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Short-range order, bulk moduli, and physical trends in c-Si12xCx alloys
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Alloys of silicon and carbon in the crystalline phase, although complex and with varying degrees of short-
range order, are shown to exhibit an accurate power-law dependence of the bulk modulusB on the average
nearest-neighbor separationd, over the whole composition range. The homopolar energy gap of these alloys
increases with carbon content. Similar trends have only been proposed earlier for the much simpler diamond
and zinc-blende semiconductors.@S0163-1829~97!03513-3#
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The rapid progress in modern epitaxial techniques mad
possible to fabricate complex compounds and alloys, wh
had been in the past considered as only hypothetical.
growth of Si12xCx alloys illustrates one of the most intrigu
ing examples, where the extremely low solid solubility of
in Si had been overcome by nonequilibrium methods, s
as molecular beam epitaxy~MBE!.1 The complexity of these
‘‘exotic’’ new materials poses a challenge to the theor
aiming to compute the most fundamental of their propert
lattice constants, bulk moduli, cohesive energies, and b
gaps. Although quantum-mechanicalab initio calculations of
total energies and forces have given excellent results w
applied to simple solids, their applicability to more compl
materials, where structural and compositional disorder do
nates, is severely limited.

Because of these limitations, we often develop empiri
formalisms in order to study a wide class of materials and
demonstrate physical trends. A decade ago, Cohen2 proposed
such an empirical model for the bulk moduli of diamond a
zinc-blende~ZB! solids. The essence of this model is embo
ied in a simple expression which defines a power-law dep
dence of the bulk modulusB on the nearest-neighbor~NN!
separationd. The physical considerations behind this a
proach is thatB depends predominantly on the covalent ch
acter of the bond~exemplified by ahomopolar gap Eh), and
only weakly onionicity, and thatEh scales logarithmically
against lattice constants between different rows of the p
odic table, as suggested by Philips.3 Although the model has
been proved to be appropriate for the simple diamond
ZB structures, one wonders whether the above ideas
more general and can be applied to complicated mate
with a high degree of compositional disorder.

Here, we show that Si12xCx alloys exhibit an accurate
power-law dependence ofB on the lattice constanta0 or,
equivalently on the ‘‘average’’NN distanced, over the
whole composition range. This is quite remarkable given
complexity of these alloys, which are inherently locally d
ordered due to the atomic size mismatch, as well as com
sitionally disordered. The complexity is pronounced es
cially at intermediate compositions, as compared to
simple ZB form of SiC. As a consequence of the power-l
dependence, it follows that the homopolar~average! gapEh
of these alloys increases with carbon contentx, contrary to
the intrinsic gap which has been reported to decrease.
550163-1829/97/55~14!/8784~4!/$10.00
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question of short-range order~SRO! is also analyzed and
quantified for all values ofx.

The key point in discussing these alloys lies in the pro
description of the intrinsic strain due to the huge size m
match between Si and C. This is related to the optim
distribution of species in the network minimizing the elas
energy. In thermodynamic equilibrium the only stable pha
are the equimolar perfectly ordered ZB structure and
various stoichiometric polytypes. However, it has been p
sible to grow metastable, defect-free, nonstoichiometric a
layers on Si using MBE,1,4 with carbon contents up to
;20%,4 without the formation of silicon carbide. Thus, i
our search for physical trends in this alloy series, we m
consider the whole range ofx, although certain values migh
not actually occur in the laboratory~especially under epitax
ial strain!. We already know that, for small carbon conten
minimization of the elastic energy is obtained if C atoms a
arranged at certain distances~mainly as third NN’s!.4,5 As
x increases, however, compositional disorder rises beca
‘‘wrong’’ ~homopolar! bonds inevitably occur.

We accomplish the incorporation of C atoms in the
lattice, or vice versa, and we attain the most favorable m
stable arrangements which minimize strain, using Mo
Carlo~MC! simulations in the semigrand canonical ensem
(Dm,P,T) supplemented by a technique recently introduc5

which overcomes the large formation energies and lowers
barriers for diffusion. In this approach, besides the usual r
dom atomic displacements and volume changes, we h
Ising-type flips ~atom-identity switches! driven by the
chemical-potential differenceDm5mSi2mC, which are ac-
companied by appropriate relaxations of first-NN atom
away or toward the central atom undergoing the attemp
switch, in order to make the flips less costly. In this way, t
success rate is enhanced by as much as 50%. It shoul
clear that statistical averages are taken with respect to t
metastable configurations, which despite that minimize str
do not eliminate it, since they are inherently locally straine
in the neighborhood of the minority-type-atom insertion. T
only strained-free configurations result from formation
SiC-like regions, but this case does not interest us, and
ther is proposed by the MBE experiments at typical grow
temperatures.

For the simulations we use cubic supercells of 216 ato
with periodic boundary conditions. The compositionx in the
8784 © 1997 The American Physical Society
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55 8785SHORT-RANGE ORDER, BULK MODULI, AND . . .
cell is obtained by a suitable choice ofDmSi2C, while the
pressureP and temperatureT.800 K ~a typical growth tem-
perature! are kept fixed. The interatomic interactions a
modeled via a well-tested, in similar environments,5 empiri-
cal potential.6 This approach is less accurate than fir
principles methods, but since we are aiming attrends, any
inaccuracies and errors are systematic and they do ca
out. Besides, the empirical approach allows for the pres
MC treatment, which is advantageous because strain min
zation is arrived at naturally. In anyab initio approach one
would have to find the most favorable arrangements by r
domly moving atoms in the lattice in an inefficient and cos
procedure.

We first discuss the question of SRO~limited to first
NN’s! in the series of generated samples. The relevant an
sis of the extensive calculations is shown in Fig. 1. Panel~a!
demonstrates how the average number of heteropolar b
~obtained from atomic correlations atT.800 K! evolves as a
function of x, contrasted to a hypothetical random distrib
tion of species. Perfect heteropolar bonding (Zheter54) per-
sists for 0.24>x>0.82, and thenZheter is reduced for inter-
mediate values. However, even in this region a signific
amount of SRO exists. In order to quantify ordering, w
utilize the concept of the nearest-neighbor correlation par
eter in a binary alloy, defined as7

GAB5cAPAB2cAcB , ~1!

which relates the probabilityPAB of a given bond being of
type A-B, to the random case where each site is indep
dently occupied with probabilitycA or cB . @Since cA and
cB are actually the fractionsx and 12x of atomsA andB in
the cell, the random probabilitŷPAB& equals (cAcB)/cA

FIG. 1. Short-range order in Si12xCx alloys.~a! Variation of the
average number of heteropolar bonds withx. Circles stand for C-Si
bonds, triangles for Si-C bonds. Dotted lines denote a hypothe
random distribution of species.~b! The Bethe SRO parameter~see
text! vs x. The square shows corresponding value for the am
phous stoichiometric alloy.
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23

1
250.5.# Nor-

malization ofGAB to maximum order results in the Beth
SRO parameter

GBethe5
GAB

cAPAB
M 2cAcB

, ~2!

wherePAB
M is the maximized probability~in the present case

PC -Si5ZC -Si/4, PAB
M 51). Values of theGBetheparameter for

the samples of panel~a! are drawn in panel~b!. Significant
SRO is preserved up tox.0.35 and forx>0.7. The varia-
tion is smooth with a well-defined minimum atx50.5,
where the parameter falls to a value somewhat less than
way between random (GBethe50) and fully ordered
(GBethe51). The overall picture and the close compatibili
with the structural trends, to be discussed below, show
the calculated SRO is near the optimum one. Also note
expectedly the SRO for the stoichiometric sample is hig
than for amorphous SiC.8 The reason lies in that the atom
size mismatch, which is the primary driving force for orde
ing in the crystal, is less effective in the amorphous mate
where the network has the ability to accomodate large lo
strains.

We now proceed to calculate the lattice constants
bulk moduli of Si12xCx alloys and to investigate the rela
tionship among them. We focus our attention tostatic-lattice
elastic properties~at;0 K!, much in the same way as don
previously for amorphous carbon networks.9 Since atom-
identity flips cannot take place at such low temperatures,
generated three different metastable configurations for e
x at typical growth temperatures, where the switch-succ
rate is significant. These were subsequently cooled to;0 K
at their lowest-energy configurations. At this stage, aver
ing over the cell dimensions givesa0 for each configuration,
and averaging over the three configurations givesa0 for each
x. The equilibrium bulk modulusB5V(d2E/dV2)V5V0

is
obtained by considering a uniform expansion~compression!
of the cell for each configuration and fitting points of tot
energy versus volume with the Murnaghan equation of s
for solids. The results of our calculations as a function
carbon contentx are shown in Fig. 2.~The differences in the
values ofa0 or B between the three configurations are sma
not exceeding the size of the symbols.! In panel~a!, we ob-
serve a negative deviation from Vegard’s linear ru
a0(x)5(12x)aSi1xaC, an effect well known for ZB-SiC
and attributed to charge transfer from Si to C.10 The variation
of the lattice constant withx is very well fitted with the
second-order polynomial

a0~x!5aSi22.4239x10.5705x2. ~3!

Note thata0 for ZB-SiC is smaller than for the stoichio
metric disordered sample~larger negative deviation!. The
latter is strained~mixed bonds! and cannot acquire the opt
mum density of the unstrained ZB form. The variation of t
bulk modulusB with x in panel ~b! also exhibits the same
smooth trend, i.e., a downward bowing compared to the
early interpolated values. Expectedly, theB of the stoichio-
metric sample is lower than that of ZB-SiC~disordered net-
works are softer than undistorted lattices!.
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8786 55P. C. KELIRES
A considerably deeper insight into these properties
achieved if we search for specific trends in the variation
B. Looking for such trends is preferable to study the var
tion of B with a0 or, equivalently, with the nearest-neighb
distanced, instead ofx. For an elemental semiconductord is
well defined, but here due to the presence of all kinds
bonds, occurring in a variety of proportions depending
carbon contentx, we have to think in terms of an ‘‘average
d(x) that reflects the actuala0 of the sample. Thus, the be
choice is to considerd(x)5a0(x)A3/4. @Choosing d̄(x)
5(12x)dSi1xdC would be in conflict with the nonlinea
variation ofa0.# The dependence ofB on d(x) is shown in
Fig. 3. Panel~a! shows the linear variation, while panel~b!
showsB versusd in a log-log plot. The data closely follow a
straight line, which indicates that

B5Ad~x!n. ~4!

A line fit through all points gives~within our numerical ac-
curacy! for the slopen and the constant factorA the values
23.4960.02 and 1925630, respectively, whenB is mea-
sured in GPa andd in Å.

The observation of this accurate power-law behav
from these simple empirical calculations, is quite remarka
for several reasons:~a! It provides an independent verifica
tion of Cohen’s proposition,2 which was based on physica
considerations, both regarding the scaling exponentn and the
constantA.11 ~b! Furthermore, and most importantly, powe
law behavior holds for the whole composition range of the
complex alloys; i.e.,B scales withd which is a function of
x within a single alloy series. This is a generalization
Cohen’s theory whereB scales withd between different
rows of the periodic table. Note that Eq.~4! does not hold if
one uses the average~linearly interpolated! d̄’s. ~c! Both ZB-
SiC and ‘‘disordered’’ Si0.5C0.5 follow this behavior, indi-
cating that the respective bulk moduli andNN distances vary

FIG. 2. ~a! Lattice constants and~b! bulk moduli of Si12xCx

alloys as a function ofx. Dotted lines show variations according
Vegard’s rule. Squares denote corresponding values for the z
blende SiC alloy.
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consistently.~d! It provides a strong test of the accuracy
our MC switching-relaxing algorithm, showing that all de
grees of freedom, spatial and cellular, are properly equ
brated. So the accuracy in this power law verifies that S
in the cells is at its optimum level.~e! Finally, it is trivial to
computeB for any arbitrary carbon contentx. One extracts
d from a0(x) given by Eq.~3! and thenB is estimated using
Eq. ~4!. Thus, the observed trends are not just of acade
interest. The knowledge and easy derivation of such str
tural and elastic data from simple formulas~overcoming in
this way the difficulty of performing first-principles calcula
tions for so many configurations and for such a comp
material! is very helpful and essential for the description
physical properties of thin pseudomorphic epitaxial films.
is needed for the interpretation of relevant experiments
well.

The power-law dependence ofB on d immediately im-
plies also a definite trend in the variation of the energy gap
Si12xCx alloys. According to Philips,3 tetrahedral com-
pounds sharing eight valence electrons per atom pair
characterized by a covalent or homopolar gapEh and an
ionic gapC.12 Examining a series of solids of increasin
ionicity ~group IV→III-V→II-VI ! Cohen observed2 that the
lattice constant, ord, is nearly independent ofC and one
should expect thatB depends predominantly onEh . Since
B scales inversely proportional to the covalent-bond volu
(;d; bond charge densities have roughly cylindrical shap!,
he suggested that

B5DEhd
21, ~5!

whereD is a numerical constant. Thed23.5 dependence of
B follows from the argument of Philips thatEh in tetrahedral

c-

FIG. 3. The bulk modulusB as a function of the ‘‘average’’
nearest-neighbor distanced ~see text! for a series of Si12xCx alloys,
plotted ~a! on a linear scale,~b! on a logarithmic scale. Error bar
~not shown! are smaller than symbol size.



et

e
l,

d

n
he
n-
to

epa-
the
ould
t to
n
his
re-
act
te

n
r
e-

x-

nt
ntal

la-

ple
ted
nd
con-
cal

the
s
p-

55 8787SHORT-RANGE ORDER, BULK MODULI, AND . . .
compounds scales asd22.5.3 In this theoryEh plays the role
of an average optical gap, like the energy gap param
Eg in the isotropic band model of Penn.

13 Using Eq.~5! and
as a level of reference the homopolar gap of Si,Eh(Si)
(55.07 eV!,2 we obtain the variation ofEh with x in this
series of alloys:

Eh~x!5Eh~Si!F B~x!

B~Si!

d~x!

d~Si!G . ~6!

The results are plotted in Fig. 4. We find theEh of carbon to
be 14.5 eV, compared to 14.7 eV (dEh.1.4%) as deter-
mined from the experimental dielectric constante and the
plasma energyEp . Also, for ZB-SiC the calculated valu
~9.1 eV! agrees well withEg obtained from Penn’s mode
while for Si0.5C0.5 we find a lower value~8.7 eV! as ex-
pected. The overall variation retrieves thed22.5 behavior,
showing the reliability of our calculated bulk moduli an
lattice constants@on whichEh(x) in Eq. ~6! is solely based#.

FIG. 4. The homopolar energy gap of Si12xCx alloys vs carbon
content. The square shows the gap for zinc-blende SiC.
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Finally, let us point out thatEh(x) increases as a functio
of x over the whole alloy range. This is in contrast to t
behavior of the intrinsic gap which, for small carbon conce
trations, has been reported by theoretical calculations
decrease,14 attaining a minimum value at;10% of C. A
possible explanation of this effect requires the average s
ration of bonding-antibonding states to increase, while
dispersion is such that the intrinsic gap decreases. It sh
be noted, however, that the lattice constants given as inpu
these calculations14 were estimated using Vegard’s rule, a
approximation not valid in this system as shown above. T
means that the cells were not completely geometrically
laxed in the correct density, and it could have as an artif
the overestimation in the reduction of the intrinsic gap. No
that recent photoluminescence studies in Si12xCx/Si quan-
tum well structures15 found a considerably smaller shift tha
predicted by theory.14 Obviously, this matter needs furthe
investigation. In any case, our proposition for significant d
viations from Vegard’s law in Si12x2yGexCy alloys,

5 and
here in Si12xCx alloys, gains support both from recent e
perimental work16 and fromab initio calculations.17 There-
fore, any future work should take seriously into accou
these deviations, especially when interpreting experime
results.

In summary, I have shown in this paper that MC simu
tions can provide metastable, disordered Si12xCx structures,
whose bulk moduli and lattice constants obey a sim
power-law behavior quite accurately. Although demonstra
for a single alloy of various compositions, the method a
the accompanying analysis can be applied to other semi
ductor alloys as well, in order to unravel interesting physi
trends.
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