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Extended massless phase and the Haldane phase in a spin-1 isotropic antiferromagnetic chain
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We study the phase diagram of isotropic spin-1 models in the vicinity of the Uimin-Lai-Suthdtl®)
model. This is done with the help of a level-one SU(3) Wess-Zumino-Witten model with certain marginal
perturbations. We find that the renormalization-group flow has infrared stable and unstable trajectories divided
by a critical line on which the ULS model is located. The infrared unstable trajectory produced by a marginally
relevant perturbation generates an exponential mass gap for the Haldane phase, and thus the universality class
of the transition from the massless phase to the Haldane phase at the ULS point is identified with the
BerezinskitKosterlitz-Thouless type. Our results support recent numerical studiesthyafd Styom. In the
massless phase, we calculate logarithmic finite-size corrections of the energy for thip-syohmetric and
asymmetric models in the massless ph§S6163-18207)02213-3

I. INTRODUCTION trivial behaviors as in some other conformal field theory
(CFT) deformed by marginal operatot$:*° Despite a num-
The phase diagram of isotropic spin-1 chains has not ydber of studies on the BKT transition and the logarithmic
been understood sufficiently. The characteristics of groundorrections in SU(2) systems, those concerned withi§U(
states can change drastically depending on a coupling cosymmetry forv>2 have been seldom discussed. Here, we
stant of the model.Even though there are many rigoréds study the BKT transition and the logarithmic correction in
and exact’ works at several isolated points, one encountershe v>2 case and we find its different nature from2
unconformable issues in a certain region, especially in thease. The obtained continuum theory enables us to calculate
nonintegrable region around an integrable point of thethe logarithmic finite-size correction in the energy of the
Uimin-Lai-Sutherland ULS) model. ground state and the first excited states in the region of the
The general form of the spin-1 Hamiltonian which con- massless phase. Following Ludwig and Cafd$:the finite-
sists of nearest-neighbor interactions with rotational symmesize correction to the ground-state energy of the model in a

try is strip space with the width is
L o
H(0)= 2, [cosd(S;- S, 1) +sind(S- S, 1)), (1.D) Ees= 8L~ grellL),
i=1
where the coupling constant is controlled by one parameter L)=c. + des 4 In(lnL) 1 1.2
0<[0,2m). It is our main concern to understand the macro- c(L)=Cui (InL)3 (InL)y** (InL)?) 1.

scopic behavior in the vicinity of the ULS poiit= 7/4.*° It h < th . | bulk ibuti h

is known that the ULS model has massless excitations de¥N®'® &- 1S the mnonuniversal bulk contribution to the
scribed by the Wess-Zumino-WittdVZW) model. The re- ground-state energy depending on cutoff sca!e. The m|n|_mal
gion | 6| < /4, which contains the standard Heiseberg anti-€N€T9y of an excn.ed state' re[ated to a certain primary field
ferrromagnet ¢=0), is believed to be in the Haldane phaseWith conformal weightx,/2 is given by

which has only massive excitations, as suggested by some

numerical work&® and rigorous studies dt=tan *(1/3) %3 £,=East zﬂyn(L),

On the other hand, the nature of the model in the region L

/2> 6> /4 is theoretically less understood. 13
In this paper employing a renormalization-grotRG) d, In(InL) 1

method in a continuum field theory, we show that the region Yo(L)=X,+ L +0 (D)2 ’(InL)Z) ,

0> /4 nearf= /4 is a massless phase, and that the phase
transition from this massless phase to the Haldane phase wahered,, is a coefficient of a certain three-point function.
ULS point belongs to the Berezinskfiosterlitz-Thouless- We calculate these universal coefficients of the logarithmic
(BKT) type universality class. This result is consistent with acorrections by the obtained continuum field theory.
numerical study obtained by flaand Styom.X° For this The outline of this paper is as follows. In Sec. I, a strong-
purpose, we map the ULS model to the SU(3WZW  coupling Abelian gauge theory is introduced as a critical
model, which reproduces some exact results obtained frorfield theory of the ULS model, which allows us to evaluate
the Bethe ansatz>'1~%%In the nonintegrable region around exact values of universal quantities. We show the equiva-
the ULS point, we show that the SU(BWZW model is lence of this critical theory to the level-one SU(3) WZW
perturbed by adding a S3)-breaking marginal operator model. This argument can be generalized to a certain
which causes the BKT transition. We observe several nonSU(v) symmetric spin model which includes the ULS model
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in the v=3 case. In Sec. lll, we discuss an extended nonin- TABLE I. Expressions of the exchange operator $s2.
tegrable spin model with SWj-asymmetric interaction on

the basis of the level-one SW{ WZW model with an asym- S P
metric perturbation. We pin down the marginal operator N L

2_ — . E E
SrETR (2) T4, 4(2) in the SUE); WZW model as the 2 2X+3

A=1 Y LapB Rap\' . ) o : 1 X2+X—l
SU(v)-asymmetric interaction in the original spin model. s , L o o
The logarithmic corrections of its energy in the massless 2 X+ X2 - X~ 3
phase are evaluated and the difference between the 2 AXA+ IX3 - LX2-3X -1

SU(3)-symmetric and asymmetric model is indicated. Fi
nally, we discuss the universality class of the transition from
the massless phase to the Haldane phase which belongs$e2 in Table |. Hereafter we discuss the fermionized

the BKT type. Hamiltonian(2.3) as v species ¢y=2S+1).
The Euclidean action is written by introducing Lagrang-
Il. CRITICAL THEORY OF THE SU (») SPIN CHAIN ian multiplier xy for the local constraint and the Hubbard-

Stratonovich transformation
To begin with, we extend a QEDdescription for the

SU(2) spin modéf to the SU) one. The spin chain is gL . o
mapped to the WZW model with some perturbations by thisAyzf dTZ [C},a9:C) o TiXj(Cj oCj o= D) +H; j11(¥)],
method. ° (2.4)

We redefine the Hamiltoniafl.1) nearf= /4 as
wheref is an inverse temperature. The Hamiltonian for one

1 . bond interaction is
H(N= g M(0=2 1§80+ 7S §,)7]
J (2.1 HJ,J+1(7):Qr,j+1Qj,j+1_CjT,an,j+1Cj+l,a
_ AT *
with y=tand. We use fermion operators,, ,c/,, for the spin Ci+1a9j+18)a
variables

T T
T (Y= 1)C 4C; Cj+1aCj+15-

> The complex auxiliary fields{Qj’j,},{Q;L’j,} are introduced

- T _ s N .
S aﬁzl Cj.a(L)apCj g (2.2 to decompose the two-body fermion interaction into a single

body. A local U1) gauge transformation
wherelL*, LY, andL? are spin-1 matrices. In this case, Eqg.

(2.1) can be expressed in the fermiéhs Cj,a—>ei“’ic]-,a, Xi—X|— 2
L . .
S, el(P' . _,e_|‘x"'+17 2.
H(?’):Zl [C;aCj,ﬁCLlﬁCHl,a Q) —e9IQ ! (2.9
= preserves Eq2.4).
+(y— l)C;r,aCj,;sc;r+1,aCj+1,B], 2.3 First, we study SUg)-symmetric pointy=1 by the

mean-field theory without taking into account the local con-

in which a trivial constant is neglected. Here the local CO”'straintEZ_lch «Cj.«=1. We shall treat the local constraint
T — ’ ’

straint,=)_, ¢/ ,¢; , =1, is imposed in order to restrict the [ater. In the mean-field theory, the auxiliary fie® ;/ is a
dimension of physical space to three at each lattice site. Dugonstant R,, and then dispersion relation becomes
to this constraint, empty, double, and triple occupancy stateg(k) = — R,coska, wherea is a lattice spacing. The ground
of the fermions are forbidden at each lattice site. The firskate is given by the Fermi sea filled up to Fermi level
term in Eq.(2.3) is an exchange operator between nearest--x_ wijth k.= x/va. The low-energy physics can be de-
neighbor sitgs and the second one is a projector onto a singlgtyined in terms oy, and g which is the lattice fermion
bond. Equatior(2.3) has the local W) symmetry, a transla- operatorc; , only around the Fermi surface with a certain
tional symmetry by one lattice site for all values ¢f In Iow-energf/ cutoffA (<kp) ke as

addition, a global SU(3) symmetry appears at the ULS point

(y=1) where the Hamiltoniar{2.3) consists of only ex-

change operators, and the model becomes Bethe-ansatz sola.mcj 2= (X)exp( —iKeX) + g (X)EXpikex),  x=ja.
able. This fermion expression can be extended to Betheva

ansatz solvable model with higher spin, when sjn- (2.6
2S+1 kinds of fermion on each lattice site are introduced,|, tnis representation, the local gauge transformation Eq.

agg 1 tre constraint on each site is given Dby 5 coresponds to the () vector transformation
252776 ,Ci ,=1. In general, bond interactions of an isotro-

Lha”l,a

pic spinS chain are represented by a polynomial of P () —e*Xy (X)),
X=§-§;. These integral families for higher spin chains are
classified by Batchelor, Yung, and Kennédyone of those Pra(X)— €M e (X).

is the ULS model with an arbitrary spin. We give the expres-
sions of the exchange operator in terms of spin matrix forA translation by one site on the original lattice space,
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Cj,a—Cj+1.EXQAIKEa),

corresponds to a chira, transformation:

(VLo ¥Ra) = (Lo URaEXP(2iKEQ)).

8297
A=0(22), (D)=t (2exp(—ig). (2.10

The gauge-invariant regularization defines the unique Jaco-
bian for the chiral transformatio#, — ¢, which induces the
kinetic term of the scalar field.?? integral, we calculate a

As far as the translational symmetry is not broken, the effecfermionic determinantfor the left moving pait Then, the

tive field theory becomes chira, invariant.

two-dimensional Abelian gauge theory with global symme-

Now, we take into account the deviation from the mean-try SU(v) is expressed as a decoupled free field Lagrangian:

field approximation. In the following parametrization of the

auxiliary field

i+’ L (i
Q,—,,-,=R(—2 )E‘XD{'IJ—J |A1< > )]

the deviation ofQ; ;; becomes

Q; =Ryt R % +i|j—j’|Al(|j+2j,|). (2.7

The local constraint is expressed as
o aX)=0, Yhotira()=0, (283
W atra(X) T Ykath o(X) =0. (2.8b

We obtain a chiraZ ,-invariant effective Lagrangian in terms

of low-energy variables:
L=Lo+ Ling,
where
L£o= 20 (IHTA) YL T 20k (9H1A) Pz,
(2.9

Ling=CONSK Y 0 siksiime -

Here, the gauge field, is a low-energy variable correspon
ing to the Lagrangian multiplier y=aA, and

A=A +iA{,A=Ay—iA,. This effective theory is a per-

2
A, = j % (Limattert Egauge"‘ ﬁghost) (2.11
with
Lonatier 2 0001 o+ 20 0ra
Loauge — vIb3, (2.12

Lghost=2md€+2 7;;,

where the last term is the Fadeev-Popov ghost originating
from the measure of the gauge-field parametrized in terms of
¢. Hereatfter, the tilde of the left moving fermions will be
omitted for simplicity. The operator product expansions
(OPB between free fields are

Oa,p 4.
Z—w

W (D)t plw0)~

t 2 jNM
Yra(2) Yrplw —+--
Z—w

eid)(z,zi)efi(ﬁ(w,wi)w|Z_w|2/v+ .

. (2.13

which allow us to calculate OPE for energy-momentum ten-

d- sors and read off the central charges

Cmatter— Vs Cgauge™ 1, Cghost™ — 2.

turbed Abelian gauge-field theory with a sound velocityAs expected, the total central chargg, equalsy—1 which
v=Rpasinkga), herev is set to unity. In deriving the La- agrees with the Bethe ansatz’s restllhe negative sign in

grangian we have picked up the terms @(a?) and ne-

the Lagrangianly,qe EQ. (2.12, suggests that the (1)

glected the highly oscillating terms and higher derivativedegrees of freedom freeze in the asymptotic behaviors of the

terms. The four-Fermi interactiofy,; is induced by perform-
ing the Gaussian integration over th&, field and also by

the second constraini2.8b. This interaction can be ex-

pressed in the form

v2-1

1 — —
Si@ik@+2 2 T TR,

. ot A _ T
where j m) =¥ (RyaL(ria AN T0(R)= ¥ (R)aTa YL (RIS

In Appendix A, the SU¢) basis is summarized. We should cording to

spin system. Since the conformal weight of the vertex opera-
tor becomes negative, E(R.13 shows unphysical infrared
behavior, and thus it should not appear by itself. Actually,
the U(1) current regularized in the gauge-invariant way

IL2)= Y (D PLa(D). (2.14

Equation(2.14 has no Goto-Imamura-Schwinger term in the
U(1) Kac-Moody algebra. Therefore, this(l) Kac-Moody
algebra has only a trivial representatipp=0,jg=0. Ac-
the bosonization formula in theJ(v)

define a regularization for the(Wl) current which preserves =U(1)x SU(v)-invariant free Dirac theory, degrees of free-

the local U,(1) gauge symmetry s —expla)i,

dom of U1) (charge and SU{) (spin) are separated into a

Yyr—exp(—ia)yr. An arbitrary local composite operator scalar boson and a SW( WZW theory. In our case, the(l)
should be defined in the gauge-invariant regularization. Thelegree of freedom is killed by the gauge field which is rep-
current operators are defined in this way as well. We shaltesented by the scalar boson with negative norm. Equation

discuss the importance of the marginal perturbatip on

(2.11) can be identified with the level-one Sk)( WzZW

the basis of a RG calculation later. To solve this systenmodel?® The Wess-Zumino primary fiel&(z,z) is given by

Lo, we take a gauge fixing conditioh=0 and a parametri-

zation of A with a scalar fieldp(z,z)

G p(2. D% Y (2)€ > D ys(2), G(2,2)eSUv)
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and the conformal weight isy(—1)/2v. To compute the as- g,
ymptotic behavior of the spin-correlation function for the
bulk, it is enough to replace the spin-one operat@r®) by
the continuum fields in terms of Eq&.6) and (2.10:

Y>1
a 'S =JL(r) +JR(r) + [Ty (1)L phre(r)eXp 2iker)
+H.cl], BKT line g,
WhereJL(R)(_r)z w[(R)a(rl)Laﬁz//,_(R)ﬁ(r). Using this, we Qb—
tain the typical correlation function of Tomonaga-Luttinger ;
liquids®’ T<
1 cog2kegr)
(S,~So>oc7+consl><rT (2.15

with scaling dimensiox=1— 1/v, in which the second term FIG. 1. The renormalization-group trajectory for the>2
is dominant ag —« and the momentum distribution shows a model, wherev=2S+1. The couplingy, is defined in the vicinity
power-law singularity near the Fermi momentlkp. The  of the ULS model. The BKT ling,=0, g,<0 corresponds to the
appearance of the oscillating factor is a reflection of the chipure ULS model.
ral Z, symmetry in the antiferromagnet.
— 1 b

®?(2,2)®?(0,0~ Tt H2<1><2>(o,0)+ e

We have neglected the marginal operators so far. One of ~
them_ is the _SQQ) current intgraction i_nc int Which_gives V(22002 (0,0~ 1— b
logarithmic finite-size corrections. Besides, there is another (v+1) |7 ||

L At t :

operatorX;_,Cj ,Cj 5Cj+1,Cj+1,8(X) which bregks the glo- —<1>(2)(0,0)]+ o
bal SU(¥) symmetry except at the ULS point. The con-
tinuum form of the SU{)-asymmetric interaction is given in  where
terms of Eq.(2.6) by

lll. THE ROLE OF MARGINAL OPERATORS

:[@(0,0

~ 2
T T T T — —
Cj,aCj,gCj+1aCj+1,8~ ¢La¢Lﬁ¢Ra¢RB+ T b= 71 b= 7o

[N

which is also chiralz, invariant. The corresponding field . ] ) ]
theory is expressed by the WZW model with these marginall Nis algebra gives the following one-logp functions:
perturbations without global SWJ symmetry. This dg; b
SU(v)-breaking operator becomes marginally relevant for ot _r 2.7 342
the coupling constang< 1, and thus a dynamical mass gen- £1(01:02)= 41" = 5917 +b8:0,+ 0017627,
eration is expected. (3.3
We consider a perturbed CFT with the following action:
dg, b =
2 d%Z .. __ ﬂz(glagz)EW:_5922_b9192+o(923v912),
A=ASU(V)1+Z gJECb(')(z,z), 3.

=t where e'=a. These coupled differential equations can be
where solved in an integral form thanks to a conservation law. An

arbitrary trajectory in the coupling constant spacg,(,)

_ 2 — obeys the following equation:
02D =Tt TP, Y wing eqtat
V- (3 2) X2_Y2:C|Y|(V—2)/V (34)
A —B with X=g,—0, andY=—g,—9,, whereC is an arbitrary
O (277 4TaBTaBjA(Z)jB(Z—) real constant(See Fig. 1. The sign of the initial value of
' J2—1 7t RV g, should be chosen to be negative in order to agree with the

result of the Bethe ansatz. The running coupling constant
agl is renormalized to be zero in the infrared limit. Therefore
proportional toy— 1 with a positive coefficient in the case of this model is in the second reglcg1<0,gz>0 or the third

. o one g;<0g,<0 in the coupling constant space. In the

=3 (S=1). The unperturbed aCt'C”E‘SU(v)l isgivenby BA. ,_5"case, this perturbed CFT describes the well-known
(2.11) and the marginal operators obey the OPE algebra spin-1/2XXZ chain and Eq(3.4) shows a hyperbolic trajec-
tory where the BKT transition occurs beyond the SU(2)
symmetric lineXx=Y=0. There is one-parameter family of
fixed points inc,, =1, that is a fixed lingy; + g,=0.2 Note

There are no other relevant or marginal operators with rot
tional and chiralz; symmetry. The coupling constags is

— 1 b
*H(22) (0.0~ = @00+,
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that the topology of the flow diagram in the case:of 2
differs from that in »=2. The only fixed point is
g7 =95 =0 except forv=2.

Here, we show main results of the RG flow which will be
illustrated in the remaining part of this paper. The RG argu-sy(2), wzw 1

ment classifies the coupling constant space gitkcO into
the following three cases:

(i) g,=0; SU(v) symmetric and asymptotically nonfree,
(i) g»>0; SU(v) asymmetric and asymptotically nonfree,
(iii) go,<0; SU(v) asymmetric and asymptotically free.

Since the interaction®® is marginally relevant for
0,<0, and is marginally irrelevant fay,>0, the trajectory
along g,=0 becomes the BKT transition line. In a finite
system in the asymptotically nonfree regigse=0, thermo-

EXTENDED MASSLESS PHASE AND THE HALDANE . . .
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TABLE II. Finite-size corrections for the spin-1/2 Heisenberg
chain.

Cuir Xt Xs dGS dt ds gy
12 1/2 3/8 —-1/4 3/4 112
BA 1 1/2  1/2 0.3433 —1/4 3/4

Thesev? states are classified by the total spin. As shown in
Appendix A, the statéh=0 describes the singlet excitation
and otherv?—1 primary states are higher spin states with
spin up to #—1)/2. In the finite-size corrections up to the
logarithmic size dependence, the singlet excitation is not fa-
vored compared to those with higher spin.

dynamic quantities acquire some corrections due to the pres- The effect of the marginal operators for the spin-
ence of marginally irrelevant operators, while in an infinite correlation function(2.15 is obtained immediately from the
volume limit there is no influence from them. We indicate information on the excited enerd§?°*°

the difference of the finite-size corrections between QU(

symmetric and asymmetric models. In the third case of

9,<0, the marginally relevant interactish(®) can generate (S, - Sy)=~c0g 2Ker)Ga(g4(r),r), gA(gl(f),f)=M,
a mass gap which might be interpreted as the Haldane gap. r2*a
First, following Ludwig and Cardy%?' we calculate (3.7

finite-size corrections in the SW] symmetric model

(g9,=0) with g,<0. The finite-size corrections to the
ground-state energy of the Sk)tsymmetric models in Eq.
(1.2 are calculated as

Cir=v—1, (3.5

wherey=2S+1 for the spinS.

The finite-size corrections to the low-lying excited ener-

gies are calculated from the most relevant primary field
N2 = Y (D Thstrp(2)€ "> P+ Hec.,

where TA's for A=1,...°—1 are the SU{) basis,
T°=1/{2v, and they are also normalized
TTAT®]=6"%/2. The primary states, |Oh
=lim, 7-.00"(z,2)|0), become eigenstates of Virasoro’s
chargel (L,) with an eigenvalue/2. Their OPE are given
by
B
0A(2,2)0°(0,0~ BELa Ty

ANz,2)® (0,00~ —

b
|zA|20A(O'O)+ .

with the OPE coefficients

1 for A=0,

ba= for A=1,... 2—1.

1 vi—
—X
vWri—1 -1
We obtain the universal quantities in E4..3

[ 1-1/* for A=0

for A=1,... %—1.
(3.6)

XAzl_l/V, b

d =
A — 117

where

Op= _ZdA:?,

except forA=0. Our results forv=2 listed in Table Il
agrees with the Bethe ansatz’s ones in Refs. 16 and 31. The
leading finite-size corrections,;, andx, in the SU@) sym-
metric model agree with Bethe ans&tZ, as well.

Now we consider the second cagge>0, where there is a
marginally irrelevant SU{)-asymmetric interaction. The
situation is crucial whethep=2 or not. Even though the
action describing the ultraviolet theory has no SY6éym-
metry due to the SW(-breaking interaction, the

A as SU(v)-breaking interaction have no effect on the leading

terms of the finite-size correction except in the-2 case.
The RG indicates that the SW[ symmetry appears dynami-
cally for the macroscopic scale even though theterm in
Eq. (3.2 is switched into the fixed-point action. The differ-
ence between the SW)-symmetric and asymmetric model
appears in the logarithmic correction term.

To calculate the logarithmic correction, we note that the
RG flow Eg. (3.3 with an initial condition g;<0 and
g,>0 is absorbed into the fixed point along the line

J1=—0>2. (3.8

The macroscopic property of the system is determined by the
scalel>1, and we can estimate the deviation from the line
as|gi(1)+g,(1)|~0(1~2"(*=2)y with the help of the inte-
gral curve Eq.(3.4) for an arbitrary solution with an initial
condition in the second region. Therefore we can calculate
the logarithmic correction by assuming that the marginally
irrelevant flow forg,>0 is described by the action

2

d<z _
—V¥(z,2)

A= ‘ASU(V)1+ glf o
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TABLE lIl. Finite-size corrections for the spin-1 chains.

Cyir Xq X X dgs dg d; dg o
SU(3), WZW (y=1) 2 2/3 2/3 2/3 49 —-19 -19 89 2/9
SU(3), WZW (y+#1) 2 2/3 2/3 2/3 6 -1 1 2 2
BA 2 213 2/3 2/3

with W (z,2)= v+ 120[®P(2,2) - D@(z,2)] which is those in the asymmetric model split to two levels. As shown
normalized by in Appendix A, the difference of the OPE coefficients be-
cause of the symmetric and antisymmetric properties of
SU(v) Lie algebra basis is classified by the total spin. In
particular, for the SU(3) problems, the primary with the
. i identity matrix (A=0) is spin-singlet, three primaries with
where the OPE coefficier is the antisymmetric matrices are spin-triplet, and the remain-
\/m _ der with symmetric ones are spin-quintuplet. The universal
(b—2b)

1 B
¥ (2,2)¥(0,0)~ o W‘I’(OO)

coefficients characterizing the $8)-symmetric and asym-
metric model are shown in Table Il

This assumption might hold, since the current of the RG Let us now consider the third cagg<0, which corre-
would spend a fair time near the fixed point with dilatation. SPonds tof< 6.=m/4 in the S=1 model. The theory is as-
As in the discussions of the symmetric model, we can evaluymptotically free, then we expect the mass generation which
ate the coefficients of the finite-size energy correction fronfan be identified with the Haldane gap in the 1 case. One
the one-loop renormalization which obeysig,/dl ~ can estimate the mass gap by solving the renormalization

— (B/2)g2. For the ground-state energy, we obtain group Eq.(3.3). The conservation law E3.4) enables us to
reduce the simultaneous equation for the two unknown func-
v(v—1) tions g, andg, to that for the one unknowN=—-g,;—g,
Cyir=7v— 1, dGS:ﬁv

(v=2)

) ) ) ) o - - dY—+1}\/V _ Y2\/1+CY I/+2)/V (3 1@

in which the logarithmic coefficient is different from Eq. dl )

(3.5). The three-point function in the expression of the ex- . ) L )

cited energy is given by using the OPE where the sign of the right-hand side is identical to that of

X=g41—0,. Let us set the initial condition of the running
coupling constants near the transition point

—~ B
Nz 2)®(0,0)~ — |z/TZOA(O’0)+ .
01(0)=—a;, g2(0)=ay(6—6.),
Here the coefficienB, takes three different values according \yherea, anda, are positive constants. This condition sets
to the symmetric properties of the matricgE"} under the the integral constant a€=as(6—6,) in Eq. (3.4 with a

matrix transposition. These are given by positive constantas. The renormalization-group equation
—1 for A=0 (3.10 is immediately integrated under this condition

1 . A A
By=————x4{ 1 for A(#0) with (TH=-T J\cr’ j
—— . Vr2—1inl, 3.1
Ver(r=1) |y o A(#0) with (T =TA. ( vo Jier [yefirey @ V" " o

As a result, we have the universal coefficients in the anomawhere o= v/(v+2). This gives us the order of the scale

lous dimension(1.3) m~! which makes the running coupling constant diverge
g,(Inm )=, This scalem is the energy gap
Xpa=1—1/v,

v—1 for A=0 m=exp —A|C| ?)=exd —c(6.—0) ], (3.12

da=r5 1 for A(#0) with (T =-T~
—1 for A(#0) with {(TA=T".

where

2 o y
A: ’
(39) v 1/2_1 1 y2 ll_y—l7o'
The OPE coefficent® and B, give the exponentsr,..g

characterizing logarithmic distance dependence in(BQ) and c=asA is positive. Therefore we conclude that the

phase transition is infinite order. This result agrees with the
2 recent numerical studies of th®=1 model by Féh and
O'A:m- Siiyom.lo To see this, one should check their obtained en-
ergy gap directly rather than the one-paramegeiunction
The primary states witih#0 in the symmetric model are estimated from it, since we have a two-paramgtdunction
degenerate even if we consider the logarithmic correction(3.3). Their numerical data of the energy gap fit the function
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Eq. (3.12 with the universal constant=0.8+0.2. This is  subalgebra of SU(3)Kac-Moody algebra, except the nor-
consistent with our resutr=v/(v+2)=0.6 atr=3. malization, satisfy the level-four SU(2) Kac-Moody algebra.
The representation of SU(3)is involved in that of
SU(2),. The central charge of both theories afe=2 and
IV. DISCUSSION AND OPEN PROBLEMS the conformal weight of the primary field with spjnis

We have investigated the isotropic spin-1 model to cIarifyA_(J):J(JJrl)/.6 with 05152-34 If we neglect primaries
the phase diagram around the Uimin-Lai-Sutherléods) — With half-odd-integer spin in the SU(2)WVZW model, we
point. The low-energy theory of the ULS model is describedobtain those in the SU(3)WZW model. The SU(2) WZW
by a strong-coupling Abelian gauge theory which can benodel can be regarded as a critical theory of the spin-2 TB
regarded as the critical level-one SU(3) WZW model. Wemodel, and therefore we can expect the following prediction:
have shown a mechanism of the dynamical mass generation Conjecture 1:There is a crossover flow from the sin-
in the S=1 Haldane phase in the presence of the SU(3)Takhtajan-Babujian model to the spin- Uimin-Lai-
breaking interaction with dimension 2. We have shown thaSutherland model.
the dimension 2 operator makes the massless phase As recognized in the studies of the SU(2) spin chains,
6<m/4 and the massive phase<w/4 around the ULS coefficientsd; in the logarithmic correction to the excited
point 9= /4 in the model Eq(1.1). This nature can be states with total spif- satisfy the following sum rulé®
understood by the levdd=1 WZW theory, which has nei- 3d;+1ds=0, wheredg, is the universal coefficient for the
ther a relevant operator with the chiiz} invariance nor the singlet (triplet) excitatior(s) and the prefactor is the dimen-
tensored operator of the WZ matrices but merely marginasion of the spin representation. We have seen that such a
operators. Therefore, the Haldane phase has the exponentimilar rule exists in the spin-1 models discussed above, as
mass gap as a result of the BKT transition. The regiorwell. That is 5q+3dt+ds=0.36 Therefore, we are led to
2< #<7/4 is concluded to be massless from this analysighe following conjecture:
and the numerical study.Here, we indicate the difference  Conjecture 2:There exists a sum rule among the coeffi-
of the phase transitions at the ULS point and at another ineients{d; } of the leading logarithmic correction term in the
tegrable pointé=— /4 of the Takhatajan-BabujiafiTB)  excited energy with total spin-j; i.e.
model. In an alternative field-theoretical approach for under-
standing the Haldane massive phase, Affleck and Haldane 2s
investigated the relevant deformation of tif&=1 TB > (2j+1)d;=0.
model®2 The universality class of this TB model is the level- =0 J
two SU(2) WZW model, where the one-site translation cor-
responds to the chiraZ, transformation. In the levek-
theory withk>1, one can make the chird, invariant rel-
evant operator in terms of tensoring of the (@UWZ matri- We thank S. Hikami, A. Kitazawa, H. Mukaida, K. No-
cesG(z,z), for example (TFG])2. Therefore the transition mura, and K. Okamoto for helpful discussions. We are grate-
from that massless point to the Haldane phase becomes sefgt to T. Fujita and S. Misawa for carefully reading the
ond order, and the mass gap opens obeying the power law. lanuscript. The research of M.-H.K. is financially supported
this case, the TB poinf= —m/4 is isolated as a massless in part by JSPS Research.
point in the massive region, namely the Haldane phase
0> — /4 and the dimer phase<— m/4.

The renormalization-group flow given by E.3) has a APPENDIX

unique fixed point in the:>2 case, while that in=2 case The fundamental representation of the $Y(ie algebra
has a fixed line. Contrary to the=2 case, the logarithmic [TA TB]=fAB.TC is summarized as follows. The Sk ex-

correc_tions appears in the massl.ess_phasez.ﬁeﬁ even if change operator is decomposed in terms of thei$Wéasis
there is a SU{) symmetry-breaking interaction. We have
calculated coefficients of logarithmic corrections to the ener-
gies of the ground state and some excited states both in
SU(v) symmetric and asymmetric models. We find the dif- 1
ferent coefficients in these two cases from their numerical P==IXI+2 > TAXTA

data of the energy gap as in the form E8.12. The nature v A=t

of this model withv>2 suggests Cardy’s argument that a_ o ) B AB

natural irreducible CFT with one parameter should have thérh'zS basis is normalized as [W"T®]=(1/2)6"° or
central chargee,, =133 Nonetheless, no one has ever suc-Sx_; TATA=(v?—1)/2v. The structure constarft*®® has
ceeded in classifying CFT witlt,,>1, and therefore to the quadratic Casimir of the adjoint representation:
search CFT with a fixed linéor surfacg might be worth EfgilfABcfABD:—vacD. Another expression of the ex-
attempting. Since we need to spread the coupling constaghange operator is available when the spin chains are stud-
space at least, the simplest candidate is a model with anisged. On a spac€25"1x C25*1, it is given by

tropic parameters om deformation of the Lie algebra

ACKNOWLEDGMENTS
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SU(v). This program is now in progress. 25
Here we present some conjectures deduced from the CFT P=(— 1)232 (—1)ip)
kinematics. We note thai, (z) and Jg(z), which are in a j=0 ’
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whereP) s the projector onto a space of spiconforming
to an identityl X | =P+ ... + P29 The projectorP) on
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where TA=X\ /2. Here\,_, 5 are antisymmetric matrices
and the remainder of them are symmetric.

a spinj space is represented using the spin operators with The primary state§| )} can be classified by total spin-

the magnitudes as follows:

2S X —x 3
pi=T] | 22| x= sxst
k=0 Xj_xk a=1

(#)
wherex, =[k(k+1)—2S(S+1)]/2. The expressions of the

exchange operator in terms of the spin operator are shown in

Table I.

In particular, the representation of SU(3) is realized by

Gell-Mann matrices

0 0 1 0 —i O
)\1:100,}\2—| ,
0 0O 0
1 0 0
Na=| 0 -1 0],
0 0 O
0 0 1 0 0 —i
A= 0 O, x=|0 0 O],
1 00 i 0 O
0 0O
Ae=| 0 0 1/,
01 0
0 0 O 13 0 0
A=[0 0 —i|, r=[ O 13 0 [,
0i O 0 0 -2,3

j- The total spin operator is given by

L
Sot= Jo dx S(X)=J o+ Jro:

where SU(2) charge operators aje,=¢$(dz/2mi)J, (2)

and Jg o=$(dz/27i)Jg(z). The magnitude of total spin of
the primary states takes values 0,1, or 2 from a synthesis of
two fermions with spin 1. Actinds,, on the primary fields,

we obtain the OPE

S %(2.2)=0,

S0 %22 = 40N 2,2)+ 2T}, (] (2 Ypp(D)E 4D
+H.c).

Here we have used the properties of the SU(3) basis. Using
the symmetric and asymmetric properties of the Gell-Mann
matrices, we obtain

(S IO =i(+1)| O,

wherej=0,1,2. The primary with identity matrixX=0) is

the singlet state j=0). Three antisymmetric ones
(A=2,5,7 in the Gell-Mann matrices give spin-triplet states
(j=1). The remainders which are symmetric matrices, be-
come quintuplet stateg € 2).
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