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Quadrupolar and magnetic ordering in CeB6

Gennadi Uimin*
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~Received 24 July 1996; revised manuscript received 28 October 1996!

The quadrupolar ordering in CeB6 is explained in terms of the electrostatic interaction of quadrupolar
moments arranged into a simple cubic lattice. The representation of magnetic and quadrupolar moments by
means of quasispins of two kinds is employed. A linear increase of the quadrupolar transition temperature
TQ(H) with applied magnetic field and its further reentrance are described using a generalized spherical model
which is well adjusted to a particular problem of the quadrupolar ordering in CeB6. The theory naturally
explains the growing specific heat jump atTQ(H) with increasing magnetic field. The role of the quadrupolar
ordering in the formation of the magnetic ordering, as well as the possible critical experiments and applications
to other rare-earth compounds, are discussed.@S0163-1829~97!01013-8#
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I. INTRODUCTION

The aim of the present paper is to discuss the nature o
quadrupolar ordering in CeB6. This compound is classified
as a dense Kondo system. With decreasing temperature
resistivity grows logarithmically, attaining its maximum
T'3.2 K.1 The Kondo temperature was initially estimated
TK'8 K.2 Later this value was significantly revised to
value ofTK'1 K from the experimental data on the ma
netic susceptibility versus temperature.3 This revision was
caused by an unusual picture of the crystal field splitti
revealed in the Raman and neutron spectrosco
measurements.4

It is well known that the crystalline electric field~CEF! of
cubic symmetry~the elementary cell, containing the Ce io
with its boron environment, is shown in Fig. 1! results in
splitting of the Ce31 multiplet (4f 1, J55/2, S51/2,
L53) into aG7 doublet and aG8 quartet. The ground stat
of Ce31 in CeB6 is realized as the well isolatedG8 quartet,
and theG8-G7 CEF gap has been determined as 47 me4

Prior to the results of Ref. 4 many difficulties in interpret
tion of experimental data had arisen in connection with
correct assumptions on the multiplet splitting: The groun
state level had generally been ascribed toG7 ~cf., however,
Refs. 5,6!. The quadrupolar and magnetic transitions we
proved in the specific heat measurements,7–9 NMR,10,11 and
neutron diffraction12,13 studies. Since the typical orderin

FIG. 1. The elementary cubic cell of CeB6. Ce ions, as well as
boron octahedrals, form simple cubic sublattices with a lattice
rametera54.14 Å.
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temperatures ~quadrupolar, TQ'3.3 K, and magnetic,
TN'2.4 K! are much smaller than the CEF splitting, for lo
energy phenomena withT not exceeding several tens K,
should be legitimate to neglect aG7 contribution and to dea
with G8 only.

The quadrupolar ordering is characterized by the follo
ing features:

~i! There are two lines in theT-H phase diagram, which
separate the antiferroquadrupolar~AFQ! phase from the
complex antiferromagnetic~AFM! phases~see Fig. 2! and
from the disordered~D! phase. The AFQ-D transition line
TQ(H), exhibits a highly anisotropic behavior. Starting
TQ'3.3 K, TQ increases withH at not very high magnetic
field, and increases linearly,dTQ(H)/dH.0. The reentrant
behavior ofTQ(H), predicted theoretically in Ref. 14, ha
not yet been confirmed experimentally up to magnetic fi
of 18 T ~Refs. 13,15,16! ~for recent experimental data, se
Fig. 3!. It is worth noting, that the estimates frombelow for
the values of the critical field at the reentrance andTQ50 are
18 T and 60 T, respectively, according to Ref. 14.

~ii ! There are contradictory AFQ patterns obtained in d
ferent microscopic measurements: neutron,13,15 NMR,11 and
mSR.17 The interpretation of neutron experiments is cons

-
FIG. 2. The low field part of the phase diagram. Positions of

lines, confining the magnetically ordered phases, depend on
orientation of magnetic field.
8267 © 1997 The American Physical Society
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8268 55GENNADI UIMIN
tent with the AFQ patterns of theQ5@ 1
2
1
2
1
2] modulation,

whereas the NMR andmSR measurements display mo
complicated AFQ structures. Note that until now the abo
mentioned microscopic methods, i.e.,11B-NMR, neutron dif-
fraction, as well asmSR, are used in nonzero magnetic fiel
which generate magnetically ordered states. Indeed, pic
up an identical modulation with the AFQ state, a magne
ordering is a secondary effect with respect to the prim
quadrupolar ordering. The theoretical approach develope
Ref. 14 selects the@ 1

2
1
2
1
2] structure as energetically prefere

tial.
~iii ! The specific heat jump atTQ appears to be of order o

magnitude smaller than its counterpart atTN (H50).7,9 This
points out an important role of fluctuations at the D-AF
transition. This circumstance has been taken into accoun
Ref. 14 by employing the spherical model description of
effective spin Hamiltonian. The specific heat jump on t
D-AFQ transition line grows withH.9

The main features of the magnetic ordering have b
presented in Ref. 13:

~i! With a magnetic field applied along@111#, the AFM-
structure is characterized by the wave vector, eitherk1
5@ 1

4
1
4
1
2 # or k25@ 1

4
1̄
4
1
2 # ~the single-k structure at sufficiently

high magnetic field!, by a couple ofk’s, k1 and k2 ~the
double-k structure in moderate fields!, and by a mixture of
differently oriented domains at weak magnetic fields~see
Fig. 2, where all these magnetic phases are sketched ou!.

~ii ! The Bragg peaks at the wave vectorsk1 and/ork2 are
accompanied byk15@ 1

4
1
40] and/or k25@ 1

4
1̄
40], respec-

tively.13 Their occurrence is a sign of a crucial role of th
AFQ modulation,Q5@ 1

2
1
2
1
2], in the formation of magnetic

structures. A possible double-k structure, identified in Ref
13, is shown in Fig. 4.

In the next section an effective ‘‘separation’’ of spin an
orbital degrees of freedom is carried out by introducing
formalism, according to which magnetic and quadrupo
moments can be properly described by means of two P
matrices,s and t. Section III concerns the analysis of th

FIG. 3. The boundary between two phases, AFQ and D,
determind experimentally~Ref. 16! by transport ~magnetoresis-
tance! and magnetic measurements, full and open circles, res
tively. A line is included as a guide to the eye.
-
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AFQ ground state and relevant excitations. In Sec. IV, on
basis of the two relevant interactions, Zeeman and qua
polar, and using the spherical model for picking up the
interactions, we are able to determine the shape ofTQ(H). It
occurs to be strongly anisotropic in theT-H plane. Despite a
perfect cubic lattice symmetry, such a strong anisotropy
due to a spacial anisotropy of the quadrupolar interaction
conventional form, following from the Coulomb’s interac
tion, gives rise to a very soft mode oft excitations in the
particular case of a simple cubic lattice. Experimenta
strong fluctuations are indicated by a small specific h
jump at the D-AFQ transition. This is a reason for employi
the spherical model which is an appropriate tool for desc
ing systems with developed fluctuations.

The spherical model is applied for deriving analytical fo
mulas for the specific heat near the AFQ-D transition. W
also outline how the magnetically ordered state can be g
erated by the quadrupolar interaction via quantum fluct
tions of orbital-like ‘‘spins,’’ t ’s. In Sec. V thes-t repre-
sentation is used for the case of a singlef hole~configuration
f 13), which is likely ascribed to the rare-earth compou
TmTe. In the concluding section we discuss what kind
experiments could be critical for establishing the nature
the AFQ order unambigiously.

II. THEORETICAL PREREQUISITE

A. Representation of moments through the Pauli matrices.
Zeeman interaction

We represent the set of theG8 states with use of the
uJz& ~abbreviation foruL,S,J,Jz&) basis in the following
form:

c1,65A5/6u65/2&1A1/6u73/2&, c2,65u61/2&. ~1!

The quartet constituents in Eq.~1! are labeled in such a wa
in order to make use of the Pauli matrices,s andt, conve-
nient. For eachl , the Kramers doubletc l ,6 is defined as

szc l ,656
1

2
c l ,6 , s1c l ,25c l ,1~s2c l ,15c l ,2!.

~2!

The orbital doubletc1,s and c2,s can be suitably defined
with using the pseudospin operatort as

s

c-

FIG. 4. One of the possible arrangements of magnetic mom
in the double-k structure.
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55 8269QUADRUPOLAR AND MAGNETIC ORDERING IN CeB6
tzc1,s5
1

2
c1,s , tzc2,s52

1

2
c2,s ,

t1c2,s5c1,s ~t2c1,s5c2,s!. ~3!

This representation was proposed in Ref. 6; however, exp
sions for the magnetic moment in terms ofs andt, given in
Ref. 6, are oversimplified.

In order to derive formulas for the moments~J, S, L , M !,
we need to calculate the matrix elements of, say,J over the
set$c l ,s%:

^c1,6uJzuc1,6&5611/6, ^c2,6uJzuc2,6&561/2,

^c2,7uJ6uc1,6&52/A3, ^c1,7uJ6uc2,6&52/A3,

^c1,6uJ6uc1,7&55/3, ^c2,6uJ6uc2,7&53. ~4!

Within the Russell-Saunders scheme, the matrix elemen
the moments can be obtained from theirJ counterpart in
accordance withg factors of thef 1 multiplet:

^•••S•••&52
1

7
^•••J•••&, ^•••L•••&5

8

7
^•••J•••&,

^•••M•••&5
6

7
mB^•••J•••&.

Using the matrix elements~4! we can express the operator
magnetic momentM , which is associated withG8 as follows:

Mi52mBs i S 11
8

7
Ti D , i5x,y,z, ~5!

where

Tz5tz , Tx52
1

2
tz1

A3
2

tx , Ty52
1

2
tz2

A3
2

tx .

~6!

The derivation of formulas~5! from the set of matrix ele-
ments~4! is outlined in Appendix A. Note that thety com-
ponent is not involved in Eq.~5!. For the Zeeman interactio

HZ52Hi(
r
Mi~r !, ~7!

we shall use representations~5! and ~6!. In Eq. ~7! the sum
runs over the Ce lattice sites. As usual, summation over
peated indices (i , Cartesian coordinates! is supposed.

Let us discuss some simple properties of Hamiltonian~7!,
which are important in experimental applications to CeB6.

~1! If the ‘‘orbital,’’ i.e., t subsystem exhibits some AFQ
order characterized by the modulation vectorQ, then atH
Þ0 the effective Zeeman term, acting ons ’s, produces,first,
the uniforms component, andsecond, theQ-modulateds
components. Both are absent in zero field. As a resul
uniformmagnetic field causes theQ-modulated magnetiza
tion. This property of the AFQ phase has been used in n
tron, NMR, andmSR experiments. In the weak-field regio
with H not exceeding few T, theQ-modulated magnetization
is linear inH.
s-

of

e-

a

u-

~2! In the magnetically ordered phase~see Fig. 2! the
Bragg peaks are related either to the singlek structure~either
k15@ 1

4
1
4
1
2], or k25@ 1

4
1̄
4
1
2 #), or to the doublek structure (k1

andk2). These peaks atk1 andk2 are accompanied by th
Bragg peaks atk15@ 1

4
1
40] and k25@ 1

4
1̄
40#. This fact can be

easily understood if we note that magnetization~5! is related
not only to thes modulations~wave vectorsk1 and/ork2),
but also to the (s•t) modulations. The latter correspond
wave vectorsk11Q and/ork21Q with Q5@ 1

2
1
2
1
2].

~3! NoninteractingG8 ionic states can be realized prac
cally, say, in La12xCexB6. Owing to a nontrivial form of the
Zeeman interaction, magnetization is not aligned withH ex-
cept for a few specialH orientations, e.g.,@001#, @110#,
@111#, and their equivalents. At fixedH the bigger energy
gain is achieved for directions of the@001# type. This kind of
H anisotropy is an inherent property of the well-isolatedG8
states.

B. Quadrupolar interaction

Not only the vector moments, but the quadrupolar m
mentQi j ( i , j5x,y,z) on a Ce site as well, can be express
in terms of thes andt operators. For calculating the matri
elements ofQi j over the set$c l ,s%,

^c l ,suQi j uc l 8,s8&

5eE d3rc l ,s* ~r !c l 8,s8~r !~3xixj2d i j r
2!,

we can employ the Wigner-Eckhart theorem, according
which these matrix elements are proportional to the oper
equivalents:

^•••uQi j u•••&} K •••U 12 ~JiJj1JjJi !2
1

3
d i jJ

2U••• L .
Given below are the matrix elements of the quadrupolar m
ment; we measure them in units of

Q05^c1,suQzzuc1,s&,

i.e.,

Q05eE d3rc1,s* ~r !c1,s~r !~3z22r 2!. ~8!

TheQ matrix elements can be classified ass independent

^c1,suQzzuc1,s&52^c2,suQzzuc2,s&51,

^c1,suQxxuc1,s&5^c1,suQyyuc1,s&521/2,

^c2,suQxxuc2,s&5^c2,suQyyuc2,s&51/2,

^c2,suQxxuc1,s&52^c1,suQyyuc2,s&5~A3/2!, ~9!

as well as thes dependent
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^c2,1uQxyuc1,1&5^c1,2uQxyuc2,2&5 i ~A3/8!,

^c2,2uQyzuc1,1&5^c2,1uQyzuc1,2&5 i ~A3/8!,

^c2,1uQzxuc1,2&52^c1,1uQzxuc2,2&5~A3/8!. ~10!

We omit the Hermitian conjugated matrix elements in E
~9! and ~10!.

The matrix iQi can be written in the operator form a
~see Appendix A for elementary explanations!

iQi5Q0S 2Tx mz my

mz 2Ty mx

my mx 2Tz
D , ~11!

where m i5(A3/2)tys i . The fact thatQi j contains thes
variables signals that the quadrupolar interaction can be
sponsible not only for pure orbital interactions, but also
magnetic interactions.

The dependences ofMi andQi j ons andt determine the
time-reversal properties of thes and t components. It is
evident from Eq.~5! thats→2s undert→2t, whereastx
and tz are unchanged. The off-diagonal components ofQi j
requirety→2ty under the time-reversal transformation.

We suppose that the predominant contribution to the
teractions of Ce ions in CeB6 comes from their quadrupola
interaction, the role of which in Ce compounds was fi
mentioned by Bleaney18 ~for a discussion on various form
of the quadrupolar interaction see, for instance, Refs. 19,!.
We accept the form of the quadrupolar interaction of
electrostatic origin, which is free of any model assumptio
Thus, our consideration is confined to the Zeeman and q
drupolar interactions:

H5Hqd1HZ ,

Hqd5 (
rÞr8

(
i . . . n

Ai j ,mn~r2r 8!Qi j ~r !Qmn~r 8!, ~12!

where Ai j ,mn(r2r 8) is determined by the interactio
Vq(r2r 8) of two quadrupolar moments located atr and r 8.
The latter is given by

Vq~r !5
1

12r 5
$2Qi j ~0!Qi j ~r !220Qi j ~0!Qim~r !njnm

135Qi j ~0!Qmn~r !ninjnmnn!%, ni5xi /r .

~13!

Thus we obtain from Eq.~13!

Ai j ,mn~r !5
1

24r 5
$~d imd jn1d ind jm!25~d imnjnn

1d innjnm1d jmninn1d jnninm!

135ninjnmnn%. ~14!

Evident are the following properties ofAi j ,mn’s with respect
to permutation of indices:

Ai j ,mn5Aj i ,mn5Ai j ,nm5Amn,i j .
.

e-
r

-

t

e
.
a-

The diagonal elements of matrixiQi give rise to the order
parameter which is transformed according to representa
G3 characterized by two components (tx ,tz) of t, while the
off-diagonal elements are related to symmetryG5 and are
characterized by the vectorm. Keeping this in mind, we can
rewriteHqd as follows:

Hqd5 (
rÞr8

@Aab~r2r 8!ta~r !tb~r 8!

1Bi j ~r2r 8!m i~r !m j~r 8!#, ~15!

where the Greek indicesa,b prescribe summation overx
andz components only. The expressions forAab andBi j are
given in Appendix B. The Hamiltonian in Eq.~15! represents
an evident separation of the orbitallike and spinlike parts

The magnetic exchange interactions are not relevant f
theoretical analysis of the AFQ ordering in CeB6. This ap-
plies to a major part of the phase diagram outside its lo
temperature-and-weak-field part. The latter requires
RKKY- and Kondo-like interactions to be included.

III. TOWARDS QUADRUPOLAR ORDERING

Taking the Fourier transform of the Hamiltonian~15!, we
arrive at itsk-diagonal form:

Hqd5(
k

$Aab@k#tk,a* tk,b1Bi j @k#mk,i* mk, j%. ~16!

We use the notationAab@k# andBi j @k# for the Fourier trans-
formed coupling constants at generalk. For high symmetry
points of reciprocal space, such as@000#, @ 1

2
1
2
1
2], @ 1

2
1
20], and

@0012], as well as along the cubic edge@ 1
2
1
2k], the Fourier

transformed Hamiltonian~16! becomes completely diagona

Hqd5(
k

$Ak
xutk,xu21Ak

zutk,zu21Bkx~ umk,xu21umk,yu2!

1Bkzumk,zu2%. ~17!

Table I shows the result of numerical calculations for t
coefficients in units ofQ0

2/a5 where a denotes the lattice
constant. Let us estimate the order of such an energy uni
doing so, we return to definition~8!, and then, performing
the radial and angular integrations, we get

Q052
16

35
e^r f

2&.

Then the energy unit becomes (e2/a)(^r f
2&/a2)2(16/35)2.

For CeB6, the lattice constanta' 4 Å, the f -electron radius
r f'0.4 Å, the lattice Coulomb unite2/a' 3 eV, and we

TABLE I. Strength of the quadrupolar interaction at high sym
metry points.

k Ak
x Ak

z Bkx Bkz

1
2
1
2
1
2 210.736 210.736 1.789 1.789

1
2
1
20 210.478 3.484 20.581 2.909
001

2 2.139 7.349 20.357 21.659
000 9.325 9.325 21.554 21.554
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55 8271QUADRUPOLAR AND MAGNETIC ORDERING IN CeB6
arrive at theQ0 unit of order 1 K ~cf., however, Ref. 21!.
From Table I one can see that the coefficientsBka are small as
compared to the dominant ones,A’s. Additional smallness of
the B terms comes from the fact that the maximal value
m i
2 is 16/3 times smaller than the maximal value ofta

2 . Thus
it seems appropriate to simplify the model by neglecting
B terms and to employ the simplified version ofHqd in its
purely orbitalt form:

Horb5 (
rÞr8

(
ab
Aab~r2r 8!ta~r !tb~r 8!. ~18!

According to Table I, the global energy minimum cou
be achieved atk5Q. Not only the high-symmetry points o
reciprocal space, but also wave vectors of a general pos
have been checked numerically in order to identifyQ with
the global energy minimum. It is necessary to emphasize
the energies atk5@ 1

2
1
20] andQ are only slightly different.

This is an indication of pronounced soft modes along
directions of cubic edges, i.e.,@ 1

2
1
2k], @ 1

2k
1
2] and @k 1

2
1
2#,

21/2<k<1/2. Thus, competing AFQ patterns create flu
tuations which should significantly decrease the AFQ-D tr
sition temperature, as compared to the mean-field estim
The wave vectorQ is consistent with the AFQ pattern
which have been found experimentally by the Greno
group.13

At the two points of reciprocal space, namely,0 andQ,
we haveAxx5Azz. Then the Fourier transform ofHorb takes
a planar form

Ak~t2k,xtk,x1t2k,ztk,z!.

In other high-symmetry points,@ 1
2
1
20] and@0012], Horb exhib-

its an easy-axis form with nonequal values ofAk
x andAk

z . It
is also valid for a general point of reciprocal space, but,
general, the off-diagonal componentAxz is nonzero, and the
easy axis should be different from eitherx axis orz axis.

It is worth noting that searching for the ground-state e
ergy of theclassicalvector fieldt by using a Fourier trans
formation of Hamiltonian~18! ~also known as the Luttinger
Tissa method! would be a standard procedure, if th
Hamiltonian were invariant under the homogeneoust rota-
tions. Nevertheless, although the rotational symmetry
Horb at k5@ 1

2
1
20] andk5@0012] is broken, the energy value

listed in Table I are rigorous.

Magnetic ordering due to electric quadrupolar interactions

In this section we consider a quantum effect, namely
zero motion of thet ‘‘spins’’ with respect to the AFQ back-
ground. In fact, when a decoupling procedure is applied
the B terms in Eq.~15!, we obtain the effective spinlike
Hamiltonian:

Hm5
3

4(
rÞr8
Bi j ~r2r 8!^ty~r !ty~r 8!&s i~r !s j~r 8!

5 (
rÞr8
B̃i j ~r2r 8!s i~r !s j~r 8!. ~19!

ty does not enter the Hamiltonian~18!; this is responsible for
the formation of the orbital ordering. This would be a reas
f

e

on

at

e

-
-
te.

e

n

-

f

e

o

n

for neglecting all the contributions caused byty , including
interaction~19!, were it not for quantum fluctuations oft.
We put all the intermediate formulas, which determine o
choice of the quantization axis, the spin-wave representa
of t ’s, etc., into Appendix C.

In the spin-wave approximation Hamiltonian~18! be-
comes

Hsw5(
q

SK1~q!bq
†bq1

1

2
K2~q!~b2qbq1bq

†b2q
† ! D , ~20!

where

K2~q!5
1

2
~Azz@ q̃#sin2f1Axx@ q̃#cos2f2Axz@ q̃#sin2f!,

q̃5q2Q, ~21!

and

K1~q!5K2~q!2AQ . ~22!

For definition off, see Appendix C. The energy gainEsw
(0) ,

which occurs due to the zero motion oft ’s is a straightfor-
ward result of the Hamiltonian~20! diagonalization:

Esw
~0!52

1

2(q ~K12AK1
22K2

2!. ~23!

The correlation function

^ty~0!ty~r !&5
1

4(q eiqrA~K11K2!/~K12K2! ~24!

appears to be nonzero although it decays exponentially w
distancer .

Esw
(0) is a periodic function off with periodicity p/3. In

fact, using Eqs.~21!–~23! and definitions ofA’s given in
Appendix B, one can rigorously prove that under the tra
formation (qx ,qy ,qz)→(qz ,qx ,qy) K1(q) and K2(q) re-
main unchanged, iff is simultaneously shifted byp/3.

Numerical calculations show thatf50, p/3, 2p/3, etc.,
are related to equivalent minimums ofEsw

(0) . Using one of
them, say, atf50, we calculate the correlation function
~24! numerically. The sign of the first neighbor correl
tors is negative:̂ ty(0)ty(ax)&5^ty(0)ty(ay)&'20.0293,
^ty(0)ty(az)&'20.0058. This is a reminder of the AFQ o
dering. Among the second neighbors on
^ty(0)ty(6ax6ay)&'20.0082 are not negligible, all other
are much smaller. For the resulting coupling constants of
~19! see Appendix B.

This curious mechanism which, in principle, leads to t
effective magnetic interactions@see Eq.~19!#, could be a
reason for magnetic ordering at temperatures much sm
thanTQ , because,first, theB coupling constants of Hamil-
tonian ~16! are much less numerically than theirA counter-
parts, and,second, the additional smallness comes from th
quantum fluctuations ofty’s. The low-temperature magne
tism in CeB6 is unlikely to be described by such an unusu
mechanism. Such a mechanism would come into play o
when all other magnetic interactions~mainly via conductiv-
ity electrons! were very weak.
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IV. AF-QUADRUPOLAR –DISORDER TRANSITION

In this section we consider CeB6 near the AFQ-D transi-
tion. For this we employ, following Ref. 14, the spheric
model which is applicable to a system with well-pronounc
soft modes. The purpose of this section is to determine~i! the
shape of the AFQ-D transition line in theT-H phase diagram
and ~ii ! the singularity of the specific heat along this line.

A. Spherical model and AFQ-D transition line

From the behavior of the specific heat anomaly8,9 ~which
is tiny in the weak magnetic field region! a strong short-
range AFQ order should exist aboveTQ(H). A magnetic
field suppresses the fluctuations and makesTQ(H) higher. In
order to pick up these features, we go beyond the mean-
approximation for HamiltonianHZ1Horb. The first step in
this direction will be generalization of the spherical mod
for two spins,s andt. For taking into account the quantum
effects, we impose the constraintŝs2(r )&53/4 and
^t2(r )&51/2. The latter would be equal to 3/4 were it not f
redundancy of thety variable. Note that, as shown in Re
22, the decoupling of fluctuations in the spin-1/2 Heisenb
model leads to the spherical model with the constra
^s2(r )&53/4. Now the partition function reads

Z5)
r
E

2`

`

ds~r !E
2`

`

dt~r !expb$ls@3/42s2~r !#

1lt@1/22t2~r !#2~Horb1HZ!%, ~25!

where the spherical conditions

]F/]lt5]F/]ls50 ~F52T lnZ!,
d

ld

l

g
twhich control the constraints, should be satisfied by an
propriate choice oflt and ls . Gaussian integration ove
s(r … andt(r … in Eq. ~25! is straightforward; that allows us to
derive the free energyF of the spherical model.

For definiteness, we inspect the particular case
Hi@001#: This orientation is expected to favor the reentran
of the AFQ-D transition line at smallerH as compared to
other orientations. The singularities on the AFQ-D transiti
line, as well as its shape, will be examined as tempera
decreasing, i.e., from the side of the D phase.

Performing the routine calculations, which are given
Appendix D, we get@cf. Eqs.~D2!,~D3!,~D5!#

FIG. 5. The line of the AFQ-D phase transition according
Eqs.~26!–~27!. Units for T andH are discussed in the text.
en
ich
e AFQ-D
ro at
2F5
3

4
ls1

1

2
lt1S 78D

2S z1
z2

lt1A02zD1
3

2
T ln

pT

ls
1
T

2E d3k

~2p!3
ln

~pT!2

~lt1Azz@k#2z!~lt1Axx@k# !2~Axz@k# !2
,

~26!

where

z5S 87D
2 ~mBH !2

ls
. ~27!

Two equations,

1

2
2S 78D

2 z2

~lt1A02z!2
5
T

2E d3k

~2p!3
2lt1Azz@k#1Axx@k#2z

~lt1Azz@k#2z!~lt1Axx@k# !2~Axz@k# !2
~28!

and

3

4
2S 78D

2 z

ls
2S 78D

2 z2

ls~lt1A02z! S 21
z

lt1A02zD2
3T

2ls
5
T

2

z

ls
E d3k

~2p!3
lt1Axx@k#

~lt1Azz@k#2z!~lt1Axx@k# !2~Axz@k# !2
,

~29!

are valid for the D phase and determinels andlt as functions ofT andH, through which the physical quantities can be th
expressed. The integrals in the right-hand side of Eqs.~28! and~29! are not of that simple form as the Watson integral, wh
appears in the spherical model treatment of the 3D ferromagnet, but let us call them generalized Watson integrals. Th
transition line corresponds to the values oflt at which the denominator of the generalized Watson integrals turns ze
k5Q. Taken at the critical value
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lt
~c!~z!5uAQu1z, ~30!

Eqs.~28! and ~29! determineTQ(H). This line is depicted in Fig. 5.
At zero magnetic field,ls52TQ andTQ5@W1(z50)#21, as seen from Eqs.~29! and~28!, respectively. We denote the firs

generalized Watson integral@see Eq.~28!# taken along the transition line byW1(z). It can be written now as

W1~z!5E d3k

~2p!3
2uAQu1Azz@k#1Axx@k#1z

~ uAQu1Axx@k#1z!~ uAQu1Azz@k# !2~Axz@k# !2
. ~31!

In order to estimate the importance of fluctuations, we can compare the spherical model and mean-field results forTQ . The
mean-field approach yieldsTQ

MF(H50)5uAQu/255.37, andTQ(H) decreases monotonically with increasingH.14

An important property ofTQ(H) should be mentioned in connection with Fig. 5~cf. Fig. 3!, i.e.,TQ(H) growslinearlywith
H at not very high magnetic fields. This feature is consistent with experimental findings. Mathematically, this behavior
from the properties of the generalized Watson integrals: their expansions in a small parameterz arec0

( i )2c1
( i )Az, where all four

values ofc are positive. Then, because in the leading orderTQ(H)2TQ(0)'@W1(0)2W1(z)#/@W1(0)#
2, as it follows from

Eq. ~28!, the weak-field behavior ofTQ becomes clearly understood. To complete this proof, let us repre
@W1(z)2W1(0)# as follows:

W1~0!2W1~z!5zE d3k

~2p!3
~ uAQu1Azz@k# !21~Axz@k# !2

D~@k#;z!D~@k#;z50!
, ~32!

which is positive. We denote the denominator of integral~31! by D(@k#;z). At z50, integral in Eq.~32! becomes singular a
small dk5k2Q. In fact, the numerator behaves asdk4, whereas the denominator}dk8. The integral would diverge as
udku21 were it not for the cutoff atudku2;z. Thus we arrive atW1(0)2W1(z)}Az.

It is worth noting, that the spherical model is a reasonable tool for picking up strong fluctuations. However, if fluctu
are effectively suppressed, as is the case in high magnetic fields, the spherical model performs less satisfactorily.

B. Specific heat

Here we confine our consideration to the vicinity of the AFQ-D transition line and magnetic fields weak as comp
TQ (mBH!TQ). The equations which determine thermodynamic behavior are Eqs.~28! and ~29!, where we can neglect al
high order terms inH (Hn with n>2). Using the spherical conditions (]F/]ls5]F/]lt50), one can obtain for the entrop
(S52]F/]T):

S5
3

2
ln

pT

ls
1
5

2
1
1

2E d3k

~2p!3
ln

~pT!2

~lt1Azz@k#2z!~lt1Axx@k# !2~Axz@k# !2
. ~33!

The specific heat at constant field,CH5T(]S/]T)H , is now determined as follows:

CH5
5

2
2
T

2

dlt

dT E d3k

~2p!3
2lt1Azz@k#1Axx@k#2z

~lt1Azz@k#2z!~lt1Axx@k# !2~Axz@k# !2
2
3

2

T

ls

dls

dT

2
Tz

2ls

dls

dT E d3k

~2p!3
lt1Axx@k#

~lt1Azz@k#2z!~lt1Axx@k# !2~Axz@k# !2
. ~34!

With using Eqs.~28! and ~29! we can transform Eq.~34! into the simple form

CH5
5

2
2
1

2

dlt

dT
2
3

4

dls

dT
. ~35!

Let us consider a fixed magnetic field andT.TQ(H), i.e.,T5TQ(H)1dT. At dT!TQ , lt5uAQu1z1dlt is supposed to be
slightly different fromlt

(c)(z) @see Eq.~30!#. In order to find outdlt(dT) we return to Eq.~28! which takes the following
form at z!TQ :

1

2
5
1

2
@TQ~H !1dT#@W1~z!2Adltw~z/dlt ;dlt!#, ~36!

wherew is positive:

w~z/dlt ;dlt!5
1

Adlt
FW1~z!2E d3k

~2p!3
2uAQu1Azz@k#1Axx@k#12dlt1z

~ uAQu1Axx@k#1dlt1z!~ uAQu1Azz@k#1dlt!2~Axz@k# !2G . ~37!
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In Fig. 6w is depicted as function ofdlt for three values of
the ratioz/dlt . It can be remarkably well approximated
the form w0(dlt)@11a(dlt)Az/dlt#

21, where w0(x)
5w(0;x) ~see the upper curve in Fig. 6! anda(x) are both
weakly dependent functions of the argument. For exam
a(0)'0.7 anda(1)'1.15. Note, thata andwTQ

3/2 are di-
mensionless quantities (w0TQ

3/2;1). Thus, in the leading or
der, whendlt!z, which is equivalent todT!mBH, we ob-
tain

dlt'
a~0!

w0~0!

W1~z!

TQ
dTAz

and, becauseW1(z)'TQ
21 ,

dlt

dT
'

a~0!

w0~0!

1

TQ
2Az. ~38!

In accordance with Eq.~29!

ls52T1O@~mBH !2/TQ#. ~39!

Therefore, in the leading order inH one can obtain from Eqs
~35!, ~38!, and~39!:

lim
dT→10

CH512
4

7

a~0!

w0~0!

1

TQ
2

mBH

A2TQ
. ~40!

Below TQ(H) lt does not depend anymore ondT and re-
mains equal touAQu1z. Thus, we get

lim
dT→20

CH51 , ~41!

which, together with Eq.~40!, determines the specific hea
jump, increasing linearly withH.

At TQ@dT@mBH, i.e., beyond a narrow vicinity of the
transition line, we arrive atCH , decreasing linearly with
dT:

CH512TQ
21w0

21dT.

V. WELL-ISOLATED G8 LEVELS: A SINGLE f -HOLE
CONFIGURATION

Zeeman and quadrupolar interactions

Now we deal with the following quantum number
J57/2,S51/2, andL53. In the crystal field of cubic sym
metry the eightfold multiplet splits into theG8 quartet and
two doublets,G6 and G7. If the crystal field Hamiltonian

FIG. 6. w(z/dlt ;dlt) as function ofdlt @Eq. ~37!#.
e,

allows the quartet to be realized as a well-isolated grou
state level, then we confine our consideration to the follo
ing set of wave functions:

c1,656A7/12u77/2&7A5/12u61/2&,

c2,657
1

2
u65/2&7

A3
2

u73/2&. ~42!

Listed below in units ofmB are the nonzero matrix elemen
of Mz , M1 , andM2 :

^c1,1uMzuc1,1&52^c1,2uMzuc1,2&5244/21;

^c2,1uMzuc2,1&52^c2,2uMzuc2,2&524/7;

^c2,2uM1uc1,1&5^c1,1uM2uc2,2&5216/~7A3!;

^c2,1uM2uc1,2&5^c1,2uM1uc2,1&5216/~7A3!;

^c1,2uM2uc1,1&5^c1,1uM1uc1,2&5240/21;

^c2,2uM2uc2,1&5^c2,1uM1uc2,2&5224/7. ~43!

All these matrix elements are in accordance with the oper
expression:

Mi52
8

3
mBs i S 11

8

7
Ti D , i5x,y,z. ~44!

Note that the only difference between Eqs.~44! and~5! is the
coefficient~– 8/3 instead of 2!.

Now let us determine the matrixiQi . For the unit, we
take

Q05^c1,suQzzuc1,s&.

The diagonal components of the quadrupolar moment h
the same nonzero matrix elements as in Eq.~9!, whereas the
matrix elements of the off-diagonal components are six tim
larger than the corresponding elements of Eq.~10!. Thus, the
form of iQi is the same as in Eq.~11!, but the off-diagonal
‘‘vectors,’’ which transform in accordance withG5, are de-
fined now asm53A3tys. This circumstance makes th
problem of quadrupolar ordering less transparent as in
single f -electron case: The part ofHqd @see Eq.~15!#, which
reflects them-m interactions, becomes as important as t
t-t part.

There are a few compounds of cubic symmetry, based
the singlef -hole ions, which can be the candidates to real
the G8 quadrupolar ordering. Among them we would me
tion YbB12 ~Ref. 23! and TmTe.24 There is another impor-
tant difference between these face-cubic centered compo
and CeB6 ~recall, that Ce ions are arranged in a simple cu
lattice!. Namely, fcc compounds do not exhibit such pr
nounced soft modes as in the simple cubic case. It is not
purpose to give a detailed analysis of the fcc situation in
framework of the realistic quadrupolar interaction~13!. We
mention, however, that the ground state of the analog
Horb @see Eq.~18!# is of the AFQ-type, which is related to th
high-symmetry points (Qx ,Qy ,Qz) of the Brillouin zone
boundaries~see Fig. 7!: E(k5Qi)'28.85 at them. The or-
der parameter at, sayk5Qz , corresponds to the Ising-like
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55 8275QUADRUPOLAR AND MAGNETIC ORDERING IN CeB6
symmetry with^tz&50 and^tx&, altering the sign from layer
to layer. The direction of low-lying excitations coincide
with @001#, but the mode is not a soft one
E(k50)2E(k5Q)'3.99.

VI. DISCUSSION AND CONCLUSIONS

The problem of quadrupolar ordering in CeB6 seems to
be well defined provided we confine our attention to t
Zeeman energy and direct quadrupolar interactions. The
usual form of these Zeeman and quadrupolar terms owe
the well-isolatedG8 quartet. Instead of dealing with Steven
operators, it is more convenient to introduce the spinlike,s,
and orbital-like, t, operators. However, in the low
temperature and weak-field region CeB6 undergoes the mag
netic phase transition~see Fig. 2!, which results in the ap-
pearance of complicated magnetic structures. For t
explanation it is insufficient to restrict ourselves to t
above-mentioned interactions only, but indirect interactio
via conductivity electrons start playing an important ro
Magnetic domains of different orientations have been id
tified in neutron diffraction experiments25 for magnetic fields
applied along@111#, @110#, and@001#. However the interpre-
tation of neutron experiments13,15,25occurs to be contradic
tory to recentmSR measurements.17 As for the AFQ ordered
state, the neutron NMR results are still in disagreement:
triple-k structure has been proposed by Takigawaet al.,11

whereas in all the neutron experiments theQ modulation has
been reported (Q5@ 1

2
1
2
1
2]). These two interpretations are mu

tually exclusive. Unfortunately, Ref. 11 is a short paper w
not many details; we mention a few of them to show a s

FIG. 7. The first Brillouin zone of reciprocal space of the f
structure.

FIG. 8. Arrangement of staggered magnetization for magn
field applied along@001#; ~a! NMR interpretation~Ref. 11!; ~b!
Q-modulated structure.
n-
to

ir

s
.
-

e

-

nificant difference of the triple-k ~q 15@ 1
200], q 25@01

20],
q 35@0012]) andQ modulated structures.

For the modulated component of magnetizationm(r ) the
following equation has been proposed in Ref. 11:

m~r !5~21! l m11~21!mm21~21!nm3 , ~45!

where r5(l ,m,n), and the polarization vectors depend o
the magnetic field direction@Hi(cosu1,cosu2,cosu3)# through
the equations

m15m1~u1!~cosu1 ,2cosu2 ,2cosu3!,

m25m2~u2!~2cosu1 ,cosu2 ,2cosu3!,

m35m3~u3!~2cosu1 ,2cosu2 ,cosu3!. ~46!

An important property of$mi% is thatmi(p/2)50. The form
of Eqs. ~45!–~46! is not transparent, it is easier to illustra
them with a couple of examples.

In the first example Hi@001#, which leads to
u15u25p/2, hence,m15m250. This corresponds to a de
generacy of the triple-k structure, whose realization now is
single-k structure. According to Eq.~46! the modulated com-
ponent of magnetization is arranged as shown in Fig. 8~a!.
Our theoretical description results in the arrangement sho
in Fig. 8~b!.

In the second exampleHi@110#, and u35p/2,
u15u25p/4 lead tom350, m15m2. This degeneracy cor
responds to a double-k structure. Figures 9~a! and 9~b! are
the NMR and theoretical interpretations, respectively. No
that the Fig. 9~a! pattern reproduces itself under any trans
tion along@001#, whilem’s of Fig. 9~b! alter the sign under
the translation by the elementary lattice constant.

The preliminarymSR results17 contradict both neutron
and NMR measurements.

A critical experiment seems to be not difficult to achiev
It is connected with the x-ray structural measuments atzero
magnetic field. The translational electric symmetry of the
lattice is broken belowTQ : although all the electric charge
of Ce ions are equal to each other, the modulated compo
of the quadrupolar moment should contribute to the Bra
reflections at the transferred wave vectors of the@ 1

2
1
2
1
2] type.

This would be a weak effect, caused by only one electron
the total numberZ. However, instead of an usual x-ray tec

ic FIG. 9. Arrangement of staggered magnetization for magn
field applied along@110#; ~a! NMR interpretation~Ref. 11!; ~b!
Q-modulated structure.
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nique it would be possible to use synchrotron facilities
finding theQ or triple-k modulated structure~or something
different from these two!. Note, that the zero field exper
ment is more instructive because it allows to avoid the s
in
is

ie

b

e
ct
r

c-

ondary effects in nonzero fields, i.e., formations of magn
cally modulated structures. To complete this x-ray discuss
we give the on-site form-factoroperatorwhich is calculated
over the set$c l ,s% and related to thef electrononly:
led

t of

the
are
f ~q!5^ j 0&1
1

2
^ j 4&P4~zq!1

1

7
tz~r !@16̂ j 2&P2~cosuq!25^ j 4&P4~zq!#1

1

7A3
tx~r !@8^ j 2&P2

2~zq!1^ j 4&P4
2~zq!#cos2fq ,

zq5cosuq .

uq andfq denote the spherical coordinates ofq relative to thez axis.Pl
m(z) are associated Legendre polynomials. Detai

calculations in connection with a concrete x-ray~synchrotron! experiment will be published elsewhere.
The experimental technique which is associated with the so-called third order paramagnetic susceptibility26 can be also used

for probing the quadrupolar ordering in CeB6. However, it cannot yield information about the microscopic arrangemen
quadrupolar moments. This method is based on the extraction of theH3 terms fromM (H), whenH is small. For our problem,
the average magnetization can be written as

M̄a52
1

6T3
1

N (
r1 . . . r4

$^Ma~r1!Mb~r2!Mm~r3!M n~r4!&23^Ma~r1!Mb~r2!&^Mm~r1!M n~r2!&%HbHmHn . ~47!

For further transformations in Eq.~47!, we imply that,first, all the magnetic fluctuations are much smaller as compared to
quadrupolar fluctuations in the AFQ phase~at least nearTQ), second, the diagonal components of the quadrupolar moment
responsible for ordering belowTQ . Then, using the Wigner-Eckhart theorem we can decouple Eq.~47! according to the
following scheme:

Ma~r !Mb~r 8!→S 76D
2

mB
2Ja~r !Jb~r !d r ,r8→S 76D

2

mB
2Q0

21@Ta~r !1J~J11!/3#dabd r ,r8,

and arrive at the following equationM̄a5M̄a
(0)1M̄a

(1) , where

M̄a
~1!52

mB
4

2T3 S 76D
4 1

N(
r8Þr

1

Q0
2(

m
@^Ta~r !Tm~r 8!&2^Ta~r !&^Tm~r 8!&#HaHm

2 , ~48!

M̄a
~0!52

mB
4

6T3 S 76D
4 1

N(
r

(
b,m,n

HbHmHn@^Ja~r !Jb~r !Jm~r !Jn~r !&2^Ja~r !Jb~r !&^Jm~r !Jn~r !&2^Ja~r !Jm~r !&

3^Jb~r !Jn~r !&2^Ja~r !Jn~r !&^Jb~r !Jm~r !&#. ~49!
un-
n-
on

ch
. In
ds

ng
the
ys-
Equation~48! includes the irreducible correlators oftx and
tz . The on-site irreducible correlator enters Eq.~49!. The
average of fourJ’s can be reduced to a linear-in-t expecta-
tion value which disappears upon summation overr . The
^JJ&2 terms of Eq.~49! result in the contribution}^t&2,
which should produce a kink in a dependencex (3) versus
T at TQ .

The AFQ-D transition line was recently measured
fields up to 18 T.16 In spite of its tendency to reenter, th
curve still displays the monotonicTQ(H) behavior. An opti-
mistic theoretical prediction is; 25–30 T for the field at-
which the reentrance could start and; 80 T for the zero-
temperature critical field. The current experimental facilit
are enough to examine the field region around 25–30 T.

Although many experimental results can be explained
the present theory~see also Refs. 14,27!, still there remain a
few puzzling facts. Among them we would mention th
AFQ-D transition line whose experimental shape is pra
cally independent on the field orientation,@001#, @110#, or
s

y

i-

@111#. Probably, such behavior could be ascribed to an
usual anisotropy of the Zeeman energy. In fact, if we co
sider an isolatedG8 ion, its ground-state energy depends
the magnetic field direction as follows:

Eg.s.52
mBH

7 A6514A270~nx41ny
41nz

4!274, ~50!

that is211, 29.81, and29 ~in units mBH/7) for orienta-
tions@001#, @110#, and@111#, respectively. For magnetic field
of a general orientation, the vector of magnetization in su
a paramagnetic state does not follow the same direction
this connection, the experiments with diluted compoun
La12xCexB6 could provide important information, if the
crystal field still favors theG8 ground state.

From the theoretical point of view it should be interesti
to understand the symmetry and a microscopic origin of
magnetic interactions which govern the properties of the s
tem at low temperatures.
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TABLE II. The operator forms for transformationsul ,s&→ul 8,s8&.

u1,1& u1,2& u2,1& u2,2&

u1,1& ( 121tz)(
1
21sz) ( 121tz)s2 t2(

1
21sz) t2s2

u1,2& ( 121tz)s1 ( 121tz)(
1
22sz) t2s1 t2(

1
22sz)

u2,1& t1(
1
21sz) t1s2 ( 122tz)(

1
21sz) ( 122tz)s2

u2,2& t1s1 t1(
1
22sz) ( 122tz)s1 ( 122tz)(

1
22sz)
.
to
d
u
in
J.
M
n

ce

r
trix
r

ACKNOWLEDGMENTS

I take the opportunity to thank A. Lacerda and M
Torikachvili for sending me the experimental data prior
their publication. When making this work I had fruitful an
enlightening discussions with P. Burlet, H. Capellmann, Y
Chernenkov, J. Flouquet, T. Kasuya, V. Mineev, P. Mor
E. Müller-Hartmann, V. Plakhty, L.-P. Regnault,
Schweizer, and C. Vettier. It is my pleasure to thank
Burgess for linguistic comments. This work has been do
.
,

.
e

during my stay at CEN/CNRS in Grenoble, in accordan
with the program of the Ecole Normale Supe´rieure–Landau
Institute cooperation.

APPENDIX A

In order to construct the operator expressions forM , as
well as forQi j , we employ Table II. It shows the operato
connection between all four possible states. Using ma
elements~4! in combination with Table II one can obtain fo
Mx5(M11M2)/2, for example,
nce
Mx5
mB

2 S 4A37 ~t2s21t1s11t1s21t2s1!1
10

7
~1/21tz!~s11s2!1

18

7
~1/22tz!~s11s2! D

52mBsxS 11
4

7
~A3tx2tz! D . ~A1!

Another example is forQxy @see Eqs.~10!#:

Qxy5Q0S i A38 @t2~1/21sz!1t1~1/22sz!#2 i
A3
8

@t1~1/21sz!1t2~1/22sz!# D 5
A3
2

szty5mz . ~A2!

APPENDIX B

The original parametersAi j ,mn(r ) give rise toAab(r ) andBi j (r ) whose angular dependence is derived below in accorda
with Eqs.~11!, ~12!, ~15!:

Azz5Axx,xx1Ayy,yy14Azz,zz12Axx,yy24Axx,zz24Ayy,zz5
35

24
~123nz

2!21
5

6
~123nz

2!2
7

6
,

Axx53Axx,xx13Ayy,yy26Axx,yy5
35

8
~nx

22ny
2!22

5

6
~123nz

2!2
7

6
,

Axz5A3~2Axx,xx1Ayy,yy12Axx,zz22Ayy,zz!5A3~nx
22ny

2!S 2
35

24
~123nz

2!1
5

6D .
Bxx54Ayz,yz5

35

6
ny
2nz

21
5

6
nx
22

2

3
, Byy54Azx,zx5

35

6
nz
2nx

21
5

6
ny
22

2

3
,

Bzz54Axy,xy5
35

6
nx
2ny

21
5

6
nz
22

2

3
, Bxy54Ayz,xz5

5

6
nxny~7nz

221!,

Byz54Azx,xy5
5

6
nynz~7nx

221!, Bzx54Axy,yz5
5

6
nznx~7ny

221!.

To shorten theA andB expressions we skip theirr dependence, i.e., factorr25.
Listed below are a few coupling constants of the effectives-s Hamiltonian~19!:
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B̃xx~ax!50.0049, B̃yy~ax!5B̃zz~ax!520.0195, B̃yy~ay!50.0049, B̃xx~ay!5B̃zz~ay!520.0195,

B̃zz~az!520.0010, B̃xx~az!5B̃yy~ay!50.0039, B̃zz~ax6ay!520.0011, B̃xy~ax6ay!560.0006.

APPENDIX C

Because of the rotational symmetry of theQ-modulated state, we choose the quantization axis,n0, as lying in the
(tx ,tz) plane. One of the two perpendicular directions,n1, is taken also in the (tx ,tz) plane. Let the third direction coincide
with ty :

n05~sinf,0,cosf!, n15~cosf,0,2sinf!, n25~0,1,0!.

In the spin-wave approximation

t•n05eiQrS 122b†bD , t•n15
1

2
eiQr~b1b†!, t•n25

1

2i
~b2b†!.

Hence, to the same order we obtain

tx5eiQrF S 122nD sinf1
1

2
~b1b†!cosf G , tz5eiQrF S 122nD cosf2

1

2
~b1b†!sinf G , ty5

1

2i
~b2b†!. ~C1!

Now operators~C1! can be used for extracting the ‘‘classical’’ and ‘‘spin-wave’’ parts ofHorb:

(
rÞr8

@Azz~r2r 8!tz~r !tz~r 8!1Axx~r2r 8!tx~r !tx~r !1Axz~r2r 8!„tx~r !tz~r 8!1tz~r !tx~r 8!…#

5(
q

S 142bq
†bqD(

r
eiQr@Azz~r !cos

2f1Axx~r !sin
2f1Axz~r !sin2f#

1
1

4(q (
r
eiQreiqr@Azz~r !sin

2f1Axx~r !cos
2f2Axz~r !sin2f#~b2q1bq

†!~bq1b2q
† !. ~C2!

The ‘‘classical,’’ i.e., operator-independent, part of the right-hand side of Eq.~C2! is invariant under the rotation ofn0 in the
(tz ,tx) plane (f rotation!. In fact, this part appears to bef independent:NAQ/4.

APPENDIX D:

Let us first divide both fields,s andt, into uniform and modulated parts:

s~r !5s~0!1s̃~r !, t~r !5t~0!1 t̃~r !.

Then, the coefficients of the linear ins̃ and t̃ terms in the exponential of Eq.~25! must be put zero, and we obtain

s̃z~r !:22lssz
~0!12mBH~11 8

7 tz
~0!!50; s̃x~r !:sx

~0!50; s̃y~r !:sy
~0!50;

t̃z~r !:22~lt1A0!tz
~0!1 16

7 mBHsz
~0!50; t̃x~r !:tx

~0!50; t̃y~r !:ty
~0!50.

This yields

tz
~0!5

7

8

z

lt1A02z
, sz

~0!5
mBH

ls

lt1A0

lt1A02z
,

wherez5(8mBH/7)
2/ls .

Then, extracting the constants and the contribution of the uniform components ofs and t fields (Z0), we arrive at the
Gaussian integration overs̃ and t̃ in Z:

Z5Z0Z1 ; Z15)
r
E

2`

`

ds̃~r !E
2`

`

dt̃~r !

3expbH 2lss̃2~r !1
16

7
mBHs̃z~r !t̃z~r !2ltt̃2~r !2(

r8
Aab~r2r 8!t̃a~r !t̃b~r 8!J , ~D1!

whereZ05exp(2NF0 /T) and
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2F05
3

4
ls1

1

2
lt1S 78D

2S z1
z2

lt1A02zD . ~D2!

The s̃ integration can be easily performed. It results in the contribution

2F1~s!5
3

2
T ln

pT

ls
, ~D3!

and transformsAzz(r2r 8)→Azz(r2r 8)2d r ,r8z.
Thus, we can rewriteZ1 as exp@2N(F1(s)1F1(t))/T#, and

exp2
NF1~t!

T
5)

r
E

2`

`

dt̃~r !exp2b(
r8
Ãab~r2r 8!t̃a~r !t̃b~r 8!, ~D4!

where

Ãzz~r !5d r ,0~lt2z!1Azz~r !, Ãxx~r !5d r ,0lt1Axx~r !, Ãxz~r !5Axz~r !.

The functional integration in Eq.~D4! can be straightforwardly performed:

2F1~t!5
T

2

1

N(
k
ln

~pT!2

Ãzz@k#Ãxx@k#2~Ãxz@k# !2
. ~D5!
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