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Long-range interaction of fluctuating vortices with a parallel surface in layered superconductors
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In extremely anisotropic layered superconductors randomly fluctuating vortex lines are attracted to a planar
specimen surface by a long-range interaction decreasihgzwg, wherex,>\ is the average vortex distance
to the surface oriented perpendicular to the layers @rfdl is the mean square vortex displacement, e.g.,
(u? kT for thermal fluctuations. This long-range force exceeds the short-range exponential interaction
xcexp(—2x/\) of straight vortices with their image vortex, whexe=\ ,, is the penetration depth of super-
currents in the layers. The long-range attraction originates from the dipole-dipole interaction between each
displaced pancake vortex and its image. It is analogous to the Casimir effect, which predicts an attraction
between two closely spaced metal plates. The energy contribution of the additional stray field generated by the
distorted vortex is calculated. For short-wavelength distortions this term decreases more rapidly with increas-
ing surface distancr, and may be disregarded; for long-wavelength distortions the stray-field contribution is
comparable to the energy of the dipole-dipole interaction, compensating it j&@%63-182807)04313-0

I. INTRODUCTION conductor filling the half-space=0. Since the image vortex
has opposite orientation, this fictive vortex-antivortex inter-
In the limit of vanishing Josephson coupling between theaction is attractive; i.e., a vortex parallel to a planar sur-
layers, highT. superconductors with layered structure mayface is attracted to this surface by an interaction
be described by the length=\ 5, over which the supercur- — (®3/2m\2ug)Ko(2xo/\). This attraction competes with
rents in the Cu-O-planesip planeg decay exponentially. In  the repulsive forcexexp(—xy/\) exerted by the surface-
this limit of infinite anisotropy currents flowing perpendicu- screening currents which push the vortex into the supercon-
lar to the layers(along the uniaxialkc axis may be disre- ductor.
garded. Such superconductors may thus be modeled as aAs shown recently,the interaction of a vortex line or a
stack of superconducting sheets of zero thickness and digrancake stack with a planar surface ceases to be of short-
tances, which are isolated from each other. A magnetic fieldrange exponential type when the vortex is not a perfectly
applied perpendicular to the layers then induces currentstrajght line perpendicular to the Cu-O-layers. Namely, when
only in these layers, and vortex lines consist of a stack ofhe pancake stack fluctuates randortdy regularly, its in-
two-_dlm?lrlglonal _vortex disks, also called “pancakeieraciion with the surface decreases only algebraically as
vortices™ ~or point vortices. 1/x3 at large distances,>\ from the surface. This long-
Since the layer spacing is typically much smaller than range attraction of a fluctuating vortex line to the surfame

N\, such a pancake stack in some respects behaves I|ket61 its imagé may be understood as follows,

usual Abrikosov vortex line. In particular, in a pancake stack X . .
Deplacing one pancake from its ideal position on the

aligned alor_lg Fha: axis (d[z), the in-plane components o_f straight vortex line, say, fromxg,0,0) to (o-+ Uy Uy ,0), is
the magnetic field pf e_ach pancake Iargely cancel, y'e_ld'n%quivalent to adding a pancake aty{- Uy,u,,0) and an
the u§ual magnetic field of an Abrikosov vortex line, antipancake atx,,0,0), which annihilates the pancake that
B(r)=~z(®o/2m\?)Ko(r/N), where r=(x*+y*)Y? and  was there(see Fig. 1 This pancake-antipancake pair inter-
Ko(x) is a modified Bessel function with the limits acts with its image by a dipole-dipole interaction which for
Ko(x)=—1Inx for x<1 and Ko(x)~(m/2x)"%exp(-X) for  y s\ is attractive and of long range, decreasing ae.1/
x>1. The logarithmic infinity of this London approximation Thjs interaction is isotropic in the sense that it depends only
atr—0 is smeared over the finite radiesé,, of the vortex o the sumu?+u?2. From this interpretation one sees that the
core. In highT. superconductors one has<{ap<\. The  ayraction of a fluctuating pancake stack to the surface is
|nteract|9n energy of two such straight vortices Or'e”tedanalogous to the Casimir effettyhich describes the attrac-
along ¢ at a distance rj; is per unit length tion of two closely spaced metal plates due to the zero-point
(d)%/zwAzMO)Ko(rij /N); i.e., it is repulsive and decays ex- fluctuations of the electromagnetic field in the gap.
ponentially forr;;>N\. In the present paper we derive and discuss this long-range
A special case of the interaction of parallel vortices is theattraction of fluctuating vortices to the surface in detail and
interaction between a vortex line atx,, y=0 and its im-  investigate how it is modified by accounting for the stray
age line atx=—xg, y=0 which is introduced to satisfy the field. As is sometimes overlooked, the method of images
boundary conditions at the planar surface0 of a super- allows to satisfy the boundary conditions for the magnetic
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FIG. 1. Left: a distorted vortex line and its image composed of
pancakes {) and antipancakes|§. Right: the two dipoles gener-
ated by the displacement cause a long-range attraction between the FIG. 2. A single pancake near the sample surface.
distorted vortex and the surfa¢mdicated by a vertical bold line

face by this image construction. The vector potentl$ of
field at a planar surface only if the vortex or vortex lattice the magnetic field8-2=rotA":? of the pancake and its im-
does not generate a perpendicular field component at the suage satisfy the London equation
face. This condition holds only if all vortices are straight and
parallel to the surface, or if the vortex lattice is treated within w o va  SPoZX(pF pp)
continuum approximation and does not exhibit displace- ATI=NAATE =2 e
ments perpendicular to the surfdtén the general case the |p+pp|
cor_rect solutlt_)n of the Maxwell a_md London_ equations in thewhere;;:(x,y,O), and5p=(x0,0,0). The solutions of this
entire space is obtained by adding to the fields of the vorte>(g)qu‘.mon are
and its imaggantivorteX a stray fieldwhich is generated by
thex componenB, of the vortex and antivortex fields at the
surface. For example, if the componddy is periodic with Ava= tsdbof
wave vectok,, then the stray field decreases as &x)(into
the vacuum x<0) and as e>{p—(k§+)\’2)1’2x] into the su- where we introduce k= (K, ,k, ,k,) E:(k k,), and
perconductor X=0).8 The stray field of a single-pancake oy o
vortex has been calculated in Refs. 7 and 8. We will see tha
the contribution of the stray-field energy does not modify
qualitatively the long-range attraction of fluctuating vortices
to the surface.

The outline of our paper is as follows. In Sec. Il we derive
the flux and current densities of a single pancake in a supe
conducting half-space. The vortex-antivortex contribution to ®
the interaction energy of a fluctuating vortex line with the AS"—)\ZAAW:—OVZQD, 3)
surface is derived in Sec. Il together with the self-energy of 2m
this line. The contribution of the stray-field energy is calcu-
lated in Sec. IV. These energy expressions are then applied Az¢=0, 4
in Sec. V to calculate the free energy and the surface attraq,;,herev2 is the two-dimensional gradient in they plane
tion of a thermally fluctuating vortex. The results are sum-, 4 A,= 3% 9x2+ 3% 9y?. The boundary condition for Egs.
marized in Sec. V. (3) and (4) is j4(0y,z)=0. Outside the superconductor the

stray fieldB®" is a potential field, i.e.BS"=V ¢, where the

Il. MAGNETIC FIELD AND CURRENT DENSITY potential (x,y,z) satisfies the Laplace equation
OF A POINT VORTEX IN A HALF-SPACE

8(2), @

a3k  ikxz

Tt Gik(rFpp)
g Lk o @

=|k|, k=|«|; below we writeq=k,, p=k,.

To determine the stray fiel#*" insidethe superconductor
we introduce the phase of the superconducting order pa-
rameter and the vector potentiahS" for the field
BS'=rotAS". In the London gauge diA*'=0, AS"=0 the
gquations forAS" and ¢ take the form

We first derive the spatial distribution of the magnetic Ay=0. 6)

field and current density generated by a single pancake IoFhe complete solution8 is thus given byBU2+BS" inside
cated at the pointx,0,0) in the superconducting half-space and byB®" outside the superconductor.
x=0 as shown in Fig. 28 Introducing the Fourier transform

Inside the superconductor one can present the cturrent den- L
sity and the magnetic field in the for=j*2+js" and B ~ Qv
B=Bv2+B%", where the vortex-antivortex field f(xy.2)= Wf f(x,q,p)e®"P*dq dp, ©®
B'?=B"+B? and current density’®=j"+j2 are generated ) .
by the pancake atx4,0,0) and its imagdantipancakeat W& present the solution of Eq&)—(4) for the Fourier trans-
(—%0,0,0). The stray field" and the current densij§ are  forms of the vector potentig*(x,q,p) and the current den-
required to satisfy the boundary conditions in the presence dfity j*"(x,q,p) inside the sample in the form
a field componenB, perpendicular to the sample surface.

They andz components of the fiel8"? and thex com- Asr_ _ P q*"(q'p)[ef\q|x+ 2\2e 7] @
ponent of the current densify? vanish on the sample sur- X 27 1+p2\°? P '
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— i dAsr posed of the self-energy of a vortex line and the interaction
§"=—d—x, (8) of this vortex with its image line of opposite orientation,
q ax namely,
~ Po aPPe(@p) 1
Jitrzzﬂ_ﬂo 1+p2)\2 [e e \qlx:l’ (9) Eua:§§ ; [g(xm_xnvym_yn vzm_zn)
~str (ON |q|p2(p(q,p)[ Yy Il = &(XmTXn,Ym=Yn Zm— Zn)]. (15
jSU=—j e~ 7 _glalx
ly ! 2mue  1+pAA2% ||q] € € 19 The sumsin Eq(15) are over the pancakes of theal vortex
in the superconducting half-spage-0; thusx,,,x,>0. For
where a distorted vortex line parallel to the surface 0 we define
pancake displacements,= Um(Zm) = (Uxm,Uym) by writing
2mis[e”14o— g™ 7%0] Xm=Xo+ Uxm andy,=uy,m. The linear elastic energy of the

®(q,p)=— 2. 2 NN Y (11) vortex is obtained by keeping in Eql5) only the terms
Al PNy +(1+p N Ve +p quadratic inup, .
and y= N 2+ q2+ p2. As a firs'F step we consider random and isotropic displace-
In this paper we consider the long-range interaction of gnents  with  ensemble  averages(Uym) = (Uym) =0,
fluctuating stack of pancakes with the sample surface. W&UxmUxn)=(UymUyn) = f([m=n[), (UxmUyn)=0. (It will turn
will treat the case whem,x,>\ and thereforeyx,>1. It  Out later that the assumptiqi,mUyn) = (Uymlyn) is Not nec-
follows then from Egs(9) and (10) that the Fourier trans- €ssary, since onlyz+uj enter when 2,>\.) In this case

formsTi" andjf,” depend orx+x, and are equal to the Iong-ra_mgg ir_lteraction enerdy,,, of a vortex line of
length L with its image then becomes from Eq44) and

(15) for 2xg>\

~r isq_)oqu e_‘Q‘(X‘*'Xo)
D o1+ p2N?) lg| + yp2A 2+ JgZ+pZ(1+pAr?d) - dLs » s ) 16
(12) L2 ex _X| | [{(u—uo)?). (16)
_ s®,|q|p? e~ lal(x+xg) This fluctuation-induced interaction is attractive and depends
'3% 5 ~ N on the relative displacementqu;—ug)?) over a vortex
#o(1+PN%) |q|+ yp?\ 2+ o2+ p?(1+p°A?) length of order\. Like a dipole-dipole interaction it de-

(13 creases as 43 and is isotropic in the components,u, .

Sinces<<\, one may approximate the sum in Ed@6) by an
Knowing the fieldsBv2 and BS" and the current densities v app Ha46) by

va - str . integral,

j*® andj®" we can calculate the energy of a fluctuating vortex

as the sum of the well-known energy of a straight vortex plus (I)%L o 7

the work performed by the Lorentz forée=sjx @, to dis- Eint~ — —327w0)\3ng0 dz eXP( - x) g(z), (17

place the pancakes ly(z). The current density is the sum
of jv# andj*" and therefore the Lorentz force is also a sum ofwhereg(z) =([u(z) —u(0)]?) is a correlation function. For-
two termsF¥2 and F*". As a result the contributions of the mula (17) shows that the long-range interaction does not
vortex-antivortex interaction and stray field to the energy ofdepend on the layer separatisnwith the Fourier transform

a fluctuating vortex can be calculated separately if one is

interested in the terms up to second order in the displace- u(z)= f“ d

p ipz
ments. o u(p)e'f?, (18

L. VORTEX-ANTIVORTEX ENERGY the interaction energyl7) may be written as

A. Long distances E ‘I’S J“‘ dplu(p)[? p? (19
. . . . =" 252 .2 TNz
The contribution of the vortex-antivortex interactié, " 32 woxg) 1+A\°p

to the energy of a distorted vortex may be calculated from
the interaction of a pair of pancakes separated by B. General expressions

9,10
Fnn= XY Zmn) = X = Xn s Ym— Y Zm— Zn) > _ _
mn= tmn:Ymn Zme) = (Xn™Xn Ym ™Yo 2~ 20) For calculations applying also i&,,<\, the general ex-

2In(pmm/€),  N=m, pression for the two-pancake interactitif,
E~eg _iex B | Zmnl n Pnm n<m (14 (I)SSZ d3k 1 k? e
2 ) e | ar T @

Hereeo=s®§/ (47 moh?), pin=Xant Yan: Zn=Ms sisthe  has to be used, where as abavé=kZ+k7, k?=k?+p?,
layer spacing, and the core radius of the pancake. For and r = (Xmn:Ymn:Zmn) - Since EQq.(20) is valid for all
Zn=2,, Eq. (14) applies to all distancep,,,> ¢, but for r,,, we may obtain from it the general vortex-antivortex
Zn#Zy, pmns> N Was assumed. The contributi@, is com-  contribution to the total elastic energy of a distorted vortex
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line, E,,=Est+ Eint, from Eg.(15). Expanding this to qua- 2 (= dp )
dratic terms inu and using sSexp(pz)=2w&p) (for 9(2)= [ﬁmﬁﬂu(pﬂ )(1—-cop2), (29
|p|<m/s) andf(dp/2m)|u(p)|?=fdzu(z)®=(u?)L we ob-
tain we may write Eq(28) as
@2 [ dk ®f (= 2 2,12
Eva:4_luofW|u(p)|2(fself+fint)u (21 Esen:Wf_mde(pﬂ In(1+A°p%), (30

which is just the above resul25) and (26).

(22) Comparing Eqgs(17) and (28) one sees that if the corre-
lation function g(z) increases algebraically, g(2z)
=constx |z|?, one has, for 2>\,

k2 K2

Feer= T2~ T+ on?

k2 k>2( 1f 2ik Xq 23
TTKONZ 2 3 Fser| €70 23 Eini= — (YA2/4x2) Eqgy:. (31)

fin=

Exactly the same resu(®1)—(23) is obtained from the an- For example, a flux line diffusing thermally or in a random
isotropic London theory in the limih,—. Namely, the pinning potential may exhibit y~1; thus one has
interaction energy of two London vortices at positionsEim~—()\2/4x§)Ese|f, which typically is not a small correc-
r.(z) andr,(z) is tion to Egqys.
We note here that the divergence fat—< of the dis-
J ar fdr Vo i(ri—t) (24 placementu(z) of a freely wandering thermally fluctuating
la 28 Taplll T2/ vortex line does not affect our results since, as usual, it is

tacitly assumed that the presence of other flux lines or of
weak pinning, in combination with appropriate history and
finite specimen size, limita(z).

with the anisotropic interactioV ,4(r1—r;) (a,8=X,y,2)
given in Ref. 11 as a Fourier integral over,s(k).
In  the limit A,—, the general expression
Vo p(K) = (D5 o) (1+k?N2) "G, 4(K) simplifies to a diag-
onal matrix withG,,=kZ/ k2, G,,=ki/k?, andG,,=1 if zis
along thec axis of the uniaxial superconductor. Inserting this A distorted vortex line can be treated as a straight line
V,.p(K) into Eq.(24) and integrating over the vortex and its plus a set of displaced pancakes located at the displaced po-
image, we reproduce the res(@1)—(23) of the pancake ap- sitions (Xo+ Uy,,Uy,,n) and a set of antipancakes located at
proach. From Eq(23) one may derive the long-distance in- the original positions Xy,0,n). An ideal vortex line exhibits
teraction(16) and(17). no stray field; i.e., the stray field contribution to the interac-
tion energy arises only from the work performed to create the

C. Self-energy pancake-antipancake pairs. Therefore, to find the contribu-
tion of the stray-field to the interaction ener&jy we first
consider two pancake-antipancake pairs located in the layers
m and n at the points Xo,0,m), (Xo+ Uyy,Uym,m) and

IV. STRAY-FIELD ENERGY

From the self-interactionf22) the dispersive line tension
P of an isolated flux lin& or stack of pancakes is obtained,

®2 In(1+p2\2) (X0,0,n), (Xo+Uxn,Uyn,n) as shown in Fig. 3 and calculate
P(p)= ° 5 s , (25) the work required to produce these two pairs. The total con-
87 puoh pA tribution of the stray field to the interaction energy is then the
which determines the linear elastic self-energy of a distorte@U™m Over the contributions of the pancake-antipancake pairs.
vortex line, We start the calculation with the Lorentz force§" and
FI arising due to the stray field generated by both pairs and
1(=dp 2 2
Ese=5| 5_-P°P(p)|u(p)|*. (26)
2) 2 z
This self-energy enters the fluctuation-caused interaction be- [ 37. 4\,p7,, - m

tween vortex lines or between a vortex and the surfade
rectly since it determines the amplitude of both the pinning-
caused and thermal fluctuations. In real space this self-
energy looks similar to Eq.16),

DL s {(u—up)? p_ a
e iy o 3 @ ? n

!
~
and (with s<\) to Eq. (17), 0 X X
2
E_ o~ Dol * zexd — z 9(2) 28) FIG. 3. Two pairs of pancake-antipancake located in the layers
self™ 8muoh*Jo Nz m and n. The antipancakes are located on the lixeXx, and

y=0, and the pancakes are shifted ipym) andu,(n) from this
Expressing the correlation functiagy(z) via u(p), line.
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acting on the pancakes residing in tith andnth layers,
x ®,. Since an undisturbed vortex line exhibits

Frsrﬁ,rn =sj
no stray

vortex line is not perfectly aligned perpendicular to the lay-

str
m,n
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field, one ha&)"=F'=0 for u,=u,=0. If the

ers, it generates a stray field and current densjﬁﬁg re-

sulting in forcesF" and F which initially are proportional

to the displacements. Explicitly, the expressionsl-*rﬁF and

str
F,, read

where the derivativeslj;/dy and djj/dx are taken at \ye

Fomr= 5[} $(2Xo+ Uxm+ Uxn,0,m—1)

i SM(2Xo+ Ugm0,m—n)]

djStr
~sc1>0d—)y(uxn, (32)

str _ st
Fym_ - Sq)O[Jx (2%o sUym= Uy, M= n)

i Str,

_Jy (2X01uym|m_ n)]
djitr
msq)od_yuyn, (33)
Fin=5Po[}§(2Xo+ UgmT Uyn,0,n—m)
- J )S/tr(2X0+ anlO!n_ m)]
djstl’
~s®od—)y(uxm, (34)
F§‘£= —s®g[j itr(zxo Uypn— Uym,N— m)
_jfltr(ZXOauyn n— m)]
djs"
%Sq)od_yuym, (35)

(2%0,0,/m—n[) and only the terms linear in the, and u,

are kept.
Using

Eqgs.(32)—(35) we can present the wok/,,,, per-

2

@; J“ p?lu(p)|?

Str:4ﬂ_2,uo W p(l+p2)\2)
foc q26—2qx0dq
>< .
o G+ (L1 PPNZ) G PP NN T G

(38

In the stray-field energy38) one can distinguish the con-
tributions from three characteristic intervals of the distortion
wave numbep. Using our assumptiory>\ and noting that
in the second integral in Eq38) the main contribution
comes fromg~x, *, one finds thata) largep>\ "1 yield

2 2
-~ 0 lu(p)|
(b) mediump with x, *<p<~1 yield
et [ plupl?pl, @0
Str 16/772IU«OX0 1
and(c) small p<x,* yield
DG
_ 2.2
Esy 3072l f dplu(p)|*p*. (42)

These three expressions allow to estimate the stray-field en-
ergy when the characteristic wavelength/p of the vortex
fluctuation is known.

V. ATTRACTION TO THE SURFACE
A. Long-wavelength distortions

Combining the self-energy of the fluctuating vortex line
E sa» EQ. (30), with the interaction energy with its image
Eit,» EQ.(19), and with the stray-field enerdyy,, Eq. (38),
get the total fluctuation-caused energ¥,q,
=E¢t Eiit Esy Of @ fluctuating vortex at a distance
Xo=>\ from a planar surface.

Comparing these contributions we first note that the

formed by the force$" and Fy" during the creation of the (pulk) self-energy is the dominating contribution, i.e., the
two vortex-antivortex pairs as

The contribution of the stray field to the interaction energy is

:Str +Str
djy +de
UymUxn uymuyn .

Wmn:S(DO dX dy

(36)

then given by the sum

Sinces<t\, this sum oveim andn can be approximated by

1
Esr= E;n Winn- (37)

an integral overz andz’. Using the Fourier transforr(iL8)

for uy(2),

uy(2), j3(r), andj;(r) and the formulag12) and

(13) for the Fourier transforms of the current dengitywe
finally obtain

interaction between the displaced pancakes of the same line
minus this interaction for the undisplaced pancakes. While
E.es does not depend on the vortex position, the two pertur-
bation termskE;,; and Eg;, decrease with increasing distance
Xp to the surface.

Next we note that the stray-field term may be disregarded
except for very long wavelengths of the fluctuations,
E sv<|Eind for pxg>1 and E 3o~ —E;,; for pxo<1. This
means that for long wavelengths of the displacemez
the contributions of the interaction with the image line and of
the stray-field energyearly compensateFor long wave-
lengths withpA <1 one has

2
Eart Emm [ dplup20%8(p), @2
str |ntm7xp p pﬁp-

where
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0 q2€—2qx0 1
=| dg——o—— .
ﬁ(p) 0 q\/m+q SXS

This may be written as

* dp _ - -
(43) Etot(Xo)=fmglU(p)lzG(p,xOFEEp |T(p)*G(p.xo),
(48)
the Gaussian integrals are easily taken and one obtains

o0 qze_quo 1 (= 5
- _Z ~20%g =
2O RN 5, daae Flx0)=FotkeTS InG(p.xo). (49
5[~ 2|l t 1 Writing G(p,Xg) =Go(p) +G1(p,Xp) with the main term
=p fo dtte” “PPo i+t 2 Gy originating from Ege; and the perturbatiorG, from
Einit Eseif ONE gets the free energy
p* [~
=——| dtte 2Pkt t2+1-1)2 44 G1(p,x
2 Jo ( ) “ F(x0)=Fo+ksT2 —g“’ o (50)
P o(pP)

For not too small wave numberg *<p<\ ~* the contribu-

tion of small values<1 dominates in Eq(44), yielding Inserting herds, from Esey, Eq.(30), andG, from Eiy, Eq.

(19), and disregarding the stray-field contributién,, Eq.
(38), which for the here relevant large values is much

B(p)=— 8_x0; smaller than E;|, one obtains
i.e., the total interaction with the surface is attractive and Ga(PXo) _ \p? 51
decreases as, 2. For small wave numbetp|<x, * the con- Go(Pp) 2x5(1+22p?)In(1+\2p?)°
tribution of larget>1 dominates in Eq(44), and thus This yieldsF (xo) = Fo-+ F1(xg) with

2 o —2|p|xot 2
e 1
ﬁ(p):—%f dt r %_%|n| |X , F (X):_k TL)\ZJ*ﬂ-/S% )\sz
0 PiXo W= 152 o 2 (T AZpD)In(1+\%p%)

(52

®3 (= 1
Esut Eine= — ﬁzo—j dp|U(P)|2D4|nw- (45 Our final result for the position-dependent part of the free
Hol-= 0 energy of a thermally fluctuating vortex line is thus, in the
This means that a sinusoidally deformed vortex with longlimit of a very large ratio\/s,
wavelength 2r/p>2wx, is attracted to a planar surface
weakly sincep is small in Eq.(45), with a potential decreas-
ing logarithmically with the distancg,.

)\2

F1(Xg)=—kgTN (53

4xgin(w/s)’
where N=L/s is the number of layers. In the interval

10=<\/s=<100 a good approximation with relative deviation
From the above results we see that the energy of a vortekess than 2% is

line which fluctuates with constant amplitud¢u|?) de-
creasesvhen it approaches the surface. This effect causes an
attraction of a thermally fluctuating vortex line to the sur-
face. The attractive force in this case is obtained as the de-
rivative of the free energf (x,) with respect to the distance Interestingly, the fluctuation-caused perturbat®(x,)
Xo. The free energy of the fluctuating vortex line is given by of the free energyexactly coincides with the perturbation of
the vortexenergy E,; which would be obtained by inserting

B. Thermal fluctuations

)\2

Falxo)=—keTN o T v7s)

(54)

F(Xo)=—kgTInZ(Xo). (46)  the unperturbed and spatially constant fluctuation amplitude

The statistical suniZ(x,) may be written as a functional (lu(p)|?)=ksT/[p?P(p)] resulting from the line tension
integral over the displacement fielz)=(u,,uy), P(p), Eq. (25. However, the thus obtained spatial depen-
dence ofE,; is exactly compensated by the spatial variation

Ewdu(2)} of the fluctuation amplitudéu?) calculated from the total

Z(Xo)=f D[u(z)]ex;{ - kB—T> (47)  energy, not only from the self-energy, of the vortex Ifne.

Therefore, the correct energy of the thermal fluctuations of a
This integral may be evaluated by using the discreteness gfancake stack is independent of its distance from the surface.
the displacement fieldi(z), which is defined only at the Namely, this energy is justzT per pancake, irrespective of
layer positionsz=z,. The integral then becomes a product the total quadratic potential which the pancake feels. As fol-
of double integrals over the displacement componeRts lows from our above calculations, this effective potential be-
anduy, from — to «. Alternatively, the functional integral comes softer when the vortex approaches the surface. This
may be evaluated in Fourier space as a product of doublsoftening is due to the interaction with the image pancakes,
integrals over thé€complexX Fourier coefficientau,(p) and and it is slightly reduced by the stray-field energy. As a
uy(p). Both methods yield the same result. Expressingconsequence, the thermal fluctuations, and typically also the
Eot= Eseirt Eintt Estr in the form (which definesG) pinning-caused fluctuations, of the pancakesreasewith
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decreasing distance of the pancake stack from the surfacmeans that the vortex is attracted to the surface by a long-
The two consequences of this long-range surface interactiorange force which increases with increasing temperafuas

are thus the spatially varying fluctuation amplitude and theT/(1—T?/T?), at least as long as the penetration depth
surface attraction, which is caused only by the entropy ternx(T)%)\(o)/(l_T2/T§)1/2 stays smaller than the distance
in the free energy but not by a spatially varying vortex en-x,. For smaller distances,<\ our theory(the stray-field
ergy. contribution is not yet complete; further extensions to finite
Josephson couplingroninfinite anisotropyand to nonplanar
surfaces are in preparation.

. : . The long-range attractio(b3) of a fluctuating vortex is
We have calculated the interaction of a fluctuating Vortexanalogous to the Casimir effédn metals, which considers

Irl]r;e ng;g tuicﬂaggfjSllijrr]facbee?\fvgeliyg::dl;ugrim?ruiug?l:rmg{he interaction of the electromagnetic fluctuations with their
0Sep 1piing ; yers. 1he i ages and predicts an attractive force between two closely
conditions are satisfied by adding the magnetic field of al paced metal plates. This analogy was recently extended to

Image vortex an(_JI the stray f|_eld. The stray-field energy i redict a long-range van der Waals attraction between ther-
smaller than the interaction with the image except when th

VI. SUMMARY

vortex exhibits long-wavelength distortions, which may becoe:llg/ucg‘(l)urcstltgatlng vortex lines in  anisotropic - super-
caused, e.g., by pinning or by the presence of other vortices. '
The relevant wavelengths#Zp of the thermal fluctuations
i -1
of a vortex line are shorh, " *<p=< /s [cf. Eq.(52)], where ACKNOWLEDGMENTS
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