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Density of states in chromium alloys
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Both the spin- and charge-density waves of Cr alloys have significant effects on the joint density-of-states
r(v) of the nested electron and hole Fermi surfaces below the Ne´el temperatureTN . The random-phase
approximation is used to evaluater(v) within a three-band model of Cr alloys. In the commensurate phase of
the spin-density wave,r(v) contains a single energy gap 2D. At zero temperature, 2D reaches a maximum
value of about 370 meV and spans the Fermi energy, which is shifted upwards by the presence of a charge-
density wave~CDW!. In the incommensurate phase,r(v) contains two energy gapsD18 andD1 above and
below midgap states. If the CDW order parameterd vanishes, thenD185D1 and both reach a maximum of
about 130 meV atT50; if d is nonzero, thenD18,D1. A third energy gapD2 includes both the midgap states
as well as the smaller gapsD1 andD18 . For pure Cr,D2 reaches a maximum value of about 450 meV at
T50. UnlikeD1 andD18 , D2 does not vanish atTN but decreases to about 370 meV. Our results are compared
with those obtained earlier from a two-band model in the absence of the CDW. This paper also clarifies the
assumptions made by the three-band model and the role of the unpaired holes which reside on the larger of the
two nested Fermi surfaces.@S0163-1829~97!06913-0#
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I. INTRODUCTION

The spin-density wave~SDW! in Cr alloys is produced by
the Coulomb attractionU between electrons and holes o
two nearly nested Fermi surfaces.1,2 Because the hole Ferm
surfaceb is slightly larger than the electron Fermi surfa
a, the SDW of pure Cr is incommensurate~I! with the bcc
lattice and a small fraction of the holes are not paired
electrons. The relative sizes of the two Fermi surfaces
the density of unpaired holes may be controlled by dopi
When the mismatch between the two Fermi surfaces is
ficiently small, the commensurate~C! phase of the SDW is
stabilized. But the Ne´el temperature continues to rise3 until
the two nested Fermi surfaces are the same size and
density of unpaired holes is zero. In this work, we descr
the effects of the unpaired holes on the density-of-state
Cr alloys in both the C and I phases.

To minimize the condensation free energy4 on both sides
of the nested Fermi surfaces, the ordering wave vec

Q68 5(G/2)(16]8) of the SDW lie closer toG/252p ẑ/a
(a is the lattice constant! than the nesting wave vector
Q65(G/2)(16]). The mismatch] between thea and b
Fermi surfaces can be controlled by doping with anot
transition metal: adding Mn, Fe, Re, or Ru raises the Fe
energyeF and decreases the mismatch]; adding V lowers
eF and increases]. For pure Cr,]'0.05 so that the hole
Fermi surface is slightly larger than the electron surface.
] decreases and the nesting improves,]8,] also decrease
until, for a small enough mismatch].0, the SDW becomes
commensurate with the lattice and]850. Although domains
of the ISDW may form along any of the three crystal ax
an ISDW along thez axis can be selected by cooling the
alloy in a magnetic field.

In the I phase, the Coulomb attractionU8 between the
paired electrons and unpaired holes produces a cha
density wave6,7 ~CDW! with twice the wave vector of the
SDW. To ensure charge conservation,8 the CDW must van-
ish in the C phase. But by shifting the Fermi energy,U8
550163-1829/97/55~13!/8347~10!/$10.00
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drives the strongly first-order paramagnetic~P! to C transi-
tion observed3 in CrFe and CrSi alloys.

The calculations performed in this paper are based o
three-band model, in which the mismatch on one side of
electron and hole Fermi surfaces directly affects the nes
on the other side. Even in the absence of a CDW, the p
dictions of the three-band model for the I density-of-sta
differ from the results10–12 of a two-band model. The defi
ciencies of the free energy constructed from a two-ba
model are well-known: in disagreement with experimen
the two-band model predicts that the PC and PI phase t
sitions are always second order. A three-band model is
required to produce a sensible description of the I s
dynamics.5

But the most glaring deficiency of the two-band model
that it cannot self-consistently describe the effects of a CD
While a CDW is obtained from the two-band model o
Machida and Fujita,11 it does not self-consistently affect th
quasiparticle energies or free energy. As will soon be e
dent, the CDW has a pronounced effect on the density
states and energy gaps of the I phase. The role of the C
in determining the orders of the various phase transition
presented elsewhere.8

The purpose of this paper is twofold. First, we will clarif
the physics of the three-band model. Contrary to so
expectations,9 the three-band model does not double t
number of quasiparticle states and does lead to quite sen
results for the density-of-states. Second, we will study
effects of a CDW and a finite electron reservoir on t
density-of-states of Cr alloys. We shall see that the prese
of a CDW and finite reservoir may dramatically change t
evolution of the energy gaps across a second-order CI p
transition.

Using the random-phase approximation for the spin a
charge distributions, we shall calculate the change in
density-of-statesDr(v) below the Ne´el temperature. In the I
phase, the density-of-states contains two energy gapsD18 and
D1 above and below midgap states. When the CDW or
parameter is nonzero,D18,D1 but both reach a maximum a
zero temperature. A third energy gapD2 straddles bothD1
8347 © 1997 The American Physical Society
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8348 55R. S. FISHMAN AND V. S. VISWANATH
and D18 as well as the midgap states. UnlikeD1 and D18 ,
D2 approaches a nonzero value at the Ne´el temperature.

This paper is divided into five sections. The Green
function formalism is presented in Sec. II. Section III co
tains our results for the density-of-states. Section IV d
cusses the assumptions underlying the three-band mod
Cr alloys. Section V compares our theoretical results for
density-of-states and energy gaps with experiments and
earlier theoretical results based on a two-band model.
spin and charge distributions are derived in the Appendi

II. FORMALISM

As in previous work,4 we assume that the paramagne
densities-of-statesreh/2 of the a and b Fermi surfaces are
equal and that their Fermi velocities have the same ma
tude. These assumptions shall be justified later. Besides
nearly nested Fermi surfacesa andb, the band structure o
Cr alloys also contains two other bands13 of electron balls
and hole pockets which may be lumped together into
electron reservoir14 with density-of-statesr r and power
p5r r /reh. If the electron reservoir is finite, then the Ferm
energyeF will decrease and the mismatch] will increase as
the SDW grows. So a finite electron reservoir favors th
phase of the SDW. Band-structure calculations13 indicate
thatp lies between 1.03 and 4.35, so that the reservoir ba
contain at least as many states near the Fermi energy a
thea andb bands.

In Fig. 1~a!, the paramagnetic energies of bandb are
shifted by the ordering wavevectorsQ68 . These shifted
bands are denoted asb2 andb1. The linearized energies in
the boxed region near the Fermi wave vectorkF are then
plotted as the dashed lines in Figs. 1~b! and 1~c! for the I and
C phases, respectively. In all three figures, the Fermi ene
is drawn as a dashed horizontal line andz5vF(k•n̂2kF)
measures the momentum difference from an octahedral
of the electron Fermi surface with normaln̂. The paramag-
netic energies are then specified by the parame
z054p]vF /A3a and k5z0]8/2],z0/2. For pure Cr,
z0'600 meV andk'300 meV. Changes in the energy mi
matchz0 with doping are linearly related

15 to changes in the
Fermi energyeF by Dz0524DeF . While the mismatch en-
ur

s
th

en
-

-
of
e
ith
e

i-
he

n

I

ds
do

gy

ce

rs

ergy z0 increases linearly with the V concentration, it d
creases linearly with the concentration of Mn, Fe, Re, or R
The incommensurability energyk approachesz0/2 as
]8→] and vanishes for a C alloy with]850. Another quan-
tity which will appear shortly is the phenomenological Ne´el
temperatureTN*'105 meV of a perfectly nested Cr allo
with z050 andk50. This temperature will be formally de
fined later in the paper.

The hybridized quasiparticle energies below the N´el
temperature are obtained from the six-dimensional inve
Green’s function8 in band$a,b2,b1% and spin space:

FIG. 1. ~a! Electron (a) and hole (b) energiese are plotted
versus the momentum differencez from an octahedral face of the
Fermi surface. Theb energies are also translated by the SDW wa
vectorsQ68 . Near the Fermi energy, the boxed region is expand
in ~b! and ~c! for the I and C phases, respectively. Paramagn
~short-dashed! and hybridized~solid! quasiparticle energiese are
plotted versusz. In all three figures, the Fermi energy is denoted
a horizontal dashed line.
G21~k,in l !5S @ in l2ea~k!#1 2gm̂•seif2 2gm̂•seif1

2gm̂•se2 if2 @ in l2eb2~k!#1 2d1eic

2gm̂•se2 if1 2d1e2 ic @ in l2eb1~k!#1
D , ~1!
at
wheren l5(2l11)pT, m̂ is the polarization direction of the
SDW, ands are the Pauli matrices in spin space. To ens
that the SDW and CDW order parametersg andd are real,
the phasesf1 , f2 , and c have been introduced in thi
inverse Green’s function. In the Appendix, we show that
self-consistent relations for the order parametersg and d
imply thatc5f12f2 . The quasiparticle energies are th
e

e

obtained from the condition DetG21(k,e)50, which may be
rewritten as

~e2z!@~e1z2z0/2!22k22d2#22g2~e1z2z0/21d!50.
~2!

The rootszi(e) of this cubic equation are labeled so th
z1→e, z2→2e1z0/22k, and z3→2e1z0/21k as g→0
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55 8349DENSITY OF STATES IN CHROMIUM ALLOYS
andd→0. In the C phase, the roots can be evaluated exa

z15
z0
4

1
d

2
1AS e2

z0
4

2
d

2D
2

2D2,

z25
z0
4

1
d

2
2AS e2

z0
4

2
d

2D
2

2D2, ~3!

z352e1
z0
2

2d,

where 2D52A2g is the energy gap joining the circular an
square points in Fig. 1~c!. In the I phase, the rootszi must be
evaluated numerically.

Below the Néel temperature, the paramagnetic indic
b6 anda are used to label the three hybridized bands.
the I energies sketched in Fig. 1~b!, the lower and upper
bands are denoted as theab1 andab2 bands, respectively
In the limit uzu→`, the right or left branches of theab6
bands are displaced from the paramagneticb6 energies by
the amountAk21d22k. The centralb1b2 band is simi-
larly displaced from the paramagneticb6 energies in this
limit. So the crossing of the solid and dashed lines in F
1~b! was not a drafting accident.

For the C phase, theb1 andb2 energies are identical
However, for reasons that will become clear shortly,
straight band with energy2z1z0/22d in Fig. 1~c! is de-
noted as theb2 band. The other two bands will be called th
upper and lowerab1 bands. Asz→6`, the energy differ-
ence between theb2 band and the lower or upperab1
bands tends to 2udu.

In the Appendix, we show that the spin and electron nu
ber densities corresponding to the inverse Green’s func
of Eq. ~1! are given by

S~r !52
\

4l
Vrehgm̂uu~r !u2$cos~Q18 •r2f1!

1cos~Q28 •r2f2!%

52
\

2l
Vrehgm̂uu~r !u2cosS 2p

a
r z2favD

3cosS 2p

a
]8r z2

u

2D , ~4!

%~r !52
1

2l8
Vrehduu~r !u2cos@~Q18 2Q28 !•r2f11f2#

52
1

2l8
Vrehduu~r !u2cosS 4p

a
]8r z2u D , ~5!

wherel5Ureh/8 andl85U8reh/8 are dimensionless Cou
lomb constants. The average phase and the phase diffe
of the two ISDW’s are defined byfav5(f11f2)/2 and
u5f12f2 . Finally, u(r ) is a periodic Bloch function nor-
malized to 1 in volumeV. Because the Bloch functions o
thed-band electrons are strongly peaked at the atomic s
the maximum values of the spin and electron number at e
ly:
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r

.

e

-
n

nce

s,
ch

of the N sites in the I phase are approximate
S052(\g/2l)cosfav(V/N)reh and %052(d/2l8)(V/
N)reh.

Both the order parametersg and d and the wave-vector
parameterk are obtained by minimizing the free-energ
difference8 DF(p,T) between the paramagnetic and order
states. The reservoir powerp affects15 DF(p,T) by shifting
the Fermi energy in order to conserve particle number.
an infinite reservoir, the Fermi energy and energy misma
z0(p5`) do not change with temperature. But for a fini
reservoir, the Fermi energy must decrease and the en
mismatchz0(p,T) must increase with decreasing tempe
ture. So for a fixed temperature and paramagnetic mism
energyz0(p,T.TN), the order parameters and wave vec
depend on the power of the electron reservoir. Within
three-band model, the reservoir power then determines
orders of the different phase transitions: whenp is greater
than about 2, the CI transition becomes first order as
served in CrMn alloys. By contrast, the CI transition with
the two-band model11 is found to be second order for a
values of the reservoir power. In the following discussio
z0 shall denote the temperature-dependent mismatch en
z0(p,T) except where noted.

The size of the CDW order parameter8 d,0 is deter-
mined by the coupling constantl8, which ranges from 0 to
1/2. In the limit l8→0, the CDW order parameterd van-
ishes but the CDW amplitude%0}2d/l8 approaches a non
zero value. With increasingl8, the triple point shifts to
larger values ofz0 and the C phase dominates the pha
diagram. Asl8→1/2, d→2z0/2 and the C phase is stab
for all mismatch energiesz0. For the C phase with]850,
conservation of electron number8 requires that%(r )50 or
that cosu50. This relation also guarantees that, while the r
spin is continuous, the SDW amplitude drops fromS0 to
S0 /A2 across a second-order IC phase boundary. Since
CDW order parameterd is created by the Coulomb attractio
between unpaired holes and paired electrons,d vanishes
when the electron and hole Fermi surfaces are perfe
nested withz050.

Fenton and Leavens9 have argued the three-band model
unphysical because it increases the number of quasipar
states below the Ne´el temperature. We emphasize that t
three-band model may only be used to evaluate thechanges
produced by the magnetic and charge ordering belowTN . So
the three bands of quasiparticle energies in Figs. 1~b! and
1~c! do not imply that the quasiparticle states on all thr
bands may be occupied. Rather, the three bands of quas
ticle energies can be used to study the redistribution of q
siparticle states belowTN . As we shall see, the change in th
density-of-states does not create any new quasiparticle s
belowTN : instead the possible quasiparticle states are re
tributed by the formation of the SDW and CDW.

Many physically important effects are associated with
redistribution of the excess holes on the largerb Fermi sur-
face. Since the mismatch between the paramagnetic C e
gies of Fig. 1~c! is z0/2, the density of excess holes
z0reh/4. The same density can be extracted from the pa
magnetic I energies of Fig. 1~b!: if one side of the Fermi
surface is perfectly nested withk5z0/2, then all of the ex-
cess holes would reside on the other side with misma
z0/21k5z0.
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8350 55R. S. FISHMAN AND V. S. VISWANATH
Below the Néel temperature, the three-band model can
used to study the redistribution of the excess holes.
straightb2 band in Fig. 1~c! is displaced from its paramag
netic value solely by the CDW order parameterd. When
d50, all of the excess holes are accounted for in the low
ab1 band so that theb2 band is empty. But asl8 and
2d increase, the unpaired holes migrate to theb2 band,
which shifts upwards as theab1 bands shift downwards. In
the limit l8→1/2,d→2z0/2, all of the unpaired holes resid
on theb2 band, and theab1 bands lie symmetrically on
either side of the Fermi energy.

For the I energies plotted in Fig. 1~b! with k,z0/2, some
of the excess holes must reside on the centralb1b2 band
even whenl850. Asl8 and2d increase, electrons transfe
from theb2 band to theab1 band. Simultaneously, hole
migrate from theab1 band to the upper bands and th
ab1 band moves downwards. The CDW of Eq.~5! is pro-
duced by the Coulomb attractionU8 between paired elec
trons on the lower band and unpaired holes on the up
bands.

Unlike the three bands of quasiparticle states, the jo
density-of-statesr(v) of the nested Fermi surfaces may
directly measured. As mentioned in the Introduction,
density-of-states has never been evaluated for the I p
within a three-band model, even in the absence of a CD
The change in the density-of-states from its paramagn
valuereh is formally given by16

Dr~v!5Dra~v!1Drb~v!, ~6!

Dra~v!52
1

2p
rehImE dzHGaa

↑↑~k,v1 i j!2
1

v2z1 i j J ,
~7!

Drb~v!52
1

2p
rehImE dzHGb1b1

↑↑ ~k,v1 i j!

1Gb2b2
↑↑ ~k,v1 i j!2

1

v1z2z0/22k1 i j

2
1

v1z2z0/21k1 i jJ ~8!

which must be evaluated asj→01. Due to their spin sym-
metries, the matrix elementsGab6(k,v)}m̂•s do not con-
tribute to the density-of-states. The summed density-of-st
of theGb6b7(k,v)}1e

7 iu matrix elements also vanishes:
the I phase becauseQ18 2Q28 Þ0 and in the C phase becau
cosu50.

Of the three rootszi(v1 i j), only z1 lies in the upper-half
plane. So it is straightforward to show that

Dra~v!5rehReH ~v1z12z0/2!22k22d2

~z12z2!~z12z3!
21J , ~9!

Drb~v!52rehReH ~v2z1!~v1z12z0/2!22g2

~z12z2!~z12z3!
J . ~10!

If the paramagnetic parts were not subtracted in Eqs.~7! and
~8!, then the integrals overz would be undefined. Using Eq
~2! for the rootszi , we find thatDra(v)5Drb(v) and
e
e

r

er

t

e
se
.
ic

es

r~v!5reh14rehReH ~v2z1!~v1z12z0/2!22g2

~z12z2!~z12z3!
J ,

~11!

which now includes the paramagnetic density-of-statesreh.
In the C phase, the exact solutions of Eq.~3! can be used

to explicitly evaluate the density-of-states of the nes
bands:

r~v!5rehReH v8sgn~v8!

Av822D2 J , ~12!

v85v2
z0
4

2
d

2
. ~13!

Except for the shift in the Fermi energy, this is identical
the result16 for a BCS superconductor. For the case of perf
nesting withz050 andd50, this relationship was first de
rived by Fedders and Martin.2 Generally, the Fermi energy a
v50 lies z0/41d/2.0 below the midpoint of the energ
gap atv850. Asl8 increases from 0 to 1/2, the CDW orde
parameter2d grows from 0 toz0/2. For l8,1/2, some of
the unpaired holes reside on theab1 bands so that the Ferm
energy lies below the midpoint of the gap. In the lim
l8→1/2, all of the unpaired holes have migrated to theb2
band so the Fermi energy lies in the middle of the gap.

For either the C or I phases, it can be shown that

E
2`

`

dv Dr~v!50, ~14!

so the joint density-of-states simply redistributes the qua
particle states below the Ne´el temperature but does not crea
any new ones. In the C phase, Eq.~14! can be demonstrate
analytically; in the I phase, it can be shown numerically.

III. DENSITY-OF-STATES

To demonstrate the correspondence between the quas
ticle energies and the density-of-states, we start with the s
plest casel850 and d50. The quasiparticle energies fo
four different sets of$z0 ,g,k% are plotted in Figs. 2~a!–2~d!.
In all four figures, the Fermi energy is drawn as a dash
horizontal line. The values forg andk were obtained at zero
temperature. So the lowerab1 band always lies completely
below the Fermi energy. The corresponding densities
states are plotted in Figs. 3~a!–3~d!.

For the C case in Fig. 2~a!, the Fermi energy lies
z0/451.1TN* below the midpoint of the energy ga
2D'3.53TN* between theab1 bands. Whend50, all of the
unpaired holes reside on theab1 bands and the straigh
centralb2 band is empty. Notice that the density-of-states
Fig. 3~a! shows no sign of theb2 band.

With the same mismatch energyz0, an I set of solutions
for $g,k% is used to plot the quasiparticle energies a
density-of-states in Figs. 2~b! and 3~b!. Now the unpaired
holes are distributed among all three bands and two gap
the same sizeD1 appear above and below the central ban
Correspondingly,r(v) contains midgap states between t
ab1 andab2 bands. Unlike the C energy gap, the ener
gaps above and below the centralb1b2 band are not per-
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55 8351DENSITY OF STATES IN CHROMIUM ALLOYS
fect: as clearly shown in Fig. 3~b!, quasiparticle states lie
within each gap.

While the lower gapD1 corresponds to the energy differ
ence between the circular and square points in Fig. 1~b!, the
upper gap corresponds to the energy difference between
inverted triangular and triangular points. In Fig. 3~c!, D2 is
defined to include both the lower and upper gaps as well
the midgap states between them. The midgap peaks in
density-of-states in Figs. 3~c! and 3~d! @also in Fig. 3~b! but
too close together to be seen# correspond to the square an
inverted triangular points in Fig. 1~b!. As the SDW order
parameter decreases in Figs. 2~c! and 2~d!, D1 shrinks and
the midgap peaks move further apart. Simultaneously,
number of states within each gap decreases.

The results of a two-band model10–12 for the density-of-
states are quite similar to those in Figs. 3~b!–3~d! except that
no states lie within the gaps. We shall return to the diffe
ences between the two- and three-band models bel

FIG. 2. The hybridized quasiparticle energiesv versus momen-
tum z for ~a! z054.4TN* , g51.247TN* , andk50, ~b! z054.4TN* ,
g50.893TN* , and k51.497TN* , ~c! z055TN* , g50.676TN* , and
k52.2TN* , and ~d! z057TN* , g50.452TN* , andk53.411TN* . All
figures taked50.

FIG. 3. The density-of-statesr(v) versus frequencyv for the
same values as in Fig. 2.
the

s
he

e

-
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Within a local spin-density formalism, Hirai17 also obtained
a density-of-states with two energy gaps near the Fermi e
ergy.

Despite appearances, the quasiparticle transition acr
D1 involves a small change in momentum. As can be show
analytically, the square in Fig. 1~b! lies at a slightly higher
value of z than the circle. Of course, the transition acros
D2 between the circular and triangular points in Fig. 1~b! is
quite indirect, involving a momentum change of abou
]8G'0.05G. At zero-temperature,D2(0) is larger than the
C gap 2D(0) and approaches 2D(0) ask→0.

The quasiparticle energies and densities-of-states are s
nificantly altered when the CDW order parameterd is non-
zero. For the C phase plotted in Figs. 4~a! and 5~a!, the
straight centralb2 band again does not contribute to the
density-of-states between theab1 bands. Since theb2

FIG. 4. The hybridized quasiparticle energiesv versus momen-
tum z for ~a! z056.89TN* , g51.247TN* , d521.723TN* , and
k50, ~b! z056.88TN* , g51.246TN* , d521.717TN* , and
k50.179TN* , ~c! z056.6TN* , g51.0631TN* , d521.346TN* , and
k51.768TN* , and~d! z056.6TN* , g50.807TN* , d520.858TN* , and
k52.673TN* . These values were obtained withl850.4.

FIG. 5. The density-of-statesr(v) versus frequencyv for the
same values as in Fig. 4.
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8352 55R. S. FISHMAN AND V. S. VISWANATH
band contains2rehd/2 of the excess holes, this result ma
be surprising. But as discussed below, the contribution of
unpaired holes on theb2 band to the joint density-of-state
r(v) is negligibly small on the scale ofreh.

When2d.0, the I gapD18 above the midgap states
smaller than the gapD1 below. To demonstrate the develo
ment of the upper energy gap whenl8.0, we use unstable
solutions $g,d,k% of the free energyDF(p5`) in Figs.
4~b!, 4~c!, 5~b!, and 5~c!. When the reservoir density-of
statespreh is sufficiently small, these unstable solutions b
come the stable minima ofDF(p). Following the scenario in
Figs. 4~b!–4~d! and Figs. 5~b!–5~d!, the upper energy gap
D18 develops from zero and initially contains quite a lar
number of quasiparticle states. Ask increases, the number o
states insideD18 diminishes butD18 always remains smalle
thanD1 for any2d.0.

In addition to the quasiparticle states of the nesteda and
b Fermi surfaces, the total density-of-states of Cr alloys m
also include the quasiparticle states of the non-nested re
voir bands.13 So the total density-of-states should be writt
as

r t~v!5r~v!1preh. ~15!

Consequently, all the gaps in Figs. 3 and 5 will contain la
numbers of reservoir states. In the limitsv/TN*→6`, the
total density-of-statesr t(v) approaches (11p)reh.

As the temperature decreases belowTN , the
conductivity18 of the electrons on the nested Fermi surfac
drops but the conductivity of the electrons on the reserv
bands is unaffected. While the resisitivity of most Cr allo
is continuous atTN , the resistivity of Cr12xFex (x50.03)
increases dramatically18 due to the sudden formation of
large energy gap at the first-order PC transition.

IV. PHYSICS OF THE THREE-BAND MODEL

Formally, the straightb2 bands in Figs. 2~a! and 4~a! do
not contribute tor(v) because the paramagnetic density-
states containsa, b2, andb1 bands. So the absence of bo
a and b1 bands inside the C energy gap implies th
Dra(v)52reh/2 and Drb(v)52reh/2 or that Dr(v)
52reh andr(v)50.

But we have also argued that in the C phase, theb2 band
contains a density2dreh/2 of unpaired holes. To physicall
explain the absence of those unpaired holes from the
density-of-states in Fig. 4~a!, we must reexamine the as
sumptions made by the three-band model. Just as in Fe
liquid theory, our model of itinerant antiferromagnetism a
sumes that quasiparticle states are only defined withi
rangee0 of the Fermi surface. This energy regulates a lo
rithmically divergent integral in the self-consistent equati
for g given by Eq.~A1!. In both this self-consistent equatio
and in the free-energy differenceDF(p,T), the cutoff e0
may be replaced by the phenomenological Ne´el temperature

TN*51.13e0e
21/2l ~16!

of a perfectly nested alloy withz050. In the BCS theory of
conventional superconductivity, the Debye frequencyvD re-
places the energy cutoffe0. Hence, itinerant models of ant
e
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st
er-

e

s
ir

-

t

C

i-
-
a
-

ferromagnetism more closely resemble the weak-coup
theory16 of superfluid He3, in which the cutoffe0 also has no
direct physical significance. As in the BCS theory of He3,
e0 is assumed to obey the relationship

X!e0!eF , ~17!

whereX stands for all other energy scales:TN* , g, 2d, or
z0. In practice, the energy mismatchz0 may barely satisfy
the first inequality: for pure Cr,z0'475 meV andeF'8 eV,
so that less than two orders of magnitude separate these
ergies.

Due to the assumed separation of energy scales, the
ergy cutoffe0 and Coulomb constantl can almost always be
absorbed into the phenomenological Ne´el temperatureTN* .
One of the few exceptions to this rule involves the spin d
sity itself. As revealed by Eq.~4!, the SDW amplitudeS0
}gcosfav/l explicitly depends on the Coulomb constan
Since the average phasefav is undetermined by the nestin
free energy, fittingS0 to the observed SDW amplitude ca
only establish the maximum value forl or the minimum
value for e0. Depending on the paramagnet
density-of-states13 reh, such a procedure yields a maximu
value forl between 0.020 and 0.032, corresponding to
tronomically large values ofe0. More reasonable values o
l between 0.21 and 0.16 would correspond toe0 between 1
and 2 eV, the same order as thed-band width.13 The anoma-
lously small value ofl may reveal one of the weaknesses
the weak-coupling theory of itinerant antiferromagnetism

Several postulates of our model are justified by the se
ration of energy scales. Since the energy mismatch betw
the a and b Fermi surfaces equalsz0, the paramagnetic
densities-of-states of the two Fermi surfaces may differ by
amount of orderrehz0 /eF . Due to the inequalityz0!eF , it
is certainly justified to assume that the density-of-statesreh is
equally split between the two Fermi surfaces aboveTN . It is
likewise justified to assume that their Fermi velocities ha
the same magnitude.

Because2d!eF , the density2dreh/2 of unpaired holes
on theb2 band in the C phase is much too small to affe
the joint density-of-statesr(v) of the nested Fermi surfaces
Like the quasiparticle states in the reservoir band, the qu
particle states in theb2 band simply add a~negligibly
small! constant term to the totalr t(v) in Eq. ~15!. Never-
theless, the magnetic properties of Cr alloys are quite se
tive to small changes near the Fermi energy. So the redi
bution of unpaired holes has important physic
consequences below the Ne´el temperature. In the I phase, th
Coulomb attractionU8 between paired holes and unpaire
electrons produces the CDW of Eq.~5!. In the C phase, this
Coulomb interaction shifts the Fermi energy upwards a
drives the first-order PC transition observed3 in CrFe and
CrSi alloys.

V. DISCUSSION AND CONCLUSION

Many experimentalists have used reflectance19–22 or
absorption18,23,24measurements to study the energy gaps
Cr alloys. For C alloys at low temperatures,18,22–242D lies
between 360 and 400 meV. Fitting this value to the ze
temperature result 2D(0)52A2g0'3.53TN* , we find that
TN* lies between 102 and 113 meV. Due to impurity scatt
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ing, however, this may underestimateTN* .
For pure Cr at low temperatures,20 D1'124 meV and

D2'450 meV. WhereasD1 is quite flat below about 260 K
D2 is reduced12 by about 30% to 320 meV at 300 K. A
simple analysis of the paramagnetic energies in Fig. 1~b!
reveals thatD2→k as T→TN . The order parameters an
wave vectors in Fig. 6 are evaluated withl850 andp5`.
Whenz055TN* , D2 decreases by about 41% betweenT50
andTN . Whenz057TN* , D2 decreases by only 22%. Wit
z055.7TN* both zero-temperature gapsD1(0)'130 meV
andD2(0)'445 meV are close to the observed values
pure Cr ifTN*5115 meV. For these values,D2 is predicted to
decrease by about 31% tok'305 meV atTN .

Whenl8.0 and2d.0, r(v) is characterized by thre
inequivalent energy gaps which are plotted versus temp
ture in Fig. 7 forl850.40 andz056.6TN* . The order param-
eters and wave vector are again evaluated under the co
tion thatp5`. Now D1.D18 but both gaps vanish atTN .

Absorption studies by Barker and Ditzenberger18 suggest
thatD1(0) scales roughly as the Ne´el temperatureTN . Note
that bothD1(0) and TN depend on the mismatch energ

FIG. 6. The energy gapsD1 andD2 versus normalized tempera
ture T/TN for l850, p5`, and z055TN* ~solid! or z057TN*
~dashed!.

FIG. 7. The energy gapsD1, D18 , and D2 versusT/TN for
l850.4, z056.6TN* , andp5`.
r

a-

di-

z0. To test the scaling ofD1(0) with TN , we plot
D1(0)/TN versusTN /TN* in Fig. 8, again usingp5`. Since
the SDW is enhanced by the presence of a CDW, the n
malized energy gapD1(0)/TN increases withl8. But for
either l850 or l850.10, D1(0)/TN approaches the BCS
value 2p/g'3.528 as the Ne´el temperature vanishes or a
the mismatch energy diverges. WhileD1(0)/TN is a decreas-
ing function of the Ne´el temperature whenl850, this ratio
increases withTN whenl850.10. Whenl850, D1(0)/TN
decreases by only about 4% at the triple point.

In agreement with our results forl850, the observed
energy gaps18 D1 of CrMn and CrRu alloys fall slightly be-
low the straight lineaTN close to the IC phase boundar
But in disagreement with Fig. 8, the observed slopea'5.1
is significantly larger than our estimate of 3.5. Seve
explanations18,23,25have been proposed for this discrepanc
A two-band model predicts values fora either smaller25 or
larger26 than 3.5. However, the two-band model with i
single energy gap is only appropriate in the C phase of
alloys ~and even then only if the Fermi energy is suitab
shifted by the CDW order parameter!.

A more likely explanation for the large value fora was
originally proposed by Barker, Halperin, and Rice.19 Impu-

FIG. 8. The normalized energy gapD1 /TN versus the scaled
Néel temperatureTN /TN* at T50 with p5` andl850 ~solid! or
l850.10 ~dashed!.

FIG. 9. The energy gapsD1, D18 , andD2 versus the normalized
energy mismatchz0(TN)/TN* for l850.3 ~solid! and 0.4~dashed!
with T50 andp52.
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rity and electron-phonon scattering27 suppress both the en
ergy gapD1 and the Ne´el temperatureTN . At low tempera-
tures, the energy gapD1 is affected primarily by impurity
scattering. But the Ne´el temperature of Cr alloys is strongl
suppressed by both impurity and electron-phonon scatter
Hence, the ratioD1(0)/TN will be larger than the values
indicated by Fig. 8. If electron-phonon scattering domina
over impurity scattering and the scattering rateG is propor-
tional to T, then the modified Ne´el temperature
T̃N5TN2a8G will be proportional to TN and the gap
D1(0) will again scale withT̃N .

The energy gaps can be controlled by changing the en
mismatch with doping. Asz0 increases with V doping,D1
should decrease while the midgap states andD2 grow. As
z0 decreases with Mn or Fe doping,D1 should increase while
the midgap states shrink. WhenU850 and the CDW is ab-
sent, the energy gapsD1 andD18 change suddenly as a kin
develops in the centralb1b2 band, even if the CI transition
is second order. This is still the case for a small CDW. Bu
U8 is sufficiently large that the Cb2 branch crosses th
upper ab1 branch to the right of its minimum value, a
pictured in Fig. 1~c!, then the energy gapsD1 andD18 will
evolve continuously across a second-order CI transition.

These two different scenarios are demonstrated in Fig
where the reservoir powerp52 is small enough to produce
second-order CI transition at zero-temperature. The p
magnetic energy mismatchz0(TN) here depends only on th
impurity concentration and not on the reservoir power. F
bothl850.3 and 0.4, the CI transition atz0

CI(TN) is denoted
by a filled circle. To the left of the CI transition, the sing
energy gap is given by the C value of 2D(0)'3.53TN* .

When the CDW is sufficiently large, such as f
l850.4, the gapsD1(0) andD18(0) are continuous. In this
case,D18(0) vanishes andD1(0) approaches 2D(0) at the CI
phase boundary. Since the midgap states suddenly appe
the CI phase boundary,D2(0) approaches a C value greate
than 2D(0). When l850.3, D1(0) briefly exceeds 2D(0)
following the CI transition but prior to a discontinuou
change in bothD1(0) andD18(0). In the small window of
dopant concentrations with 4.31,z0(TN)/TN*,4.45, the
SDW is incommensurate but only one large energy g
D1(0)'2D(0) is seen.The discontinuous changes in th
energy gaps occur inside the I phasewith z0(TN)
.z0

CI(TN)54.31TN* . This remains the case for all smalle
values ofl8 includingl850. In fact, the separation betwee
z0
CI(TN) and thez0(TN) which marks the jumps in the energ
gaps increaseswith decreasingl8. For l850, D1(0) is
slightly less than 2D(0) within this window. Practically all
Cr alloys with modest values ofl8 ~the only possible excep
tion being CrFe alloys! should obey this second scenario.

To test the possibility that the jumps in the energy gaps
not coincide with the CI transition, optical measuremen
should be performed on an I alloy which according
neutron-scattering measurements is close to a second-
or very weakly first-order CI phase boundary. One possi
ity is to cool a Cr12xMn x alloys with 0.003<x<0.01 to just
below its CI phase boundary. Optical measurements on s
an alloy should exhibit a large energy gap close to the
value of 380 meV.

Other techniques have also been used to probe
g.

s
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9,

a-

r

r at

p
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der
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he

density-of-states, including angle-resolved photoemissio28

and point-contact spectroscopy.29 But two recently devel-
oped techniques may hold even more promise: inela
x-ray scattering and electron-energy-loss spectrosc
~EELS!. With an energy resolution of 2–4 meV, the latt
technique should prove ideal in measuring the tempera
dependence of the energy gaps. Since EELS is only sens
to the Cr surface, however, the energy gaps may be s
pressed from their bulk values.

To summarize, we have calculated the density-of-state
Cr alloys using a three-band model within the RPA. T
results for the density-of-states have been used to cla
some of the assumptions underlying the three-band mo
We have shown that the presence of a CDW and a fi
electron reservoir may dramatically alter the evolution of t
energy gaps from the C to the I phase of Cr alloys. Obs
vation of the predicted temperature and doping depende
of these energy gaps would provide additional confirmat
of the three-band model. We hope that the results prese
in this paper will inspire future work in this area of funda
mental physical importance.
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APPENDIX: SPIN AND ELECTRON
NUMBER DENSITIES

This appendix generalizes the work of Jiang and Fishm8

to derive Eqs.~4! and ~5! for the spin and electron numbe
densities.

Within the random-phase approximation, the se
consistent relations for the spin and charge-density-wave
der parameters are

gm̂•sW eif152U
T

V(
k,l

Gab1~k,in l !, ~A1!

d1eic52U8
T

V(
k,l

Gb2b1~k,in l !. ~A2!

These two relations imply thatc5f12f2 so that the
CDW phase equals the difference between the SDW pha
The free-energy differenceDF(p,T) is obtained8 by inte-
grating these self-consistent relations.

The creation and destruction operators for thed-band
electrons are given in terms of their Bloch functionsuk(r ) by
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C~r !5(
k
e2 ik•ruk~r !S ak↑

ak↓

bk↑
2

bk↓
2

bk↑
1

bk↓
1

D , ~A3!

C†~r !5(
k
eik•ruk* ~r !@ak↑

† ,ak↓
† ,bk↑

2† ,bk↓
2† ,bk↑

1† ,bk↓
1†#,

~A4!

whereC(r ) is a six-dimensional vector in band and sp
space anduk(r ) is normalized to one in volumeV. While
aks and aks

† destroy and create electrons on banda with
momentumk and spins, bks

6 and bks
6† destroy and create

electrons on bandsb6 . The spin and charge operators c
now be written as

Sz~r !5
\

2
C†~r !S sz sz sz

sz sz sz

sz sz szD C~r !, ~A5!

r~r !5C†~r !S 1 1 1

1 1 1

1 1 1
D C~r !, ~A6!

where the polarization direction of the spin is taken along
z axis. Note that this axis may differ from the direction of th
ordering wave vectorsQ68 .

Summing repeated spin indices and ignoring the mom
tum dependence of the Bloch functions, we find that
expectation value of the spin is given by

^Sz~r !&5
\

2
uu~r !u2smm

z (
k

$^akm
† bkm

1 &e2 iQ18 •r

1^akm
† bkm

2 &e2 iQ28 •r1^bkm
1†akm&eiQ18 •r

1^bkm
2†akm&eiQ28 •r%. ~A7!
.L
v.
e

e

n-
e

This can be written in terms of the Green’s functions o
tained by inverting Eq.~1! as

^Sz~r !&5\Tuu~r !u2(
k,l

$G↑↑
ab1

~k,in l !e
2 iQ18 •r

1G↑↑
ab2

~k,in l !e
2 iQ28 •r1G↑↑

b1a~k,in l !e
iQ18 •r

1G↑↑
b2a~k,in l !e

iQ28 •r%. ~A8!

Using Eq.~A1! we can express the expectation value as

^S~r !&52
\

8l
Vrehgm̂uu~r !u2$eif12 iQ18 •r1eif22 iQ28 •r

1e2 if11 iQ18 •r1e2 if21 iQ28 •r%

52
\

4l
Vrehgm̂uu~r !u2$cos~Q18 •r2f1!

1cos~Q28 •r2f2!%. ~A9!

Choosing the SDW ordering wave vectors to lie along
z axis gives the second line of Eq.~4!.

Proceeding along the same lines, Eq.~5! can be derived
from the expectation value of the charge operator

^r~r !&5dmm(
k

$^bkm
2†bkm

1 &e2 i ~Q18 2Q28 !•r

1^bkm
1†bkm

2 &ei ~Q18 2Q28 !•r%

52T(
k,l

$G↑↑
b2b1

~k,in l !e
2 i ~Q18 2Q28 !•r

1G↑↑
b1b2

~k,in l !e
i ~Q18 2Q28 !•r%

52
1

2l8
Vrehuu~r !u2cos@~Q18 2Q28 !•r

2~f12f2!#, ~A10!

where Eq.~A2! has been used. The second line of Eq.~5! is
obtained by again choosing the SDW ordering wave vec
along thez axis.
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