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Symmetric-group approach to the studies of spin-1/2 lattices
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A technique for studying spin-1/2 lattices, based on the properties of the symmetric§roippresented.
It is shown that the symmetric-group approach, applied to the Heisenberg Hamiltonian, leads to efficient
diagonalization algorithms. Some examples of calculations for the lowest singlet and triplet states of the
2XL isotropic antiferromagnetic Heisenberg ladders are compared with results in the literature. For the
singlet-triplet gap we have obtained, by extrapolation to the bulk limit, the values 0.498 949 and 0.499 545 for
a polynomial and an exponential fit, respectivg$0163-18207)05310-1

I. INTRODUCTION Very recently a method, based on the early ideas of renor-
malization group techniques, has been developed and has
Over the past few years a great amount of work has gonbecome known as the density matrix renormalization group
into analyzing the spectrum of the antiferromagnetic Heisen{(DMRG) approacH. This method is based on the idea of
berg Hamiltonian describing interactions between spin parsuccessively building up the lattice from smaller sublattice
ticles. The motivation for this research comes from the im-units and works most accurately for open boundary condi-
portant role antiferromagnetism seems to play when trying tdions. As a consequence one is able to emulate the exact
explain the properties of higl; superconductors consisting solutions for very large quasi-one-dimensional lattices and
of Cu oxide compounds, such as,SiCu,,,0,,. It is be- the DMRG algorithm is the source of the most accurate re-
lieved that in these compounds two-dimensional CuO strucsults for bulk limit properties of these systems so far.
tures are responsible for superconductivity. Hence, most ef- The motivation for this paper is to examine, if one can
fort is now put into studies of the two-dimensional forms of exploit the well-known theory of the symmetric grody,
the Heisenberg Hamiltoniahln particular one is interested (Ref. § for exact diagonalization studies of spin-1/2 lattices.
in the ground state of such systems and in the correlation§he power of methods utilizing properties §f in connec-
between the different spins in the lattice. Another importantion with spin-1/2 particles was recognized long ago in the
question is whether an infinite lattice possesses a finite sepaentext of performing calculations on the electronic structure
ration (gap between its lowest-energy levels or not. Theseof molecules, where the efficient evaluation of matrix ele-
problems stimulated an enormous amount of work over thenents of the Hamiltonian is crucial. The problem has been
last dozen years, especially after Haldane's conjecture of solved, within the so-called symmetric-group approach
singlet-triplet gap for the infinit&=1 chain? (SGA), for both spin-independehtand spin-dependefit
Despite its simplicity, the exact treatment of the Heisen-Hamiltonians. A resulting computational method was suc-
berg Hamiltonian is far from easy and very few results arecessfully applied in molecular structure calculatiéhghe
known for infinite lattice systems. Probably the most famoudifference between the electronic molecular and the Heisen-
result in this respect is the exact ground-state energy per splerg Hamiltonian is that the former operates in two kinds of
for the infinite S=1/2 chain® A corresponding result for spaces, namely, in the orbital and spin spaces, whereas the
higher-dimensional infinite spin-1/2 systems has so far beehieisenberg Hamiltonian is a pure spin operator and hence it
elusive. The most common approach in these cases is tperates in the spin space only. Hence, the Heisenberg
perform exact calculations for a small number of finite sys-Hamiltonian can be considered as an operator embedded in
tems and to extrapolate the results to the bulk limit. How-the molecular Hamiltonian and, in fact, it has been shown
ever, the number of spins in a lattice which can be treated¢hat the former can be obtained from the latter by neglecting
exactly is severely limited by the combinatorial explosion ofcontributions from the orbital spaéé? Therefore the SGA
the dimension of the badisnd exact calculations for more seems to be an appropriate tool for studying Heisenberg lat-
than 24 spins without explicitly using symmetry propertiestices. A further advantage of using the SGA in such calcula-
of the lattice are next to impossible. In order to circumventtions stems from the fact that one is able to perform them in
this problem, several approximation methods, like that of théhe fully S,M-adapted subspaces rather than in the
resonating valence bontRVB) method or perturbational M-adapted ones. This considerably reduces the dimensions
approachées were designed, hoping to decrease effectivelyof the Hamiltonian matrices and in consequence one is able
the dimensionality of the problem, without major losses into treat larger lattices. Surprisingly, the use of the symmetric
accuracy. The usual procedure for testing these approximatgroup to design algorithms for diagonalization of the Heisen-
methods is to run them for a chain and to compare the obberg Hamiltonian seems to be rather exceptional. In most of
tained approximate result for the ground-state energy pethe works dealing withSy theory in connection with the
spin with the known exact result. This offers some clues asleisenberg Hamiltonian, some fundamental and group-
to how good the approximations are and whether it is justitheoretical, rather than numerical, problems are
fied to extend them to higher-dimensional lattices. addressed®!* The aim of this paper is to demonstrate that
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N
FIG. 1. Spin graph corresponding to a system of eight spins coupl&e- t.
Sy theory indeed allows us to write efficient codes for theand having dimensidn
exact treatment of spin-1/2 lattices. As an example, some
calculations on the lowest singlet and triplet states of isotro- xy:X_y+ - ( x+y+1 (5)
pic 2XL antiferromagnetic Heisenberg laddeisFHL's) X+y+1 y

are performed. Denoting the irreps ofSy by '™, we can express the

Hamiltonian matrix as
II. METHOD

N
The isotropic antiferromagnetic Heisenberg Hamiltonian H= EE 3, O i)
for a system oN interacting spins is defined &s 2 Y

N wherel stands for the unit matrix. From this equation we see
A=> JiS-S, (1) that two major questions have to be consider@g:how to

(i) handle the largeSy-adapted spin space af@ how to gen-
where S denotes the spin operator of partidleJ;; is the  erate and deal with the representation matriEB¥(ij) in
interaction constant witld;>0, and(ij) indicates that the ~an efficient way. _ _
sum runs over all interacting spin pairs. For a spin-1/2 sys- The first point can be solved in an elegant way using the
tem, the basis on which operates consists of the de} of ~ cONcept of a spin grapH. The Sy-adapted spin space is here
all 2N primitve spin product functions. This re_preser;';ed in a very compgct forr_n using the branching
2N-dimensional basis can be symmetry adapted to the totéi'a%r?m'h Eac.hSN—adr?pted §p|nffunct|ﬁ n ;sfrepresen(tjed bg/_ a
spinS and to its projectiotM . The matrix representing in path in the spin graph, starting from the ‘eftmost and ending

. . . he righ A le of th i hi
this symmetry-adapted basis becomes block diagonal, ea { the rightmost vertex. An example of the spin graph is

. own in Fig. 1.
block being labeled by two quantum numb&sndM. In To each verteX/(N,S) there is associated a number indi-

order to establish the connection betwéeand the symmet- cating how many paths of the total sgihreach the coordi-
ric group Sy, we rewrite Eq.(1) in terms of permutations npate (N,S), starting from V(0,0), whereas the arcs
acting in the{fﬁ} space, which can be easily done using theyy(+ N,S) and W(—,N,S), going up and down from the

1
_ZJI’ (6)

Dirac identity-> We obtain coordinate N,S), respectively, are given the weights
N
L1 . 1 W(+,N,S)=V(N,S+1), 7
HZz(Z Jij('l)—ZJ, 2 ( )=V ) @
I
V W(-.N,9)=0, ®
where
with V(N,S+1)=0, if the vertex lies outside the graph.
N . . . .
Hence eachSy-adapted spin function can be uniquely in-
JZZ Jij 3) dexed by a number<I<N obtained by summing over all

] o _ o arc weights of the corresponding path:
and (j) denotes a transposition interchanging spiwith

j. Each of the above sets & M-adapted spin basis func- N
tions generates an irreducible representatioSypfabeled by =1+ E W, . 9
a Young shapéxy], in which x andy stand for the lengths

of the upper and lower rows, respectively. The blocksiof Each path can also be associated with a standard Young tab-
corresponding to a givel® value are associated with the leau in the following way: going up-)/down(—) along the
irreducible representatiofirrep) labeled by path corresponds to adding the next number in the upper/
lower row of the corresponding Young shape. For example,
in the spin graph shown in Fig. 1 we would make the fol-

N N
X=5+S y=5-5 “) lowing association:

2 2
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++—--4+—+- = 1121517 (k—1k) / = /
3141618
(1

(10 )
From Eq.(9) we deduce that the index of thig-adapted (k=1k) N =—q e ~ "

spin function is given by
(18)

I=1+0+0+0+0+3+0+9+0=13. (11

As we can see, the spin graph contains the whole informationc —1k) "~ " =4 >~ + & .
about theSy-adapted spin space. Even for very lafgeset-

ting up the spin graph is trivial and requires negligible com- (19
puter storage.
In order to set up an efficient algorithm for evaluation of
I'PY(ij), we first note that each transposition can be written (k—1k) \\ = \
as a product of elementary transpositions, which exchange
only consecutive labels. For examplej #j we have (20)
in which only the relevant path segments belonging to the
(iH=A(j-1)A™Y, (120 transposition k—1k) are shown. The three vertices in-
where volved in these four kinds of segments are, from the left to
the right,V(k—2,5._5), V(k—1,S._4), andV(k,S,), where
i1 Sc_2, S¢_1, andS, are the corresponding coordinates on the
A= [l (k-1K). (13 S axis of the spin graph. The values of the two constants
k=i+1 a, andby in Egs.(18) and(19) can be expressed in terms of

Each I'™I(ij) can, therefore, be calculated by successivéhe Sk coordinate:

multiplications of the elementad/™¥l(k—1k) ones, a pro- 1

cess which obviously becomes prohibitive for large values of q=se—, by=11-al (21)
XY, But using iterative diagonalization methods like the one 25+1

proposed by Davidsoff,which is capable of extracting sev- The most important conclusion one can derive from Egs.
eral lowest eigenvalues and eigenvectors at the same tin"(g7)_(20) is that they stand for ahole setf identical con-
(even in the presence of degenerarieme never needs t0 yipytions tol'™(k— 1 k) and that this matrix is composed
construct the wholél matrix. Rather, only the evaluation of of, at most, X1 and 2<2 submatrices along the diagonal.
HC is required, wheréC is a vector of the same dimension e multiplication TP (k—1k)C can be performed in a
asH. Looking at Eq.(6), one can see that an efficient algo- \ery fast way, using the following algorithm.

rithm for multiplying '™(k—1k) by C would solve the (1) Loop over all left verticed/, at the horizontal coordi-
problem. Hence, the structure of the irrep matrices of thesgatek— 2 in the spin graph.

elementary transpositions should be as simple as possible. (2) For a givenV,, loop over the three possible right
This is the case if one uses Young’s orthogonal represent@,—ertiCesvr at the horizontal coordinate.

tion of Sy, in which the elementary™(k—1k) is de- (3) For a pair of verticed/, andV,, calculatea, andb,
fined in terms of the action ok.(— 1 k) on the set of standard [Eq.(21)] and find the set of indiced,} and!l1,} [Eq. (9)] of
Young tableaugT} as follows: all head and tail subpaths reachikfg and leavingV, , re-

1 spectively.
I (k—1K)ji=———=pi, (14) (4) Loop over all pairs of, andl, and add the contribu-
k—1k tion to P (k—1k)C.
) From Eqgs.(12) and(13) we see that in order to construct
0 if T; = nonstandard, a matrix corresponding to a transpositior))( one has to

I‘[Xy](k—lk)ijz 5 (15 T f S )
\/ﬁ if T, = standard. perform 3i—j 1 matrix multiplications. Hence, the num
bering of the spin lattice should be done in such a way that

HereT; is the tableau derived frofy; by interchanging num-  the number of such multiplications is a minimum. To illus-
bersk—1 andk. The quantityd,_,, is the so-called axial trate this point, let us consider the following ladder lattice,
distance between numbeks-1 andk in tableauT; and is  numbered in two different ways:
defined as the number of steps to move filoml tok in the
tableau, where moving right and up is counted as positive, 3 5 7 1 7 3 5
while moving left and down as negative. From the last two
equations we deduce that

and from the association in E(LO) we can translate Eq16)  The first one requires 20 matrix multiplications, giving a
into its spin-graphical form very sparseH matrix, while for the second one 70 matrix
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TABLE I. Ground-state $=0) energies per spin in units dfof the free €/, periodic €}, andMobius
€5 2XL AFHL lattices.

L i € €5 €0
3 5 —0.521564206929 —0.508795939622 —0.625000000000
4 14 —0.536633307082 —0.602511171797 —0.548561218443
5 42 —0.544671206434 —0.563879285649 —0.589453358060
6 132 —0.550289372949 —0.584437168239 —0.570636012864
7 429 —0.554237575796 —0.573943000433 —0.581664843887
8 1430 —0.557216945222 —0.580203030314 —0.575676607240
9 4862 —0.559529675630 —0.576633142480 —0.579356425402
10 16796 —0.561381255868 —0.578859502513 —0.577182267851
11 58786 —0.562895857670 —0.577507129164 —0.578558041496
12 208012 —0.564158141975 —0.578372166804 —0.577704092845
13 742900 —0.565226206467 —0.577825861092 —0.578255595987
14 2674440 —0.566141701133 —0.578181575034 —0.577902373081

multiplications are needed and ik matrix is much more €, . An estimate ofe; was obtained in Ref. 21 by taking the
dense. BottH matrices are related by a similarity transfor- average of the two consecutiwg values forL=11 and
mation generated by the orthogonal permutation matrix cont. =12. A much better estimate can be obtained, if one takes
necting both numbering schemes. Of course, both matriceshe average values betweefj and ej' for eachL. Three

have the same eigenvalues. different ways of averaging were calculated, namely,
lll. APPLICATION OF THE SGA METHOD €M(L)={ef(L)+ep(L)}2, (22)
TO 2xL LADDERS
PP =L P — p
In order to test the algorithm, some calculations on the e"P(L)={eo(L—1)+e(L)}2, 23
ground §=0) and on the first excitedS=1) state have —m " "
been performed for two-dimensional isotropie<2 AFHL e™M(L)={eg(L—1)+€p'(L)}/2. (24)
!saet'gc.:es. Three types of boundary conditions have been ChQI:he results are shown in Table Il. From the first column of
' Table I, we can deduce that for the bulk limit
€,~—0.57804, if we assume; = €™ ™(). To improve this
1 3 . 213 2l-1 result, we define the following quantities:
a) free o _
Ae(L)=€eP™L—-1)—€eP™(L), (25
2 4 2L-2 2L
R(L)=Ae(L—1)/Ae(L). (26)
b) periodic : Their values are shown in Table Ill. For ahy<L we have

the exact relation

TABLE II. Results of different ways of averaging, values for
the 2<L AFHL lattices.

c) Mobius ><
. epm PP —m,m

L eP

The node numbering is explicitly shown for tfiee ladder 3 —0.566897969811 - -
only. In the remaining cases the numbering is the same. Note4 —0.575536195120 —0.555653555710 — 0.586780609222
that allfreelattices of typg(a) are nonfrustrated, whereas the 5 —0.576666321855 —0.583195228723 —0.569007288252
periodic andMobius ones are frustrated fdr odd and even, 6 —0.577536590552 —0.574158226944 — 0.580044685462
respectively. The energy values per spé, obtained for 7 _0.577803922160 —0.579190084336 — 0.576150428376
S=0 are presented in Table | to within<110™*? of accu- g —(,577939818777 — 0.577073015374 — 0.578670725564
racy. 9 —0.577994783941 —0.578418086397 —0.577516516321
The results obtained foe§, L=4,6,8,10, are in a com- 19 0578020885182 — 0.577746322497 — 0.578269346627
plete agreement with those of Ref. 20. Only for=12 is 17 _( 578032585330 —0.578183315839 — 0.577870154674
there a discrepancy in the last Significant figure. The Value%_z —0.578038129825 — 0.577939647984 —0.578131067171
for €; are strictly decreasing but they do not show any par-13  _ o 578040728540 — 0578099013948 — 0.577979844416
ticularly good convergence rate to the bulk limit vale®. 14 —0.578041974058 —0.578003718063 — 0.578078984534
The values fok} ande(', on the other hand, oscillate around
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TABLE IlI. Differences A€ between values 0€™™ and their R(14) and setR= 1[R(14)+2]. Using the values for

ratiosR. L;=14 we obtain from Eq(30)

L Ae R €2~ —0.578 043 168, (31)

;' 8:882?:3?22322 7 6;359 a _value which compares very well with O.5_78 0{13 140 ob-

5 0000870268697 1.29860 tained from a DMR.G stud$? Thg R(L) $tab|I|zat|on_ comes

' : as a surprise and it would be interesting to see if the same

! 0000267331608 3.25539 happens for more complex lattices for whiclperiodic and

8 0.000135896617 1.96717 Mobiusboundary condition can be definétis would be the

9 0.000054965164 2.47241 case for example for othdé¢ X L lattices, withK>2).
10 0.000026101241 2.10584 The results for the&s=1 state of the XL AFHL lattice
11 0.000011700148 2.23085 are shown in Table IV. Also here we observe a rather poor
12 0.000005544495 2.11023 convergence rate for thfeee boundary lattice, in contrast to
13 0.000002598715 2.13355 the periodicandMobius attices. For the last two, the excited
14 0.000001245518 2.08645 state energies per spin oscillate, but in contrast to the ground

state they do not oscillate around the bulk limit value. Com-
bining the results from Tables | and IV, we get for the

L-L; k . L
ML) ="€ePM(L,)— Ae(L)) 2 H [R(L+1)] 1, singlet-triplet energy gaps
k= =1

@7 AT(L)={el(L) — ep(L)}x2L, (32
from which we can derive for the bulk limit AP(L)={€}(L)—eB(L)} x 2L, (33
00 k m _y._m m
(L)={e'(L)—eg(L)} X 2L. (34
g=em(L)—AeL) 3 T RL+DI (28) S
k=11=1 The corresponding numerical values are presented in Table
¢ K Il val R N =12 h V. The values for thgeriodic case agree again with those of
If we knew all values oR(L;+1), 1=1.2,...= thenwe oo 50 for | =46810. A significant discrepancy
would be able to calculate, exactly. Defining a mean value (0.514 784 as compared to 0.514 999 in Refi @ppearing
R of all ratios, such that in theL =12 case is most likely due to a misprint in the table

of this reference. To extrapolate the gaps to the bulk limit
1 A(), we took the values forAP(L); L=6,8,10,12 and
'R (29) A™(L); L=5,7,9,11,13 and applied a polynomial and an ex-
ponential fit of the forms

o k ©
> T1IR(L+D] 2
k=11=1 k=

R>
we get forR>1 A(L)=A()+agl *+ask 5+, (35)

AE(Li)

— (30) A(L)=A()+bL™ %", (36)

EBC_ :?’m(l_i) -

The fitting functions have been chosen to monotonically de-
Observing Table Il we are led to the conjecture thatcrease as 1/tends to zero and to have the derivative at this
R(L)—2 asL—x; i.e., R(L) stabilizes at the value of 2. [|imit vanishing. The best fits have been obtained for the
Hence as a first approximation Bwe can use the value of following values. (1) Polynomial: A(«)=0.498 949,

TABLE IV. Excited-state §=1) energies per spin in units dfof thefree efl, periodic €], andMobius
€' 2X L AFHL lattices.

L L4 el €l €
3 9 —0.385032535440 —0.338462734401 —0.458333333333
4 28 —0.440357514339 —0.500000000000 —0.430448130733
5 90 —0.473309340025 —0.476266797694 —0.520377028315
6 297 —0.493625460612 —0.532223082044 —0.502294859393
7 1001 —0.507666799263 —0.518698080323 —0.539965516241
8 3432 —0.517778723700 —0.545365679519 —0.529713346398
9 11934 —0.525416412064 —0.537526886577 —0.549368572855
10 41990 —0.531363574244 —0.552454152895 —0.543293744759
11 149226 —0.536120612948 —0.547693912864 —0.554913296357
12 534888 —0.540006587350 —0.556922850527 —0.551142401294

13 1931540 —0.543238170205 —0.553906804883 —0.558599192957
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TABLE V. Singlet-triplet energy gaps in units af for the
2X L AFHL lattices.

55

O0E(0)~0.3313. Unfortunately, the correspondingq(L)

values for the excited-state energies do not obey such a neat

exponential decay. Therefore, the extrapolationSEy (=)

L AT AP AT did not give a reliable result. The important point is, how-
3 0.81919003 1.02199923 1.00000000  ever, that ifoEq(=) # 5E4 (=), then the values foh () for

4 0.77020634 0.82008937 0.94490470 the free and for theclosedinfinite 2XL lattices differ. In

5 0.71361866 0.87612488 0.69076330 Other words, the effect of closing thieee infinite lattice

6 0.67996695 0.62656903 0.82009384 could result in an unequal shift of the two lowest-lying
7 0.65199087 0.77342888 0.58379059 States] Our results lead us to a conjecture that for fesi-

8 0.63101154 0.55739761 0.73541217 odic isotropic 2<«~ AFHL lattice it may be true that
9 0.61403874 0.70391261 0.53978135 A(x®)=1/2.

10 0.60035363 0.52810699 0.67777046

11 0.58905538 0.65589076 0.52018439

12 0.57963731 0.51478359 0.63748060 IV. CONCLUSIONS

13 0.57168894 0.62189546 0.51106648

Using a method based on the theorySyf, we have per-
formed ground-stateS=0) and excited-stateS=1) calcu-

a,=568.923a;= —3309.4,a,=5321.31, and the rest of the lations for an isotropic XL AFHL lattice for
coefficients zero. (2) Exponential: A(«)=0.499 545, L=34,...,14 andL=3,4,...,13, respectively. Three dif-
b=3838.38,c=4.577 46, andd=—-12.699. The original ferent types of boundary conditions, i.&ge, periodic and
points together with the points calculated by the fitting func-Mobius have been imposed on these lattices. We have
tions are collected in Table VI. In Fig. 2 we present a plot ofshown that one can obtain a very good estimate of the
the exponential fit. As we can see, both fits reproduce thground-state energy per spin by combining the results ob-
original values with an accuracy of at least three significantained for theperiodic andMobius lattices. The ground-state
figures. In both cases our extrapolated valuesX¢r) are  energies per spin for thieee lattice do not show any good
slightly less than and very close to 0.5, which can be comeonvergence rate to the bulk limit. Furthermore, our results
pared withA () =0.501 from Ref. 20 obtained using exact suggest that for thperiodicisotropic 2<<« AFHL lattice the
diagonalization and Monte Carlo techniques unperiodic  singlet-triplet gap may have the exact value of 1/2.
boundary conditions and withh () =0.504 from Ref. 22 The SGA procedure works very well in all the cases con-
obtained using the DMRG method undeze boundary con-  sidered. Even very large eigenvalue problems, of dimensions
ditions. The discrepancy of 0.004 in the gap between ouup to more than 2810, have been solved iteratively for
result and the result from Ref. 22 is probably due to differenthe lowest eigenvalues. Our calculations were done using a
boundary conditions. However, more work on this subject isDavidson routine which keeps all its vectors in the core
still needed[Denoting bySEq(L) the absolute value of the memory. This severely limited accessible dimensionslof
difference between the ground-state energies of the nonfru€hanging the diagonalization code, such that only two vec-
tratedfree and closed(periodic if L is even andMiobiusif  tors are held at any time in the core memory, would allow for
L is odd lattices, we found a rapid exponential decay toa treatment of matrices with dimensions up td 16orre-

0.75 T
exact a

exponential fit
07 | )

0.65

FIG. 2. Plot ofA vs 1L for
the exact points and the expo-

« nential fit.
0.55 -

N -

0.45 ' : !

0.15 0.2

1/L
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TABLE VI. Comparison of the original points with the points calculated by the polynomial and expo-

nential fit.
L A A(poly) A(exp) A-A(poly) A-A(exp)
5 0.69076330 0.69078193 0.69079974 —0.00001863 —0.00003644
6 0.62656903 0.62639636 0.62631084 0.00017267 0.00025819
7 0.58379059 0.58422602 0.58424131 —0.00043543 —0.00045072
8 0.55739761 0.55715095 0.55720749 0.00024666 0.00019012
9 0.53978135 0.53963015 0.53966319 0.00015120 0.00011816
10 0.52810699 0.52806904 0.52806618 0.00003795 0.00004081
11 0.52018439 0.52026254 0.52023824 —0.00007815 —0.00005385
12 0.51478359 0.51486807 0.51484274 —0.00008448 —0.00005915
13 0.51106648 0.51105825 0.51104931 0.00000832 0.00001717

sponding toN =34 for S=0). As far as the convergence rate lated entirely within theSy, formalism, since the lattice point
of the diagonalization procedure is concerned, we found thagroup G is isomorphic to a subgroup &y . However, the

generally theS=1 states required much moHC multipli-  complexity in writing such a lattice-symmetry-adapted pro-
cations than thes=0 states. Further, the larger the dimen-gram is formidable; moreover, it is still not clear how to
sion of H, the slower is the convergence. generate th&,S,M-adapted lattice symmetry basis from the

The implicit S adaptation of theM-adapted spin space S ,M-adapted basis in an efficient and direct way. The simple
based on the SGA methodology leads to a substantial redustructure of the spin graph will become much more compli-
tion of the dimension of the Heisenberg Hamiltonian matrix.cated and it is questionable if it is possible at all to represent
However, one should keep in mind that teadapted spin  theG,S,M-adapted basis in a graphical form. An application
space is more flexible, allowing also for the treatment of theof  projection-operator methods to establish the
XY and XY Z Hamiltonians, where the interaction betweenG,S,M-adapted bases, as advocated in Ref. 13, is very con-
two spin sites cannot be written as a scalar product betweeyenient for relatively small cases. However, when dimen-
the corresponding two spin operators. Thadaptation is of  sions of the Hamiltonian matrices are very large, they be-
no use in these cases, since the Dirac identity cannot beome rather cumbersome, if not prohibitive.
applied. Hence, one pays simplicity and universality for
lower dimensionality when going from the -adapted spin
space to theS,M-adapted one. One could even try to go
further, introducing the lattice symmetry adaptation to the This work has been supported by the Polish KBN, Project
S,M-adapted spin space and thereby reducing the matrix diNo. 2 PO3B 011 08. Helpful comments of Brian G. Wy-
mensions even moré.Note that this problem can be formu- bourne are highly appreciated.
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