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Critical-current diffraction pattern of annular Josephson junctions
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A derivation of the exact analytical expressions for the critical current versus magnetic-field-diffraction
pattern of “electrically” small annular Josephson junctions is presented. These formulas have been recently
used to fit experimental daf&l. Martucciello and R. Monaco, Phys. Rev.538, 9050(1996]. They include,
as a special case, the approximate analytical results previously publishédartucciello and R. Monaco,

Phys. Rev. B53 3471(1996]. [S0163-182607)01602-0

There has been renewed interest very recently in the phys- The equation relating the phase differencéetween the
ics of annular Josephson tunnel junctidfisAnnular junc-  two junction electrodes at the poinp,(®) to the external
tions offers a unique chance to study fluxon dynamics bemagnetic fieloH is*
cause of the absence of fluxon colliding boundatiédso,
the nonconnected geometry plays a special role in determin- 277 et
ing the behavior of such a junction when a magnetic field is Voop= g HXUz, 1)
present. Martucciello and MonatéMM) have considered 0
the static configurations of the phase inside an ann@&r \yhere the left side is the gradient operator in
ternal radiusR, internal radiug’) Josephson tunnel junction pojar-cylindrical coordinates, that iV, ,=(U,d¢ld,
in the presence of an externally applied magnetic field par= Ugllpdeldg), u, is the unit vector in thez direction,
allel to the plane of the junction. In Ref. 2 MM report a ¢ ,=d, +2\, is the effective thickness of the field-
detailed experimental investigation of the dependence on thgenetrated region, and, and \ are the thickness of the
magnetic field of the critical current for different annular parrier and the London penetration depth, respectively. If the
geometriegmainly determined by different fabrication tech- externally applied magnetic field is uniform, parallel to the
niques. X-y junction plane, and at an angk with respect to the

For rings having a circumference shorter than the Joseplpositive x axis, its components in the chosen polar coordi-
son penetration depth, and in the limit of vanishing ringnates are
width [(R—r)—0] [so that the phase= ¢(p,6), which
normally depends both om and 8, depends only o®] MM H,(¢)=H cog 6— ¢), 2
derive a simple analytical result for the lobe structures of the
critical current versus magnetic field which is in excellent
agreement with the experimental data at low-field values.

For large field values,'" .. discrepancies in the ampli- . . .
tudes of the secondary maxima show up,” with apparently-rhen Eq.(1), written in its two components, gives
no explanation. In this report | present the diffraction pattern
formulas of small annular junctions which were calculated
by dropping the approximation of a vanishing ring width.
These formulas allow one to fit experimental data on a small
annular junction very satisfactorily in the whole field rahge
showing that the agreement between theory and experiment
can be indeed fully recovered, when the finite wigth r of
the ring is correctly considered. In this report the modifica-
tions due to the presence of trapped fluxons are also briefly
considered and the corresponding formulas for the diffrac-
tion pattern are provided.

Figure 1 shows schematically the ring-shaped Josephson
barrier lying in thex-y plane, the polar-cylindrical coordi-
nate used, and the externally applied magnetic field in the
plane of the junction. “Small” junctions only are consid-
ered. More specifically it is assumed thatR<\;, where
R is the external radius of the ring ang is the Josephson

Hy(¢)=Hsin(6— ¢). ()

penetration deptm\j=[(I)o/(277,uodeff-]o)]1/2- In this case FIG. 1. A ring-shaped Josephson barrier. Indicated are the es-
the self-field effect can be neglected and, moreover, trappeskntial geometric parameters and coordinates used in the calcula-
fluxons are not localized. tions.
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do ] 1 de ~
$=ksm( 60— ¢), rr —kcog6—¢), (4 cogasinb)=Jg(a)+2>, Jy(a)cog2jb). (13
i=0
27 poleH Here J;(a) is theith Bessel function of integer order.
= D, ' (5) The first integral, Eq.(11) gives zero contribution, no
_ ) ) ) term surviving to the integration oth. Only the first term
which by integration yield contributes in the second integral yielding, after the integra-
. tion on p has been performed too,
¢(p,#)=kpsin(6— §)+ go. () P P
The constantp, may be identified with the phase difference (k=2 kRJ(KR)—krJy(kr) (14)
along the direction of the magnetic field= 6. Thus, in the ¢ 0 k?R%2—K?r?
presence of a magnetic field, the phase difference may be
written as Equation (14) determines the critical-current diffraction
pattern of a “small” annular tunnel junction, for any
®(p,d) (R—r) value. Equation(14) reduces to the simple result ob-
oo #)= g0+ 2m—g () tained by MM in Ref. 2,
where® (p, ¢) =dspuoH represents the flux dfl enclosed 1e(K)=14|Jo(kR)|. (15)

between thez axis and the polar coordinate,($) in the . _ o
insulating barrier plus the penetration layers. Now, the Jo{Jo iS now the zero-order Bessel functjomn the limit
sephson current density in talirection can be expressed in I — R of vanishing width of the ring barrier.

the forn? Of course, in the opposite limit, that is—0, from Eq.
(14) the well- known result for the circular junctiotdisk
: ®(p, ) barrier junction is recovered,
JZ(P:¢):JOS|n ¢0+27T P ) (8)
° J1(kR)
and the Josephson current across the &e#the junction le(K)=1g T2AKR) | (16)

can be obtained by integrating E@) over S= wR?>— 7rr2.
Assuming a uniform maximum Josephson current densityt is interesting to introduce the normalized field dependence
Jo one obtains of the critical current.

I =|0(<sin2w¢(£'¢)> cos,o0+<c032w®(£'¢)>singoo), 1.=2l,
0 0
9

where the symbol ) denotes the spatial average over the
junction area andly=J,S is the maximum Josephson critical

Ji(7mh)—gJ (emh)
wh(1—¢?) '

17

wheree =r/R andh is the normalized total flux across the
junction or equivalently the normalized magnetic field

current. _ _ Oy H
By maximizing Eq.(9) with respect topy we obtain the kR= Wh:WF: T (18
dependence of the critical current on the external magnetic 0 0
field, or the diffraction pattér where
__ D(p,)\? D(p,¢)\ 2]M2 ®
= 0
|C |0 <SII’]2’7T q)o +{ cos2mr (Do . (I)tot: MOH(ZR)deﬁ: HOZM' (19)

(10)
, ) d . is the total flux across the junction aht} is the “char-
Once Eqs(6) and(7) have been substituted in EQL0),  gcteristic field” that is the minimum field required for intro-
one has to evaluate the two integrals ducing one flux quantum. When fluxons are trapped into the
R o . . barrier, which is a common experimental occurrence, the
(D(p'¢)> — rpdpfo"dé sinkpsin(6— )] critical current pattern is modified because now the magnetic
@, 7(R°—r?) ' field of the fluxon is to be added to the externally applied
(1) magnetic field. The trapping modality in the annular junction
R om . is, in some sense, simple. It is determined by the noncon-
D(p, )\ JrpdpJo"décogkpsin(6—¢)] nected geometry.
oy | m(R®—r?) ' A ring junction with a trapped fluxortor “antifluxon”
(12 depending on the field lines direction consideredthe up-
i _ ) . . per electrode, threading the barrier, is represented very sche-
The integration can be easily done by using the Fouriermagically in Fig. 2. In principle, an arbitrary number of flux-

Bessel expansiofs ons (or antifluxong can be independently trapped in each

<sin27r

< Ccos2ir

® electrode. Each flux quantum contributes to the current cir-
sin(asinb)=2> 3y 1(a)sin{2) +1)b], culatlng. in the eIeptrode inone of the two possible directions
i=o (clockwise or anticlockwise
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z e(p,d)=kpsin(0—¢)—Nnd+ . (22

It is not difficult to show now that the critical-current
diffraction pattern generalizing Eq14) whenn fluxons is
present reads

| 2 kR
! Y or
e 2 [t
= o | xnxmmax 24

wheree=r/R andn=0,1,2,...; when R—r)—0 then

FIG. 2. Schematic representation of an annular junction with a

flux quantum trapped in the upper electrode. ! (29

I
1= =13a(h)
0

awhich is the approximate result appearing in Ref. 3.

It is interesting to observe that the characteristic effect of
the presence of trapped fluxons is to set at zero the critical
current. This is easily seen from Eq41) and(12), since, in
the absence of an external magnetic fielg(p, o)

The central hole in the two electrodes plays the role of
major “pinning center” and | will not consider other pos-
sible conditions of trapping in this report. When the circum-
ference of the junction is small with respectX¢p, we can
assume that the fluxatthe field line$ is uniformly spread all ™ ) . .
over the circle. Then the presence of a fluxon amounts to add Pot nfi” a_nd bOt_h the mtegr_als in EqSLl)_and(lZ) give
a radial component to the external field. This component cah® contnbuthn. This property is preserved in the presence of
be easily calculated. At a distange the magnetic field an external field as shown by E(4), for I vanishes at

e h=0, unlessn=0. In conclusion the analytical expression
crosses a surfacerpdqs. Then the magnetic field produced ' . )
by n trapped fluxongor antifluxon$ in the junction barrier is [.Eq. (14)] of the cr|t|caI-Cl_Jrren_t dependence on the magngnc
given by field for a small annular junction has been constructed with-

out any approximation. This formula contains as a special
nd, case the approximate result previously calculdterd al-
(200 lows one to fix the previous observed discrepancies. For the

n:—.
27p ol case in which fluxons are trapped in the junction electrodes,
Adding this component to the radial part of the external field the corresponding exact analytical reuhlid for any width
Eq. (2), the equations determining the phase become of the junction ring width is given in integral form by Eq.
(23) or Eq. (24).
de . de _ -
a—=kSIn( 0—¢); —=—kpcog6—¢)—n, (21 | thank R. Monaco, N. Martucciello, R. Cristiano, and S.
p d ) .
Pagano for helpful discussions and comments on the manu-
from which by integration script.
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