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Extended massless phase and the Haldane phase in a spin-1 isotropic antiferromagnetic chain
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We study the phase diagram of isotropic spin-1 models in the vicinity of the Uimin-Lai-Sutherland~ULS!
model. This is done with the help of a level-one SU(3) Wess-Zumino-Witten model with certain marginal
perturbations. We find that the renormalization-group flow has infrared stable and unstable trajectories divided
by a critical line on which the ULS model is located. The infrared unstable trajectory produced by a marginally
relevant perturbation generates an exponential mass gap for the Haldane phase, and thus the universality class
of the transition from the massless phase to the Haldane phase at the ULS point is identified with the
Berezinskiı˘-Kosterlitz-Thouless type. Our results support recent numerical studies by Fa´th and So´lyom. In the
massless phase, we calculate logarithmic finite-size corrections of the energy for the SU(n)-symmetric and
asymmetric models in the massless phase.@S0163-1829~97!02213-3#
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I. INTRODUCTION

The phase diagram of isotropic spin-1 chains has not
been understood sufficiently. The characteristics of gro
states can change drastically depending on a coupling
stant of the model.1 Even though there are many rigorous2,3

and exact4–7 works at several isolated points, one encount
unconformable issues in a certain region, especially in
nonintegrable region around an integrable point of
Uimin-Lai-Sutherland~ULS! model.

The general form of the spin-1 Hamiltonian which co
sists of nearest-neighbor interactions with rotational symm
try is

H~u!5(
j51

L

@cosu~Sj•Sj11!1sinu~Sj•Sj11!
2#, ~1.1!

where the coupling constant is controlled by one param
uP@0,2p). It is our main concern to understand the mac
scopic behavior in the vicinity of the ULS pointu5p/4.4,5 It
is known that the ULS model has massless excitations
scribed by the Wess-Zumino-Witten~WZW! model. The re-
gion uuu,p/4, which contains the standard Heiseberg an
ferrromagnet (u50), is believed to be in the Haldane pha
which has only massive excitations, as suggested by s
numerical works8,9 and rigorous studies atu5tan21(1/3).2,3

On the other hand, the nature of the model in the reg
p/2.u.p/4 is theoretically less understood.

In this paper employing a renormalization-group~RG!
method in a continuum field theory, we show that the reg
u.p/4 nearu5p/4 is a massless phase, and that the ph
transition from this massless phase to the Haldane phas
ULS point belongs to the Berezinskiı˘-Kosterlitz-Thouless-
~BKT! type universality class. This result is consistent with
numerical study obtained by Fa´th and So´lyom.10 For this
purpose, we map the ULS model to the SU(3)1 WZW
model, which reproduces some exact results obtained f
the Bethe ansatz.4,5,11–16In the nonintegrable region aroun
the ULS point, we show that the SU(3)1 WZW model is
perturbed by adding a SU(3)-breaking marginal operato
which causes the BKT transition. We observe several n
550163-1829/97/55~13!/8295~9!/$10.00
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trivial behaviors as in some other conformal field theo
~CFT! deformed by marginal operators.16–19Despite a num-
ber of studies on the BKT transition and the logarithm
corrections in SU(2) systems, those concerned with SUn)
symmetry forn.2 have been seldom discussed. Here,
study the BKT transition and the logarithmic correction
the n.2 case and we find its different nature fromn52
case. The obtained continuum theory enables us to calcu
the logarithmic finite-size correction in the energy of t
ground state and the first excited states in the region of
massless phase. Following Ludwig and Cardy,20,21 the finite-
size correction to the ground-state energy of the model i
strip space with the widthL is

EGS5«`L2
pv
6L

c~L !,

c~L !5cvir1
dGS

~ lnL !3
1OS ln~ lnL !

~ lnL !4
,

1

~ lnL !4D , ~1.2!

where «` is the nonuniversal bulk contribution to th
ground-state energy depending on cutoff scale. The mini
energy of an excited state related to a certain primary fi
with conformal weightxn/2 is given by

En5EGS1
2pv
L

gn~L !,

~1.3!

gn~L !5xn1
dn
lnL

1OS ln~ lnL !

~ lnL !2
,

1

~ lnL !2D ,

wheredn is a coefficient of a certain three-point functio
We calculate these universal coefficients of the logarithm
corrections by the obtained continuum field theory.

The outline of this paper is as follows. In Sec. II, a stron
coupling Abelian gauge theory is introduced as a criti
field theory of the ULS model, which allows us to evalua
exact values of universal quantities. We show the equi
lence of this critical theory to the level-one SU(3) WZW
model. This argument can be generalized to a cer
SU(n) symmetric spin model which includes the ULS mod
8295 © 1997 The American Physical Society
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in the n53 case. In Sec. III, we discuss an extended non
tegrable spin model with SU(n)-asymmetric interaction on
the basis of the level-one SU(n) WZW model with an asym-
metric perturbation. We pin down the marginal opera

(A51
n221J Lab

A (z)JRab
A ( z̄) in the SU(n)1 WZW model as the

SU(n)-asymmetric interaction in the original spin mode
The logarithmic corrections of its energy in the massl
phase are evaluated and the difference between
SU(3)-symmetric and asymmetric model is indicated.
nally, we discuss the universality class of the transition fr
the massless phase to the Haldane phase which belon
the BKT type.

II. CRITICAL THEORY OF THE SU „n… SPIN CHAIN

To begin with, we extend a QED2 description for the
SU(2) spin model22 to the SU(n) one. The spin chain is
mapped to the WZW model with some perturbations by t
method.

We redefine the Hamiltonian~1.1! nearu5p/4 as

H~g![
1

cosu
H~u!5(

j51

L

@~Sj•Sj11!1g~Sj•Sj11!
2#

~2.1!

with g5tanu. We use fermion operatorscja ,cja
† for the spin

variables

Sj5 (
a,b51

3

cj ,a
† ~L!abcj ,b , ~2.2!

whereLx, Ly, andLz are spin-1 matrices. In this case, E
~2.1! can be expressed in the fermions23

H~g!5(
j51

L

@cj ,a
† cj ,bcj11,b

† cj11,a

1~g21!cj ,a
† cj ,bcj11,a

† cj11,b#, ~2.3!

in which a trivial constant is neglected. Here the local co
straint,(a51

3 cj ,a
† cj ,a 51, is imposed in order to restrict th

dimension of physical space to three at each lattice site.
to this constraint, empty, double, and triple occupancy sta
of the fermions are forbidden at each lattice site. The fi
term in Eq.~2.3! is an exchange operator between neare
neighbor sites and the second one is a projector onto a sin
bond. Equation~2.3! has the local U~1! symmetry, a transla-
tional symmetry by one lattice site for all values ofg. In
addition, a global SU(3) symmetry appears at the ULS po
(g51) where the Hamiltonian~2.3! consists of only ex-
change operators, and the model becomes Bethe-ansatz
able. This fermion expression can be extended to Be
ansatz solvable model with higher spin, when spinS,
2S11 kinds of fermion on each lattice site are introduce
and the constraint on each site is given
(a51
2S11cj ,a

† cj ,a51. In general, bond interactions of an isotr
pic spin-S chain are represented by a polynomial
X5Si•Sj . These integral families for higher spin chains a
classified by Batchelor, Yung, and Kennedy.24 One of those
is the ULS model with an arbitrary spin. We give the expre
sions of the exchange operator in terms of spin matrix
-
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S<2 in Table I. Hereafter we discuss the fermioniz
Hamiltonian~2.3! asn species (n52S11).

The Euclidean action is written by introducing Lagran
ian multiplier x for the local constraint and the Hubbard
Stratonovich transformation

Ag5E
0

b

dt(
j51

L

@cj ,a
† ]tcj ,a1 ix j~cj ,a

† cj ,a21!1Hj , j11~g!#,

~2.4!

whereb is an inverse temperature. The Hamiltonian for o
bond interaction is

Hj , j11~g!5Qj , j11* Qj , j112cj ,a
† Qj , j11cj11,a

2cj11,a
† Qj , j11* cj ,a

1~g21!cj ,a
† cj ,bcj11,a

† cj11,b .

The complex auxiliary fields$Qj , j 8%,$Qj , j 8
† % are introduced

to decompose the two-body fermion interaction into a sin
body. A local U~1! gauge transformation

cj ,a→eiw jcj ,a , x j→x j2]tw j ,

Qj , j 8→eiw jQj , j 8e
2 iw j11, ~2.5!

preserves Eq.~2.4!.
First, we study SU(n)-symmetric point g51 by the

mean-field theory without taking into account the local co
straint (a51

n cj ,a
† cj ,a51. We shall treat the local constrain

later. In the mean-field theory, the auxiliary fieldQj , j 8 is a
constant R0, and then dispersion relation becom
«(k)52R0coska, wherea is a lattice spacing. The groun
state is given by the Fermi sea filled up to Fermi lev
6kF with kF5p/na. The low-energy physics can be de
scribed in terms ofcL andcR which is the lattice fermion
operatorcj ,a only around the Fermi surface with a certa
low-energy cutoffL(!kF) 6kF as

1

Aa
cj ,a.cLa~x!exp~2 ikFx!1cRa~x!exp~ ikFx!, x[ ja.

~2.6!

In this representation, the local gauge transformation
~2.5! corresponds to the U~1! vector transformation

cLa~x!→ew~x!cLa~x!,

cRa~x!→ew~x!cRa~x!.

A translation by one site on the original lattice space,

TABLE I. Expressions of the exchange operator forS<2.

S P
1
2 2X1

1
2

1 X21X21
3
2

2
9X

31
11
18X

22
9
8X2

67
32

2 1
36X

41
1
6X

32
7
12X

22
5
2X21
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55 8297EXTENDED MASSLESS PHASE AND THE HALDANE . . .
cj ,a→cj11,aexp~ ikFa!,

corresponds to a chiralZn transformation:

~cLa ,cRa!→„cLa ,cRaexp~2ikFa!….

As far as the translational symmetry is not broken, the eff
tive field theory becomes chiralZn invariant.

Now, we take into account the deviation from the mea
field approximation. In the following parametrization of th
auxiliary field

Qj , j 85RS j1 j 8

2 DexpH i u j2 j 8uA1S u j1 j 8u
2 D J ,

the deviation ofQj , j 8 becomes

Qj , j 8.R01dRS j1 j 8

2 D1 i u j2 j 8uA1S u j1 j 8u
2 D . ~2.7!

The local constraint is expressed as

cLa
† cLa~x!50, cRa

† cRa~x!50, ~2.8a!

cLa
† cRa~x!1cRa

† cLa~x!50. ~2.8b!

We obtain a chiralZn-invariant effective Lagrangian in term
of low-energy variables:

L5L01Lint ,

where

L052cLa
† ~ ]̄1 iĀ !cLa12cRa

† ~]1 iA !cRa ,

~2.9!

Lint5const3cLa
† cLbcRb

† cRa .

Here, the gauge fieldA0 is a low-energy variable correspond
ing to the Lagrangian multiplier x5aA0 and
A5A01 iA1 ,Ā5A02 iA1. This effective theory is a per
turbed Abelian gauge-field theory with a sound veloc
v5R0asin(kFa), herev is set to unity. In deriving the La-
grangianL we have picked up the terms toO(a2) and ne-
glected the highly oscillating terms and higher derivat
terms. The four-Fermi interactionLint is induced by perform-
ing the Gaussian integration over thedR0 field and also by
the second constraint~2.8b!. This interaction can be ex
pressed in the form

1

n
j L~z! j R~ z̄!12 (

A51

n221

J L
A~z!JR

A~ z̄!,

where j L(R)5cL(R)a
† cL(R)a and J L(R)

A 5cL(R)a
† Ta b

A cL(R)b .
In Appendix A, the SU(n) basis is summarized. We shou
define a regularization for the U~1! current which preserve
the local UV(1) gauge symmetry cL→exp(ia)cL ,
cR→exp(2ia)cR. An arbitrary local composite operato
should be defined in the gauge-invariant regularization. T
current operators are defined in this way as well. We s
discuss the importance of the marginal perturbationLint on
the basis of a RG calculation later. To solve this syst
L0, we take a gauge fixing conditionA50 and a parametri-
zation of Ā with a scalar fieldf(z,z̄)
-

-

e
ll

Ā5 ]̄f~z,z̄!, cLa~z!5c̃La~z!exp~2 if!. ~2.10!

The gauge-invariant regularization defines the unique Ja
bian for the chiral transformationcL→c̃L which induces the
kinetic term of the scalar fieldf.22 integral, we calculate a
fermionic determinant~for the left moving part! Then, the
two-dimensional Abelian gauge theory with global symm
try SU(n) is expressed as a decoupled free field Lagrang

A
*

5E d 2z

2p
~Lmatter1Lgauge1Lghost! ~2.11!

with

Lmatter52c̃La
† ]̄ c̃La12cRa

† ]cRa ,

Lgauge52n]f]̄f, ~2.12!

Lghost52h̄]ē12h]̄e,

where the last term is the Fadeev-Popov ghost origina
from the measure of the gauge-field parametrized in term
f. Hereafter, the tilde of the left moving fermions will b
omitted for simplicity. The operator product expansio
~OPE! between free fields are

cLa
† ~z!cLb~v!;

da,b

z2v
1•••,

cRa
† ~ z̄!cRb~v̄ !;

da,b

z̄2v̄
1•••,

eif~z, z̄ !e2 if~v,v̄ !;uz2vu2/n1•••, ~2.13!

which allow us to calculate OPE for energy-momentum te
sors and read off the central charges

cmatter5n, cgauge51, cghost522.

As expected, the total central chargectotal equalsn21 which
agrees with the Bethe ansatz’s result.25 The negative sign in
the LagrangianLgauge, Eq. ~2.12!, suggests that the U~1!
degrees of freedom freeze in the asymptotic behaviors of
spin system. Since the conformal weight of the vertex ope
tor becomes negative, Eq.~2.13! shows unphysical infrared
behavior, and thus it should not appear by itself. Actua
the U~1! current regularized in the gauge-invariant way

j L~z!5 :c̃La
† ~z!c̃La~z!. ~2.14!

Equation~2.14! has no Goto-Imamura-Schwinger term in th
U~1! Kac-Moody algebra. Therefore, this U~1! Kac-Moody
algebra has only a trivial representationj L50,j R50. Ac-
cording to the bosonization formula in theU(n)
5U(1)3SU(n)-invariant free Dirac theory, degrees of fre
dom of U~1! ~charge! and SU(n) ~spin! are separated into a
scalar boson and a SU(n) WZW theory. In our case, the U~1!
degree of freedom is killed by the gauge field which is re
resented by the scalar boson with negative norm. Equa
~2.11! can be identified with the level-one SU(n) WZW
model.26 The Wess-Zumino primary fieldG(z,z̄) is given by

Gab~z,z̄!}cLa
† ~z!eif~z, z̄ !cRb~ z̄!, G~z,z̄!PSU~n !
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and the conformal weight is (n21)/2n. To compute the as
ymptotic behavior of the spin-correlation function for th
bulk, it is enough to replace the spin-one operators~2.2! by
the continuum fields in terms of Eqs.~2.6! and ~2.10!:

a21Sj.JL~r !1JR~r !1@eif~r !cLa
† ~r !LabcRb~r !exp~2ikFr !

1H.c.#,

whereJL(R)(r )5cL(R)a
† (r )LabcL(R)b(r ). Using this, we ob-

tain the typical correlation function of Tomonaga-Lutting
liquids27

^Sr•S0&}
1

r 2
1const3

cos~2kFr !

r 2x
~2.15!

with scaling dimensionx5121/n, in which the second term
is dominant asr→` and the momentum distribution shows
power-law singularity near the Fermi momentumkF . The
appearance of the oscillating factor is a reflection of the c
ral Zn symmetry in the antiferromagnet.

III. THE ROLE OF MARGINAL OPERATORS

We have neglected the marginal operators so far. On
them is the SU(n) current interaction inL int which gives
logarithmic finite-size corrections. Besides, there is anot
operator( j51

L cj ,a
† cj ,bcj11,a

† cj11,b(x) which breaks the glo-
bal SU(n) symmetry except at the ULS point. The co
tinuum form of the SU(n)-asymmetric interaction is given in
terms of Eq.~2.6! by

cj ,a
† cj ,bcj11,a

† cj11,b.cLa
† cLbcRa

† cRb1•••

which is also chiralZn invariant. The corresponding fiel
theory is expressed by the WZW model with these marg
perturbations without global SU(n) symmetry. This
SU(n)-breaking operator becomes marginally relevant
the coupling constantg,1, and thus a dynamical mass ge
eration is expected.

We consider a perturbed CFT with the following action

A5ASU~n!1
1(

i51

2

giE d 2z

2p
F~ i !~z,z̄!, ~3.1!

where

F~1!~z,z̄!5
2

An221
J L

A~z!JR
A~ z̄!,

~3.2!

F~2!~z,z̄!5
4Tab

A Tab
B

An221
J L

A~z!JR
B~ z̄!.

There are no other relevant or marginal operators with ro
tional and chiralZ3 symmetry. The coupling constantg2 is
proportional tog21 with a positive coefficient in the case o
n53 (S51). The unperturbed actionASU(n)

1
is given by Eq.

~2.11! and the marginal operators obey the OPE algebra

F~1!~z,z̄!F~1!~0,0!;
1

uzu4
2

b

uzu2
F~1!~0,0!1•••,
i-

of

r

l

r

-

F~2!~z,z̄!F~2!~0,0!;
1

uzu4
1

b

uzu2
F~2!~0,0!1•••,

F~1!~z,z̄!F~2!~0,0!;
1

~n11!

1

uzu4
2

b̃

uzu2 @F~1!~0,0!

2F~2!~0,0!#1•••,

where

b5
2n

An221
, b̃5

2

An221
.

This algebra gives the following one-loopb functions:

b1~g1 ,g2![
dg1
dl

5
b

2
g1

21b̃g1g21O~g1
3,g2

2!,

~3.3!

b2~g1 ,g2![
dg2
dl

52
b

2
g2

22b̃g1g21O~g2
3,g1

2!,

where el5a. These coupled differential equations can
solved in an integral form thanks to a conservation law.
arbitrary trajectory in the coupling constant space (g1 ,g2)
obeys the following equation:

X22Y25CuYu~n22!/n ~3.4!

with X5g12g2 andY52g12g2 , whereC is an arbitrary
real constant.~See Fig. 1.! The sign of the initial value of
g1 should be chosen to be negative in order to agree with
result of the Bethe ansatz. The running coupling const
g1 is renormalized to be zero in the infrared limit. Therefo
this model is in the second regiong1,0,g2.0 or the third
one g1,0,g2,0 in the coupling constant space. In th
n52 case, this perturbed CFT describes the well-kno
spin-1/2XXZ chain and Eq.~3.4! shows a hyperbolic trajec
tory where the BKT transition occurs beyond the SU(
symmetric lineX6Y50. There is one-parameter family o
fixed points incvir51, that is a fixed lineg11g250.28 Note

FIG. 1. The renormalization-group trajectory for then.2
model, wheren52S11. The couplingg2 is defined in the vicinity
of the ULS model. The BKT lineg250, g1<0 corresponds to the
pure ULS model.
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55 8299EXTENDED MASSLESS PHASE AND THE HALDANE . . .
that the topology of the flow diagram in the case ofnÞ2
differs from that in n52. The only fixed point is
g1*5g2*50 except forn52.

Here, we show main results of the RG flow which will b
illustrated in the remaining part of this paper. The RG arg
ment classifies the coupling constant space withg1,0 into
the following three cases:

~i! g250; SU(n) symmetric and asymptotically nonfree
~ii ! g2.0; SU(n) asymmetric and asymptotically nonfre
~iii ! g2,0; SU(n) asymmetric and asymptotically free.

Since the interactionF (2) is marginally relevant for
g2,0, and is marginally irrelevant forg2.0, the trajectory
along g250 becomes the BKT transition line. In a finit
system in the asymptotically nonfree regiong2>0, thermo-
dynamic quantities acquire some corrections due to the p
ence of marginally irrelevant operators, while in an infin
volume limit there is no influence from them. We indica
the difference of the finite-size corrections between SU(n)-
symmetric and asymmetric models. In the third case
g2,0, the marginally relevant interactionF (2) can generate
a mass gap which might be interpreted as the Haldane g

First, following Ludwig and Cardy,20,21 we calculate
finite-size corrections in the SU(n) symmetric model
(g250) with g1,0. The finite-size corrections to th
ground-state energy of the SU(n)-symmetric models in Eq
~1.2! are calculated as

cvir5n21, dGS5
n221

2n2
, ~3.5!

wheren52S11 for the spin-S.
The finite-size corrections to the low-lying excited ene

gies are calculated from the most relevant primary field

OA~z,z̄!5cLa
† ~z!Tab

A cRb~ z̄!eif~z, z̄ !1H.c.,

where TA’s for A51, . . . ,n221 are the SU(n) basis,
T0[I /A2n, and they are also normalized a
Tr@TATB#5dAB/2. The primary states, uOin

A&
[ limz, z̄→0OA(z,z̄)u0&, become eigenstates of Virasoro
chargeL0 (L̄0) with an eigenvaluex/2. Their OPE are given
by

OA~z,z̄!OB~0,0!;
dAB

uzu222/n 1•••,

OA~z,z̄!F~1!~0,0!;2
bA
uzu2
OA~0,0!1•••

with the OPE coefficients

bA5
1

nAn221
3H n221 for A50,

21 for A51, . . . ,n221.

We obtain the universal quantities in Eq.~1.3!

xA5121/n, dA5
2bA
b

5H 121/n2 for A50

21/n2 for A51, . . . ,n221.
~3.6!
-

s-

f

p.

-

Thesen2 states are classified by the total spin. As shown
Appendix A, the stateA50 describes the singlet excitatio
and othern221 primary states are higher spin states w
spin up to (n21)/2. In the finite-size corrections up to th
logarithmic size dependence, the singlet excitation is not
vored compared to those with higher spin.

The effect of the marginal operators for the spi
correlation function~2.15! is obtained immediately from the
information on the excited energy:18,29,30

^Sr•S0&'cos~2kFr !GA„g1~r !,r …, GA„g1~r !,r …5
~ lnr !sA

r
2xA

,

~3.7!

where

sA522dA5
2

n2
,

except forA50. Our results forn52 listed in Table II
agrees with the Bethe ansatz’s ones in Refs. 16 and 31.
leading finite-size correctionscvir andxA in the SU(n) sym-
metric model agree with Bethe ansatz12,25, as well.

Now we consider the second caseg2.0, where there is a
marginally irrelevant SU(n)-asymmetric interaction. The
situation is crucial whethern52 or not. Even though the
action describing the ultraviolet theory has no SU(n) sym-
metry due to the SU(n)-breaking interaction, the
SU(n)-breaking interaction have no effect on the leadi
terms of the finite-size correction except in then52 case.
The RG indicates that the SU(n) symmetry appears dynam
cally for the macroscopic scale even though theg2 term in
Eq. ~3.2! is switched into the fixed-point action. The diffe
ence between the SU(n)-symmetric and asymmetric mode
appears in the logarithmic correction term.

To calculate the logarithmic correction, we note that t
RG flow Eq. ~3.3! with an initial condition g1,0 and
g2.0 is absorbed into the fixed point along the line

g152g2 . ~3.8!

The macroscopic property of the system is determined by
scalel@1, and we can estimate the deviation from the li
as ug1( l )1g2( l )u;O( l22n/(n22)) with the help of the inte-
gral curve Eq.~3.4! for an arbitrary solution with an initial
condition in the second region. Therefore we can calcu
the logarithmic correction by assuming that the margina
irrelevant flow forg2.0 is described by the action

A5ASU~n!1
1g1E d 2z

2p
C~z,z̄!

TABLE II. Finite-size corrections for the spin-1/2 Heisenbe
chain.

cvir xt xs dGS dt ds s t

SU(2)1 WZW 1 1/2 1/2 3/8 21/4 3/4 1/2
BA 1 1/2 1/2 0.3433 21/4 3/4
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TABLE III. Finite-size corrections for the spin-1 chains.

cvir xq xt xs dGS dq dt ds sq

SU(3)1 WZW (g51) 2 2/3 2/3 2/3 4/9 21/9 21/9 8/9 2/9
SU(3)1 WZW (gÞ1) 2 2/3 2/3 2/3 6 21 1 2 2
BA 2 2/3 2/3 2/3
G
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with C(z,z̄)5An11/2n@F (1)(z,z̄)2F (2)(z,z̄)# which is
normalized by

C~z,z̄!C~0,0!;
1

uzu4
2

B

uzu2
C~0,0!,

where the OPE coefficientB is

B5An11

2n
~b22b̃!.

This assumption might hold, since the current of the R
would spend a fair time near the fixed point with dilatatio
As in the discussions of the symmetric model, we can eva
ate the coefficients of the finite-size energy correction fr
the one-loop renormalization which obeysdg1/dl
5(B/2)g1

2. For the ground-state energy, we obtain

cvir5n21, dGS5
n~n21!

~n22!2
,

in which the logarithmic coefficient is different from Eq
~3.5!. The three-point function in the expression of the e
cited energy is given by using the OPE

OA~z,z̄!F̃~0,0!;2
BA

uzu2
OA~0,0!1•••.

Here the coefficientBA takes three different values accordin
to the symmetric properties of the matrices$TA% under the
matrix transposition. These are given by

BA5
1

A2n~n21!
3H n21 for A50

1 for A~Þ0! with t~TA!52TA

21 for A~Þ0! with t~TA!5TA .

As a result, we have the universal coefficients in the ano
lous dimension~1.3!

xA5121/n,

dA5
1

n22
3H n21 for A50

1 for A~Þ0! with t~TA!52TA

21 for A~Þ0! with t~TA!5TA .
~3.9!

The OPE coefficentsB and BA give the exponentssAÞ0
characterizing logarithmic distance dependence in Eq.~3.7!

sA5
2

~n22!
.

The primary states withAÞ0 in the symmetric model are
degenerate even if we consider the logarithmic correct
.
-

-

a-

n,

those in the asymmetric model split to two levels. As sho
in Appendix A, the difference of the OPE coefficients b
cause of the symmetric and antisymmetric properties
SU(n) Lie algebra basis is classified by the total spin.
particular, for the SU(3) problems, the primary with th
identity matrix (A50) is spin-singlet, three primaries wit
the antisymmetric matrices are spin-triplet, and the rema
der with symmetric ones are spin-quintuplet. The univer
coefficients characterizing the SU(3)-symmetric and asym
metric model are shown in Table III.

Let us now consider the third caseg2,0, which corre-
sponds tou,uc[p/4 in theS51 model. The theory is as
ymptotically free, then we expect the mass generation wh
can be identified with the Haldane gap in theS51 case. One
can estimate the mass gap by solving the renormaliza
group Eq.~3.3!. The conservation law Eq.~3.4! enables us to
reduce the simultaneous equation for the two unknown fu
tionsg1 andg2 to that for the one unknownY52g12g2

dY

dl
56nAn221Y2A11CY2~n12!/n, ~3.10!

where the sign of the right-hand side is identical to that
X5g12g2. Let us set the initial condition of the runnin
coupling constants near the transition point

g1~0!52a1 , g2~0!.a2~u2uc!,

wherea1 anda2 are positive constants. This condition se
the integral constant asC.a3(u2uc) in Eq. ~3.4! with a
positive constanta3. The renormalization-group equatio
~3.10! is immediately integrated under this condition

S 2E
Y~0!

uCus
1E

uCus

Y~ l ! D dY

Y2A11CY21/s
5nAn221lnl , ~3.11!

where s[n/(n12). This gives us the order of the sca
m21 which makes the running coupling constant diver
g2(lnm

21)5`. This scalem is the energy gap

m5exp~2AuCu2s!.exp@2c~uc2u!2s#, ~3.12!

where

A5
2

nAn221
E
1

` dy

y2A12y21/s
,

and c5a3A is positive. Therefore we conclude that th
phase transition is infinite order. This result agrees with
recent numerical studies of theS51 model by Fa´th and
Sólyom.10 To see this, one should check their obtained e
ergy gap directly rather than the one-parameterb function
estimated from it, since we have a two-parameterb function
~3.3!. Their numerical data of the energy gap fit the functi
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Eq. ~3.12! with the universal constants50.860.2. This is
consistent with our results5n/(n12)50.6 atn53.

IV. DISCUSSION AND OPEN PROBLEMS

We have investigated the isotropic spin-1 model to clar
the phase diagram around the Uimin-Lai-Sutherland~ULS!
point. The low-energy theory of the ULS model is describ
by a strong-coupling Abelian gauge theory which can
regarded as the critical level-one SU(3) WZW model. W
have shown a mechanism of the dynamical mass genera
in the S51 Haldane phase in the presence of the SU
breaking interaction with dimension 2. We have shown t
the dimension 2 operator makes the massless p
u<p/4 and the massive phaseu,p/4 around the ULS
point u5p/4 in the model Eq.~1.1!. This nature can be
understood by the levelk51 WZW theory, which has nei-
ther a relevant operator with the chiralZ3 invariance nor the
tensored operator of the WZ matrices but merely marg
operators. Therefore, the Haldane phase has the expone
mass gap as a result of the BKT transition. The reg
p/2<u<p/4 is concluded to be massless from this analy
and the numerical study.10 Here, we indicate the differenc
of the phase transitions at the ULS point and at another
tegrable pointu52p/4 of the Takhatajan-Babujian~TB!
model. In an alternative field-theoretical approach for und
standing the Haldane massive phase, Affleck and Hald
investigated the relevant deformation of theS51 TB
model.32 The universality class of this TB model is the leve
two SU(2) WZW model, where the one-site translation c
responds to the chiralZ2 transformation. In the level-k
theory withk.1, one can make the chiralZ2 invariant rel-
evant operator in terms of tensoring of the SU~2! WZ matri-
cesG(z,z̄), for example (Tr@G#)2. Therefore the transition
from that massless point to the Haldane phase becomes
ond order, and the mass gap opens obeying the power law
this case, the TB pointu52p/4 is isolated as a massles
point in the massive region, namely the Haldane ph
u.2p/4 and the dimer phaseu,2p/4.

The renormalization-group flow given by Eq.~3.3! has a
unique fixed point in then.2 case, while that inn52 case
has a fixed line. Contrary to then52 case, the logarithmic
corrections appears in the massless phase forn.2 even if
there is a SU(n) symmetry-breaking interaction. We hav
calculated coefficients of logarithmic corrections to the en
gies of the ground state and some excited states bot
SU(n) symmetric and asymmetric models. We find the d
ferent coefficients in these two cases from their numer
data of the energy gap as in the form Eq.~3.12!. The nature
of this model withn.2 suggests Cardy’s argument that
natural irreducible CFT with one parameter should have
central chargecvir51.33 Nonetheless, no one has ever su
ceeded in classifying CFT withcvir.1, and therefore to
search CFT with a fixed line~or surface! might be worth
attempting. Since we need to spread the coupling cons
space at least, the simplest candidate is a model with an
tropic parameters orq deformation of the Lie algebra
SU(n). This program is now in progress.

Here we present some conjectures deduced from the
kinematics. We note thatJL(z) and JR( z̄), which are in a
d
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subalgebra of SU(3)1 Kac-Moody algebra, except the no
malization, satisfy the level-four SU(2) Kac-Moody algebr
The representation of SU(3)1 is involved in that of
SU(2)4 . The central charge of both theories arecvir52 and
the conformal weight of the primary field with spin-j is
n ( j )5 j ( j11)/6 with 0< j<2.34 If we neglect primaries
with half-odd-integer spin in the SU(2)4 WZW model, we
obtain those in the SU(3)1 WZW model. The SU(2)4 WZW
model can be regarded as a critical theory of the spin-2
model, and therefore we can expect the following predicti

Conjecture 1:There is a crossover flow from the spin-2
Takhtajan-Babujian model to the spin-1 Uimin-Lai-
Sutherland model.

As recognized in the studies of the SU(2) spin chai
coefficientsdj in the logarithmic correction to the excite
states with total spin-j satisfy the following sum rule:35

3dt11ds50, whereds(t) is the universal coefficient for the
singlet ~triplet! excitation~s! and the prefactor is the dimen
sion of the spin representation. We have seen that suc
similar rule exists in the spin-1 models discussed above
well. That is 5dq13dt1ds50.36 Therefore, we are led to
the following conjecture:

Conjecture 2:There exists a sum rule among the coe
cients$dj % of the leading logarithmic correction term in th
excited energy with total spin-j ; i.e.,

(
j50

2S

~2 j11!dj50.
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APPENDIX

The fundamental representation of the SU(n) Lie algebra
@TA,TB#5 f ABCT

C is summarized as follows. The SU(n) ex-
change operator is decomposed in terms of the SU(n) basis
as

P5
1

n
I3I12 (

A51

n221

TA3TA.

This basis is normalized as Tr@TATB#5(1/2)dAB or

(A51
n221TATA5(n221)/2n. The structure constantf ABC has

the quadratic Casimir of the adjoint representatio

(A,B51
n221 f ABCf ABD52nd D

C . Another expression of the ex
change operator is available when the spin chains are s
ied. On a spaceC2S113C2S11, it is given by

P5~21!2S(
j50

2S

~21! jP~ j ! ,
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whereP( j ) is the projector onto a space of spin-i conforming
to an identityI3I5P(0)1•••1P(2S). The projectorP( j ) on
a spin-j space is represented using the spin operators
the magnitudeS as follows:

P~ j !5 )
k50
~Þ j !

2S F X2xk
xj2xk

G , X5 (
a51

3

Sa3Sa,

wherexk5@k(k11)22S(S11)#/2. The expressions of th
exchange operator in terms of the spin operator are show
Table I.

In particular, the representation of SU(3) is realized
Gell-Mann matrices

l15S 0 0 1

1 0 0

0 0 0
D , l25S 0 2 i 0

i 0 0

0 0 0
D ,

l35S 1 0 0

0 21 0

0 0 0
D ,

l45S 0 0 1

0 0 0

1 0 0
D , l55S 0 0 2 i

0 0 0

i 0 0
D ,

l65S 0 0 0

0 0 1

0 1 0
D ,

l75S 0 0 0

0 0 2 i

0 i 0
D , l85S 1/A3 0 0

0 1/A3 0

0 0 22/A3
D ,
tt.
th

in

y

whereTA5lA/2. HerelA52,5,7 are antisymmetric matrice
and the remainder of them are symmetric.

The primary states$uOin
A&% can be classified by total spin

j . The total spin operator is given by

Stot5E
0

L

dx S~x!5JL,01JR,0 ,

where SU(2) charge operators areJL,05r(dz/2p i )JL(z)
and JR,05r(dz̄/2p i )JR( z̄). The magnitude of total spin o
the primary states takes values 0,1, or 2 from a synthesi
two fermions with spin 1. ActingStot on the primary fields,
we obtain the OPE

StotOA50~z,z̄!50,

StotOAÞ0~z,z̄!54OA~z,z̄!12Tba
A ~cLa

† ~z!cRb~ z̄!eif~z, z̄ !

1H.c.!.

Here we have used the properties of the SU(3) basis. U
the symmetric and asymmetric properties of the Gell-Ma
matrices, we obtain

~Stot!
2uOin

A&5 j ~ j11!uOin
A&,

where j50,1,2. The primary with identity matrix (A50) is
the singlet state (j50). Three antisymmetric one
(A52,5,7! in the Gell-Mann matrices give spin-triplet state
( j51). The remainders which are symmetric matrices,
come quintuplet states (j52).
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1U. Schollwöck, Th. Joliœur, and T. Garel, Phys. Rev. B53, 3304
~1996!.

2I. Affleck, T. Kennedy, E. Lieb, and H. Tasaki, Phys. Rev. Le
59, 799 ~1987!; Commun. Math. Phys.115, 477 ~1988!; S.
Knabe, J. Stat. Phys.52, 627 ~1988!.

3H. Tasaki, Phys. Rev. Lett.66, 798 ~1991!; T. Kennedy and H.
Tasaki, Phys. Rev. B45, 304 ~1992!.

4G. V. Uimin, JETP Lett.12, 225~1970!; C. K. Lai, J. Math. Phys.
15, 1675~1974!; B. Sutherland, Phys. Rev. B12, 3795~1975!.

5P. P. Kulish and N. Yu. Reshetikhin, Sov. Phys. JETP53, 108
~1981!.

6L. A. Takhtajan, Phys. Lett.87A, 479 ~1982!; H. M. Babujian,
ibid. 90A, 479 ~1982!.

7M. N. Barber and M. T. Batchelor, Phys. Rev. B40, 4621~1989!;
M. T. Batchelor and M. N. Barber, J. Phys. A23, L15 ~1990!.

8M. P. Nightingale and H. W. Blo¨te, Phys. Rev. B33, 659~1986!.
9K. Nomura, Phys. Rev. B40, 2421~1989!.
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