattice
wt %), respectively, as points in the gra@(Wy. ,E,)
which is obviously isomorphic t(G(VNn,ENn). But it also
represents thé(®th symbol of the dual word pertaining to
0= ’i';f(k) ;L% 2 Finally, one may identifyo .
with the renormallzed parametees 1,¢= £0 For sake of
ease, we will unite all these objects in the symbgi).

Ow Oz

e

DIETER WALTHER AND RALPH v. BALTZ

1,2 are the initial point, and end point

Gy 0
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The importance of the graptG(WNn,ENn) results from

with each edge. This means, that any tupletheir hierarchical structure which manifests itself through the

following recursive construction lawLet

V=g F 1 +E 7Y, éV=sF,, (59
[cf. Eq. (24] and let the mapYMk,MkeN+ with

$=0,... My, be defined as follows:

Ow Og [P
Ty — 5
R 3 _01\00' 7 Tu
Xt 0 “
(60)
with (0,7) e {(a,7),(7,a)},
&w &y 0z
Ryt -
Ou Ou
(62)
with (o,0) e {(a,8),(8,a)} and
Cw 0z
R a1 00y |"—> Ty
XMk —3k,s klo‘u Tu
(62

with a'e{a ﬂ v}. We have used the abbreviations
u=gk-1), R W=l x=gl L L y=¢0
+(|V|k+1 1)Fk, andz=§(k)+Mk+le. Each defining re-
lation of the presentation &G/, , corresponds to a closed
path in the grapt(V,E). In the now-to-be-generated graph
G(WNn,ENn) we consider these throughout the process, in
which we still must attach to the ma}ka an additional

condition

(63
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Here we have used the abbreviations=¢*2, u’

=g Dy Fy_p with s4=1,... My, and v
=¢kD p'=u"+MF,_,;, as well as w=gkD),
x=gk DR, y=g D (M - 1)F,, and z

=D+ My, 1Fy. As a result the grapiG(Wy ,Ey) is
generated as follows:

n Yo @1 gy B
v px = Tl | S27 |
k=2 (&7)]

(64)
wherey=M;—1 andz=M, (cf. Fig. 5.
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In G(Wy,Ex-), and therefore in the tre?é(VTNn,E_j\/n),
each path

HRXIT/Iif : 'ORXMifsl,sl (67)
corresponds respectively to a sequence of RT which
uniquely determines the parameters of the Dyson equation
(8) (path renormalization By this means, the diagonal ele-
ments of the Green function are determined. It may be in-
structive to compare from this point of view the example
considered at the end of Sec. V and Fig. 5. Note that the
procedure introduced here offers itself as a very efficient
basis for the numerical calculation Gf,, .

In the remainder of this section we will confine ourselves

o.
Sy Sk

HQBO)

~>a'§(k)

It may be instructive to compare our general results prez, RT corresponding to Eq16). To lighten the notation we

sented here with similar considerations about tgerfealogy  gppreviat

of a Fibonacci lattic& as presented in Ref. 6. Moreover, the
so-calledkey sitescorresponding to a power of an arbitrary

(but finite) product of P, A, andl, introduced in Ref. 5 are

Wlﬁc(—rl___rl) by Yis, s, andy‘jfgl by Ve, etc. We

will determine the tuplee . (65 recursively on the path
Hago)ﬂ%(k) in the grath(WNn,ENn).

found within our approach as special paths in the graph For givenN, ands,=0,... My ,k=1,...n, one gets

G(WNn,ENn),Nn:(l,l,l,. . )

We stated in Sec. IV thaB, # B, always impliesR3;
+#RB,. But as it has been stressed in Sec. BB’ c @,
doesnot necessarily implyB(L) # B’ (L) € F», i.e., the two
lattices described by3(L) and B’(L) are not necessarily

from Eq. (45

— — (K
X“|Sk'"Sl_xa|Mk"'M1=X£1)' (68)

x'(® possesses the same property. Thus the iteratio)bf

is independent of the choice of the path@(\WNn,ENn).

distinct from each other. This is a direct consequence of Eq. From Egs.(45) and (47) one obtains, withx=x*"1/2

(22). Its pendant in the renormalization group is E42).
From Eq.(57) it is obvious that in the calculation @&,

only €, andt, |+ enter. Thus*X; * and "Xl vield
actually the same result f@s,, ,u=§ mod F,.

It suggests itself to build this fact into the construction
law of appropriate chosen subgraphsGgf, ,E ), which

we want to generate as follows. L¥},, be the map which

one obtains from Eq460)—(62) omitting the edge connect- with the initial conditionsx!, Y=x4,x{?=x

and 25, =Uy 41— U_1,* for given A/,

X=X KDy, 00 =x3 Uy, 1(x), (69
Yieo=Yi|ek-DRs, T Y1 jek-2Ty, —25,(X)
+A|§(k—1>UMk,23k(X), (70)
«» as well as

ing o, with o in Eq. (61), as well as the edge connecting yy, . A, andx," are recursively defined via

o, With o, in Eq. (62). The correspondend&8) is extended
by

E|}(;l<—> Eg(k)

=(X,3%1,Y |31
( al; YL|;'(f )

YL
| X3 1,Gpem |, 65
R 13 W (65
with 0<¢=¢M<F, . Then,
n Yo @1 gy Bz
T(Ww,, En,) = 1] T [ }
k=2 ao
(66)

is a connected circuit-fre¢i.e., there are no closed paths in
the treeT(W,; ,E,- )] subgraph(* treg,” set of bold edges in
Fig. 5 from G(W,; ,E,-) with the center (root) a, where
Wy =Up_i{oam|0=EP<F}CWy . EyCEy is de-
fined analogously tdE .

1
[z,
Ajgo==* X|§(k)—477\g<k>: [EYL|§<k—1>Qk1

—(X®=1)y| jgk-2) Un, 25 (X) = Ajgk-1 Ty, — 25, (X)

(71
and
X=X Dy, 100 =X E Py, 00, (72)
with x'(P=x’ . We have used
(k=2)
Rs, = Qu-1lhw,—5 (U () + —— Uy, (X) (73
and
- Xsyk)x(akfl)
Q=X —— (74)

Taking into account the invariant mentioned in Sec. IV, it
can be shown that Eq$69) and (70) are actually two-term
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5'0 L L) LJ L} 5‘0

40} | 1 4.0

§ 3.0 s 3.0
: g
W w
£ g
5 g
X 20 T 20

1.0 1.0

0.0 ‘ ‘ 0.0 L L L 2
6.0 —4.0 _2.0 0.0 2.0 4.0 6.0 —4.0 _2.0 0.0 2.0 4.0

Energy Energy

FIG. 7. The region|x{®|<2 (spectrum for the standard Fi-
bonacci latticewg as function of the hopping energy (ts=1) for
the parameter tuples,= —eg=—€,=1.

FIG. 6. The region|x®|<2 (spectrun for the standard Fi-
bonacci latticeng as function of the hopping energy (ts=1) for
the parameter tuplee,=—1. (Periodic case is obtained for
tL:]')

recursion relationsY R (&)¢0—2), €| gk-1)) — (€] ek—1), €| (k)

as we have stated in Eq®60)—(62). 100.0
VII. NUMERICAL RESULTS AND DISCUSSION 0.0 1
It may be instructive to consider first theeriodic case s00 |
i.e., t =tsande,=e€gz=e¢,. In the following (cf. Ref. 17,
we seté=¢M, It can be shown thaxg”)(E)=27;n(xa/2) oo b

=2c0sEK), andx,(V(E)=27¢_,¢ _(X./2), respectively,
with cosk)=(E—¢,)/2t_ . Moreover, one obtainy(E) 00 |
=YLl (Xo/2) and yg(E)=y Ur 1r  (Xa/2)=Y,(E).

It is obvious that Eq(57) yields the well known result for & . |
the periodic tight-binding modekf., e.g., Ref. 21 g
In contrast toy, |, the iteration ofx{"(E) is independent wol

of the concrete choice of the path G(WNn,ENn) [cf. Eq.

(68)]. Hence, for a givenV,, the factor 1;(/4—(xa(”5)2 in Eq. s00 |
(57) is the same for alG,,, independent from the index It )
determines the spectrum of the different GE5) (cf. Fig. 6

and Fig. 7 which is a Cantor set 200

The local properties, as described by the LDOS, are
caused through the modulation of this root factor by the or- 10} ; |
thogonal  polynomials yy | (E)=TI{¢!),. The zeros
EQ u=12,... Fa—1, of y | (which corresponds to the o0 R LA,
poles of the renormalized hopping elemerare all real, Energy

single and lay in the gaps of the spectrum or coincides with
band edges. These properties are an immediate CONSEQUENCEFIG. 8. LDOSp,(E), at siteé=111, for the standard Fibonacci
of the orthogonality of y (E). The zeros E,,u lattice w5 with parameters; =1.5, ts=1, ande,=—1.
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8 ‘ ‘ . , 100.0
A 1 90.0 }
6 o
s0.0 }
5 |
70.0 |
4 .
o 60.0 }
o
3
3 o
S s00l}

o A \ U ] 40.0 |
i | : o |

0 T
; r 300 |
Tr L N
LA AN A T HEY \
-1 1\/ py ERY -
AN AUE T SV AN 200 | |
! L Vo b g | |
2} | v I |
2 " -‘ Ia [ ‘. ,’ [ S |
] \ S S 100 |
' (W] / V! '
3} | L% ~ \ ,‘ ] |
i o |
! ! 0.0
| . . L, -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0
-0.345 —0.343 —0.341 -0.339 Energy
Energy

o FIG. 10. LDOS p(E), at site £=888, for the standard Fi-
FIG. 9. Enlarged part of the LDOS presented in Figb8ld  ponacci latticewys with parameters, =1.5, ts=1, ande,=—1.
line). Dot-dashed line: The corresponding renormalized inverse

hopping energy- |y, |«(E)|.

=1,2,...F,, of xXW+2 are also real but may be single or 30
double[cf. Ref. 2Qb), pp. 46—48. A zero Ej can only be
double(i.e., band degenerakyf E; = Eﬁf)_l orE, =+ng11.

In general, the reversal is obviously not true. [} be a

single zero coinciding with a zero of |(E). In this case,

the LDOS vanishes at the band ed@es indicated by an 20 | u

arrow in Figs. 8 and 10 If E,f is double, then the LDOS
possesses a finite valgiee., it is not singulay. In Figs. 8—11
we present the LDOS for two different sitésNote that the
support ofp;141(E) coincides with the support gfggg(E).

We remark that it is apparent from Eq&2) and (57) 10|
that |x{|—e rather than the limitt ,—0 implies u
Gge— 1|E— €,. Thus the investigation of the convergence u
of the renormalization procedure seems to be much more J U u
complicated than in the standard belief. A serious investiga-
tion of the asymptotic properties of the renormalized hop- 0 — ‘kl i
ping element, (E) and of the LDOS for any infinite suc- YA N
cesion of RT, however, is beyond the scope of this article !y
and is left for further studies.

We wish to point out a further relation betwegff’ and
Y- Using Eq.(66), one gets

LDOS

-10 |
Fr—1 M—1 F_q—1

> Yijeto= > > Yis, k=D s ‘ : .
0 =0 k=0 ¢k-1)—g —0.345 -0.343 ~0.341 -0.339
Energy

”~
-~

Fk,zfl

+§(k§:0 Yumy s, k2 79 FIG. 11. Enlarged part of the LDOS presented in Fig.(A6ld
line). Dot-dashed line: The corresponding renormalized inverse
(s¥=0,Vk). Thus, by induction, hopping energy- |y, (E)|.



8864

14.0

DIETER WALTHER AND RALPH v. BALTZ 55

120 |

10.0 |

8.0 |

6.0 |

4.0 t

Renormalized Parameter X(E)
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FIG. 12. The polynomial X(E)=x{" in the cases(a)

-3.0

-2.0 -1.0 0.0 1.0
Energy

tL:tszl, and(b) tL:ts,thl.S (E#:O).

100.0

90.0 |

80.0 |

70.0 |

60.0 |

DOS

50.0 |

40.0 |

300

200 |

10.0 |

0.0
-4.0

FIG. 13. Total density of state@OS) for the standard Fi-

=3.0

-2.0 -1.0 0.0 L0
Energy

bonacci latticewys (t, =1.5ts=1,,=—1).

2.0

20

15

10 |

DOS

(VRVIVRYY

-0.345 -0.343 -0.341 -0.339
Energy

FIG. 14. Enlarged part of the DOS displayed in Fig. 13.

ax0 Pt
97 ;0 Yi|em- (76)

Since the polynomialy, .« have the same sign within the
energy spectrum oK for all £, 0<¢W<F,, the density
of states(DOS) is given by

ME)=— wanz,:‘ ImG,, ,(E+i0")
1 axtm
T aFa A (x)2 E | 7
where
co§F.K(E)]= %x;“’ (79
(cf. Fig. 12.

K(E) represents the integrated DQS"MV(E')dE' =1]

E
K(E)=wf ME")dE'. (79
Numerical results are displayed in Figs. 13 and 14.

VIIl. SUMMARY

Starting with the presentation d#,= Aut(F,) introduced
by Nielsen’ we found a complete system of defining rela-
tions for the semigroughb, C®, whose elements generate
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. Several characteristics of the RT were examined. Figure
15 summarizes the relationship between the geometric struc-
. C I, , ture of the GFC, the renormalization group, and the corre-
sponding physical quantities.
| | Based upon our presentation df, , we constructed a
FA=Z@Z  Fy,=<AB> recursive scheme for all subgraphs of the gr&g{v,E) of
the renormalization grouRG, , which are relevant for the
calculation of the diagonal element,,. Each path in
G(V,E) defines a succession of individual renormalization
R steps, converting the Dyson equation for any diagonal ele-
FIG. 15. Summary of the algebraic properties of the R mentG,,, to the Dyson equation of a periodic tight-binding
€RG|,, and their connection to the substitutions introduced inmodel with one renormalized site energy and one renormal-
Sec. lll. Note that the first line presents the relevant physical quanpye(d hopping element each dependent upon the er{pegf
tities, which are determined through the corresponding RT. renormalization.

Finally, we presented some numerical results.

E(K), DOS, IDOS LDOS

PGL,(Z) = RG,, + Aut(F;)= RG,,,

all cyclic permutations of the generalized Fibonacci chains
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