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Distinguishing quasiperiodic from random order in high-resolution TEM images
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We investigate the question of whether an experimental tiling that was constructed by superimposition onto
a high-resolution transmission electron microscORTEM) image belongs to the ideal quasiperiodic or to
the random tiling class. To answer this question, statistical arguments and our method are applied to different
decagonal Al-Co-Ni phases. This method allows us to distinguish between both classes even if tiling errors and
poor statistics are involved. A possible stabilization mechanism is discussed for a high-temperature phase that
is ideally quasiperiodid.S0163-18207)01813-4

[. INTRODUCTION to face in a random manner, one would get the same aver-
aged symmetry in Fourier space and only a slightly different
The science of quasicrystals is a very lively field. Up toform of the Bragg intensities and some background modifi-
now, a few hundred chemically different alloys are knowncations. The differences of both, ideally quasiperiodic and
which show crystallographically forbidden symmetries. Therandom tilings, are so tiny, that even today, 12 years later, it
publication of the discovery of icosahedral quasicrystals inis hard or even impossible for an experimentalist to answer
1984 was immediately followed by the description of dode- the question, whether the structure of a sample belongs to the
cagonal quasicrystafs.Shortly after that, the decagonal class of the ideal quasiperiodic tilings or to the class of the
phases were discoverednd the octagonal quasicrystals fol- so-called random tilings.
lowed in 1987* These four different classes have now found In order to distinguish between quasiperiodic and random
a supplement in the discovery of pentagonal phaddsx- tilings one must have excellent samplestter than those of
cept for the icosahedral phases all other symmetry classesost crystalsand must look at the form of thegdependence
belong to the so-called quasiperiodiphases, i.e., they con- of the experimental Bragg peaks near their bottom. Another
sist of periodically stacked aperiodic planes and can be claspproach which is possible, at least in 2D, is to superimpose
sified with the help of their translation periods in the periodictilings onto high-resolution transmission electron mircro-
direction (within their symmetry classgs scope(HRTEM) images and to investigate the nature of the
The experimental discovery of quasicrystals was accomresulting tilings. The main problems associated with this al-
panied by much theoretical work. From the beginning, theoternative method are the poor statistics and the existence of
reticians mainly focused on structural aspects of quasiperitiling) defects(similar but more crucial than in crystals
odicity: Besides some other proposals, two-dimensié2@)  which makes a decision between both tiling classes hard and
and 3D quasiperiodic tilings were used to describe the geosften impossible.
metrical structure of the new materials. For several years, the Nevertheless, the physical properties of both classes lead
physical properties became more and more important. Eveto certain expectations: The ideal quasiperiodic tilings are
before the above-mentioned experimental discoveries, thihought to be stabilized energetically. On the level of the
two most famous quasiperiodic tilings, th@D) Penrose tilings this can be achieved with the so-called
tiling” and the(3D) Ammann-Kramer tiling were known. matching-rule¥ or tiling cluster-modef¥ and, on the level
These tilings can be produced by an irrational cut through &f real atomic arrangements, with chemical order of the at-
higher-dimensional lattice. Therefore, their whole geometri-oms on the constituent clustérsThe random tiling en-
cal structure is deterministic, in the sense that one can exsembles are thought to be stabilized by tHgiositive en-
actly calculate the surrounding of every point in real spacetropy density'® Therefore, one would expect that at least in
Today both tilings are the prototypes of the so-called ideathe high-temperature regime the random tiling hypothesis
quasiperiodic tilings in 2D and 3D, respectively, and theyshould be favored. However, there are a few theoretical tools
started a whole field of mathematita! and physical to investigate these questions.
interest!! This is the point we wish to address. Starting from the
Shortly after the experimental discovery, Eléguointed  situation that experimental tilings superimposed onto HR-
out that one could relax the construction of the ideal tilingsTEM images are available, a detailed analysis of those tilings
without disturbing their key features. If one takes, e.g., thes presented with respect to the question whether they belong
same tiles as in the ideal case, but now rearranges them fate the ideal quasiperiodic or to the random tiling scenario,
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i.e., we want to say which one is the better idealization for
the given tiling. Different theoretical tools of investigation
are compared and an application of our metfiad experi-
mental data is presented. This method does not focus on the
very specific kind of tiling or at tiling defects which can be
involved, but on statistical correlations of the data only. The
method is applied together with conventional ones to vari-
ants of the decagonal or pentagonal phases of Al-Co-Ni qua
sicrystals.

This paper is subdivided as follows: In Sec. Il, the main
features of the different phases of quasicrystalline Al-Co-Ni
are given and the superimposed tilings and their projections
into the perpendiculafinterna) space are presented. This
will be brief and focused on the relevant topics. For a de-
tailed description of the data refer to the original publications
cited. In Sec. lll, the different methods of investigation of the
tilings are introduced and are applied to the data. In Sec. IV,
a discussion is presented with respect to the question which

stabilization mechanism is most probable in order to explain
the results of the analysis. FIG. 1. 20 A tiling and internal coordinates of the basic Ni-rich

phase(sample: A}oCo;;Ni;g, annealed at 1050 °C, 13.h

Il. THE EXPERIMENTAL DATA around the center. The corresponding tiling consists of

Besides the icosahedral quasicrystals the decagonrrllombl and hexagonee Fig. 3 with 20 A edge length. In

phases D phaselwere the subject of the most intense ex_ﬁwls tiling every second cluster core has the same orientation,

perimental studies. This is due to the fact that the first stablt\é\/h”e adjacent neighbors ohavmg a d'S‘a'.“:e of 20 A from
L . €ach other change by 180°. It is worthwhile to mention that
guasiperiodicT phases were decagonal and that it was pos:

) . ; . the S1 andS2 satellites can be produced by a kinematical
sible to increase the quality of the samples to a high degrei&—ourier-transformation(FT) of a Penrose rhombus tiling

In the course of a redetermination of the Al-Co-Ni phase . )
. g . . alone. No complicated decoration but ondyscatterers on
diagrant® it was realized that the field of tH2 phase has to .
fthe vertices are necessdgee Ref. 2B

be subdivided into several regions with different states o (4) The so-calledS1 superstructuré24

fégjiﬁ::? order. Up to now, there are at least six different S1 is the high-temperature phase of type I. The tenfold
1) THe so-called basic Ni-rich decagonal phise diffraction pattern ofS1 is essentially the same as for type |
The tenfold diffraction pattern shows an unusually Iargebu'[.Only basic rEﬂECt'O”S. ar_ﬁl_sate_llltes remain. It has a
amount of weak reflections up tpvalues of 1 A. Almost no perlod_of 8._2 A in the periodic direction and can make trans-
diffuse scattering intensity is present in the ten and in thiorm?t'on‘;‘ tlnto all tother c(ijt/acagonal Alt'.co'ﬁ'R‘%E\jes as a
twofold patterns. It is a high-temperature phase with a perio unction ot temperature and/or composition. Images
again show atom clusters with pentagonal cores which have

length of 4.1 A along the tenfold axis only stable for tem- ; : X . .
eratures above 800 °C. HRTEM imades taken from wedged” antiparallel orientation relationship along the edges of the
P ; 9 9 'Bng as explained for type I(Exceptions from this order

shaped grains show decagonal contrasts of atomic clusters .
A in diameter. The centers of these clusters can be used ggve been observed for a Co-righ state only. The corre-
the vertices of a superimposed tiling with a unique tile edge
length of 20 A. Taking the usual fivefold star as a basis, the
resulting pentagon-star tiling can be lifted into internal space
(see Fig. 1 Itis even possible to apply a semidecomposition
rule?® to the tiling to obtain a 12.4see Fig. 2 and a 32.4

A version of the tiling*®

(2) Another basic decagonal phase is present on the Co-
rich side of theD-phase regiorinot considered heye

(3) The so-called type-I superstructifie??

The tenfold diffraction pattern of this decagonal super-
structure shows besides the basic reflections two additional
types of satellites $1 and S2). The superstructure reflec-
tions have 1/5 integer indices and are, e.g., found at the cen-
ters of the pentagons formed by the strong basic reflections.
Additional diffuse layers visible in the twofold diffraction
patterns suggest a doubled period of 8.2 A. Type | is a low-
temperature phase which transforms at high temperatures
into the S1-type phasdsee beloyw. HRTEM images show FIG. 2. Decomposed 12.4 A tiling and internal coordinates of
atom clusters of 20 A diameter with a pentagonal contrasthe basic Ni-rich phaséhe same sample as in Fig). 1
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FIG. 3. Tiling and internal coordinates of the type-l superstruc-

ture (sample: AyCo;Niss, cooled from the melt with 5 K/min FIG. 5. Tiling and internal coordinates of the type-Il superstruc-

ture (found in the same sample as in Fig. 3

sponding tiling mainly consists of hexagons, kidney-shapeq
(or bananas S-shaped tiles, and even larger fractions of en-
tire decagongsee Fig. 4.

(5) The so-called type-Il superstructife.

old but the distribution of the intensities reveals only five-

fold symmetry. This is due to dynamical scattering effects in

the sample which lead to a break of the tenfold symmetry.

: : . The twofold patterns have diffuse layers and a period of 8.2

The tenfold diffraction pattern shows additional reflec- . .

tions located on ring arrangements of small pentagoné" HRTEM images shqw 20 A clusters W'th per)tagonal
cores which have in this case only one single orientation.

around the strong reflections. Additionally, ten diffuse spotsThe corresponding tiling consists of pentagons. rhombi. kid-
surround the strong ones. Different from type I, the satellites P 9 9 P gons, '

of type Il have 1/2 integer indices. The twofold diffraction neys, and deformed hexago(@ee Fig. § Only dynamical

patterns show diffuse layers and a period of 8.2 A. Type Il iSdiffraction can reproduce the fivefold symmetry in the inten-

a low-temperature phase which can transform into the basi%'t.?/ d|s]}r|but|or|1f1. Foglpreparatlo.n gf samples and further de-

Co-rich type or theS1 superstructure at higher temperatures.tal s refer to the publications cited.

Corresponding HRTEM images show 20 A clusters with

pentagonal cores. The superimposed tiling consists of penta-  Ill. THE METHODS OF THE TILING ANALYSIS

gons, rhombi, and hexagorisee Fig. 5. In this case the . - . . .

pentagonal cores reveal an antiparallel ordering as far as pos- The expen.mental t|||n_gs.\./vh|ch were introduced in the

sible for a pentagonal distribution. previous section show S|gr.1|f|cant.d|fferences. Nevertheless,
(6) The one-dimensionally periodic fivefold pha&eef. Itis not .poss.|ble to recognize at_f|r§t glance whether one O.f

these tilings is an ideal quasiperiodic one. Ideally quasiperi-

odic and random tilings cannot easily be distinguished in real

space due to tiling errors which appear in every real struc-

ture. It is necessary to project the tilings into internal space

6).
The distribution of spots in the diffraction pattern is ten-

FIG. 6. Tiling and internal coordinates of the one-dimensionally
FIG. 4. Tiling and internal coordinates of 84 superstructure periodic fivefold phasésample: A}, Co,Ni; 5, annealed at 1050
(sample: A}, £C0o;3Niq4, annealed at 900 °C, 2 dagys °C, 10 h.
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since the correlations of the positions of the vertices in real

space are coded in internal space. Therefore, Figs. 1-6 S
present also the coordinates in internal space together with | »5 4** H+ 4 b4
the outer circle of the acceptance domains of the correspond- % 4*; +
ing ideal quasiperiodic tiling. All considerations below will 1.00 A
be done in internal space. §
° .75
A. The variance test § 0 LEEX X % XX
The first (conventiongl analysis is motivated by the hy- $ i i ¢ éw e o o000
drodynamic approximation of tilings in the random tiling .25
hypothesig® The correlations of the internal space coordi-
nates are connected with the phasonic entropy density of the -00
corresponding tiling ensemble. In particular, the variance 2 5 8 10! 2

h? of the distribution of the coarse-grained internal coordi-

natesh; behaves like FIG. 7. Variancéh? of the internal coordinates of three tilings as

— a function of patch size: x indicates basic Ni-ri¢h,is decomposed
1D, h*~N, basic Ni-rich,A is type-I.

1
2_ —
2D, h _27TKeﬁ|n(N)+b’ ture: The statistical errors ¢f* are so large that one could,

3D 12 in principle, successfully fit many different functions to the
» h*~const, (1) gdata. For a quantitative interpretation statistical tests have to
be applied. However, the result would then involve confi-

where K¢ is a combination of elastic constanty, is the dence levels. which is not reallv heloful
number of vertices of the patch, abds an additional con- The onl c’ertain tendenc to)ée ncl?ticéd is taetremely
stant due to integration of the elastic tensor in momentum. dyb der beh y 2 of h, basic Ni-rich
space. The variance diverges linearly with the system size iHr)ear (an oun ed enhavior o of the basic Ni-ric
1D (equal to a random walk logarithmically in 2D and is tilings (see Fig. 7. Their variances do not at all show any
bounded in 3D random tilings. 2D is in a sense a criticaldep.endence on the system size, despite the low number' of
dimension because of its logarithmic behavior. In compari—v_e_rt'ces' Therefore, one can suggest that the corres_pondlng
son, the variances of the ideal quasiperiodic tilings are allilings do not belong to the random type. In comparison to
ways constant, independent of the system sireglecting this behavior, all the other variances seem to have a rising
fluctuations dué to small patch sizemd dimension. There- character. But the only definite statement is that these vari-
fore, in 2D one could try a test of the different behavior of ances are generally larger than_t_hat of the basic '.\“'”Ch tl-
h? as a function of the patch size ignoring the influence of N9S: Smpg thg variance of the t|I.|ng OT tlsa_phase IS on!y
the third (periodig dimension possibly disturbing the 2D be- vyfaakly nsm_g, Itis d|ff|cu_lt to decide with this test to which
havior. This has already been tried several tif?és. tiling class it belongs. Figure 8 shows of the left part of

An experimentalist does not have a lot of tilings to aver-the vertices of Fig. Stype II) only. These vertices corre-
age. Thus, one has to consider the experimental tiling as o ond to the left part of the stretched cloud of mterngl coor-
(representativesnapshot out of the tiling ensemble. In order inates. If the who_le data were used a tre_me_zndou_s nse a_lnd a
to obtain the patch size dependence of the variRdarger declm_e of the variance would re_sult. This is an_lndlca_tlo_n
and larger circles have to be cut out of the experimenta}hat Fig. 5 consists of two domains of the material. This is

tiling. Accordingly, one has to deal with large statistical fluc-

tuations. The next problem is that the experimental tilings 1.50

were constructed from images obtained from wedge-shaped +
grains. Therefore, the tilings are lengthy rather than circular. 1.25

Monte Carlo simulations on random tilings show that this HOH * >|<
lengthy shape reducé® on the average. 1.00 +

But the major problem is the poor statistics. Most experi- %) + M+

mental tilings have a few hundred vertices only. Below one - 75 + ‘~‘
hundred the statistics is too low to determine anything with o

- - - - 50 b oooo ®
certainty. There might be only half a decade which remains : + $
for statistical tests. That is far from being enough to test a st 4>
logarithmic divergence. ’

.00

variance

Figures 7 and 8 show, on a logarithmic scale, the vari-
ances of the different tilings of the Al-Co-Ni phases pre-
sented in Figs. 1-6. If one neglects the influence of the third
(periodig dimension, theory predicts a linear dependence on
this scale, the slope of which determines the combined elas- FIG. 8. Variancen? of the internal coordinates of three tilings as
tic constantK¢. A slope of zero correponds to an ideal a function of patch size: x indicates type-I) is S1, A is the
quasiperiodic tiling. Altogether, there is one common fea-fivefold phase.

2 5 8 10t 2
length
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00 by tiling errors. All the other radial dependences suggest an
exponential decrease which would correspond to the random
tiling scenario. Nevertheless, the statistics is again the limit-

.75 ing factor also in this test. The relative error bémst shown
O here to avoid confusignare as large as in Figs. 7 and 8
- because one has to subdivide the data into bins.
P s C. The FT test
e The main disadvantage of both tests, the variance and the
. e R-dependence test, is the poor statistics which will always be
0T 35 150 2.28 3.00 present in experimental tilings. To give a more reliable an-

radius

swer one has to enlarge the patches to the size of at least a
few thousand vertices. The first test was motivated by the

FIG. 9. Radius dependence of the internal coordinates of threBydrodynamic description of random tilings: the variance is

tilings: (a) full line: basic Ni-rich,(b) fine dashed line: decomposed correlated to the entropy of the tiling ensemble, and thus to
basic Ni-rich,(c) dashed line: type-I.

the free energy. The latter test looks at the differences in the
shape of the internal space. One can combine both tests and

also corroborated by the shape of the internal coordinate digto even further. The experimental tiling contains much more
tribution. The domain boundary can be recognized in Fig. Snformation because it includes the whole distribution of the
at the two defects of the tiling in the middle right part of the internal coordinates with all its correlations. The variance is
tiling. A similar behavior is found for the fivefold phase.  only the second statistical moment of this distribution. One
possibility to usesubstantially moranformation is the in-
spection ofall statistical moments. The simplest way of do-
ing this is achieved through the Fourier transformaiibm)

B. The R-dependence test

'bf a distribution, i.e., the moments appear in the coefficients

of the Taylor expansion of the FT arouke=0 (Ref. 27 or

any other textbook on probability thegryTherefore, the FT

& the distribution of the coordinates in internal space or the
of the pair-correlation function of these coordinates is a

o o ; . etter tool than the above tests to differentiate between 2D

tance domain is plotted, it is constant up to the inner circle o deal quasiperiodic and random tilings. This has already been

the domain_ gnd decreases rgpidly to zero at t_he OUter Circlgy vyn in Monte Carlo simulations of toy models like the
A random tiling has a Gaussian distribution in internal space, tagonal Ammann-Beenker tiling%

and consequently shows an exponential decrease in the radial What do we expect for both tiling classes?

distribution. . L .
. . . The ideal quasiperiodic tiling has dense and uniformly
Figures 9 and 10 show the different radial dependencgﬁlled acceptance domains. In the case of ordinary decagonal

for the Al-Co-Ni samples. The radial dependence of the baSIﬁ.:ilings these domains consist of pentagons and decagons. For

Ni-rich tilings [Eigs. 9a) and 9b)] Sh.OWS a significant pla- simplicity we approximate these domains by a circle with the
teau and a rapid decrease. Accordingly, one can suggest(% me area. The FT of a filled circle of radiR is

acceptance domain of an ideal quasiperiodic tiling disturbe 27RIK)J,(kR), whereJ, is the first Bessel function and

k is the absolute value of the wave vector. On the other hand,
the perpendicular coordinates of a random tiling approximate
a Gaussian distribution. This is, of course, transformed into
another Gaussian under FT. Therefore, an oscillating func-
tion in the case of the ideal tilings is obtained. These oscil-
lations correspond to the special long-distance correlations in
ideal tilings. A Gaussian which results in the case of the
random tiling indicates the absence of these special long-
distance correlations. This should be true, even if tiling de-
fects and poor statistics are involved. Of course, we cannot
expect an exact (2R/k)J,(kR) dependence in the case of
the ideal tilings: we have made a circle approximation for a
polygonal shape. Furthermore, the experimental tilings rep-
resent finite systems. Therefore, a discrete FT must be ap-
plied, resulting in an imaginary function which should reveal

FIG. 10. Radius dependence of the internal coordinates of threthe symmetry of the tiling. Nevertheless, the absolute value
tilings: (a) full line: type-I1, (b) fine dashed lineS1, (c) dashed line:  of the FT will show besides the symmetry also the corre-
fivefold phase. sponding oscillations.

which is dense and uniformly fille@ubdivided into transla-
tion classes It reveals the symmetry of the tiling: pentagons,
decagons, octagons, dodecagons, etc. Considering the diff
ent decagonal tilings, pentagons and decagons occur as

ceptance domains. If the radial dependence of such an acc

1.00

.75

.25

.00 ==t
.00 .75 1.50 2.25 3.00

radius
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FIG. 11. Absolute value of the Fourier transformation of the FIG. 12. Absolute value of the Fourier transformation of the
internal coordinates of the basic Ni-rich phd&ég. 1) and its con-  internal coordinates of the decomposed tiling of the basic Ni-rich
tour plot. phase(Fig. 2) and its contour plot.

. tiling in the diffraction data and in the HRTEM images. This
Figures 11-16 show the absolute value of the FT of th s not the case in the basic Ni-rich phase. Therefore, this

L?]fr(?oarlrecsogg:jniﬁ;eioﬁtétf SIg‘;ire?;eA:;ig;Nf(')sjsmgffh:nrgpossibiIity can be ruled out. The geometric nature of the
gions of relative strength below 10%. The figures reveal th tilings superimposed onto HRTEM images of the basic Ni-

characteristic differences of the samples. Note that this tim?ﬁll?: gzhaar?g ;]sofl:eaa;]r(ljyolr?]eally quasiperiodic on the scale of the

nearly all available statistical information is used, e.g., the In contrast to these plots of the basic Ni-rich phase all

Y;r”z??ﬁec\?grigﬁcseeetﬂelnn;rr]reo:vvgit?hgf tgaekcﬁ_r;]téflefg?:k;nzzgther tilings favor the random tiling hypothesis. Although
9 L e e i peax. ' axima are visible, they do not form the characteristic ring-

case of the basic Ni-rich tilingtFigs. 1 and #, not only the like maxima of Figs. 11 and 12. These maxima are fluctua-

second moment of the distribution ball correlations in in- tions due to poor statistics. Therefore we can conclude that

::eimsallip:r?s {;V_?;i;hsafizl sczaueis:getrr:gdc:gctilllllgt?npl((::thcgtrescterthe statistically available information of the tilings obtained
gs. . . 9 : from different samples of Al-Co-Ni lead to the results sum-
of the FT. The existence of a first and a second maximu

(besides the central pesidicates thatong-distance corre- Mharized in Table I. Note that only the geometrical informa-

lations of ideally quasiperiodic tilings are present in internal
space and, therefore, also in the real-space tilings. The onw]
possible different explanation is a super-random tiling with a

TABLE |. Geometrical nature of the tilings superimposed onto
e different decagonal phases of Al-Co-Ni.

!ong bond Iength decqr_ated in an io_leal manner. _Thus, th?ype Geometrical nature of tiling
indexed experimental tiling would be just a decoration of the

super-random tiling rather than a real tiling itself. The FT of Basic Ni-rich Ideal quasiperiodic
the convolution of the decoration with a narrow GaussianType-I Random
(super-random tiling would also result in an oscillating S1 Random
function. Nevertheless, the corresponding bond length of th&ype-Ii Random
super-random tiling must be very long and it makes no sensgivefold Random

to perform an analysis if only a few super-tiles remain. Onasic Co-rich Randontnot presented heye

the other hand, one should find a clear signature of the super
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FIG. 13. Absolute value of the Fourier transformation of the  FIG. 14. Absolute value of the Fourier transformation of the

internal coordinates of type-I superstructifég. 3) and its contour  internal coordinates of th81 superstructuréFig. 4) and its contour
plot. plot.

tion of the ftilings superimposed onto HRTEM images hasgymed that it corresponds to a quenched random tiling far

been analyzed. from equilibrium. The phason fluctuations of the random
phase are frozen in due to the low temperature.

The really surprising result of the geometrical analysis of
the tilings is the finding that the basic Ni-rich type

The results of the geometrical analysis, which is summaeorresponds—from a geometrical point of view—to an ideal
rized in Table I, need some comments. Tk superstruc- quasiperiodic tiling. On the one hand, it is a pure high-
ture is a high-temperature phase. lIts tiling seems to be quitemperature phase which decays below 800 °C intoShe
a good random tilingat least near equilibrium. It consists of phase plus crystalline phas€sOn the other hand, it can be
hexagons, polygonal kidney-shaped, and S-shaped tiles. Athe high-temperature phase $f. This means a transforma-
of these tiles can be decomposed into pentagons and/tion from a random tiling to an ideal quasiperiodic structure
rhombi. Therefore, one can assume that possible inner vertby increasing the temperature. This is indeed not the ex-
ces of these tiles cannot be seen due to phason-related staglected process. A transformation from ideal quasiperiodic to
ing disorder?® The twofold diffraction patterns indeed show random with increasing temperature would make sense in the
diffuse layers perpendicular to the tenfold axis, indicatingrandom tiling hypothesis.
this stacking disorder. A simulatiéh of the influence of In the following we will propose two possible explana-
stacking disorder in corresponding HRTEM images support$ions for this surprising behavior:
this argument. If, for example, inside a hexagon the cluster at The first is that the effect is only due to the projection
the inner vertex flips to the second possible position aftewhich is obtained in a HRTEM image. This projection along
approximately half of the specimen thickness, the correthe periodic direction could eliminatby averagingthe ran-
sponding wheel contrast which marks the clustarsd thus domness of a periodic stack of random tilings and a some-
the vertices of the tilingis extinguished. This phason flip of what more quasiperiodic image would rem&inA model
one column of the atom clusters corresoponds to a local linkike this will have stacking disorder and an occupation den-
ear stacking defect. sity of the atomic columns below one. There are two coun-

The type-l sample has a wide-spread internal cl@egb terarguments against this explanation. The first one is: why
Fig. 3. Since it is a low-temperature phase, it might be as-does this happen in the basic Ni-rich samples only and not in

IV. DISCUSSION AND CONCLUSION
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(a)
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FIG. 15. Absolute value of the Fourier transformation of the  FIG. 16. Absolute value of the Fourier transformation of the
internal coordinates of type-Il superstructgFég. 5 and its contour  internal coordinates of the fivefold phaéeig. 6) and its contour
plot. plot.

the other ones? The second, more severe one: there is orfyr the Co and Ni atoms in the basic Ni-rich structieeg.,

very little diffuse scattering and, therefore, no stacking dis-al,Coy;Ni;o): The entropy density of this Bernoulli-System
order and moreover a very high occupation density in thgs given by3!

columns of atoms which belong to the vertex defining 20
A clusters. 11 (11} 19 (19
The second possible explanation is the following: The —0-3({%"1( )+§)In(%”~0.20. 2
random tiling hypothesis explains the stability of the quasi-
crystal phases by the positive entropy density of the tilingsThis rough estimate shows that chemical disorder can give
If this density is high enough and the neccessary temperan amount of entropy that is at least comparable to the pos-
tures are well below the melting point this can lead to asible entropy contribution of random tilings.
minimum in the free energy and thus to a stabilization of the A possible explanation for the existence of an ideal qua-
phase. The nature of the entropy is thought to be purelgiperiodic tiling as a high-temperature phase of random til-
phasonic, i.e., the entropy is due to a possible rearrangemeimgs is that the chemical entropy density is higher than the
of tiles by phasonic flips, zipper-moves, éfcThe typical phasonic one. In this case, the loss of entropy which will
range of entropy densities of 2D tilings is 0.1-0.8 per vertexoccur by a transition from the geometrically disordered ran-
Theoretical® and experiment&f observations suggest that dom tiling to the geometrically ordered ideal quasiperiodic
only a small number of atom$n comparison to the number state will be more than compensated by the gain of entropy
of atoms per til¢ must move to generate a flip in the tiling. by chemical disorder. The suggestion of the existence of
Typically only 1/10 must move distances of 1-2 A. There-such a transformation is supported by electron-diffraction
fore, the realistic scale for the entropy density of a 2D systenpatterns of the different Al-Co-Ni phases. In all random vari-
is 0.01-0.08. ants we find diffuse background scattering intensities within
However, there is another natural source of entropy whichhe tenfold and diffuse layers between the Bragg layers in the
is not only restricted to quasicrystals and has nothing to dewofold diffraction patterns. This is partially also due to
with any tiling scenario: chemical entropy by chemitahd  stacking disorder as has already been mentioned. By con-
not geometrical disorder. A rough estimate may be the fol- trast, we observe nearly no diffuse scattering and no diffuse
lowing: Take any lattice and assume chemical disorder onlyayers in the case of the basic Ni-rich phase. One simple
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