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The quadrupolar ordering in CgBis explained in terms of the electrostatic interaction of quadrupolar
moments arranged into a simple cubic lattice. The representation of magnetic and quadrupolar moments by
means of quasispins of two kinds is employed. A linear increase of the quadrupolar transition temperature
To(H) with applied magnetic field and its further reentrance are described using a generalized spherical model
which is well adjusted to a particular problem of the quadrupolar ordering ingC&Be theory naturally
explains the growing specific heat jumpTag(H) with increasing magnetic field. The role of the quadrupolar
ordering in the formation of the magnetic ordering, as well as the possible critical experiments and applications
to other rare-earth compounds, are discusggd163-1827)01013-9

[. INTRODUCTION temperatures (quadrupolar, To~3.3 K, and magnetic,
Tn=~2.4 K) are much smaller than the CEF splitting, for low
The aim of the present paper is to discuss the nature of thenergy phenomena with not exceeding several tens K, it
qguadrupolar ordering in CeB This compound is classified should be legitimate to neglectla, contribution and to deal
as a dense Kondo system. With decreasing temperature, thdth I'g only.
resistivity grows logarithmically, attaining its maximum at  The quadrupolar ordering is characterized by the follow-
T~3.2 K! The Kondo temperature was initially estimated asing features:
Tk~8 K.2 Later this value was significantly revised to a (i) There are two lines in th&-H phase diagram, which
value of T¢=1 K from the experimental data on the mag- separate the antiferroquadrupol@hFQ) phase from the
netic susceptibility versus temperatﬁré’.his revision was complex antiferromagnetiCAFM) phases(see Fig. 2 and
caused by an unusual picture of the crystal field splittingfrom the disorderedD) phase. The AFQ-D transition line,
revealed in the Raman and neutron spectroscopi@o(H), exhibits a highly anisotropic behavior. Starting at
measurements. To~3.3 K, T increases wittH at not very high magnetic
It is well known that the crystalline electric fiel€EP of  field, and increases linearlg To(H)/dH>0. The reentrant
cubic symmetry(the elementary cell, containing the Ce ion behavior of To(H), predicted theoretically in Ref. 14, has
with its boron environment, is shown in Fig) tesults in  not yet been confirmed experimentally up to magnetic field
spliting of the Cé* multiplet (4f!, 7=5/2, S=1/2, of 18 T (Refs. 13,15,16(for recent experimental data, see
L=3) into al'; doublet and d"g quartet. The ground state Fig. 3). It is worth noting, that the estimates fropelow for
of Ce3* in CeBg is realized as the well isolatdd quartet, the values of the critical field at the reentrance dge- 0 are
and thel's-T'; CEF gap has been determined as 47 eV.18 T and 60 T, respectively, according to Ref. 14.
Prior to the results of Ref. 4 many difficulties in interpreta-  (ii) There are contradictory AFQ patterns obtained in dif-
tion of experimental data had arisen in connection with in-ferent microscopic measurements: neuttot’, NMR,'! and
correct assumptions on the multiplet splitting: The ground-«SRZ1’ The interpretation of neutron experiments is consis-
state level had generally been ascribed to(cf., however,
Refs. 5,6. The quadrupolar and magnetic transitions were
proved in the specific heat measureméntad\MR,%! and
neutron diffraction®!® studies. Since the typical ordering S L
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FIG. 1. The elementary cubic cell of CgBCe ions, as well as FIG. 2. The low field part of the phase diagram. Positions of the
boron octahedrals, form simple cubic sublattices with a lattice palines, confining the magnetically ordered phases, depend on the
rametera=4.14 A. orientation of magnetic field.
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AFQ ground state and relevant excitations. In Sec. IV, on the
L’ basis of the two relevant interactions, Zeeman and quadru-
0 ‘; - "t 5' é 7' é ; polar, and using the spherical model for picking up these

interactions, we are able to determine the shapeg§H). It
occurs to be strongly anisotropic in thieH plane. Despite a
erfect cubic lattice symmetry, such a strong anisotropy is
ue to a spacial anisotropy of the quadrupolar interaction. Its
conventional form, following from the Coulomb’s interac-
%i'on, gives rise to a very soft mode af excitations in the
particular case of a simple cubic lattice. Experimentally,
tent with the AFQ patterns of th@=[%%1] modulation, strong fluctuations are indicated by a small specific heat
whereas the NMR anckSR measurements display more Jump at the D-AFQ transition. This is a reason for employing
complicated AFQ structures. Note that until now the abovelhe spherical model which is an appropriate tool for describ-
mentioned microscopic methods, i.&'B-NMR, neutron dif-  iNg Systems with developed fluctuations. _
fraction, as well ag.SR, are used in nonzero magnetic fields  1he spherical model is applied for deriving analytical for-
which generate magnetically ordered states. Indeed, picking'ulas for the specific heat near the AFQ-D transition. We
up an identical modulation with the AFQ state, a magnetic2/So outline how the magnetically ordered state can be gen-
ordering is a secondary effect with respect to the primangrated by the quadrupolar interaction via quantum fluctua-
quadrupolar ordering. The theoretical approach developed ions of orbital-like “spins,” 7's. In Sec. V theo-7 repre-
Ref. 14 selects thpiLi] structure as energetically preferen- Sentation is used for the case of a sinfjkeole (configuration
tial. f13), which is likely ascribed to the rare-earth compound
(iii) The specific heat jump &, appears to be of order of TmTe. In the concluding section we discuss what kind of
magnitude smaller than its counterparat(H=0)./° This  experiments could be critical for establishing the nature of
points out an important role of fluctuations at the D-AFQ the AFQ order unambigiously.
transition. This circumstance has been taken into account in
Ref. 14 by employing the spherical model description of the

Temperature (K)

FIG. 3. The boundary between two phases, AFQ and D, ag
determind experimentallfRef. 16 by transport(magnetoresis-
tance and magnetic measurements, full and open circles, respe
tively. A line is included as a guide to the eye.

effective spin Hamiltonian. The specific heat jump on the Il. THEORETICAL PREREQUISITE
D-AFQ transition line grows witH.” A. Representation of moments through the Pauli matrices.
The main features of the magnetic ordering have been Zeeman interaction
presented in Ref. 13: ,
(i) With a magnetic field applied alorfg. 11], the AFM- We repre_se_nt the set of thigg stat_es_W|th use of_the
structure is characterized by the wave vector, eitkgr |J2) (abbreviation for|L,S,7,7,) basis in the following

=[333] ork,=[3%3] (the singlek structure at sufficiently form:

high magnetic fiely by a couple ofk’s, k; and k, (the
doublek structure in moderate fielfisand by a mixture of Y1+ =516 512+ 16 F3/2), o.=]%1/2). (1)
differently oriented domains at weak magnetic fieldee ’ ’
Fig. 2, where all these magnetic phases are sketched out

(i) The Bragg peaks at the wave vectrsand/ork, are  The quartet constituents in E(L) are labeled in such a way
accompanied byk_1=[%,;110] and/or k_zz[%};O], respec- in order to make use of the Pauli matricesand =, conve-

. 13 . ) . . nient. For each’, the Kramers doubley, - is defined as
tively.”* Their occurrence is a sign of a crucial role of the ’

AFQ modulation,Q=[333], in the formation of magnetic
structures. A possible doublestructure, identified in Ref.
13, is shown in Fig. 4. oy =Ess e, oy =Yy (0 =, ).

In the next section an effective “separation” of spin and %)
orbital degrees of freedom is carried out by introducing a
formalism, according to which magnetic and quadrupolar
moments can be properly described by means of two Paulfhe orbital doublety, , and ¢, , can be suitably defined
matrices,or and 7. Section |l concerns the analysis of the with using the pseudospin operateras

N| -



1 1
7-Zlﬂl,a': E wl,tr ) 7'21102,0': - E ¢2,0’ '

( T l/’l,oz 1,02,0-) . (3)

T+ ¢2,0’= lpl,o’

sions for the magnetic moment in termsefand r, given in
Ref. 6, are oversimplified.

In order to derive formulas for the momenits S, L, M),
we need to calculate the matrix elements of, sagyer the

set{i, o}
<'/’1,t|x7z|'//1,t>:i11/61 <‘/’2,i|jz|¢’2,i>:i1/21
<l/’2,:|»7:|’/’1,:>:2/\/§y <'J/1,:|~7:|¢2,:>:2/\/§,

(4| T\ 1) =5I3, (4| T|ho)=3. (4)
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(2) In the magnetically ordered phagsee Fig. 2 the
Bragg peaks are related either to the sirdgkructure(either
k;=[333], or k,=[£%3]), or to the doublek structure Kk,
andk,). These peaks &; andk, are accompanied by the
Bragg peaks ak,=[330] andk,=[3+0]. This fact can be
%'asily understood if we note that magnetizat{bnis related
not only to thee modulations(wave vectorsk,; and/orks,),
but also to the ¢- ) modulations. The latter correspond to
wave vectorsk, + Q and/ork,+Q with Q=[333].

(3) Noninteractingl'g ionic states can be realized practi-
cally, say, in La _,Ce,Bg. Owing to a nontrivial form of the
Zeeman interaction, magnetization is not aligned wtlex-
cept for a few speciaH orientations, e.g.[001], [110],
[111], and their equivalents. At fixetl the bigger energy
gain is achieved for directions of tfi601] type. This kind of
H anisotropy is an inherent property of the well-isolalegd
states.

Within the Russell-Saunders scheme, the matrix elements of

the moments can be obtained from thgircounterpart in
accordance withy factors of thef! multiplet:

8
) (L= (T ),

6
(*"M"'>=7MB<"'J'“>-

Using the matrix elemenig) we can express the operator of
magnetic momen, which is associated withg as follows:

8
M;=2ug0o; 1+7Ti), i=X,Y,z, )
where
1 3 1 3
T,=1,, TX=—§TZ+7TX, Ty=—§7'z—77'x
(6)

The derivation of formulag5) from the set of matrix ele-
ments(4) is outlined in Appendix A. Note that the, com-
ponent is not involved in EJ5). For the Zeeman interaction

7&=—W23MM% 7

we shall use representatiof®® and (6). In Eq. (7) the sum

runs over the Ce lattice sites. As usual, summation over re-

peated indicesi( Cartesian coordinatess supposed.
Let us discuss some simple properties of Hamiltor{ign
which are important in experimental applications to GeB
(2) If the “orbital,” i.e., 7 subsystem exhibits some AFQ
order characterized by the modulation vect@rthen atH
# 0 the effective Zeeman term, acting ofs, producesfirst,
the uniformo component, andgecond the Q-modulatedos
components. Both are absent in zero field. As a result,
uniform magnetic field causes tH@-modulated magnetiza-

B. Quadrupolar interaction

Not only the vector moments, but the quadrupolar mo-
mentQ;; (i,j=Xx,y,2) on a Ce site as well, can be expressed
in terms of theo and = operators. For calculating the matrix
elements ofQ;; over the se{, .},

(s 6Qijltbsr 50

:ef A3yl (N o (N(3XX— 812,

we can employ the Wigner-Eckhart theorem, according to
which these matrix elements are proportional to the operator
equivalents:

Given below are the matrix elements of the quadrupolar mo-
ment; we measure them in units of

1 1.,
oo 1Qyl -yl e E(s7i«7j+«7ju7i)_§5ij~] .

Qo= < lzbl,a'| sz| ‘//1,o>v

Qo=eJ d%r g (D Ph1o(1) (322 12). ®

The Q matrix elements can be classifiedasdependent
< ¢1,0| sz| lpl,a> == < ¢2,a| sz| ‘/’2,a> =1,
<'r//1,o| Qxx| ‘//1,0> = < l//l,o| ny| ‘//1,0> =-1/2,

? (W20 Qurl 20y = (20| Quul 2} = 112,

tion. This property of the AFQ phase has been used in neu-

tron, NMR, anduSR experiments. In the weak-field region,
with H not exceeding few T, th®-modulated magnetization
is linear inH.

(V20| Qud 1.0 = — (P15 Quyl 20V = (V/312),  (9)

as well as ther dependent



8270

(2.1 |Quyl 1,4 ) = (¥, | Q| 2 ) =1(1/3/8),
(P2 |Qyd 1) = (W21 |Qy 1) =i (\/318),
(Y24 |Qu 1 )= — (Y14 |Qud 2 ) = (/3/8).  (10)

0
We omit the Hermitian conjugated matrix elements in EqséE%

(9) and(10).
The matrix||Q| can be written in the operator form as
(see Appendix A for elementary explanatipns

2Ty pz  my
IRI=Qo| #2 2Ty mx |, (12)
My Mx 2T,

where u;=(y/3/2)7y0;. The fact thatQ;; contains thes
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TABLE I. Strength of the quadrupolar interaction at high sym-
metry points.

k A AZ B, B:
111 -10.736  —10.736 1.789 1.789
i -10.478 3.484 -0.581 2.909
2.139 7.349 -0.357 —1.659
000 9.325 9.325 —1.554 —1.554

The diagonal elements of matrjQ|| give rise to the order
parameter which is transformed according to representation
I'; characterized by two components (7,) of 7, while the
off-diagonal elements are related to symmelty and are
characterized by the vectgr. Keeping this in mind, we can
rewrite Hyq as follows:

variables signals that the quadrupolar interaction can be re-

sponsible not only for pure orbital interactions, but also for

magnetic interactions.

The dependences &f; andQ;; on o and 7 determine the
time-reversal properties of the- and = components. It is
evident from Eq.5) that o—— o undert— —t, whereasr,
and 7, are unchanged. The off-diagonal componentQgf
require 7,— — 7, under the time-reversal transformation.

Hoa= 2 [Aap(r—1")7o(r) 74(r")

r#r’
+Bij(r=r")pmi(r)pi(r], (15

where the Greek indice&,8 prescribe summation over
andz components only. The expressions {5 and3;; are
given in Appendix B. The Hamiltonian in E¢L5) represents

We suppose that the predominant contribution to the inan evident separation of the orbitallike and spinlike parts.

teractions of Ce ions in CeBcomes from their quadrupolar

The magnetic exchange interactions are not relevant for a

interaction, the role of which in Ce compounds was firsttheoretical analysis of the AFQ ordering in CgBThis ap-

mentioned by Bleané§ (for a discussion on various forms

plies to a major part of the phase diagram outside its low-

of the quadrupolar interaction see, for instance, Refs. 19,20temperature-and-weak-field part. The latter requires the
We accept the form of the quadrupolar interaction of theRKKY- and Kondo-like interactions to be included.
electrostatic origin, which is free of any model assumptions.

Thus, our consideration is confined to the Zeeman and qua-

drupolar interactions:

H="Hqq+ Mz,

Ho= 2 2 AjmT—T)Qi(NQme(r’),  (12)

r#r/ 1...N

where Ajj mn(r—r') is determined by the interaction
Vq(r—r’) of two quadrupolar moments locatedraandr’.
The latter is given by

1
Vq(r)= F{ZQU(O)QU(U—ZO Qij(0)Qim(r)njnp,

+35Qi;(0)Qma(rNiniNmN,) Y, Ni=X/r.
(13

Thus we obtain from Eq(13)

1
Aij ,mn(r) = W{( 5im5jn+ 5in5jm) - 5(5imnjnn

+ 6innjnm+ 5jmninn+ 5jnninm)
+35n;n;npNny}. (14

Evident are the following properties of;; m,'s with respect
to permutation of indices:

Aij ,mn— Aji ,mn— Aij ,nm— Amn,ij .

Ill. TOWARDS QUADRUPOLAR ORDERING

Taking the Fourier transform of the Hamiltoni&tb), we
arrive at itsk-diagonal form:

Hoo= 2 AAPKI T it BIK g} (16

We use the notatiodl“?[ k] and B[ k] for the Fourier trans-
formed coupling constants at genekalFor high symmetry
points of reciprocal space, such [@90], [ 333], [330], and
[003], as well as along the cubic eddé3«], the Fourier

transformed Hamiltoniail6) becomes completely diagonal:
qu=; { AR e+ AR ol 2+ B i+ Ly 1?)

+ Bl ). an

Table | shows the result of numerical calculations for the
coefficients in units ofQ3/a® wherea denotes the lattice
constant. Let us estimate the order of such an energy unit. In
doing so, we return to definitiofB), and then, performing
the radial and angular integrations, we get

_ 16,
QO__3_59<rf>'

Then the energy unit become®?(a)((r?)/a%)?(16/35).
For CeB;, the lattice constarda~ 4 A, the f-electron radius

ri~0.4 A, the lattice Coulomb unie?/a~ 3 eV, and we
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arrive at theQ, unit of order 1 K(cf., however, Ref. 21l for neglecting all the contributions caused fy, including
From Table | one can see that the coefficigBffsare small as interaction(19), were it not for quantum fluctuations af
compared to the dominant one$'s. Additional smallness of We put all the intermediate formulas, which determine our
the B terms comes from the fact that the maximal value ofchoice of the quantization axis, the spin-wave representation
w?is 16/3 times smaller than the maximal valuergf Thus ~ of 7's, etc., into Appendix C.

it seems appropriate to simplify the model by neglecting the In the spin-wave approximation Hamiltonia{18) be-

B terms and to employ the simplified version &4 in its ~ COMes

purely orbital r form:

T 1 TRt
Haw=2 | Ka(@)bgbat 5Ka(q)(b-gbgbible) |, (20
Hoo= 2 2 Aap(r—1")7o(r)74(r"). (18) a
e aB where

According to Table I, the global energy minimum could 1
be achieved ak=Q. Not only the high-symmetry points of K ,(q)= = (A7 q]sirP ¢+ A q]cog¢— A q]sin2¢),
reciprocal space, but also wave vectors of a general position 2
have been checked numerically in order to identfywith -
the global energy minimum. It is necessary to emphasize that q=q-Q, (21)
the energies ak=[330] and Q are only slightly different. 4.
This is an indication of pronounced soft modes along the
directions of cubic edges, i_.e[,%%x], 3k3] and [«33], Ka(a)=Ka(q)— Ag. (22)
—1/2<k=<1/2. Thus, competing AFQ patterns create fluc-
tuations which should significantly decrease the AFQ-D tranFor definition of ¢, see Appendix C. The energy gaiify ,
sition temperature, as compared to the mean-field estimat®hich occurs due to the zero motion &% is a straightfor-
The wave vectorQ is consistent with the AFQ patterns ward result of the Hamiltoniaf20) diagonalization:
whichl3have been found experimentally by the Grenoble L
group: 0__ = _ e?Z w2

At the two points of reciprocal space, namefyand Q, Eow= 2% (Ke= VK1=K3). (23

we haveA™= A% Then the Fourier transform 6{,,, takes _ .
a planar form The correlation function

.Ak( Tfk,x’Tk,x‘F Tfk,sz,z)- <Ty(0)7y(r)>: %E eiqr \/(Kl+ KZ)/(Kl_KZ) (24)
q

In other high-symmetry point§320] and[00%], H,, €xhib-
its an easy-axis form with nonequal values4jf and A¢. It appears to be nonzero although it decays exponentially with
is also valid for a general point of reciprocal space, but, indistancer.
general, the off-diagonal componeAt” is nonzero, and the g is a periodic function ofp with periodicity /3. In
easy axis should be different from eitherxis orz axis. fact, using Egs(21)—(23) and definitions ofA’s given in

It is worth noting that searching for the ground-state en-appendix B, one can rigorously prove that under the trans-
ergy of theclassicalvector field 7 by using a Fourier trans- formation (g ,q,,d,)— (d,0x,0,) Ky(q) and K,(q) re-
formation of Hamiltonian(18) (also known as the Luttinger- main unchanged, it is simultaneously shifted byt/3.
Tissa methofl would be a standard procedure, if the  Nymerical calculations show thgt=0, /3, 2/3, etc.,
Hamiltonian were invariant under the homogeneeusta- 5o rejated to equivalent minimums B{%. Using one of
tions. Nevelr}heless, altho‘fgh the rotational symmetry °ﬁ1em, say, akp=0, we calculate the correlation functions
How at k=[350] andk=[00;] is broken, the energy values 54 numerically. The sign of the first neighbor correla-

listed in Table | are rigorous. tors is negativey(7,(0)7,(a))=(r,(0)7,(a,))~—0.0293,

_ _ _ _ _ (7y(0)7y(a,))~—0.0058. This is a reminder of the AFQ or-
Magnetic ordering due to electric quadrupolar interactions dering. Among the second neighbors only
In this section we consider a quantum effect, namely the 7y(0) 7, (= a,*a,))~ —0.0082 are not negligible, all others
zero motion of ther “spins” with respect to the AFQ back- are much smaller. For the resulting coupling constants of Eg.

ground. In fact, when a decoupling procedure is applied td19) see Appendix B.
the B terms in Eq.(15), we obtain the effective spinlike ~ This curious mechanism which, in principle, leads to the
Hamiltonian: effective magnetic interactionsee Eq.(19)], could be a
reason for magnetic ordering at temperatures much smaller
3 , , , thanTq, becausefirst, the B coupling constants of Hamil-
Hm:zz, Bij(r=r")(r, (1) my(r"))oi(r)oy(r") tonian (16) are much less numerically than theidr counter-
rer parts, andsecond the additional smallness comes from the
~ , , quantum fluctuations ofy’s. The low-temperature magne-
= Z Bij(r=r")oi(r)oy(r’). (19 {ism in CeB; is unlikely to be described by such an unusual
e mechanism. Such a mechanism would come into play only
7, does not enter the Hamiltonidh8); this is responsible for when all other magnetic interactiofiainly via conductiv-
the formation of the orbital ordering. This would be a reasonity electrong were very weak.
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IV. AF-QUADRUPOLAR —DISORDER TRANSITION

In this section we consider CeBhear the AFQ-D transi- 25 HII[001]
tion. For this we employ, following Ref. 14, the spherical
model which is applicable to a system with well-pronounced
soft modes. The purpose of this section is to deterrtiinthe
shape of the AFQ-D transition line in tieH phase diagram
and (ii) the singularity of the specific heat along this line.

207

15¢

Magnetic Field

A. Spherical model and AFQ-D transition line

From the behavior of the specific heat anorfidlgwhich
is tiny in the weak magnetic field regipra strong short-
range AFQ order should exist abovig,(H). A magnetic
field suppresses the fluctuations and makgéH) higher. In
order to pick up these features, we go beyond the mean-field
approximation for Hamiltoniart{;+ H,,,. The first step in . . .
this direction will be generalization of the spherical model 1 2 3
for two spins,o and 7. For taking into account the quantum Temperature
effects, we impose the constraintéo?(r))=3/4 and ) . )
(#(r))=1/2. The latter would be equal to 3/4 were it not for __'C: 5 The line of the AFQ-D phase transition according to
redundancy of ther, variable. Note that, as shown in Ref. Egs. (26)-(27). Units for T andH are discussed in the text
22, the decoupling of fluctuations in the spin-1/2 Heisenberg
model leads to the spherical model with the constraintwhich control the constraints, should be satisfied by an ap-
{0?(r))=3/4. Now the partition function reads propriate choice ofA, and \,. Gaussian integration over
o(r) and#(r) in Eq. (25) is straightforward; that allows us to
derive the free energy of the spherical model.
_ * ” _ For definiteness, we inspect the particular case of
z l_r[ f_mda(r) f_mdf(r)expﬁ{)\g[3/4 ()] H||[001]: This orientation is expected to favor the reentrance
of the AFQ-D transition line at smalldd as compared to
+N 12— 2(1)] = (Ho+ Hz)}, (29 other orientations. The singularities on the AFQ-D transition
where the spherical conditions line, as well as its shape, will be examined as temperature
decreasing, i.e., from the side of the D phase.
Performing the routine calculations, which are given in
OFIIN ,=0FIN,=0 (F=-TInZ2), Appendix D, we gefcf. Egs.(D2),(D3),(D5)]

10

3 1 72( z° ) 3 IWT T o|3kI (7T)?
e et oMt P A 2T ”K*Ef(zw)?' NN T A K] —2)(h .+ AK]) — (AT K])2"
(26
where
82 (ugH)?
Z‘(7> N @
Two equations,
1 (7)2 22 ST od%k 2N, + A K]+ A(Kk] -z 08
2718 =22 2) (@m® (n,+ ATTKI=2) (8, + AFTK]) — (AFK])2 (28
and
3 (7>2z (7)2 22 (2 z ) 3T Tz [ d% N+ ANK]
2718/ N, 718 oA A | TN Az T

2Ny 2 N,J (2m)% (N + AFTK] - 2) (N -+ A(K]) — (AT K])2
(29

are valid for the D phase and determingand\ , as functions oflf andH, through which the physical quantities can be then
expressed. The integrals in the right-hand side of E2f§.and(29) are not of that simple form as the Watson integral, which
appears in the spherical model treatment of the 3D ferromagnet, but let us call them generalized Watson integrals. The AFQ-D
transition line corresponds to the values)of at which the denominator of the generalized Watson integrals turns zero at
k=Q. Taken at the critical value
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M (2)=|Agl +2, (30)

Egs.(28) and(29) determineTo(H). This line is depicted in Fig. 5.
At zero magnetic field\ ,= 2Tq andTo=[W,(z= 0)]7%, as seen from Eq$29) and(28), respectively. We denote the first
generalized Watson integredee Eq(28)] taken along the transition line B¥/,(z). It can be written now as

W (2 d3k 2| Ag|+ A*TK]+ A(K]+ 2
M‘f (2m)3 ([Aq]+ ATK]+ 2) (| Ag| + A7 K]) — (LK)

(31)

In order to estimate the importance of fluctuations, we can compare the spherical model and mean-field régpultSter
mean-field approach yieIdEgF(H =0)=|.Ag|/2=5.37, andTo(H) decreases monotonically with increasidg*

An important property of 5(H) should be mentioned in connection with Figidd. Fig. 3), i.e., To(H) growslinearly with
H at not very high magnetic fields. This feature is consistent with experimental findings. Mathematically, this behavior follows
from the properties of the generalized Watson integrals: their expansions in a small pazaanetép— c(li)\/f, where all four
values ofc are positive. Then, because in the leading OFB@(IH)—TQ(0)~[W1(O)—Wl(z)]/[Wl(O)]z, as it follows from
Eq. (28), the weak-field behavior ofT, becomes clearly understood. To complete this proof, let us represent
[W,(2) —W,(0)] as follows:

d3k (| Agl +APTK])?+ (AK])?
(2m)?®  D(kI;2)D([k];z=0)

Wl(o)_Wl(Z):Zf (32
which is positive. We denote the denominator of integ8d) by D([k];z). At z=0, integral in Eq(32) becomes singular at
small sk=k—Q. In fact, the numerator behaves ak*, whereas the denominatorsk®. The integral would diverge as
| k|~ were it not for the cutoff atsk|?>~z. Thus we arrive aW;(0)— W, (z)xz.

It is worth noting, that the spherical model is a reasonable tool for picking up strong fluctuations. However, if fluctuations
are effectively suppressed, as is the case in high magnetic fields, the spherical model performs less satisfactorily.

B. Specific heat

Here we confine our consideration to the vicinity of the AFQ-D transition line and magnetic fields weak as compared to
To (ugH<Tg). The equations which determine thermodynamic behavior are (Egsand (29), where we can neglect all
high order terms irH (H" with n=2). Using the spherical conditiongf/J\ ,= dF/d\ ,=0), one can obtain for the entropy
(S=—49FIaT):

o 3I T 5 1( d% | (7T)? 23
“2"™, T 272) @ O AT DO+ ATKD — (AKD? 33
The specific heat at constant field,;=T(9S/dT)y, is now determined as follows:
c 5 Td\, [ d%k 2N, + A K]+ AKk] -z 3T di,
H72  2dT) 2m)°% (A, + AT K]—2) (A, + ANK]) — (AJKDZ 2\, dT
Tz dn, [ d3k N+ AK] 24
T2, a7 ) @) (A ATKT - 2 On, 4 ATKD) — (A KD (34
With using Eqgs(28) and(29) we can transform Eq.34) into the simple form
5 1d\, 3d\,
== (35

Let us consider a fixed magnetic field afict To(H), i.e., T=To(H)+ 6T. At 6T<Tq, \,= IAQI +2z+ 6\, is supposed to be
slightly different from)\(f)(z) [see EQ.30)]. In order to find outd\ ,(8T) we return to Eq(28) which takes the following
form atz<Tgq:

N| =
N =

[To(H)+ 8TI[Wy(2) — VoN W(Z/ 8N ,; N ,)], (36)
wherew is positive:

_ 1 { d3k 2| Al + A K]+ A K]+ 20N+ 2
(2l Ok 71 0h) === Wl(z)_f (2 ([ Ag|+ ATK]+ oh,+ 2) (| Al + ATK] + on ) — (k)2 &)
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In Fig. 6w is depicted as function af\ . for three values of allows the quartet to be realized as a well-isolated ground-
the ratioz/ 5\ ,. It can be remarkably well approximated to state level, then we confine our consideration to the follow-
the form wo(O\,)[1+ a(SN,)\Vz/6N,]7 1, where wy(x)  ing set of wave functions:

=w(0;x) (see the upper curve in Fig) &Gnd a(x) are both _ _

weakly dependent functions of the argument. For example, 1=\ 7/2)5\5/123 = 1/2),

(0)~0.7 anda(1)~1.15. Note, thatx andwT3? are di-

mensionless quant|t|e37v(,T3’2~1) Thus, in the Ieadlng or- Vg = _|+5/2>+£|+3/2> (42)
der, whené\ <z, which is equivalent tdT<ugH, we ob- 2
tain Listed below in units ofug are the nonzero matrix elements
a(0) Wy(2) \/_ of M,, M, , andM_:
© Wol0) o (Y IMl )= = (M Jys )= — 44121,

~T-1
and, becaus®V,(2)~Tq", (P IM b == (o _IM|th, _y=—4IT;
dx, «(0) 1

0T wa0) T2V 38) (Yo IM 1 ) = (014 IM_[ ) = = 16/(TV3);
In accordance with Eq29) (Yo IM by Y=(h1 M |gho )= —16/(T3);
No=2T+O[(ugH)* o). (39 (Y IM_ [y, )= (i IM g ) = —40/21;
Therefore, in the leading order ith one can obtain from Eqs.
(39), (38), and(39): (Y2 IM_[ o) =(th2 s M1 |ghp )= —24/7. (43
4 o(0) 1 H All these matrix elements are in accordance with the operator
. a “B expression:
lim Cy=1-5—— > —. (40)
AT O 0 T o, s s
Below To(H) X\, does not depend anymore @ and re- Mi=—=3zmueoi| 1+ 7Ti)’ I=xy,z. (44)
mains equal td.Ag|+z. Thus, we get
Note that the only difference between E¢®) and(5) is the
lim Cy=1, (41 coefficient(— 8/3 instead of 2
oT—-0 Now let us determine the matrifQ||. For the unit, we

which, together with Eq(40), determines the specific heat @K€

jump, increasing linearly with. _
At To> 8T> ugH, i.e., beyond a narrow vicinity of the Qo= (Y10 Qed V1)

transition line, we arrive atC,, decreasing linearly with The diagonal components of the quadrupolar moment have

oT: the same nonzero matrix elements as in @g. whereas the
matrix elements of the off-diagonal components are six times
Cy=1-Tg'wy 'oT. larger than the corresponding elements of @f). Thus, the
form of | Q| is the same as in Eq11), but the off-diagonal
V. WELL-ISOLATED T3 LEVELS: A SINGLE f-HOLE “vectors,” which transform in accordance withis, are de-
CONFEIGURATION fined now as;uza\/§ryo. This circumstance makes the

problem of quadrupolar ordering less transparent as in the
singlef-electron case: The part &{,4 [see Eq(15)], which
Now we deal with the following quantum numbers: reflects theu-u interactions, becomes as important as the

J=7/2,5=1/2, andL=3. In the crystal field of cubic sym- 7-7 part.

metry the eightfold multiplet splits into thEg quartet and There are a few compounds of cubic symmetry, based on

two doublets,I'y and I';. If the crystal field Hamiltonian the singlef-hole ions, which can be the candidates to realize
the I'g quadrupolar ordering. Among them we would men-
tion YbBy, (Ref. 23 and TmTe?* There is another impor-

W tant difference between these face-cubic centered compounds
and CeB; (recall, that Ce ions are arranged in a simple cubic

0.2 lattice). Namely, fcc compounds do not exhibit such pro-

W 2oL, =1 nounced soft modes as in the simple cubic case. It is not our
\ purpose to give a detailed analysis of the fcc situation in the

Zeeman and quadrupolar interactions

0.3

0.1 framework of the realistic quadrupolar interactitk8). We
2R =5 mention, however, that the ground state of the analog of
Hom [S€€ Eq(18)] is of the AFQ-type, which is related to the
0 02 0.4 &10'6 08 1 high-symmetry points @,,Q,,Q,) of the Brillouin zone
boundariegsee Fig. J: E(k=0Q;)~ —8.85 at them. The or-
FIG. 6. w(z/8X\ ;8\ ;) as function ofo\ . [Eq. (37)]. der parameter at, say=Q,, corresponds to the Ising-like
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0 nificant difference of the triplé- (q,=[300], q,=[030],
"’ q3=[003]) and Q modulated structures.
For the modulated component of magnetizatiofr) the
b following equation has been proposed in Ref. 11;
Qy m(r)=(—1)"my+(—1)"my+(-1)"mg,  (45)

wherer=(/,m,n), and the polarization vectors depend on
the magnetic field directiopH||(cosf; ,cos9,,cos9s)] through
the equations

FIG. 7. The first Brillouin zone of reciprocal space of the fcc M =my(6;)(COSY;, —COH,, —COH3),
structure.
m,=my(65)(—cosh,,C0H,,—Cc0oH3),
symmetry with( 7,) =0 and( r,), altering the sign from layer
to layer. The direction of low-lying excitations coincides Ms=mg(03)(—CcoKY;,—COH,,C0H5). (46)
with [001], but the mode is not a soft one:
E(k=0)-E(k=Q)~3.99. An important property ofm;} is thatm;(/2)=0. The form
of Egs. (45)—(46) is not transparent, it is easier to illustrate
VI. DISCUSSION AND CONCLUSIONS them with a couple of examples. _
In the first example H|[001], which leads to
The problem of quadrupolar ordering in CgBeems to ¢, = 6,= /2, hencem;=m,=0. This corresponds to a de-
be well defined provided we confine our attention to thegeneracy of the triplé- structure, whose realization now is a
Zeeman energy and direct quadrupolar interactions. The ursinglek structure. According to Eq46) the modulated com-
usual form of these Zeeman and quadrupolar terms owes fsonent of magnetization is arranged as shown in Fig). 8
the well-isolated’s quartet. Instead of dealing with Stevens QOur theoretical description results in the arrangement shown
operators, it is more convenient to introduce the spinlike, in Fig. 8(b).
and orbital-like, =, operators. However, in the low- In the second exampleH|[110], and 6;=/2,
temperature and weak-field region GeBndergoes the mag- ¢, = 6,= /4 lead tomy=0, m,=m,. This degeneracy cor-
netic phase transitiofsee Fig. 2, which results in the ap- responds to a double-structure. Figures (@) and 9b) are
pearance of complicated magnetic structures. For theithe NMR and theoretical interpretations, respectively. Note,
explanation it is insufficient to restrict ourselves to thethat the Fig. $a) pattern reproduces itself under any transla-
above-mentioned interactions only, but indirect interactiongjon along[001], while m’s of Fig. 9b) alter the sign under
via conductivity electrons start playing an important role.the translation by the elementary lattice constant.
Magnetic domains of different orientations have been iden- The preliminary ©SR resulty’ contradict both neutron
tified in neutron diffraction experimerfffor magnetic fields and NMR measurements.
applied alond111], [110], and[001]. However the interpre- A critical experiment seems to be not difficult to achieve.
tation of neutron experimerts'>*occurs to be contradic- |t is connected with the x-ray structural measumentseao
tory to recentu SR measurement$ As for the AFQ ordered magnetic field. The translational electric symmetry of the Ce
state, the neutron NMR results are still in disagreement: Theattice is broken below : although all the electric charges
triplek structure has been proposed by Takigastal,""  of Ce ions are equal to each other, the modulated component
whereas in all the neutron experiments Qénodulation has  of the quadrupolar moment should contribute to the Bragg
been reported@=[333]). These two interpretations are mu- reflections at the transferred wave vectors of [thE] type.
tually exclusive. Unfortunately, Ref. 11 is a short paper withThis would be a weak effect, caused by only one electron of
not many details; we mention a few of them to show a sigthe total numbeZ. However, instead of an usual x-ray tech-

N NN\ NN NN

oo t b b4 b b NN NONON N

R T NN\ NN NN

R I R NN NONN N
—— [100] — [100]

a) b) a) b)

FIG. 8. Arrangement of staggered magnetization for magnetic FIG. 9. Arrangement of staggered magnetization for magnetic
field applied along[001]; (a) NMR interpretation(Ref. 11); (b) field applied along[110]; (@) NMR interpretation(Ref. 11); (b)
Q-modulated structure. Q-modulated structure.
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nigue it would be possible to use synchrotron facilities forondary effects in nonzero fields, i.e., formations of magneti-
finding theQ or triplek modulated structuréor something cally modulated structures. To complete this x-ray discussion
different from these twp Note, that the zero field experi- we give the on-site form-factaperatorwhich is calculated
ment is more instructive because it allows to avoid the secever the se{y, ,} and related to thé electrononly:

1 1 1
f(a)=(jo)+ 5(14)Pa(Zg) + 5 (1) [ 1&] 2) P2(COSq) — 5(j 4) Pu(zg) ] + ﬁrx(r)[8<jz>P§(zq)+<j4>Pi(zq)]cos~‘»2¢q,

zy= cosb’q .

6, and ¢4 denote the spherical coordinatescpfelative to thez axis. P"(2) are associated Legendre polynomials. Detailed
calculations in connection with a concrete x-@ynchrotron experiment will be published elsewhere.

The experimental technique which is associated with the so-called third order paramagnetic susc@utitillie also used
for probing the quadrupolar ordering in CgBHowever, it cannot yield information about the microscopic arrangement of
quadrupolar moments. This method is based on the extraction éftherms fromM (H), whenH is small. For our problem,
the average magnetization can be written as

— 11
M,=— 673 erg_ y UM (r)Mg(ra)M ,(r3)M (1)) = 3(M o (r) M g(r2) (M ,(r )M (1)) JHgH H,, . (47)

For further transformations in E¢47), we imply thatfirst, all the magnetic fluctuations are much smaller as compared to the
quadrupolar fluctuations in the AFQ phase least neall ), secondthe diagonal components of the quadrupolar moment are
responsible for ordering beloWg. Then, using the Wigner-Eckhart theorem we can decouple(4f). according to the
following scheme:

7 2 7 2
Ma(rwﬁ(r')e(g) /’«éja(r)jﬁ(r)5r,r'—>(g) HEQE [T o)+ I+ 11131555, 11

and arrive at the following equatiad ,=M©+M® | where

Y - W ARS | 5
M(a):_ﬁ(g) N2 522 HTaTu(r)) = (Ta)XNTu(r ) IHHE, (48)
r'#r X0 K
— we (7\41
M(ao):_ﬁ(g) N 2, HeH (TN Tg0) TuDTUN) (Tl D IO TUDTA) = (Tl DT
X(Tp(1) TA1) = (T D) TANINT (1) Tu(1)]: (49

Equation(48) includes the irreducible correlators @f and  [111]. Probably, such behavior could be ascribed to an un-
7,. The on-site irreducible correlator enters E49). The  usual anisotropy of the Zeeman energy. In fact, if we con-
average of fout’s can be reduced to a linear-inexpecta- ~ sider an isolated'g ion, its ground-state energy depends on
tion value which disappears upon summation owveiThe the magnetic field direction as follows:
(JN? terms of Eq.(49) result in the contributio)m(r)z,
which should pr kink in n ver H
" afTQS. ould produce a a dependeng® versus Eg.s_z—M%\/65+4\/27(1n§+n§+n;‘)—74 (50
The AFQ-D transition line was recently measured in
fields up to 18 T8 In spite of its tendency to reenter, this that is —11, —9.81, and—9 (in units ugH/7) for orienta-
curve still displays the monotoniEqg(H) behavior. An opti-  tions[001], [110], and[111], respectively. For magnetic field
mistic theoretical prediction is- 25—-30 T for the field at- of a general orientation, the vector of magnetization in such
which the reentrance could start ard 80 T for the zero- a paramagnetic state does not follow the same direction. In
temperature critical field. The current experimental facilitiesthis connection, the experiments with diluted compounds
are enough to examine the field region around 25-30 T. La;_,CeBg could provide important information, if the
Although many experimental results can be explained byrystal field still favors thd’g ground state.
the present theorisee also Refs. 14,27still there remain a From the theoretical point of view it should be interesting
few puzzling facts. Among them we would mention the to understand the symmetry and a microscopic origin of the
AFQ-D transition line whose experimental shape is practi-magnetic interactions which govern the properties of the sys-
cally independent on the field orientatiof@01], [110], or  tem at low temperatures.
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TABLE II. The operator forms for transformations’,a)—|/",a").

|1.+) 1) 2.+) 2-)
11+) (G+ ) (5+0) (G+r)o_ T_(3+0y) T_o_
11-) (%+lfz)a+ (3+ 1) (5-0) | T TI(%—az)
|27+> T+(§+0'z) T+10'7 (5_172)(§+0'z) 1(5_ 7'210'7
|2v_> T+0 4 T (3—0)) (3—7)o4 (=1 (53— 0y
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ws (43 10 18
x= 5 T(T,a', +tri0 10+ T,(r+)+7(l/2+ ) (o to_)+ 7(1/2— ) (o +to_)
4
=2ugoy| 1+ 5 (V3= 1) |. (A1)
Another example is foQ,, [see Eqs(10)]:
3
Qxy= Qo( \/_[7' (1/2+0,)+7.(12—0,)]— \/—[T+(1/2+ o)+ 7_(1/2— o'z)]> \/—O'ZTy My (A2)

APPENDIX B

The original parameterd;; n,(r) give rise toA,g(r) and3;;(r) whose angular dependence is derived below in accordance
with Egs.(11), (12), (15):

~’422=~'4xx,xx+~Ayy,yy+4'-'422,22"_2~'4xx,yy_4'~f4xx,zz_4‘~'4 (1 3n )2+ (1 3n)

V922" 24

35 2 2.2 5 5 7
A= 3-Axx,xx+ 3-'4yy,yy_ 6Axx,yy:§(nx_ny) - 6(1_3nz)_61

35 5
sz: \/§( - Axx,xx+ -Ayy,yy+ 2-Axx,zz_ 2-’4yy,zz) = \/§(n>2<_ n32/) - 2_4( 1- 3n§) + 6

3% ,, 5, 2 35 5, 2

BXX:4Ayz,yz:Enynz+ gnx_ §' Byy: 4AZX'ZX 6 n M + 6 ny_ 3’
35 5, 2 S 2

B4y =g MMy + 5N~ 50 By~ 4y hny(Tnz = 1),

5 5
By, =4 Az xy= 6nn2(7n -1, BZX:4AXV'yzzgnznx(7n§_1)'

To shorten the4 and B expressions we skip theirdependence, i.e., factor °.
Listed below are a few coupling constants of the effectiver Hamiltonian(19):
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By (2,)=0.0049, B,,(a)=B,(a,)=—0.0195 B,,(a,)=0.0049, By(a,)=5,4a,)=—0.0195,
B,{a,)=—0.0010, By (a,)=DB,,(a)=0.0039, B,[a*a,)=-0.0011, B/(a+a,)==0.0006.

APPENDIX C

Because of the rotational symmetry of tlizmodulated state, we choose the quantization axjs,as lying in the
(7«,7,) plane. One of the two perpendicular directions, is taken also in the#,7,) plane. Let the third direction coincide
with 7, :

y

ny=(sing,0,cosp), n;=(cosp,0,—sinp), n,=(0,1,0.
In the spin-wave approximation

) 1 1 . 1
n.—alQf Z _pt N, =—@alQr t No=—(bh—ht
T Ng=¢ (2 bb), TN 2e (b+b", 7n, 2i(b b").
Hence, to the same order we obtain

r=e' r,=er

(1— ) ing -+~ b+b' L ) . b+b")si 2 b—b' C1
> n|sing 5( )Cosp |, > n|cosp 5( )sing |, TY_Z( ). (C1

Now operatorgC1) can be used for extracting the “classical” and “spin-wave” partsHf,:

2 [AZAr =r") 7)) 7(r") + Agu(r =17 ) 7 (1) 75 (1) + Ay 1 = 1) (7 (1) 71 ") + (1) 7 (1 "))]

r#r’

=2 (% - bgbq> > €T A {r)cof P+ Ay (r)sirPd+ A ,(r)sin2e ]
q r

+%2 >, €N A, L1)SiIPh+ Ay (1) COSh— Ag1)SiN2](b_g+bl) (bg+bT ). (C2)
q r

The “classical,” i.e., operator-independent, part of the right-hand side of &2).is invariant under the rotation i, in the
(7,,7) plane (¢ rotation. In fact, this part appears to kg independentN.Aq/4.

APPENDIX D:
Let us first divide both fieldsg- and 7, into uniform and modulated parts:
o(N=02+0o(r), «Ar)=7+%r).
Then, the coefficients of the linear th and7 terms in the exponential of E¢25) must be put zero, and we obtain

) =20, 00+ 2ugH(1+ 8 72)=0;  Ty(r):0l®=0; Ty(r):e¥=0

A1) =20+ AT+ R ugHoV=0; T(r):nY=0; F(r):rY=0.
This yields

ol 2 o_rteH At
z

8N+ A—2 77 N, NAA-2Z

wherez=(8ugH/7)?I\, .
Then, extracting the constants and the contribution of the uniform componentsandl  fields (Z,), we arrive at the
Gaussian integration over and7 in Z:

Z=ZZ,; zlzfr[ fld&(r)fld?(r)

16
><exn8[ Ny 02 (1)+ = MBHaz(r)rz(r) N (r)— EAaﬁ(r P70 7a(r") (D1)

where Z,=exp(—NF,/T) and
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2

3 1 7 z? 0
_fo—z)\o.‘l' 5)\,.4‘ g Z+m . ( )

The o integration can be easily performed. It results in the contribution

3 aT

_ o _Z —
F 5T |n)\0 , (D3)
and transformsd, r—r')— A, {r—r")— & ;. z.
Thus, we can rewritez; as exp—N(F?+F?)/T], and
NF “ ~ o
eXp— Tl =]._.[ f dT(r)eXp_,BZ Aaﬂ(r_r’)Ta(r)Tﬁ(r,)i (D4)
r —® r!

where
Ad1)= 80 g\, =2) A1), A1) =8, 0+ A1), A1) = A1)
The functional integration in EqD4) can be straightforwardly performed:

EPTERLIE (mT)°
bO2NT ARk AOK] - (A kD)2

(D5)
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