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Hole pairing and phonon dynamics in generalized two-dimensional-J Holstein models

T. Sakai
Laboratoire de Physique Quantique, Universitaul Sabatier, 31062 Toulouse, France
and Faculty of Science, Himeji Institute of Technology, Kanaji, Kamigori, Ako-gun, Hyogo 678-12, Japan

D. Poilblanc
Laboratoire de Physique Quantique, UniversiRaul Sabatier, 31062 Toulouse, France

D. J. Scalapino
Department of Physics, University of California, Santa Barbara, California 93106
(Received 13 September 1996; revised manuscript received 10 Decembgr 1996

The formation of hole pairs in the plan&J model is studied in the presence of independiyriamic
vibrations of the in-plane oxygen atoms. In-plafiieeathing modeésand out-of-plangbuckling modeg dis-
placements are considered. We find strong evidence in favor of a stabilization of the two-hole bound pair by
out-of-plane vibrations of the in-plane oxygens. On the contrary, the breathing modes weaken the binding
energy of the hole pair. When properly dressed by oxygen buckling fluctuations, the hole-pair propagator
exhibits a large quasiparticlelike peak. These results are discussed in the context of superconducting cuprates.
[S0163-18297)00313-3

[. INTRODUCTION with a tight-binding dispersion, Song and Anridtund that
the breathing mode suppressksvave superconductivity. In

The electron-phonon interaction plays the key role in thea weak-couplingt-matrix approximation which included a
conventional BCS theory of superconductivity. It is the random-phase  approximation  antiferromagnon  spin-
source of the effectivéretardedl attraction between the elec- fluctuation exchange and a phonon exchange, Bulut and
trons and hence of the dynamical effect for pair formation.Scalapin8 found that the buckling mode can enhance
On the contrary, in unconventional superconductors like thélx2—2 pairing. Using an antiferromagnetic-induced hole dis-
high-T,. cuprates, the driving force for superconductivity is persion and treating the electron-phonon interaction at the
commonly believed to be the strong electronic correlationsmean-field level, Nazarenko and Dagéttiound that the
However, it is theoretically known that, in strongly corre- buckling mode can give rise todj2_,2 wave superconduct-
lated systems, even moderate electron-phonon interactiondg ground statéGS). However, both of these results involve
can have drastic consequences. For example, it can enhanig@controlled approximations which are inadequate for treat-
charge-density-wave and spin-density-wave instabilities du#g the Hubbard and-J models in the absence of phonons.
to polaronic self-localization effe¢?® Experimentally, the In addition, retardation effects in the phonon-mediated
observation of some oxygen isotope effect in the High- electron-electron interaction might play a very crucial role.
cuprate$ has given evidence for some contribution of the Thus it is of interest to carry out a numerical investigation of
electron-phonon interaction in the superconductivity, everthis problem. Our results are based on exact diagonalization
though the dominant pairing mechanism is due to strong arstudies of smalt-J-phonon clusters. In agreement with the
tiferromagnetic correlations. The interplay between strong
electronic correlations and electron-phonon interaction still
remains an open question.

For the sake of simplicity, we describe here the low-
energy electronic degrees of freedom by a single baad
model. We also restrict ourselves to the vibrations of the
in-plane oxygen atoms of the Cy(plane which have been
shown to be essential. Two types of displacement have to be
consideredi(a) in-plane breathing modes and) buckling
modes, as shown schematically in Fig. 1. When the equilib-
rium position of the oxygen atom lies away from the Cu
plane byu, in Fig. 1(b), the electron-phonon interaction be-
comef linear in the oxygen displacement perpendicular to the
plane; as it is always the case for the breathing modes. Such .

a buckling structure is realized in YB&u3;0,_5. In the (b) bUCkhng mode O O
antiadiabatic limit the two modes of interaction give an ef-

fective nearest-neighb@dNN) hole-hole repulsioria) and at- FIG. 1. Schematic lattice displacements of breathiayand
traction (b), respectively. Using a Hartree-Fock mapping buckling (b) modes in the Cu@ plane.
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approximate results we find that the breathing mode sup- 0.0 8 f
presses the two-hole pairifigyhile the buckling mode sta-
bilizes it®” However, in addition, we have examined the
effect of the phonons on the kinetic energy, antiferromag- A
netic structure factor, and hole-hole correlations, giving a T T
more detailed picture of the role of dynamic lattice vibrations L%
on the hole pairing. A
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Wherec » IS the usual hole creation operataor, andn are :? 20k il
the electron and hole local densities respectlve’lyls the <
oxygen ion mass{) is the phonon frequency, and=Xx,y =) |
differentiates the bonds along tlxeandy direction, respec- S0t ]
tively. The sign —(+) in the last term corresponds to the F—7206
breathing(buckling mode. Throughout, energies are mea- )
. . . . {b) buckling mode
sured in unit of the hopping integral The electron-phonon 40 L : s - n I
g term involves the coupling of each copper hole with the n,

displacements of the four neighboring oxygeus; and

Ui_s 5. This is clearly different from the on-site Holstein  FIG. 2. One-hole ground state energy vs truncated phonon num-

coupllng9 which has been recently used to mimic the cou-berng, at each oxygen site on thex2 cluster(i.e., CuyOg) with

pling with the apical oxygen modes in the framework of thebreathing(a) and buckling(b) modes.

t-J model!® Note that the displacements ; are considered

throughout asndependenvariables. For the purpose of our phonon frequency2=0.2. Since the/8x/8 cluster with

discussion it is convenient to rewrite the electron-phonorperiodic boundary conditions has tBg, symmetry, we con-

interaction in the boson representation of the phonons, centrate on the lowest state with thg_,> symmetry as the
two-hole GS. Although this state is not the GS for sniall

fy,h— h (J<0.43) and\ ;=0 due to finite-size effects, this choice is
H‘OE bi s+ bi,s)(NF+Niks),  justified by the fact that the two-hole GS hdg 2 symme-
) try in the thermodynamic limit.

He—ph:QiEIS ( |5b| 5+

wherelg=g+y1/2mQ. Since the phononic Hilbert space has
an infinite dimension, we truncate it to a finite nhumber of
bosonic states, i. eb, s0i, 5=Npy at each oxygen site. We re- At first we consider the polaronic self-localization effect
strict ourselves tay,=1. To test the validity of the one- on a single hole motion. In general the lattice distortions
phonon approximation, the one-hole GS energy of the22 make the effective mass of the hole larger and the effect can
cluster forJ=0.3 and(2=0.2 is plotted versus lattice with lead to self-localization of the hole. The breathing lattice
Nph UP to 5 for the breathing and buckling modes, in Figs. 2deformations around the hole lower the potential at the hole
(a) and 2b) respectively. The polaronic effect is revealed toSite, while they raise that at the nearest-neighbor Cu sites. On
be larger for the buckling mode. However, for both modesthe contrary, the buckling deformations lower that at the
the converging behavior fon,,>2 suggests that the one- nearest- neighbor Cu sites as well as at the hole site. Thus the
phonon calculation is a good approximation in the weak-nass renormalization due to the buckling mode is expected
coupling region £=<0.3). We have also checkBdathat the to be smaller in the antiadiabatic limit. The kinetic energy
behaviors with the coupling constan of the various rel-  per holein the GS of a system with;, holes,

evant physical quantities are found to be unsensitive,ton

the region, although,,= 1 generallyunderestimatethe role _ ~t ~

of the phonons. This truncation procedure enables us to Ek‘"_< t%: CH Ci'”+civ‘fcj"’)>/ No O
study a/8x /8 unit-cell cluster with all the phonon modes

(16 modes We investigate the one- and two-hole GS ofis shown as a function of, in Fig. 3. For the one-hole GS,
Hamiltonian(1) in a regime(0.3<J=<0.5) where, in the ab- the absolute valufE,;,| decreases significantly with increas-
sence of phonons, the two-hole pairing state is stabilized bing \, for the breathing mode, while it does not change
the antiferromagnetic correlation, and we take a realistisignificantly for the buckling mode. This is a sign that

Ill. SELF-LOCALIZATION EFFECT
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FIG. 3. Kinetic energyE,;, per hole in the CyO,4 cluster for
0 =0.2. Open(solid) symbols correspond to the breathifiguck-

ling) mode. Solid(dashedl lines refer to the twdone hole GS. FIG. 5. Two-hole binding_ energys, calculated on Ch_olﬁ for
01=0.2 (a) plotted vs\ for fixed J, (b) plotted vsJ for fixed \.

only the breathing mode leads to a polaronic self-trappingOpen(SOHd) symbols correspond to the breathitimyckling mode.

process. The difference between the two modes is also clear

(O i
from the behavior of the spin structure factor in the one-holeVnere Eop IS Othe GS energy for a system with
GS Ny==n'=p. EL”) corresponds to the energy of the antifer-

romagnetic background. A negative valueAofindicates the
o 2 stability of a two-hole bound state, as was established for the
Ss(r,m)= < ( > (—1)('X+'V)3Z) > (4 puret-J model'®*3 Figure ga), whereA, is displayed as a
' function of A, clearly shows that the buckling mode stabi-
shown in Fig. 4. A significant increase &(,m) occurs lizes the two-hole bound state while the breathing mode sup-
around\ o=0.1 almost independently df for the breathing presses it. The effect of the electron-phonon interaction is to
mode. The agreement between the behavio&o#,) and  shift the boundary of the pairing phase of thé model: the
Exin VS Ao Suggests that the increase of the effective mass dpuckling mode enlarges the phase toward sraithile the
the hole due to a polaronic self-localization effect leads, foreathing mode reduces it, as revealed in Fig).5The be-
the breathing mode, to an enhancement of the antiferromadpavior of A, suggests the possibility that the buckling mode
netic spin correlation. Figure 4 also shows that the bucklingssists superconductivity in the hidh-cuprates, while the
mode, on the contrary, does not lead to any crossover chabreathing mode suppresses it. We note that, for the buckling

acteristic of self-localization. mode, no self-trapping process occurs even in the two-hole
state, since there is no significant decrease of the kinetic
IV. HOLE PAIRING energy in Fig. 3. Thus the hole pair is not localized and can

contribute to superconductivity.
The two-hole binding energy is a good probe to test the The previous data suggest that the electron-phonon inter-

formation of pair of holes. It is defined as action acts as an effective attractigrepulsion between
holes for the bucklingbreathing mode, apparently in agree-
A,=EP+EYX —2EYY, (5)  ment with the antiadiabatic limit. However, for a finite pho-

non frequency, it is not cleag priori, whether the phonon-
mediated interaction can be reduced to a static potential. To

04203 breath ' test this possibility, we consider the expectation value of the
Ay A hole-hole distance in the two-hole GS

©—9J=0.3 buckle
56 F m—mJ=04
A—AJ=05

o (i) /(S ). @

Figure 6 shows that, for the breathing modkg, increases
almost monotonously with increasing, in agreement with
. the effective NN hole-hole repulsion derived in the antiadia-
batic limit. However,d, for the buckling mode does not
show the behavior expected for a NN static attraction. On the
59 L - — contrary, it would rather correspond to a small NN static
' ' . ' repulsion, at least for smalky(<0.2). In any case, the
change ofdy, with the electron-phonon coupling constant is
FIG. 4. Spin structure factaB(m,7) of CugOs¢ for a single  much too small to explain by itself the effective attraction
hole andQ = 0.2. Open(solid) symbols correspond to the breathing between the two hole¥.Clearly, a dynamical interaction is
(buckling mode. needed. The failure of the antiadiabatic picture, in this case,
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106 . , breathing mode. Thus, with buckling modes, the pair takes
G =03 breath advantage of a larger deformation around the holes. On the
A0 ek contrary, the breathing deformations lead to an energy loss in

T2 e mye04

! the pairing state. Thus, the relative change of the lattice con-
traction around the holes in the paired state ultimately con-
y tributes to a decrease or an increase of the binding energy.
Particularly for the buckling mode, the energy gain coming
® from the lattice deformation clearly dominates the behavior
Y of the binding energy, since no significant change appears in
the kinetic energyFig. 3 or in the antiferromagnetic corre-
lation which can be estimated from the spin structure factor
S(7,7) in Fig. 4. In other words, buckling modes stabilize
%00 020 540 the hole pairing state dynamically, with little changes in the
R static features.

This is to be contrasted to the case of the breathing mode
which can modify some static properties. Ag increases,
the effective mass becomes larger due to the polaronic self-

. . . ... trapping process and, as a result, the antiferomagnetic corre-
suggests that the effective hole-hole interaction stabilizingaion increases. Since the self-localization effect in the two-

the hole pairing is controlled 'by an _essentially dynamicalhole state is smaller than the one-hole stdta. 3, this
effect ofkthe ﬁlectron-ph?ncr)]n ln;fera(_:tlonhardhscl)me retardaseo o might tend to stabilize some trapped two-hole bound
tion makes the range of the effective hole-hole attractiony;oq However, a larger effective repulsion due to the dy-

longer. Ln oth((jar wordds, t.he lstgbnlzauon fOf the hoﬁl\?'nd'ngnamical lattice deformation overcomes the static effect and
cannot be understood simply in terms of a static attrac'suppresses the hole pairing in the presence of breathing
tion but rather involves more subtle retardation effects.

A—AJ=05

122 +

FIG. 6. Hole-hole distance in the two hole GS for=0.2. Open
(solid) symbols correspond to the breathitiickling mode.

Some of the dynamical effects of the electron-phonon in- odes.
teraction can be estimated from the lattice deformatmar
In this section we propose phonon-dressed operators de-
Dp=—{ > (b 5+ bi’ra)(nrlnr+5)> / N,, (7) Scribing hole-polaron and bi-polaron states and discuss the
s ’ dynamical correlation function associated with these opera-

, . tors. Particularly the dynamical pair spectral function high-
where —(+) corresponds to the breathiriguckling mode.  |ights the dynamical features of the phonon-mediated inter-

It is proportional to the absolute value of the energy of theyction, We concentrate on the buckling vibrations because
electron-phonon interactiorDy, is always positive, which they stabilize the hole pairing.

means that the oxygen ion deformation toward the neighbor-
ing hole sites is favored,, is essentially a dynamical quan-
tity which should be distinguished from the total lattice de-
formatonD,, given by replacing 16"+ n"", 5)/Nj, by unity in First, we shall consider a single-polaron operator describ-
the form (7). The static quantityD, is always zero except ing the one-hole state with a momentkmSince the size of
whenQ=0. Figure 7 shows that, for the buckling mode, thethe polaron (which can easily be estimateds small,
deformation per hol®,, in the two-hole state is larger than phonons at the nearest oxygen sites of the hole play the most
the one in the single hole state, in contrast to the case of th&portant role and, hence, we only take them into account.
We restrict ourselves only to up to one phonon at every
oxygen site adjacent to the hole site. Thus, in our framework,
b up to four phonons could be included. This second restriction
______ is justified by the fact that, in the small coupling region, the
wl o T , > average number of excited phonons per site is much smaller
than one. The quasiparticle operator should have the same
A symmetry as the one-hole ground state. Under these condi-
tions a general form of a composite polaron operator with
momentumk is

A. Single polaron

4.0
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FIG. 7. Lattice deformatioiiper holg around the hole sites for . .

0 =0.2. Open(solid) symbols correspond to the breathifigick- i, 1S the usual hole creation operator of thd

ling) mode. Solid(dashedl lines refer to the twdone hole GS. model.¢&”) is the symmetrized operator creatingphonons

where G/

o
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FIG. 9. Dynamical spectral function of a single polaron on

. . ] CugO,5 With momentumk = (#/2,7/2) vs frequency in the pres-
FIG. 8. Schematic oxygen sites for the phonon dressing to congpce of buckling modes fat=0.4, 2=0.2, and\,=0.2. Bare(a)

struct the single polaroa) and bipolaronb) operators. Those sites one-phonon dresse@) and two-phonon dressed) spectral func-
are labeled a#\;, A,, B;, ... .h, hy andh, are the hole sites. tions have been considered.

with the same local point-group symmetry as the one-hol
ground state an& , corresponds to the sum over all such
independent-phonon configurationg.-- - ]; means that the
boson part is centered around siteThe coefficientSy&”)
(independent of) are determined so as to optimize the qua-
siparticle weight

§t can be calculated by the standard technique based on the
Lanczos algorithm. The spectral function of the quasiparticle
atk=(m/2,7/2) for the buckling mode in the'8x/8 clus-

ter atJ=0.4,Q0=0.2, and\y=0.2 is shown in Fig. 9, where

(a), (b), and(c) correspond to the results of the operator up to
0, 1, and 2 phonons taken into account, respectively. In our

|<\IfN’l|c_ |‘PN>|2 definition, the area of the peak at the bottom of the spectrum
h= 0 kol 70 ' (9)  gives the quasiparticle weight with up tephonon dressing.
(UR[CE ,CrolUH) Even for the bare operator, the quasiparticle can be distin-

N N1 . guished and the peak becomes higher with increasing num-
where ¥g and.\Ifo are th'e Nel and one-hole ground ber of phonons, as shown in Fig. 9. Although the total area of
states, respectively, on tiésite cluster. We also define the o function changes with increasing dressed phonons, the

operator ¢ =T [4{V];. Since all the states peak at the bottom clearly grows up in comparison with
Eﬁf‘l),’alllfw are orthogonal to each other, the coeficients carhigher-energy parts. Particularly, the gain of the peak due to
be obtained as dressing the first phonon is much larger than the second. It
suggests that, for the present parameters used here, the
dressed operator even up to one phonon can give a suffi-

ciently accurate description of the quasiparticle.

o (%0 ey Vo)

Yo =7N N
C (e e )

(10

The one-hole ground state of thé8x /8 cluster has the
momentumk = (7/2,7/2) and it is symmetric under the re-
flection with respect ty=x. Thus the independent sites for A bipolaron operator can be constructed in a simi-
one-phonon dressing a®, and B, in Fig. 8a). The two lar way. We start from the conventional,._,» BCS

independent symmetrized one-phonon operators are writtespin  singlet operator for nearest-neighbor sites,

B. Bipolaron

D_pt ot )_pt o pt o ~ -
as ¢1=bj +by, and ¢L7=bg, +by, . The four two- =338 (~1)[R,x()]{E]E]., ). whereR, (i) is the
phonon operators can be given in the same wayz/2-angle rotation of all the coordinates around the site
2)_ht i 2)_ht bt Lht Bt 2)_pt pt i is gi
{?)=bj bj,, )=bj by +bj b, ()=bj} by The bipolaron operator is given by

+b,12b;;1, and ¢E12)=bglbéz. In the small coupling region,

3
even restricting ourselves to dressed operators with up to ong~ N T P
or two phonons is expected to provide a good description g&_zi ;0 (= DTRm2(D] €i,1Chix
the quasiparticle features.

ro+3 rogw
a

The existence of a quasiparticle pole can be tested D3(2)
through the spectral function, which gives its dynamical +§ Pad+- 1 (12
properties. For the one-hole state, it is defined as [
_ (n i
P w0)=3 |<‘l’,'\'_1|ck,g|‘lf§)|25(w—Ef1)+E§)°)). where eachd,” corresponds to an independamiphonon
[

creation operator. As previously, the coefficiedty’ are
(11)  determined by the optimization of the quasiparticle weight
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N=2|'A [N . . .
_ |<\If0 |Ad|\I’O > | 2 (a) 0-phonon (b) 1-phonon (c) 2-phonon
2h— N T N y (13) dressing dressing dressing
(WolAgAdl o)
whereW( % is the two-hole ground state. Thus, each coef-
ficient '™ can be obtained from a formula similar to Eq. oz}
(10). Independent one-phonon dressing operatorg\foare
3
“ “ o
(V_pt (L _pt T T T
dV=bs, D5 bD1+bD2+bD3+bD4, N
and
dP=bl +bl
1 2
. . . . 0.00 M sl J e
where the pointsC, D4, and E; are defined in Fig. @). 75 o5 3578 o5 3878 = 25

There are eight independent two-phonon dressing operators;

~ FIG. 10. Dynamical pair spectral function calculated on the

<1>(12) = bébgﬁ— bébg2+ bébgs—l— bébg4 , CugO4 cluster vs frequency in the presence of buckling modes for

J=0.4,Q2=0.2, and\y=0.2. Bare(a), one-phonon dressdt) and

S o)t ot two-phonon dressegt) spectral functions have been considered.

D =beE1+ bcb ,
VI. CONCLUSION

P =b! bl +bl bl +bl bl +bl bl | Exact diagonalization studies of the generalized 2D

1 1 2 1 3 2 4 2 . . . e .
J-Holstein model give evidence for a stabilization of the
two-hole pairing by out-of-plane buckling vibrations of the
in-plane oxygens in the high; cuprates. On the contrary,
in-plane breathing modes suppress the pairing. The differ-
d@=pt bt +pt pt ence comes from the dynamical effect of the lattice displace-

5 D,”D D ) ; ; L

1 "2 3 74 ments which cannot be reduced to a simple NN static inter-
A action. We also found that the buckling mode does not give
®2=bl bl +bl bl , rise to any significant polaronic self-localization effect, in

v 2 contrast to the breathing mode. In addition, we have con-

52 _t K T Kt T K T Kt
®{P=bf, bl +bp, bt +bh, b +bf, bE

St et - structed d.ressed pa}ir operators V\{hich_includg dyngmical pho-
®7”=bp bp,+bp by, non dressing and give large quasiparticle weights in the spec-
tral function. Although photoemission experiments measure
a priori the bare spectral functidiand hence see rather small
- coherent featurest is not clear yet whether the dynamical
DY = bélbéz- features of the hole-lattice coupling described here could be
tested experimentally.

and

The dynamical pair spectral function is defined as
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