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Critical-current diffraction pattern of annular Josephson junctions
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~Received 3 June 1996!

A derivation of the exact analytical expressions for the critical current versus magnetic-field-diffraction
pattern of ‘‘electrically’’ small annular Josephson junctions is presented. These formulas have been recently
used to fit experimental data@N. Martucciello and R. Monaco, Phys. Rev. B54, 9050~1996!#. They include,
as a special case, the approximate analytical results previously published@N. Martucciello and R. Monaco,
Phys. Rev. B53 3471 ~1996!#. @S0163-1829~97!01602-0#
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There has been renewed interest very recently in the p
ics of annular Josephson tunnel junctions.1,3 Annular junc-
tions offers a unique chance to study fluxon dynamics
cause of the absence of fluxon colliding boundaries.1 Also,
the nonconnected geometry plays a special role in determ
ing the behavior of such a junction when a magnetic field
present. Martucciello and Monaco2 ~MM ! have considered
the static configurations of the phase inside an annular~ex-
ternal radiusR, internal radiusr ) Josephson tunnel junctio
in the presence of an externally applied magnetic field p
allel to the plane of the junction. In Ref. 2 MM report
detailed experimental investigation of the dependence on
magnetic field of the critical current for different annul
geometries~mainly determined by different fabrication tech
niques!.

For rings having a circumference shorter than the Jose
son penetration depth, and in the limit of vanishing ri
width @(R2r )→0] @so that the phasef5f(r,u), which
normally depends both onr andu, depends only onu# MM
derive a simple analytical result for the lobe structures of
critical current versus magnetic field which is in excelle
agreement with the experimental data at low-field values

For large field values, ‘‘ . . . discrepancies in the ampli
tudes of the secondary maxima show up,’’ with apparen
no explanation. In this report I present the diffraction patte
formulas of small annular junctions which were calculat
by dropping the approximation of a vanishing ring widt
These formulas allow one to fit experimental data on a sm
annular junction very satisfactorily in the whole field rang3

showing that the agreement between theory and experim
can be indeed fully recovered, when the finite widthR2r of
the ring is correctly considered. In this report the modific
tions due to the presence of trapped fluxons are also br
considered and the corresponding formulas for the diffr
tion pattern are provided.

Figure 1 shows schematically the ring-shaped Joseph
barrier lying in thex-y plane, the polar-cylindrical coordi
nate used, and the externally applied magnetic field in
plane of the junction. ‘‘Small’’ junctions only are consid
ered. More specifically it is assumed that 2pR,l j , where
R is the external radius of the ring andl j is the Josephson
penetration depth,l j5@F0 /(2pm0deffJ0)#

1/2. In this case
the self-field effect can be neglected and, moreover, trap
fluxons are not localized.
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The equation relating the phase differencew between the
two junction electrodes at the point (r,f) to the external
magnetic fieldH is4

“r,fw5
2pm0deff

F0
H3uz , ~1!

where the left side is the gradient operator
polar-cylindrical coordinates, that is,“r,f[(ur]w/]r

1uf1/r]w/]f), uz is the unit vector in thez direction,
deff5dn12ls is the effective thickness of the field
penetrated region, anddn and ls are the thickness of the
barrier and the London penetration depth, respectively. If
externally applied magnetic fieldH is uniform, parallel to the
x-y junction plane, and at an angleu with respect to the
positive x axis, its components in the chosen polar coor
nates are

Hr~f!5H cos~u2f!, ~2!

Hf~f!5H sin~u2f!. ~3!

Then Eq.~1!, written in its two components, gives

FIG. 1. A ring-shaped Josephson barrier. Indicated are the
sential geometric parameters and coordinates used in the cal
tions.
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]w

]r
5k sin~u2f!,

1

r

]w

]f
52k cos~u2f!, ~4!

k5
2pm0deffH

F0
, ~5!

which by integration yield

w~r,f!5kr sin~u2f!1w0 . ~6!

The constantw0 may be identified with the phase differenc
along the direction of the magnetic field,f5u. Thus, in the
presence of a magnetic field, the phase difference may
written as

w~r,f!5w012p
F~r,f!

F0
, ~7!

whereF(r,f)5deffrm0H represents the flux ofH enclosed
between thez axis and the polar coordinate (r,f) in the
insulating barrier plus the penetration layers. Now, the
sephson current density in thez direction can be expressed
the form5

Jz~r,f!5J0sinS w012p
F~r,f!

F0
D ~8!

and the Josephson current across the areaS of the junction
can be obtained by integrating Eq.~8! over S5pR22pr 2.
Assuming a uniform maximum Josephson current den
J0 one obtains

I5I 0S K sin2p F~r,f!

F0
L cosw01 K cos2p F~r,f!

F0
L sinw0D ,

~9!

where the symbol̂ & denotes the spatial average over t
junction area andI 05J0S is the maximum Josephson critic
current.

By maximizing Eq.~9! with respect tow0 we obtain the
dependence of the critical current on the external magn
field, or the diffraction patter6

I c5I 0F K sin2p F~r,f!

F0
L 21 K cos2p F~r,f!

F0
L 2G1/2.

~10!

Once Eqs.~6! and ~7! have been substituted in Eq.~10!,
one has to evaluate the two integrals

K sin2p F~r,f!

F0
L 5

* r
Rrdr*0

2pdf sin@kr sin~u2f!#

p~R22r 2!
,

~11!

K cos2p F~r,f!

F0
L 5

* r
Rrdr*0

2pdf cos@kr sin~u2f!#

p~R22r 2!
.

~12!

The integration can be easily done by using the Four
Bessel expansions7

sin~a sinb!52(
j50

`

J2 j11~a!sin@2 j11!b],
be

-

ty

ic

r-

cos~a sinb!5J0~a!12(
j50

`

J2 j~a!cos~2 jb !. ~13!

HereJi(a) is the i th Bessel function of integer order.
The first integral, Eq.~11! gives zero contribution, no

term surviving to the integration onf. Only the first term
contributes in the second integral yielding, after the integ
tion on r has been performed too,

I c~k!52I 0U kRJ1~kR!2krJ1~kr !

k2R22k2r 2 U. ~14!

Equation ~14! determines the critical-current diffractio
pattern of a ‘‘small’’ annular tunnel junction, for an
(R2r ) value. Equation~14! reduces to the simple result ob
tained by MM in Ref. 2,

I c~k!5I 0uJ0~kR!u. ~15!

(J0 is now the zero-order Bessel function! in the limit
r→R of vanishing width of the ring barrier.

Of course, in the opposite limit, that isr→0, from Eq.
~14! the well- known result for the circular junction~disk
barrier junction! is recovered,4

I c~k!5I 0U J1~kR!

1/2~kR!
U. ~16!

It is interesting to introduce the normalized field depende
of the critical current.

I c52I 0U J1~ph!2«J1~«ph!

ph~12«2!
U, ~17!

where«5r /R andh is the normalized total flux across th
junction or equivalently the normalized magnetic field

kR[ph5p
F tot

F0
5p

H

H0
, ~18!

where

F tot5m0H~2R!deff , H05
F0

~2R!m0deff
. ~19!

F tot is the total flux across the junction andH0 is the ‘‘char-
acteristic field’’ that is the minimum field required for intro
ducing one flux quantum. When fluxons are trapped into
barrier, which is a common experimental occurrence,
critical current pattern is modified because now the magn
field of the fluxon is to be added to the externally appli
magnetic field. The trapping modality in the annular juncti
is, in some sense, simple. It is determined by the nonc
nected geometry.

A ring junction with a trapped fluxon~or ‘‘antifluxon’’
depending on the field lines direction considered! in the up-
per electrode, threading the barrier, is represented very s
matically in Fig. 2. In principle, an arbitrary number of flux
ons ~or antifluxons! can be independently trapped in ea
electrode. Each flux quantum contributes to the current
culating in the electrode in one of the two possible directio
~clockwise or anticlockwise!.
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The central hole in the two electrodes plays the role o
major ‘‘pinning center’’ and I will not consider other pos
sible conditions of trapping in this report. When the circu
ference of the junction is small with respect tol j , we can
assume that the fluxon~the field lines! is uniformly spread all
over the circle. Then the presence of a fluxon amounts to
a radial component to the external field. This component
be easily calculated. At a distancer the magnetic field
crosses a surface 2prdeff . Then the magnetic field produce
by n trapped fluxons~or antifluxons! in the junction barrier is
given by

Hn5
nF0

2prm0deff
. ~20!

Adding this component to the radial part of the external fie
Eq. ~2!, the equations determining the phase become

]w

]r
5ksin~u2f!;

]w

]f
52kr cos~u2f!2n, ~21!

from which by integration

FIG. 2. Schematic representation of an annular junction wit
flux quantum trapped in the upper electrode.
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w~r,f!5kr sin~u2f!2nf1w0 . ~22!

It is not difficult to show now that the critical-curren
diffraction pattern generalizing Eq.~14! when n fluxons is
present reads

I c
I 0

5U 2

~kR!22~kr !2 Ekr
kR

krJn~kr!dkrU ~23!

or

I c
I 0

5
2

~12«2!
E

«

1

xJn~xph!dx, ~24!

where«5r /R andn50,1,2,...; when (R2r )→0 then

I c
I 0

5uJn~ph!u, ~25!

which is the approximate result appearing in Ref. 3.
It is interesting to observe that the characteristic effect

the presence of trapped fluxons is to set at zero the crit
current. This is easily seen from Eqs.~11! and~12!, since, in
the absence of an external magnetic field,w(r,f)
5w01nf, and both the integrals in Eqs.~11! and~12! give
no contribution. This property is preserved in the presence
an external field as shown by Eq.~24!, for I c vanishes at
h50, unlessn50. In conclusion the analytical expressio
@Eq. ~14!# of the critical-current dependence on the magne
field for a small annular junction has been constructed w
out any approximation. This formula contains as a spe
case the approximate result previously calculated,2 and al-
lows one to fix3 the previous observed discrepancies. For
case in which fluxons are trapped in the junction electrod
the corresponding exact analytical result~valid for any width
of the junction ring width! is given in integral form by Eq.
~23! or Eq. ~24!.

I thank R. Monaco, N. Martucciello, R. Cristiano, and
Pagano for helpful discussions and comments on the ma
script.
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