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Symmetric-group approach to the studies of spin-1/2 lattices

N. Flocke and J. Karwowski
Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Grudzia¸dzka 5, 87-100 Torun´, Poland

~Received 5 June 1996!

A technique for studying spin-1/2 lattices, based on the properties of the symmetric groupSN , is presented.
It is shown that the symmetric-group approach, applied to the Heisenberg Hamiltonian, leads to efficient
diagonalization algorithms. Some examples of calculations for the lowest singlet and triplet states of the
23L isotropic antiferromagnetic Heisenberg ladders are compared with results in the literature. For the
singlet-triplet gap we have obtained, by extrapolation to the bulk limit, the values 0.498 949 and 0.499 545 for
a polynomial and an exponential fit, respectively.@S0163-1829~97!05310-1#
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I. INTRODUCTION

Over the past few years a great amount of work has g
into analyzing the spectrum of the antiferromagnetic Heis
berg Hamiltonian describing interactions between spin p
ticles. The motivation for this research comes from the i
portant role antiferromagnetism seems to play when trying
explain the properties of high-Tc superconductors consistin
of Cu oxide compounds, such as Srn21Cun11O2n . It is be-
lieved that in these compounds two-dimensional CuO str
tures are responsible for superconductivity. Hence, mos
fort is now put into studies of the two-dimensional forms
the Heisenberg Hamiltonian.1 In particular one is intereste
in the ground state of such systems and in the correlat
between the different spins in the lattice. Another import
question is whether an infinite lattice possesses a finite s
ration ~gap! between its lowest-energy levels or not. The
problems stimulated an enormous amount of work over
last dozen years, especially after Haldane’s conjecture
singlet-triplet gap for the infiniteS51 chain.2

Despite its simplicity, the exact treatment of the Heise
berg Hamiltonian is far from easy and very few results
known for infinite lattice systems. Probably the most famo
result in this respect is the exact ground-state energy per
for the infinite S51/2 chain.3 A corresponding result for
higher-dimensional infinite spin-1/2 systems has so far b
elusive. The most common approach in these cases i
perform exact calculations for a small number of finite s
tems and to extrapolate the results to the bulk limit. Ho
ever, the number of spins in a lattice which can be trea
exactly is severely limited by the combinatorial explosion
the dimension of the basis4 and exact calculations for mor
than 24 spins without explicitly using symmetry properti
of the lattice are next to impossible. In order to circumve
this problem, several approximation methods, like that of
resonating valence bond~RVB! method5 or perturbational
approaches6, were designed, hoping to decrease effectiv
the dimensionality of the problem, without major losses
accuracy. The usual procedure for testing these approxim
methods is to run them for a chain and to compare the
tained approximate result for the ground-state energy
spin with the known exact result. This offers some clues
to how good the approximations are and whether it is ju
fied to extend them to higher-dimensional lattices.
550163-1829/97/55~13!/8287~8!/$10.00
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Very recently a method, based on the early ideas of ren
malization group techniques, has been developed and
become known as the density matrix renormalization gro
~DMRG! approach.7 This method is based on the idea
successively building up the lattice from smaller sublatt
units and works most accurately for open boundary con
tions. As a consequence one is able to emulate the e
solutions for very large quasi-one-dimensional lattices a
the DMRG algorithm is the source of the most accurate
sults for bulk limit properties of these systems so far.

The motivation for this paper is to examine, if one c
exploit the well-known theory of the symmetric groupSN
~Ref. 8! for exact diagonalization studies of spin-1/2 lattice
The power of methods utilizing properties ofSN in connec-
tion with spin-1/2 particles was recognized long ago in t
context of performing calculations on the electronic struct
of molecules, where the efficient evaluation of matrix e
ments of the Hamiltonian is crucial. The problem has be
solved, within the so-called symmetric-group approa
~SGA!, for both spin-independent9 and spin-dependent10

Hamiltonians. A resulting computational method was su
cessfully applied in molecular structure calculations.11 The
difference between the electronic molecular and the Heis
berg Hamiltonian is that the former operates in two kinds
spaces, namely, in the orbital and spin spaces, whereas
Heisenberg Hamiltonian is a pure spin operator and henc
operates in the spin space only. Hence, the Heisenb
Hamiltonian can be considered as an operator embedde
the molecular Hamiltonian and, in fact, it has been sho
that the former can be obtained from the latter by neglect
contributions from the orbital space.4,12 Therefore the SGA
seems to be an appropriate tool for studying Heisenberg
tices. A further advantage of using the SGA in such calcu
tions stems from the fact that one is able to perform them
the fully S,M -adapted subspaces rather than in
M -adapted ones. This considerably reduces the dimens
of the Hamiltonian matrices and in consequence one is a
to treat larger lattices. Surprisingly, the use of the symme
group to design algorithms for diagonalization of the Heise
berg Hamiltonian seems to be rather exceptional. In mos
the works dealing withSN theory in connection with the
Heisenberg Hamiltonian, some fundamental and gro
theoretical, rather than numerical, problems a
addressed.13,14 The aim of this paper is to demonstrate th
8287 © 1997 The American Physical Society
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FIG. 1. Spin graph corresponding to a system of eight spins coupled toS50.
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SN theory indeed allows us to write efficient codes for t
exact treatment of spin-1/2 lattices. As an example, so
calculations on the lowest singlet and triplet states of iso
pic 23L antiferromagnetic Heisenberg ladders~AFHL’s!
are performed.

II. METHOD

The isotropic antiferromagnetic Heisenberg Hamilton
for a system ofN interacting spins is defined as15

Ĥ5(̂
i j &

N

Ji jSi•Sj , ~1!

whereSi denotes the spin operator of particlei , Ji j is the
interaction constant withJi j.0, and^ i j & indicates that the
sum runs over all interacting spin pairs. For a spin-1/2 s
tem, the basis on whichĤ operates consists of the set$u% of
all 2N primitive spin product functions. This
2N-dimensional basis can be symmetry adapted to the t
spinS and to its projectionM . The matrix representingĤ in
this symmetry-adapted basis becomes block diagonal, e
block being labeled by two quantum numbersS andM . In
order to establish the connection betweenĤ and the symmet-
ric groupSN , we rewrite Eq.~1! in terms of permutations
acting in the$u% space, which can be easily done using t
Dirac identity.16 We obtain

Ĥ5
1

2 (̂
i j &

N

Ji j ~ i j !2
1

4
J, ~2!

where

J5(̂
i j &

N

Ji j ~3!

and (i j ) denotes a transposition interchanging spini with
j . Each of the above sets ofS,M -adapted spin basis func
tions generates an irreducible representation ofSN labeled by
a Young shape@xy#, in which x andy stand for the lengths
of the upper and lower rows, respectively. The blocks ofĤ
corresponding to a givenS value are associated with th
irreducible representation~irrep! labeled by

x5
N

2
1S, y5

N

2
2S, ~4!
e
-

-

al

ch

e

and having dimension17

f xy5
x2y11

x1y11 S x1y11
y D . ~5!

Denoting the irreps ofSN by G[xy] , we can express the
Hamiltonian matrix as

H5
1

2 (̂
i j &

N

Ji jG
[xy]~ i j !2

1

4
JI , ~6!

whereI stands for the unit matrix. From this equation we s
that two major questions have to be considered:~1! how to
handle the largeSN-adapted spin space and~2! how to gen-
erate and deal with the representation matricesG[xy] ( i j ) in
an efficient way.

The first point can be solved in an elegant way using
concept of a spin graph.18 TheSN-adapted spin space is he
represented in a very compact form using the branch
diagram.17 EachSN-adapted spin function is represented by
path in the spin graph, starting from the leftmost and end
at the rightmost vertex. An example of the spin graph
shown in Fig. 1.

To each vertexV(N,S) there is associated a number ind
cating how many paths of the total spinS reach the coordi-
nate (N,S), starting from V(0,0), whereas the arc
W(1,N,S) andW(2,N,S), going up and down from the
coordinate (N,S), respectively, are given the weights

W~1,N,S!5V~N,S11!, ~7!

W~2,N,S!50, ~8!

with V(N,S11)50, if the vertex lies outside the graph
Hence eachSN-adapted spin function can be uniquely i
dexed by a number 1<I<N obtained by summing over al
arc weights of the corresponding path:

I511(
i51

N

Wi . ~9!

Each path can also be associated with a standard Young
leau in the following way: going up~1!/down(2) along the
path corresponds to adding the next number in the up
lower row of the corresponding Young shape. For examp
in the spin graph shown in Fig. 1 we would make the fo
lowing association:
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55 8289SYMMETRIC-GROUP APPROACH TO THE STUDIES OF . . .
~10!
From Eq. ~9! we deduce that the index of thisSN-adapted
spin function is given by

I511010101013101910513. ~11!

As we can see, the spin graph contains the whole informa
about theSN-adapted spin space. Even for very largeN set-
ting up the spin graph is trivial and requires negligible co
puter storage.

In order to set up an efficient algorithm for evaluation
G[xy] ( i j ), we first note that each transposition can be writ
as a product of elementary transpositions, which excha
only consecutive labels. For example, ifi, j we have

~ i j !5A~ j21 j !A21, ~12!

where

A5 )
k5 i11

j21

~k21 k!. ~13!

EachG[xy] ( i j ) can, therefore, be calculated by success
multiplications of the elementaryG[xy] (k21 k) ones, a pro-
cess which obviously becomes prohibitive for large values
f xy. But using iterative diagonalization methods like the o
proposed by Davidson,19 which is capable of extracting sev
eral lowest eigenvalues and eigenvectors at the same
~even in the presence of degeneracies!, one never needs to
construct the wholeH matrix. Rather, only the evaluation o
HC is required, whereC is a vector of the same dimensio
asH. Looking at Eq.~6!, one can see that an efficient alg
rithm for multiplying G[xy] (k21 k) by C would solve the
problem. Hence, the structure of the irrep matrices of th
elementary transpositions should be as simple as poss
This is the case if one uses Young’s orthogonal represe
tion of SN ,8 in which the elementaryG[xy] (k21 k) is de-
fined in terms of the action of (k21 k) on the set of standard
Young tableaus$T% as follows:

G [xy]~k21 k! i i52
1

dk21,k
i 5r i , ~14!

G [xy]~k21 k! i j5H 0 if Tj 5 nonstandard,

A12r i
2 if Tj 5 standard.

~15!

HereTj is the tableau derived fromTi by interchanging num-
bersk21 andk. The quantitydk21,k

i is the so-called axia
distance between numbersk21 andk in tableauTi and is
defined as the number of steps to move fromk21 to k in the
tableau, where moving right and up is counted as posi
while moving left and down as negative. From the last t
equations we deduce that

~k21 k!Ti5r iTi1A12r i
2Tj , ~16!

and from the association in Eq.~10! we can translate Eq.~16!
into its spin-graphical form
n

-

f
n
ge

e

f
e

e

e
le.
ta-

e

~17!

~18!

~19!

~20!
in which only the relevant path segments belonging to
transposition (k21 k) are shown. The three vertices in
volved in these four kinds of segments are, from the left
the right,V(k22,Sk22), V(k21,Sk21), andV(k,Sk), where
Sk22, Sk21, andSk are the corresponding coordinates on t
S axis of the spin graph. The values of the two consta
ak andbk in Eqs.~18! and~19! can be expressed in terms o
theSk coordinate:

ak5
1

2Sk11
, bk5A12ak

2. ~21!

The most important conclusion one can derive from E
~17!–~20! is that they stand for awhole setof identical con-
tributions toG[xy] (k21 k) and that this matrix is compose
of, at most, 131 and 232 submatrices along the diagona
The multiplicationG[xy] (k21 k)C can be performed in a
very fast way, using the following algorithm.

~1! Loop over all left verticesVl at the horizontal coordi-
natek22 in the spin graph.

~2! For a givenVl , loop over the three possible righ
verticesVr at the horizontal coordinatek.

~3! For a pair of verticesVl andVr , calculateak andbk
@Eq. ~21!# and find the set of indices$I h% and$I t% @Eq. ~9!# of
all head and tail subpaths reachingVl and leavingVr , re-
spectively.

~4! Loop over all pairs ofI h and I t and add the contribu-
tion to G[xy] (k21 k)C.

From Eqs.~12! and~13! we see that in order to construc
a matrix corresponding to a transposition (i j ), one has to
perform 2u i2 j u21 matrix multiplications. Hence, the num
bering of the spin lattice should be done in such a way t
the number of such multiplications is a minimum. To illu
trate this point, let us consider the following ladder lattic
numbered in two different ways:

The first one requires 20 matrix multiplications, giving
very sparseH matrix, while for the second one 70 matri
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TABLE I. Ground-state (S50) energies per spin in units ofJ of the free e0
f , periodic e0

p , andMöbius
e0
m 23L AFHL lattices.

L f xy e0
f e0

p e0
m

3 5 20.521564206929 20.508795939622 20.625000000000
4 14 20.536633307082 20.602511171797 20.548561218443
5 42 20.544671206434 20.563879285649 20.589453358060
6 132 20.550289372949 20.584437168239 20.570636012864
7 429 20.554237575796 20.573943000433 20.581664843887
8 1430 20.557216945222 20.580203030314 20.575676607240
9 4862 20.559529675630 20.576633142480 20.579356425402
10 16796 20.561381255868 20.578859502513 20.577182267851
11 58786 20.562895857670 20.577507129164 20.578558041496
12 208012 20.564158141975 20.578372166804 20.577704092845
13 742900 20.565226206467 20.577825861092 20.578255595987
14 2674440 20.566141701133 20.578181575034 20.577902373081
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multiplications are needed and itsH matrix is much more
dense. BothH matrices are related by a similarity transfo
mation generated by the orthogonal permutation matrix c
necting both numbering schemes. Of course, both matr
have the same eigenvalues.

III. APPLICATION OF THE SGA METHOD
TO 23L LADDERS

In order to test the algorithm, some calculations on
ground (S50) and on the first excited (S51) state have
been performed for two-dimensional isotropic 23L AFHL
lattices. Three types of boundary conditions have been c
sen:

The node numbering is explicitly shown for thefree ladder
only. In the remaining cases the numbering is the same. N
that all free lattices of type~a! are nonfrustrated, whereas th
periodicandMöbiusones are frustrated forL odd and even,
respectively. The energy values per spin,e0, obtained for
S50 are presented in Table I to within 1310212 of accu-
racy.

The results obtained fore0
p , L54,6,8,10, are in a com

plete agreement with those of Ref. 20. Only forL512 is
there a discrepancy in the last significant figure. The val
for e0

f are strictly decreasing but they do not show any p
ticularly good convergence rate to the bulk limit valuee0

` .
The values fore0

p ande0
m , on the other hand, oscillate aroun
-
es

e

o-

te

s
-

e0
` . An estimate ofe0

` was obtained in Ref. 21 by taking th
average of the two consecutivee0

p values for L511 and
L512. A much better estimate can be obtained, if one ta
the average values betweene0

p and e0
m for eachL. Three

different ways of averaging were calculated, namely,

ēp,m~L !5$e0
p~L !1e0

m~L !%/2, ~22!

ēp,p~L !5$e0
p~L21!1e0

p~L !%/2, ~23!

ēm,m~L !5$e0
m~L21!1e0

m~L !%/2. ~24!

The results are shown in Table II. From the first column
Table II, we can deduce that for the bulk lim
e0

`'20.57804, if we assumee0
`5 ēp,m(`). To improve this

result, we define the following quantities:

Dē~L !5 ēp,m~L21!2 ēp,m~L !, ~25!

R~L !5Dē~L21!/Dē~L !. ~26!

Their values are shown in Table III. For anyLi<L we have
the exact relation

TABLE II. Results of different ways of averaginge0 values for
the 23L AFHL lattices.

L ēp,m ēp,p ēm,m

3 20.566897969811 - -
4 20.575536195120 20.555653555710 20.586780609222
5 20.576666321855 20.583195228723 20.569007288252
6 20.577536590552 20.574158226944 20.580044685462
7 20.577803922160 20.579190084336 20.576150428376
8 20.577939818777 20.577073015374 20.578670725564
9 20.577994783941 20.578418086397 20.577516516321
10 20.578020885182 20.577746322497 20.578269346627
11 20.578032585330 20.578183315839 20.577870154674
12 20.578038129825 20.577939647984 20.578131067171
13 20.578040728540 20.578099013948 20.577979844416
14 20.578041974058 20.578003718063 20.578078984534
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ēp,m~L !5 ēp,m~Li !2Dē~Li ! (
k51

L2Li

)
l51

k

@R~Li1 l !#21,

~27!

from which we can derive for the bulk limit

e0
`5 ēp,m~Li !2Dē~Li !(

k51

`

)
l51

k

@R~Li1 l !#21. ~28!

If we knew all values ofR(Li1 l ), l51,2, . . . ,`, then we
would be able to calculatee0

` exactly. Defining a mean valu
R̄ of all ratios, such that

(
k51

`

)
l51

k

@R~Li1 l !#215 (
k51

`
1

R̄k , ~29!

we get forR̄.1

e02
` 5 ēp,m~Li !2

Dē~Li !

R̄21
. ~30!

Observing Table III we are led to the conjecture th
R(L)→2 asL→`; i.e., R(L) stabilizes at the value of 2
Hence as a first approximation toR̄ we can use the value o

TABLE III. Differences Dē between values ofēp,m and their
ratiosR.

L Dē R

4 0.008638225309 -
5 0.001130126735 7.64359
6 0.000870268697 1.29860
7 0.000267331608 3.25539
8 0.000135896617 1.96717
9 0.000054965164 2.47241
10 0.000026101241 2.10584
11 0.000011700148 2.23085
12 0.000005544495 2.11023
13 0.000002598715 2.13355
14 0.000001245518 2.08645
t

R(14) and setR̄5 1
2 @R(14)12#. Using the values for

Li514 we obtain from Eq.~30!

e0
`'20.578 043 168, ~31!

a value which compares very well with20.578 043 140 ob-
tained from a DMRG study.22 TheR(L) stabilization comes
as a surprise and it would be interesting to see if the sa
happens for more complex lattices for which aperiodicand
Möbiusboundary condition can be defined~this would be the
case for example for otherK3L lattices, withK.2).

The results for theS51 state of the 23L AFHL lattice
are shown in Table IV. Also here we observe a rather p
convergence rate for thefreeboundary lattice, in contrast to
theperiodicandMöbius lattices. For the last two, the excite
state energies per spin oscillate, but in contrast to the gro
state they do not oscillate around the bulk limit value. Co
bining the results from Tables I and IV, we get for th
singlet-triplet energy gaps

D f~L !5$e1
f ~L !2e0

f ~L !%32L, ~32!

Dp~L !5$e1
p~L !2e0

p~L !%32L, ~33!

Dm~L !5$e1
m~L !2e0

m~L !%32L. ~34!

The corresponding numerical values are presented in T
V. The values for theperiodiccase agree again with those
Ref. 20 for L54,6,8,10. A significant discrepanc
~0.514 784 as compared to 0.514 999 in Ref. 20! appearing
in theL512 case is most likely due to a misprint in the tab
of this reference. To extrapolate the gaps to the bulk lim
D(`), we took the values forDp(L); L56,8,10,12 and
Dm(L); L55,7,9,11,13 and applied a polynomial and an e
ponential fit of the forms

D~L !5D~`!1a4L
241a5L

251•••, ~35!

D~L !5D~`!1bL2ced/L. ~36!

The fitting functions have been chosen to monotonically
crease as 1/L tends to zero and to have the derivative at t
limit vanishing. The best fits have been obtained for t
following values. ~1! Polynomial: D(`)50.498 949,
TABLE IV. Excited-state (S51) energies per spin in units ofJ of the freee1
f , periodice1

p , andMöbius
e1
m 23L AFHL lattices.

L f xy e1
f e1

p e1
m

3 9 20.385032535440 20.338462734401 20.458333333333
4 28 20.440357514339 20.500000000000 20.430448130733
5 90 20.473309340025 20.476266797694 20.520377028315
6 297 20.493625460612 20.532223082044 20.502294859393
7 1001 20.507666799263 20.518698080323 20.539965516241
8 3432 20.517778723700 20.545365679519 20.529713346398
9 11934 20.525416412064 20.537526886577 20.549368572855
10 41990 20.531363574244 20.552454152895 20.543293744759
11 149226 20.536120612948 20.547693912864 20.554913296357
12 534888 20.540006587350 20.556922850527 20.551142401294
13 1931540 20.543238170205 20.553906804883 20.558599192957
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8292 55N. FLOCKE AND J. KARWOWSKI
a45568.923,a5523309.4,a655321.31, and the rest of th
coefficients zero. ~2! Exponential: D(`)50.499 545,
b53838.38, c54.577 46, andd5212.699. The original
points together with the points calculated by the fitting fun
tions are collected in Table VI. In Fig. 2 we present a plot
the exponential fit. As we can see, both fits reproduce
original values with an accuracy of at least three signific
figures. In both cases our extrapolated values forD(`) are
slightly less than and very close to 0.5, which can be co
pared withD(`)50.501 from Ref. 20 obtained using exa
diagonalization and Monte Carlo techniques underperiodic
boundary conditions and withD(`)50.504 from Ref. 22
obtained using the DMRG method underfreeboundary con-
ditions. The discrepancy of 0.004 in the gap between
result and the result from Ref. 22 is probably due to differ
boundary conditions. However, more work on this subjec
still needed.@Denoting bydE0(L) the absolute value of the
difference between the ground-state energies of the non
trated free and closed~periodic if L is even andMöbius if
L is odd! lattices, we found a rapid exponential decay

TABLE V. Singlet-triplet energy gaps in units ofJ for the
23L AFHL lattices.

L D f Dp Dm

3 0.81919003 1.02199923 1.00000000
4 0.77020634 0.82008937 0.94490470
5 0.71361866 0.87612488 0.69076330
6 0.67996695 0.62656903 0.82009384
7 0.65199087 0.77342888 0.58379059
8 0.63101154 0.55739761 0.73541217
9 0.61403874 0.70391261 0.53978135
10 0.60035363 0.52810699 0.67777046
11 0.58905538 0.65589076 0.52018439
12 0.57963731 0.51478359 0.63748060
13 0.57168894 0.62189546 0.51106648
-
f
e
t

-

r
t
s

s-

dE0(`)'0.3313. Unfortunately, the correspondingdE1(L)
values for the excited-state energies do not obey such a
exponential decay. Therefore, the extrapolation todE1(`)
did not give a reliable result. The important point is, ho
ever, that ifdE0(`)ÞdE1(`), then the values forD(`) for
the free and for theclosed infinite 23L lattices differ. In
other words, the effect of closing thefree infinite lattice
could result in an unequal shift of the two lowest-lyin
states.# Our results lead us to a conjecture that for theperi-
odic isotropic 23` AFHL lattice it may be true that
D(`)51/2.

IV. CONCLUSIONS

Using a method based on the theory ofSN , we have per-
formed ground-state (S50) and excited-state (S51) calcu-
lations for an isotropic 23L AFHL lattice for
L53,4, . . . ,14 andL53,4, . . . ,13, respectively. Three dif
ferent types of boundary conditions, i.e.,free, periodic, and
Möbius, have been imposed on these lattices. We h
shown that one can obtain a very good estimate of
ground-state energy per spin by combining the results
tained for theperiodicandMöbius lattices. The ground-state
energies per spin for thefree lattice do not show any good
convergence rate to the bulk limit. Furthermore, our resu
suggest that for theperiodic isotropic 23` AFHL lattice the
singlet-triplet gap may have the exact value of 1/2.

The SGA procedure works very well in all the cases co
sidered. Even very large eigenvalue problems, of dimens
up to more than 2.63106, have been solved iteratively fo
the lowest eigenvalues. Our calculations were done usin
Davidson routine which keeps all its vectors in the co
memory. This severely limited accessible dimensions ofH.
Changing the diagonalization code, such that only two v
tors are held at any time in the core memory, would allow
a treatment of matrices with dimensions up to 108 ~corre-
-

FIG. 2. Plot ofD vs 1/L for

the exact points and the expo
nential fit.
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TABLE VI. Comparison of the original points with the points calculated by the polynomial and e
nential fit.

L D D(poly) D(exp) D-D(poly) D-D(exp)

5 0.69076330 0.69078193 0.69079974 20.00001863 20.00003644
6 0.62656903 0.62639636 0.62631084 0.00017267 0.0002581
7 0.58379059 0.58422602 0.58424131 20.00043543 20.00045072
8 0.55739761 0.55715095 0.55720749 0.00024666 0.0001901
9 0.53978135 0.53963015 0.53966319 0.00015120 0.0001181
10 0.52810699 0.52806904 0.52806618 0.00003795 0.0000408
11 0.52018439 0.52026254 0.52023824 20.00007815 20.00005385
12 0.51478359 0.51486807 0.51484274 20.00008448 20.00005915
13 0.51106648 0.51105825 0.51104931 0.00000832 0.0000171
te
th

n-

e
du
ix

th
en
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sponding toN534 forS50). As far as the convergence ra
of the diagonalization procedure is concerned, we found
generally theS51 states required much moreHC multipli-
cations than theS50 states. Further, the larger the dime
sion ofH, the slower is the convergence.

The implicit S adaptation of theM -adapted spin spac
based on the SGA methodology leads to a substantial re
tion of the dimension of the Heisenberg Hamiltonian matr
However, one should keep in mind that theM -adapted spin
space is more flexible, allowing also for the treatment of
XY andXYZ Hamiltonians, where the interaction betwe
two spin sites cannot be written as a scalar product betw
the corresponding two spin operators. TheS adaptation is of
no use in these cases, since the Dirac identity canno
applied. Hence, one pays simplicity and universality
lower dimensionality when going from theM -adapted spin
space to theS,M -adapted one. One could even try to g
further, introducing the lattice symmetry adaptation to t
S,M -adapted spin space and thereby reducing the matrix
mensions even more.23 Note that this problem can be formu
n-
ica

.

at

c-
.

e

en

be
r

e
i-

lated entirely within theSN formalism, since the lattice poin
groupG is isomorphic to a subgroup ofSN . However, the
complexity in writing such a lattice-symmetry-adapted pr
gram is formidable; moreover, it is still not clear how
generate theG,S,M -adapted lattice symmetry basis from th
S,M -adapted basis in an efficient and direct way. The sim
structure of the spin graph will become much more comp
cated and it is questionable if it is possible at all to repres
theG,S,M -adapted basis in a graphical form. An applicati
of projection-operator methods to establish t
G,S,M -adapted bases, as advocated in Ref. 13, is very c
venient for relatively small cases. However, when dime
sions of the Hamiltonian matrices are very large, they
come rather cumbersome, if not prohibitive.
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