
8, Israel

PHYSICAL REVIEW B 1 APRIL 1997-IVOLUME 55, NUMBER 13
Long-range interaction of fluctuating vortices with a parallel surface in layered superconductors
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In extremely anisotropic layered superconductors randomly fluctuating vortex lines are attracted to a planar
specimen surface by a long-range interaction decreasing as^u2&/x0

2, wherex0@l is the average vortex distance
to the surface oriented perpendicular to the layers and^u2& is the mean square vortex displacement, e.g.,
^u2&}kT for thermal fluctuations. This long-range force exceeds the short-range exponential interaction
}exp(22x0 /l) of straight vortices with their image vortex, wherel5lab is the penetration depth of super-
currents in the layers. The long-range attraction originates from the dipole-dipole interaction between each
displaced pancake vortex and its image. It is analogous to the Casimir effect, which predicts an attraction
between two closely spaced metal plates. The energy contribution of the additional stray field generated by the
distorted vortex is calculated. For short-wavelength distortions this term decreases more rapidly with increas-
ing surface distancex0 and may be disregarded; for long-wavelength distortions the stray-field contribution is
comparable to the energy of the dipole-dipole interaction, compensating it partly.@S0163-1829~97!04313-0#
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I. INTRODUCTION

In the limit of vanishing Josephson coupling between
layers, high-Tc superconductors with layered structure m
be described by the lengthl5lab over which the supercur
rents in the Cu-O-planes (ab planes! decay exponentially. In
this limit of infinite anisotropy currents flowing perpendic
lar to the layers~along the uniaxialc axis! may be disre-
garded. Such superconductors may thus be modeled
stack of superconducting sheets of zero thickness and
tances, which are isolated from each other. A magnetic fie
applied perpendicular to the layers then induces curre
only in these layers, and vortex lines consist of a stack
two-dimensional vortex disks, also called ‘‘panca
vortices’’1–3 or point vortices.

Since the layer spacings is typically much smaller than
l, such a pancake stack in some respects behaves li
usual Abrikosov vortex line. In particular, in a pancake sta
aligned along thec axis (ĉiẑ), the in-plane components o
the magnetic field of each pancake largely cancel, yield
the usual magnetic field of an Abrikosov vortex lin
B„r …'ẑ(F0/2pl2)K0(r /l), where r5(x21y2)1/2 and
K0(x) is a modified Bessel function with the limit
K0(x)'2 lnx for x!1 and K0(x)'(p/2x)1/2exp(2x) for
x@1. The logarithmic infinity of this London approximatio
at r→0 is smeared over the finite radius'jab of the vortex
core. In high-Tc superconductors one hass!jab!l. The
interaction energy of two such straight vortices orien
along ĉ at a distance r i j is per unit length
(F0

2/2pl2m0)K0(r i j /l); i.e., it is repulsive and decays ex
ponentially forr i j@l.

A special case of the interaction of parallel vortices is
interaction between a vortex line atx5x0, y50 and its im-
age line atx52x0, y50 which is introduced to satisfy th
boundary conditions at the planar surfacex50 of a super-
550163-1829/97/55~13!/8466~7!/$10.00
e

a
is-

ts
f

a
k

g

d

e

conductor filling the half-spacex>0. Since the image vortex
has opposite orientation, this fictive vortex-antivortex inte
action is attractive; i.e., a vortex parallel to a planar s
face is attracted to this surface by an interacti
2(F0

2/2pl2m0)K0(2x0 /l). This attraction competes with
the repulsive force}exp(2x0 /l) exerted by the surface
screening currents which push the vortex into the superc
ductor.

As shown recently,4 the interaction of a vortex line or a
pancake stack with a planar surface ceases to be of s
range exponential type when the vortex is not a perfec
straight line perpendicular to the Cu-O-layers. Namely, wh
the pancake stack fluctuates randomly~or regularly!, its in-
teraction with the surface decreases only algebraically
1/x0

2 at large distancesx0@l from the surface. This long-
range attraction of a fluctuating vortex line to the surface~or
to its image! may be understood as follows.

Deplacing one pancake from its ideal position on t
straight vortex line, say, from (x0 ,0,0) to (x01ux ,uy ,0), is
equivalent to adding a pancake at (x01ux ,uy ,0) and an
antipancake at (x0 ,0,0), which annihilates the pancake th
was there~see Fig. 1!. This pancake-antipancake pair inte
acts with its image by a dipole-dipole interaction which f
x0@l is attractive and of long range, decreasing as 1/x0

2.
This interaction is isotropic in the sense that it depends o
on the sumux

21uy
2 . From this interpretation one sees that t

attraction of a fluctuating pancake stack to the surface
analogous to the Casimir effect,5 which describes the attrac
tion of two closely spaced metal plates due to the zero-p
fluctuations of the electromagnetic field in the gap.

In the present paper we derive and discuss this long-ra
attraction of fluctuating vortices to the surface in detail a
investigate how it is modified by accounting for the str
field. As is sometimes overlooked, the method of imag
allows to satisfy the boundary conditions for the magne
8466 © 1997 The American Physical Society
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55 8467LONG-RANGE INTERACTION OF FLUCTUATING . . .
field at a planar surface only if the vortex or vortex latti
does not generate a perpendicular field component at the
face. This condition holds only if all vortices are straight a
parallel to the surface, or if the vortex lattice is treated with
continuum approximation and does not exhibit displa
ments perpendicular to the surface.6 In the general case th
correct solution of the Maxwell and London equations in t
entire space is obtained by adding to the fields of the vo
and its image~antivortex! a stray fieldwhich is generated by
thex componentBx of the vortex and antivortex fields at th
surface. For example, if the componentBx is periodic with
wave vectorkz , then the stray field decreases as exp(kzx) into
the vacuum (x,0) and as exp@2(kz

21l22)1/2x# into the su-
perconductor (x>0).6 The stray field of a single-pancak
vortex has been calculated in Refs. 7 and 8. We will see
the contribution of the stray-field energy does not mod
qualitatively the long-range attraction of fluctuating vortic
to the surface.

The outline of our paper is as follows. In Sec. II we deri
the flux and current densities of a single pancake in a su
conducting half-space. The vortex-antivortex contribution
the interaction energy of a fluctuating vortex line with t
surface is derived in Sec. III together with the self-energy
this line. The contribution of the stray-field energy is calc
lated in Sec. IV. These energy expressions are then app
in Sec. V to calculate the free energy and the surface att
tion of a thermally fluctuating vortex. The results are su
marized in Sec. IV.

II. MAGNETIC FIELD AND CURRENT DENSITY
OF A POINT VORTEX IN A HALF-SPACE

We first derive the spatial distribution of the magne
field and current density generated by a single pancake
cated at the point (x0,0,0) in the superconducting half-spa
x>0 as shown in Fig. 2.7,8

Inside the superconductor one can present the current
sity and the magnetic field in the formj5 j va1 j str and
B5Bva1Bstr, where the vortex-antivortex field
Bva5Bv1Ba and current densityj va5 j v1 ja are generated
by the pancake at (x0,0,0) and its image~antipancake! at
(2x0,0,0). The stray fieldB

str and the current densityj str are
required to satisfy the boundary conditions in the presenc
a field componentBx perpendicular to the sample surface

The y andz components of the fieldBva and thex com-
ponent of the current densityj va vanish on the sample sur

FIG. 1. Left: a distorted vortex line and its image composed
pancakes (↑) and antipancakes (↓). Right: the two dipoles gener
ated by the displacement cause a long-range attraction betwee
distorted vortex and the surface~indicated by a vertical bold line!.
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face by this image construction. The vector potentialsAv,a of
the magnetic fieldsBv,a5rotAv,a of the pancake and its im
age satisfy the London equation

Av,a2l2DAv,a56
sF0

2p

ẑ3~rW 7rW p!

urW 7rW pu2
d~z!, ~1!

where rW 5(x,y,0), andrW p5(x0,0,0). The solutions of this
equation are

Av,a56sF0E d3k

8p3

ikW 3 ẑ

k2@11k2l2#
eik~r7rW p!, ~2!

where we introduce k5(kx ,ky ,kz), kW 5(kx ,ky), and
k5uku, k5ukW u; below we writeq5ky , p5kz .

To determine the stray fieldBstr insidethe superconducto
we introduce the phasew of the superconducting order pa
rameter and the vector potentialAstr for the field
Bstr5rotAstr. In the London gauge divAstr50, Az

str50 the
equations forAstr andw take the form

Astr2l2DAstr5
F0

2p
¹2w, ~3!

D2w50, ~4!

where¹2 is the two-dimensional gradient in thexy plane
andD25]2/]x21]2/]y2. The boundary condition for Eqs
~3! and ~4! is j x(0,y,z)50. Outside the superconductor th
stray fieldBstr is a potential field, i.e.,Bstr5¹c, where the
potentialc(x,y,z) satisfies the Laplace equation

Dc50. ~5!

The complete solutionB is thus given byBva1Bstr inside
and byBstr outside the superconductor.

Introducing the Fourier transform

f ~x,y,z!5
1

4p2E f̃ ~x,q,p!eiqy1 ipzdq dp, ~6!

we present the solution of Eqs.~1!–~4! for the Fourier trans-
forms of the vector potentialÃstr(x,q,p) and the current den
sity j̃ str(x,q,p) inside the sample in the form

Ãx
str52

F0

2p

qw~q,p!

11p2l2@e
2uqux1p2l2e2gx#, ~7!

f

the FIG. 2. A single pancake near the sample surface.
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Ãy
str5

i

q

dÃx
str

dx
, ~8!

j̃ x
str5

F0

2pm0

qp2w~q,p!

11p2l2 @e2gx2e2uqux#, ~9!

j̃ y
str52 i

F0

2pm0

uqup2w~q,p!

11p2l2 F g

uqu
e2gx2e2uquxG , ~10!

where

w~q,p!52
2p is@e2uqux02e2gx0#

uqu1p2l2g1~11p2l2!Aq21p2
~11!

andg5Al221q21p2.
In this paper we consider the long-range interaction o

fluctuating stack of pancakes with the sample surface.
will treat the case whenx,x0@l and thereforegx0@1. It
follows then from Eqs.~9! and ~10! that the Fourier trans
forms j̃ x

str and j̃ y
str depend onx1x0 and are equal to

j̃ x
str'

isF0qp
2

m0~11p2l2!

e2uqu~x1x0!

uqu1gp2l21Aq21p2~11p2l2!
,

~12!

j̃ y
str'

sF0uqup2

m0~11p2l2!

e2uqu~x1x0!

uqu1gp2l21Aq21p2~11p2l2!
.

~13!

Knowing the fieldsBva andBstr and the current densitie
j va andj str we can calculate the energy of a fluctuating vort
as the sum of the well-known energy of a straight vortex p
the work performed by the Lorentz forceF5sj3FW 0 to dis-
place the pancakes byu(z). The current densityj is the sum
of j va andj str and therefore the Lorentz force is also a sum
two termsFva andFstr. As a result the contributions of th
vortex-antivortex interaction and stray field to the energy
a fluctuating vortex can be calculated separately if one
interested in the terms up to second order in the displa
ments.

III. VORTEX-ANTIVORTEX ENERGY

A. Long distances

The contribution of the vortex-antivortex interactionEva
to the energy of a distorted vortex may be calculated fr
the interaction of a pair of pancakes separated
rmn5(xmn ,ymn ,zmn)5(xm2xn ,ym2yn ,zm2zn),

9,10

E'e0H 2 ln~rmm/j!, n5m,

2
s

2l
expS 2

uzmnu
l D lnS rnm

l D , nÞm.
~14!

Heree05sF0
2/(4pm0l

2), rmn
2 5xmn

2 1ymn
2 , zm5ms, s is the

layer spacing, andj the core radius of the pancake. F
zm5zn , Eq. ~14! applies to all distancesrmn.j, but for
zmÞzn , rmn@l was assumed. The contributionEva is com-
a
e

s

f

f
is
e-

y

posed of the self-energy of a vortex line and the interact
of this vortex with its image line of opposite orientatio
namely,

Eva5
1

2(m (
n

@E~xm2xn ,ym2yn ,zm2zn!

2E~xm1xn ,ym2yn ,zm2zn!#. ~15!

The sums in Eq.~15! are over the pancakes of thereal vortex
in the superconducting half-spacex.0; thusxm ,xn.0. For
a distorted vortex line parallel to the surfacex50 we define
pancake displacementsum5um(zm)5(uxm ,uym) by writing
xm5x01uxm andym5uym . The linear elastic energy of th
vortex is obtained by keeping in Eq.~15! only the terms
quadratic inum .

As a first step we consider random and isotropic displa
ments with ensemble averages^uxm&5^uym&50,
^uxmuxn&5^uymuyn&5 f (um2nu), ^uxmuyn&50. ~It will turn
out later that the assumption^uxmuxn&5^uymuyn& is not nec-
essary, since onlyux

21uy
2 enter when 2x0@l.! In this case

the long-range interaction energyEint of a vortex line of
length L with its image then becomes from Eqs.~14! and
~15! for 2x0@l

Eint52
F0

2Ls

64pm0l
3x0

2(
l
expS 2

s

l
u l u D ^~ul2u0!

2&. ~16!

This fluctuation-induced interaction is attractive and depe
on the relative displacementŝ(ul2u0)

2& over a vortex
length of orderl. Like a dipole-dipole interaction it de
creases as 1/x0

2 and is isotropic in the componentsux ,uy .
Sinces!l, one may approximate the sum in Eq.~16! by an
integral,

Eint'2
F0

2L

32pm0l
3x0

2E
0

`

dz expS 2
z

l Dg~z!, ~17!

whereg(z)5^@u(z)2u(0)#2& is a correlation function. For-
mula ~17! shows that the long-range interaction does n
depend on the layer separations. With the Fourier transform

u~z!5E
2`

` dp

2p
u~p!eipz, ~18!

the interaction energy~17! may be written as

Eint52
F0

2

32p2m0x0
2E

2`

`

dpuu~p!u2
p2

11l2p2
. ~19!

B. General expressions

For calculations applying also tormn,l, the general ex-
pression for the two-pancake interaction,9,10

E5
F0

2s2

m0
E d3k

8p3

1

11k2l2

k2

k2e
ikrmn, ~20!

has to be used, where as abovek25kx
21ky

2 , k25k21p2,
and rmn5(xmn ,ymn ,zmn). Since Eq.~20! is valid for all
rmn , we may obtain from it the general vortex-antivorte
contribution to the total elastic energy of a distorted vort
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55 8469LONG-RANGE INTERACTION OF FLUCTUATING . . .
line, Eva5Eself1Eint , from Eq.~15!. Expanding this to qua-
dratic terms in u and using s(exp(ipzl)52pd(p) ~for
upu<p/s) and*(dp/2p)uu(p)u25*dzu(z)25^u2&L we ob-
tain

Eva5
F0

2

4m0
E d3k

8p3 uu~p!u2~ f self1 f int!, ~21!

f self5
k2

11k2l22
k2

11k2l2 , ~22!

f int5S k2

11k2l2

kx
2

k2 2
1

2
f selfDe2ikxx0. ~23!

Exactly the same result~21!–~23! is obtained from the an
isotropic London theory in the limitlc→`. Namely, the
interaction energy of two London vortices at positio
r1(z) and r2(z) is

E dr1aE dr2b Vab~r12r2!, ~24!

with the anisotropic interactionVab(r12r2) (a,b5x,y,z)
given in Ref. 11 as a Fourier integral overVab(k).
In the limit lc→`, the general expressio
Vab(k)5(F0

2/m0)(11k2l2)21Gab(k) simplifies to a diag-
onal matrix withGxx5kx

2/k2,Gyy5ky
2/k2, andGzz51 if z is

along thec axis of the uniaxial superconductor. Inserting th
Vab(k) into Eq. ~24! and integrating over the vortex and i
image, we reproduce the result~21!–~23! of the pancake ap
proach. From Eq.~23! one may derive the long-distance in
teraction~16! and ~17!.

C. Self-energy

From the self-interaction~22! the dispersive line tension
P of an isolated flux line12 or stack of pancakes is obtaine

P~p!5
F0

2

8pm0l
2

ln~11p2l2!

p2l2 , ~25!

which determines the linear elastic self-energy of a distor
vortex line,

Eself5
1

2E2`

` dp

2p
p2P~p!uu~p!u2. ~26!

This self-energy enters the fluctuation-caused interaction
tween vortex lines or between a vortex and the surfaceindi-
rectly since it determines the amplitude of both the pinnin
caused and thermal fluctuations. In real space this s
energy looks similar to Eq.~16!,

Eself5
F0

2L

16pm0l
4(
lÞ0

expS 2
s

l
u l u D ^~ul2u0!

2&
u l u

, ~27!

and ~with s!l) to Eq. ~17!,

Eself'
F0

2L

8pm0l
4E

0

`

dz expS 2
z

l D g~z!

z
. ~28!

Expressing the correlation functiong(z) via u(p),
d

e-

-
lf-

g~z!5
2

LE2`

` dp

2p
^uu~p!u2&~12cospz!, ~29!

we may write Eq.~28! as

Eself5
F0

2

16p2m0l
4E

2`

`

dpuu~p!u2ln~11l2p2!, ~30!

which is just the above result~25! and ~26!.
Comparing Eqs.~17! and ~28! one sees that if the corre

lation function g(z) increases algebraically, g(z)
5const3uzug, one has, for 2x0@l,

Eint52~gl2/4x0
2!Eself. ~31!

For example, a flux line diffusing thermally or in a rando
pinning potential may exhibit g'1; thus one has
Eint'2(l2/4x0

2)Eself, which typically is not a small correc
tion to Eself.

We note here that the divergence foruzu→` of the dis-
placementu(z) of a freely wandering thermally fluctuatin
vortex line does not affect our results since, as usual, i
tacitly assumed that the presence of other flux lines or
weak pinning, in combination with appropriate history a
finite specimen size, limitsu(z).

IV. STRAY-FIELD ENERGY

A distorted vortex line can be treated as a straight l
plus a set of displaced pancakes located at the displaced
sitions (x01uxn ,uyn ,n) and a set of antipancakes located
the original positions (x0,0,n). An ideal vortex line exhibits
no stray field; i.e., the stray field contribution to the intera
tion energy arises only from the work performed to create
pancake-antipancake pairs. Therefore, to find the contr
tion of the stray-field to the interaction energyEint

str we first
consider two pancake-antipancake pairs located in the la
m and n at the points (x0,0,m), (x01uxm ,uym ,m) and
(x0,0,n), (x01uxn ,uyn ,n) as shown in Fig. 3 and calculat
the work required to produce these two pairs. The total c
tribution of the stray field to the interaction energy is then t
sum over the contributions of the pancake-antipancake p

We start the calculation with the Lorentz forcesFn
str and

Fm
str arising due to the stray field generated by both pairs

FIG. 3. Two pairs of pancake-antipancake located in the lay
m and n. The antipancakes are located on the linex5x0 and
y50, and the pancakes are shifted byux(m) andux(n) from this
line.
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acting on the pancakes residing in themth andnth layers,
Fm,n
str 5sjm,n

str 3FW 0. Since an undisturbed vortex line exhibi
no stray field, one hasFn

str5Fm
str50 for un5um50. If the

vortex line is not perfectly aligned perpendicular to the la
ers, it generates a stray field and current densitiesjm,n

str , re-
sulting in forcesFn

str andFm
str which initially are proportional

to the displacements. Explicitly, the expressions forFn
str and

Fm
str read

Fxm
str5sF0@ j y

str~2x01uxm1uxn,0,m2n!

2 j y
str~2x01uxm,0,m2n!#

'sF0

d jy
str

dx
uxn , ~32!

Fym
str 52sF0@ j x

str~2x0 ,uym2uyn ,m2n!

2 j y
str~2x0 ,uym ,m2n!#

'sF0

d jx
str

dy
uyn , ~33!

Fxn
str5sF0@ j y

str~2x01uxm1uxn,0,n2m!

2 j y
str~2x01uxn,0,n2m!#

'sF0

d jy
str

dx
uxm , ~34!

Fyn
str52sF0@ j x

str~2x0 ,uyn2uym ,n2m!

2 j y
str~2x0 ,uyn ,n2m!#

'sF0

d jx
str

dy
uym , ~35!

where the derivativesd jx
str/dy and d jy

str/dx are taken at
(2x0,0,um2nu) and only the terms linear in theun andum
are kept.

Using Eqs.~32!–~35! we can present the workWmn per-
formed by the forcesFn

str andFm
str during the creation of the

two vortex-antivortex pairs as

Wmn5sF0S d jystrdx
uxmuxn1

d jx
str

dy
uymuynD . ~36!

The contribution of the stray field to the interaction energy
then given by the sum

Estr5
1

2(n,m Wmn . ~37!

Sinces!l, this sum overm andn can be approximated b
an integral overz andz8. Using the Fourier transform~18!
for ux(z), uy(z), j x

str(r ), and j y
str(r ) and the formulas~12! and

~13! for the Fourier transforms of the current densityj str we
finally obtain
-

s

Estr5
F0

2

4p2m0
E

2`

`

dp
p2uu~p!u2

~11p2l2!

3E
0

` q2e22qx0dq

q1~11p2l2!Aq21p21p2l2Al221q21p2
.

~38!

In the stray-field energy~38! one can distinguish the con
tributions from three characteristic intervals of the distorti
wave numberp. Using our assumptionx0@l and noting that
in the second integral in Eq.~38! the main contribution
comes fromq'x0

21, one finds that~a! largep@l21 yield

Estr5
F0

2

32p2m0l
4x0

3E dp
uu~p!u2

upu3
, ~39!

~b! mediump with x0
21!p!l21 yield

Estr5
F0

2

16p2m0x0
3E dpuu~p!u2upu, ~40!

and ~c! small p!x0
21 yield

Estr5
F0

2

32p2m0x0
2E dpuu~p!u2p2. ~41!

These three expressions allow to estimate the stray-field
ergy when the characteristic wavelength 2p/p of the vortex
fluctuation is known.

V. ATTRACTION TO THE SURFACE

A. Long-wavelength distortions

Combining the self-energy of the fluctuating vortex lin
E self, Eq. ~30!, with the interaction energy with its imag
Eint , Eq. ~19!, and with the stray-field energyEstr, Eq. ~38!,
we get the total fluctuation-caused energyEtot
5Eself1Eint1Estr of a fluctuating vortex at a distanc
x0@l from a planar surface.

Comparing these contributions we first note that t
~bulk! self-energy is the dominating contribution, i.e., th
interaction between the displaced pancakes of the same
minus this interaction for the undisplaced pancakes. Wh
Eself does not depend on the vortex position, the two pert
bation termsEint andEstr decrease with increasing distanc
x0 to the surface.

Next we note that the stray-field term may be disregard
except for very long wavelengths of the fluctuation
E str!uEintu for px0@1 and E str'2Eint for px0!1. This
means that for long wavelengths of the displacementsu(z)
the contributions of the interaction with the image line and
the stray-field energynearly compensate. For long wave-
lengths withpl!1 one has

Estr1Eint5
F0

2

4p2m0
E

2`

`

dpuu~p!u2p2b~p!, ~42!

where
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b~p!5E
0

`

dq
q2e22qx0

Aq21p21q
2

1

8x0
2 . ~43!

This may be written as

b~p!5E
0

`

dq
q2e22qx0

Aq21p21q
2
1

2E0
`

dq qe22qx0

5p2E
0

`

dt te22upux0tS t

At2111t
2
1

2D
52

p2

2 E0
`

dt te22upux0t~At2112t !2. ~44!

For not too small wave numbersx0
21!p!l21 the contribu-

tion of small valuest!1 dominates in Eq.~44!, yielding

b~p!52
1

8x0
2 ;

i.e., the total interaction with the surface is attractive a
decreases asx0

22. For small wave numbersupu!x0
21 the con-

tribution of larget@1 dominates in Eq.~44!, and thus

b~p!52
p2

8 E0
`

dt
e22upux0t

t
'2

p2

8
ln

1

upux0
,

Estr1Eint52
F0

2

32p2m0
E

2`

`

dpuu~p!u2p4ln
1

upux0
. ~45!

This means that a sinusoidally deformed vortex with lo
wavelength 2p/p@2px0 is attracted to a planar surfac
weakly, sincep is small in Eq.~45!, with a potential decreas
ing logarithmically with the distancex0.

B. Thermal fluctuations

From the above results we see that the energy of a vo
line which fluctuates with constant amplitude^uuu2& de-
creaseswhen it approaches the surface. This effect cause
attraction of a thermally fluctuating vortex line to the su
face. The attractive force in this case is obtained as the
rivative of the free energyF(x0) with respect to the distanc
x0. The free energy of the fluctuating vortex line is given

F~x0!52kBT lnZ~x0!. ~46!

The statistical sumZ(x0) may be written as a functiona
integral over the displacement fieldu„z…5(ux ,uy),

Z~x0!5E D@u~z!#expS 2
Etot$u~z!%

kBT
D . ~47!

This integral may be evaluated by using the discretenes
the displacement fieldu(z), which is defined only at the
layer positionsz5zn . The integral then becomes a produ
of double integrals over the displacement componentsuxn
anduyn from 2` to `. Alternatively, the functional integra
may be evaluated in Fourier space as a product of do
integrals over the~complex! Fourier coefficientsux(p) and
uy(p). Both methods yield the same result. Express
Etot5Eself1Eint1Estr in the form ~which definesG)
d

ex

an

e-

of

t

le

g

Etot~x0!5E
2`

` dp

2p
uũ~p!u2G~p,x0!5

1

L(p uũ~p!u2G~p,x0!,

~48!

the Gaussian integrals are easily taken and one obtains

F~x0!5F̃01kBT(
p
lnG~p,x0!. ~49!

Writing G(p,x0)5G0(p)1G1(p,x0) with the main term
G0 originating from Eself and the perturbationG1 from
Eint1Eself one gets the free energy

F~x0!5F01kBT(
p

G1~p,x0!

G0~p!
. ~50!

Inserting hereG0 from Eself, Eq.~30!, andG1 from Eint , Eq.
~19!, and disregarding the stray-field contributionEstr, Eq.
~38!, which for the here relevant largep values is much
smaller thanuEintu, one obtains

G1~p,x0!

G0~p!
52

l4p2

2x0
2~11l2p2!ln~11l2p2!

. ~51!

This yieldsF(x0)5F01F1(x0) with

F1~x0!52kBTL
l2

x0
2E

0

p/sdp

2p

l2p2

~11l2p2!ln~11l2p2!
.

~52!

Our final result for the position-dependent part of the fr
energy of a thermally fluctuating vortex line is thus, in th
limit of a very large ratiol/s,

F1~x0!'2kBTN
l2

4x0
2

1

ln~pl/s!
, ~53!

where N5L/s is the number of layers. In the interva
10<l/s<100 a good approximation with relative deviatio
less than 2% is

F1~x0!'2kBTN
l2

4x0
2

1.1

ln~1.1l/s!
. ~54!

Interestingly, the fluctuation-caused perturbationF1(x0)
of the free energyexactly coincides with the perturbation o
the vortexenergy Etot which would be obtained by insertin
the unperturbed and spatially constant fluctuation amplit
^uu(p)u2&5kBT/@p

2P(p)# resulting from the line tension
P(p), Eq. ~25!. However, the thus obtained spatial depe
dence ofEtot is exactly compensated by the spatial variati
of the fluctuation amplitudêu2& calculated from the tota
energy, not only from the self-energy, of the vortex line4

Therefore, the correct energy of the thermal fluctuations o
pancake stack is independent of its distance from the surf
Namely, this energy is justkBT per pancake, irrespective o
the total quadratic potential which the pancake feels. As
lows from our above calculations, this effective potential b
comes softer when the vortex approaches the surface.
softening is due to the interaction with the image pancak
and it is slightly reduced by the stray-field energy. As
consequence, the thermal fluctuations, and typically also
pinning-caused fluctuations, of the pancakesincreasewith
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decreasing distance of the pancake stack from the surf
The two consequences of this long-range surface interac
are thus the spatially varying fluctuation amplitude and
surface attraction, which is caused only by the entropy te
in the free energy but not by a spatially varying vortex e
ergy.

VI. SUMMARY

We have calculated the interaction of a fluctuating vor
line with the planar surface of a layered superconductor w
no Josephson coupling between the layers. The boun
conditions are satisfied by adding the magnetic field of
image vortex and the stray field. The stray-field energy
smaller than the interaction with the image except when
vortex exhibits long-wavelength distortions, which may
caused, e.g., by pinning or by the presence of other vorti
The relevant wavelengths 2p/p of the thermal fluctuations
of a vortex line are short,l21,p<p/s @cf. Eq. ~52!#, where
l5lab is the magnetic penetration depth ands!l the layer
spacing.

As our main result we find that the free energy~53! of a
thermally fluctuating vortex line decreases with increas
distancex0@l to the surface proportional toTl2/x0

2. This
ce.
on
e
m
-

x
h
ry
n
s
e

s.

g

means that the vortex is attracted to the surface by a lo
range force which increases with increasing temperatureT as
T/(12T2/Tc

2), at least as long as the penetration dep
l(T)'l(0)/(12T2/Tc

2)1/2 stays smaller than the distanc
x0. For smaller distancesx0,l our theory~the stray-field
contribution! is not yet complete; further extensions to fini
Josephson coupling~noninfinite anisotropy! and to nonplanar
surfaces are in preparation.

The long-range attraction~53! of a fluctuating vortex is
analogous to the Casimir effect5 in metals, which considers
the interaction of the electromagnetic fluctuations with th
images and predicts an attractive force between two clo
spaced metal plates. This analogy was recently extende
predict a long-range van der Waals attraction between t
mally fluctuating vortex lines in anisotropic supe
conductors.13
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