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Distinguishing quasiperiodic from random order in high-resolution TEM images
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We investigate the question of whether an experimental tiling that was constructed by superimposition onto
a high-resolution transmission electron microscopy~HRTEM! image belongs to the ideal quasiperiodic or to
the random tiling class. To answer this question, statistical arguments and our method are applied to different
decagonal Al-Co-Ni phases. This method allows us to distinguish between both classes even if tiling errors and
poor statistics are involved. A possible stabilization mechanism is discussed for a high-temperature phase that
is ideally quasiperiodic.@S0163-1829~97!01813-4#
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I. INTRODUCTION

The science of quasicrystals is a very lively field. Up
now, a few hundred chemically different alloys are know
which show crystallographically forbidden symmetries. T
publication of the discovery of icosahedral quasicrystals
19841 was immediately followed by the description of dod
cagonal quasicrystals.2 Shortly after that, the decagona
phases were discovered3 and the octagonal quasicrystals fo
lowed in 1987.4 These four different classes have now fou
a supplement in the discovery of pentagonal phases.5,6 Ex-
cept for the icosahedral phases all other symmetry cla
belong to the so-called quasiperiodicT phases, i.e., they con
sist of periodically stacked aperiodic planes and can be c
sified with the help of their translation periods in the period
direction ~within their symmetry classes!.

The experimental discovery of quasicrystals was acco
panied by much theoretical work. From the beginning, th
reticians mainly focused on structural aspects of quasip
odicity: Besides some other proposals, two-dimensional~2D!
and 3D quasiperiodic tilings were used to describe the g
metrical structure of the new materials. For several years,
physical properties became more and more important. E
before the above-mentioned experimental discoveries,
two most famous quasiperiodic tilings, the~2D! Penrose
tiling7 and the~3D! Ammann-Kramer tiling,8 were known.
These tilings can be produced by an irrational cut throug
higher-dimensional lattice. Therefore, their whole geome
cal structure is deterministic, in the sense that one can
actly calculate the surrounding of every point in real spa
Today both tilings are the prototypes of the so-called id
quasiperiodic tilings in 2D and 3D, respectively, and th
started a whole field of mathematical9,10 and physical
interest.11

Shortly after the experimental discovery, Elser12 pointed
out that one could relax the construction of the ideal tilin
without disturbing their key features. If one takes, e.g.,
same tiles as in the ideal case, but now rearranges them
550163-1829/97/55~13!/8175~9!/$10.00
n

es

s-

-
-
ri-

o-
e
en
he

a
i-
x-
.
l

s
e
ce

to face in a random manner, one would get the same a
aged symmetry in Fourier space and only a slightly differ
form of the Bragg intensities and some background mod
cations. The differences of both, ideally quasiperiodic a
random tilings, are so tiny, that even today, 12 years late
is hard or even impossible for an experimentalist to ans
the question, whether the structure of a sample belongs to
class of the ideal quasiperiodic tilings or to the class of
so-called random tilings.

In order to distinguish between quasiperiodic and rand
tilings one must have excellent samples~better than those o
most crystals! and must look at the form of theq dependence
of the experimental Bragg peaks near their bottom. Anot
approach which is possible, at least in 2D, is to superimp
tilings onto high-resolution transmission electron mircr
scope~HRTEM! images and to investigate the nature of t
resulting tilings. The main problems associated with this
ternative method are the poor statistics and the existenc
~tiling! defects ~similar but more crucial than in crystals!
which makes a decision between both tiling classes hard
often impossible.

Nevertheless, the physical properties of both classes
to certain expectations: The ideal quasiperiodic tilings
thought to be stabilized energetically. On the level of t
tilings this can be achieved with the so-calle
matching-rules13 or tiling cluster-models14 and, on the level
of real atomic arrangements, with chemical order of the
oms on the constituent clusters.15 The random tiling en-
sembles are thought to be stabilized by their~positive! en-
tropy density.16 Therefore, one would expect that at least
the high-temperature regime the random tiling hypothe
should be favored. However, there are a few theoretical to
to investigate these questions.

This is the point we wish to address. Starting from t
situation that experimental tilings superimposed onto H
TEM images are available, a detailed analysis of those tili
is presented with respect to the question whether they be
to the ideal quasiperiodic or to the random tiling scenar
8175 © 1997 The American Physical Society
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8176 55DIETER JOSEPH, STEFAN RITSCH, AND CONRADIN BEELI
i.e., we want to say which one is the better idealization
the given tiling. Different theoretical tools of investigatio
are compared and an application of our method17 to experi-
mental data is presented. This method does not focus on
very specific kind of tiling or at tiling defects which can b
involved, but on statistical correlations of the data only. T
method is applied together with conventional ones to v
ants of the decagonal or pentagonal phases of Al-Co-Ni q
sicrystals.

This paper is subdivided as follows: In Sec. II, the ma
features of the different phases of quasicrystalline Al-Co
are given and the superimposed tilings and their projecti
into the perpendicular~internal! space are presented. Th
will be brief and focused on the relevant topics. For a d
tailed description of the data refer to the original publicatio
cited. In Sec. III, the different methods of investigation of t
tilings are introduced and are applied to the data. In Sec.
a discussion is presented with respect to the question w
stabilization mechanism is most probable in order to exp
the results of the analysis.

II. THE EXPERIMENTAL DATA

Besides the icosahedral quasicrystals the decag
phases (D phases! were the subject of the most intense e
perimental studies. This is due to the fact that the first sta
quasiperiodicT phases were decagonal and that it was p
sible to increase the quality of the samples to a high deg
In the course of a redetermination of the Al-Co-Ni pha
diagram18 it was realized that the field of theD phase has to
be subdivided into several regions with different states
structural order. Up to now, there are at least six differ
regimes:

~1! The so-called basic Ni-rich decagonal phase.19

The tenfold diffraction pattern shows an unusually lar
amount of weak reflections up toq values of 1 Å. Almost no
diffuse scattering intensity is present in the ten and in
twofold patterns. It is a high-temperature phase with a per
length of 4.1 Å along the tenfold axis only stable for tem
peratures above 800 °C. HRTEM images taken from wed
shaped grains show decagonal contrasts of atomic cluste
Å in diameter. The centers of these clusters can be use
the vertices of a superimposed tiling with a unique tile ed
length of 20 Å. Taking the usual fivefold star as a basis,
resulting pentagon-star tiling can be lifted into internal spa
~see Fig. 1!. It is even possible to apply a semidecompositi
rule20 to the tiling to obtain a 12.4~see Fig. 2! and a 32.4
Å version of the tiling.19

~2! Another basic decagonal phase is present on the
rich side of theD-phase region~not considered here!.

~3! The so-called type-I superstructure.21,22

The tenfold diffraction pattern of this decagonal sup
structure shows besides the basic reflections two additi
types of satellites (S1 andS2). The superstructure reflec
tions have 1/5 integer indices and are, e.g., found at the
ters of the pentagons formed by the strong basic reflecti
Additional diffuse layers visible in the twofold diffraction
patterns suggest a doubled period of 8.2 Å. Type I is a lo
temperature phase which transforms at high temperat
into theS1-type phase~see below!. HRTEM images show
atom clusters of 20 Å diameter with a pentagonal contr
r
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around the center. The corresponding tiling consists
rhombi and hexagons~see Fig. 3! with 20 Å edge length. In
this tiling every second cluster core has the same orientat
while adjacent neighbors having a distance of 20 Å fro
each other change by 180°. It is worthwhile to mention th
the S1 andS2 satellites can be produced by a kinematic
Fourier-transformation~FT! of a Penrose rhombus tiling
alone. No complicated decoration but onlyd scatterers on
the vertices are necessary~see Ref. 23!.

~4! The so-calledS1 superstructure.22,24

S1 is the high-temperature phase of type I. The tenf
diffraction pattern ofS1 is essentially the same as for type
but only basic reflections andS1 satellites remain. It has a
period of 8.2 Å in the periodic direction and can make tran
formations into all other decagonal Al-Co-Ni phases as
function of temperature and/or composition. HRTEM imag
again show atom clusters with pentagonal cores which h
an antiparallel orientation relationship along the edges of
tiling as explained for type I.~Exceptions from this order
have been observed for a Co-richS1 state only.! The corre-

FIG. 1. 20 Å tiling and internal coordinates of the basic Ni-ric
phase~sample: Al70Co11Ni19, annealed at 1050 °C, 12 h!.

FIG. 2. Decomposed 12.4 Å tiling and internal coordinates
the basic Ni-rich phase~the same sample as in Fig. 1!.
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55 8177DISTINGUISHING QUASIPERIODIC FROM RANDOM . . .
sponding tiling mainly consists of hexagons, kidney-shap
~or bananas!, S-shaped tiles, and even larger fractions of e
tire decagons~see Fig. 4!.

~5! The so-called type-II superstructure.22

The tenfold diffraction pattern shows additional refle
tions located on ring arrangements of small pentag
around the strong reflections. Additionally, ten diffuse sp
surround the strong ones. Different from type I, the satell
of type II have 1/2 integer indices. The twofold diffractio
patterns show diffuse layers and a period of 8.2 Å. Type I
a low-temperature phase which can transform into the b
Co-rich type or theS1 superstructure at higher temperatur
Corresponding HRTEM images show 20 Å clusters w
pentagonal cores. The superimposed tiling consists of pe
gons, rhombi, and hexagons~see Fig. 5!. In this case the
pentagonal cores reveal an antiparallel ordering as far as
sible for a pentagonal distribution.

~6! The one-dimensionally periodic fivefold phase~Ref.
6!.

The distribution of spots in the diffraction pattern is te

FIG. 3. Tiling and internal coordinates of the type-I superstr
ture ~sample: Al70Co15Ni15, cooled from the melt with 5 K/min!.

FIG. 4. Tiling and internal coordinates of theS1 superstructure
~sample: Al72.5Co13.5Ni14, annealed at 900 °C, 2 days!.
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fold but the distribution of the intensities reveals only fiv
fold symmetry. This is due to dynamical scattering effects
the sample which lead to a break of the tenfold symme
The twofold patterns have diffuse layers and a period of
Å. HRTEM images show 20 Å clusters with pentagon
cores which have in this case only one single orientati
The corresponding tiling consists of pentagons, rhombi, k
neys, and deformed hexagons~see Fig. 6!. Only dynamical
diffraction can reproduce the fivefold symmetry in the inte
sity distribution. For preparation of samples and further d
tails refer to the publications cited.

III. THE METHODS OF THE TILING ANALYSIS

The experimental tilings which were introduced in th
previous section show significant differences. Neverthele
it is not possible to recognize at first glance whether one
these tilings is an ideal quasiperiodic one. Ideally quasip
odic and random tilings cannot easily be distinguished in r
space due to tiling errors which appear in every real str
ture. It is necessary to project the tilings into internal spa

-
FIG. 5. Tiling and internal coordinates of the type-II superstru

ture ~found in the same sample as in Fig. 3!.

FIG. 6. Tiling and internal coordinates of the one-dimensiona
periodic fivefold phase~sample: Al72.5Co20Ni7.5, annealed at 1050
°C, 10 h!.
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8178 55DIETER JOSEPH, STEFAN RITSCH, AND CONRADIN BEELI
since the correlations of the positions of the vertices in r
space are coded in internal space. Therefore, Figs.
present also the coordinates in internal space together
the outer circle of the acceptance domains of the corresp
ing ideal quasiperiodic tiling. All considerations below w
be done in internal space.

A. The variance test

The first ~conventional! analysis is motivated by the hy
drodynamic approximation of tilings in the random tilin
hypothesis.16 The correlations of the internal space coor
nates are connected with the phasonic entropy density o
corresponding tiling ensemble. In particular, the varian
h2 of the distribution of the coarse-grained internal coor
nateshi behaves like

1D, h2;N,

2D , h25
1

2pKeff
ln~N!1b,

3D , h2;const, ~1!

whereKeff is a combination of elastic constants,N is the
number of vertices of the patch, andb is an additional con-
stant due to integration of the elastic tensor in moment
space. The variance diverges linearly with the system siz
1D ~equal to a random walk!, logarithmically in 2D and is
bounded in 3D random tilings. 2D is in a sense a criti
dimension because of its logarithmic behavior. In compa
son, the variances of the ideal quasiperiodic tilings are
ways constant, independent of the system size~neglecting
fluctuations due to small patch sizes! and dimension. There
fore, in 2D one could try a test of the different behavior
h2 as a function of the patch size ignoring the influence
the third~periodic! dimension possibly disturbing the 2D be
havior. This has already been tried several times.25,26

An experimentalist does not have a lot of tilings to av
age. Thus, one has to consider the experimental tiling as
~representative! snapshot out of the tiling ensemble. In ord
to obtain the patch size dependence of the varianceh2 larger
and larger circles have to be cut out of the experimen
tiling. Accordingly, one has to deal with large statistical flu
tuations. The next problem is that the experimental tilin
were constructed from images obtained from wedge-sha
grains. Therefore, the tilings are lengthy rather than circu
Monte Carlo simulations on random tilings show that th
lengthy shape reducesh2 on the average.

But the major problem is the poor statistics. Most expe
mental tilings have a few hundred vertices only. Below o
hundred the statistics is too low to determine anything w
certainty. There might be only half a decade which rema
for statistical tests. That is far from being enough to tes
logarithmic divergence.

Figures 7 and 8 show, on a logarithmic scale, the v
ances of the different tilings of the Al-Co-Ni phases pr
sented in Figs. 1–6. If one neglects the influence of the th
~periodic! dimension, theory predicts a linear dependence
this scale, the slope of which determines the combined e
tic constantKeff . A slope of zero correponds to an ide
quasiperiodic tiling. Altogether, there is one common fe
l
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ture: The statistical errors ofh2 are so large that one could
in principle, successfully fit many different functions to th
data. For a quantitative interpretation statistical tests hav
be applied. However, the result would then involve con
dence levels, which is not really helpful.

The only certain tendency to be noticed, is the~extremely!
linear ~and bounded! behavior ofh2 of the basic Ni-rich
tilings ~see Fig. 7!. Their variances do not at all show an
dependence on the system size, despite the low numbe
vertices. Therefore, one can suggest that the correspon
tilings do not belong to the random type. In comparison
this behavior, all the other variances seem to have a ris
character. But the only definite statement is that these v
ances are generally larger than that of the basic Ni-rich
ings. Since the variance of the tiling of theS1 phase is only
weakly rising, it is difficult to decide with this test to whic
tiling class it belongs. Figure 8 showsh2 of the left part of
the vertices of Fig. 5~type II! only. These vertices corre
spond to the left part of the stretched cloud of internal co
dinates. If the whole data were used a tremendous rise a
decline of the variance would result. This is an indicati
that Fig. 5 consists of two domains of the material. This

FIG. 7. Varianceh2 of the internal coordinates of three tilings a
a function of patch size: x indicates basic Ni-rich,s is decomposed
basic Ni-rich,n is type-I.

FIG. 8. Varianceh2 of the internal coordinates of three tilings a
a function of patch size: x indicates type-II,s is S1, n is the
fivefold phase.
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55 8179DISTINGUISHING QUASIPERIODIC FROM RANDOM . . .
also corroborated by the shape of the internal coordinate
tribution. The domain boundary can be recognized in Fig
at the two defects of the tiling in the middle right part of th
tiling. A similar behavior is found for the fivefold phase.

B. The R-dependence test

Another possiblity to distinguish the two tiling classes
to look at the radius dependence of their internal coordina
An ideal quasiperiodic tiling has an acceptance dom
which is dense and uniformly filled~subdivided into transla-
tion classes!. It reveals the symmetry of the tiling: pentagon
decagons, octagons, dodecagons, etc. Considering the d
ent decagonal tilings, pentagons and decagons occur a
ceptance domains. If the radial dependence of such an ac
tance domain is plotted, it is constant up to the inner circle
the domain and decreases rapidly to zero at the outer ci
A random tiling has a Gaussian distribution in internal spa
and consequently shows an exponential decrease in the r
distribution.

Figures 9 and 10 show the different radial dependen
for the Al-Co-Ni samples. The radial dependence of the ba
Ni-rich tilings @Figs. 9~a! and 9~b!# shows a significant pla
teau and a rapid decrease. Accordingly, one can sugge
acceptance domain of an ideal quasiperiodic tiling distur

FIG. 9. Radius dependence of the internal coordinates of th
tilings: ~a! full line: basic Ni-rich,~b! fine dashed line: decompose
basic Ni-rich,~c! dashed line: type-I.

FIG. 10. Radius dependence of the internal coordinates of t
tilings: ~a! full line: type-II, ~b! fine dashed line:S1, ~c! dashed line:
fivefold phase.
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by tiling errors. All the other radial dependences suggest
exponential decrease which would correspond to the rand
tiling scenario. Nevertheless, the statistics is again the lim
ing factor also in this test. The relative error bars~not shown
here to avoid confusion! are as large as in Figs. 7 and
because one has to subdivide the data into bins.

C. The FT test

The main disadvantage of both tests, the variance and
R-dependence test, is the poor statistics which will always
present in experimental tilings. To give a more reliable a
swer one has to enlarge the patches to the size of at le
few thousand vertices. The first test was motivated by
hydrodynamic description of random tilings: the variance
correlated to the entropy of the tiling ensemble, and thus
the free energy. The latter test looks at the differences in
shape of the internal space. One can combine both tests
go even further. The experimental tiling contains much m
information because it includes the whole distribution of t
internal coordinates with all its correlations. The variance
only the second statistical moment of this distribution. O
possibility to usesubstantially moreinformation is the in-
spection ofall statistical moments. The simplest way of d
ing this is achieved through the Fourier transformation~FT!
of the whole distribution of the coordinates in internal spa
The FT is the generating function of the statistical mome
of a distribution, i.e., the moments appear in the coefficie
of the Taylor expansion of the FT aroundk50 ~Ref. 27 or
any other textbook on probability theory!. Therefore, the FT
of the distribution of the coordinates in internal space or
FT of the pair-correlation function of these coordinates is
better tool than the above tests to differentiate between
ideal quasiperiodic and random tilings. This has already b
shown in Monte Carlo simulations of toy models like th
octagonal Ammann-Beenker tilings.17

What do we expect for both tiling classes?
The ideal quasiperiodic tiling has dense and uniform

filled acceptance domains. In the case of ordinary decag
tilings these domains consist of pentagons and decagons
simplicity we approximate these domains by a circle with t
same area. The FT of a filled circle of radiusR is
(2pR/k)J1(kR), whereJ1 is the first Bessel function and
k is the absolute value of the wave vector. On the other ha
the perpendicular coordinates of a random tiling approxim
a Gaussian distribution. This is, of course, transformed i
another Gaussian under FT. Therefore, an oscillating fu
tion in the case of the ideal tilings is obtained. These os
lations correspond to the special long-distance correlation
ideal tilings. A Gaussian which results in the case of t
random tiling indicates the absence of these special lo
distance correlations. This should be true, even if tiling d
fects and poor statistics are involved. Of course, we can
expect an exact (2pR/k)J1(kR) dependence in the case o
the ideal tilings: we have made a circle approximation fo
polygonal shape. Furthermore, the experimental tilings r
resent finite systems. Therefore, a discrete FT must be
plied, resulting in an imaginary function which should reve
the symmetry of the tiling. Nevertheless, the absolute va
of the FT will show besides the symmetry also the cor
sponding oscillations.

e

ee
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8180 55DIETER JOSEPH, STEFAN RITSCH, AND CONRADIN BEELI
Figures 11–16 show the absolute value of the FT of
internal coordinates of the different Al-Co-Ni samples a
the corresponding contour plots. The latter focus on the
gions of relative strength below 10%. The figures reveal
characteristic differences of the samples. Note that this t
nearly all available statistical information is used, e.g.,
variance can be seen in the width of the central peak:
larger the variance, the narrower the peak. Therefore, in
case of the basic Ni-rich tilings~Figs. 1 and 2!, not only the
second moment of the distribution butall correlations in in-
ternal space favor the ideal quasiperiodic tiling picture~see
Figs. 11 and 12!. This can be seen in the oscillating charac
of the FT. The existence of a first and a second maxim
~besides the central peak! indicates thatlong-distance corre-
lationsof ideally quasiperiodic tilings are present in intern
space and, therefore, also in the real-space tilings. The
possible different explanation is a super-random tiling wit
long bond length decorated in an ideal manner. Thus,
indexed experimental tiling would be just a decoration of
super-random tiling rather than a real tiling itself. The FT
the convolution of the decoration with a narrow Gauss
~super-random tiling! would also result in an oscillating
function. Nevertheless, the corresponding bond length of
super-random tiling must be very long and it makes no se
to perform an analysis if only a few super-tiles remain. O
the other hand, one should find a clear signature of the su

FIG. 11. Absolute value of the Fourier transformation of t
internal coordinates of the basic Ni-rich phase~Fig. 1! and its con-
tour plot.
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tiling in the diffraction data and in the HRTEM images. Th
is not the case in the basic Ni-rich phase. Therefore,
possibility can be ruled out. The geometric nature of t
tilings superimposed onto HRTEM images of the basic N
rich phase is clearly ideally quasiperiodic on the scale of
tilings and not random.

In contrast to these plots of the basic Ni-rich phase
other tilings favor the random tiling hypothesis. Althoug
maxima are visible, they do not form the characteristic rin
like maxima of Figs. 11 and 12. These maxima are fluct
tions due to poor statistics. Therefore we can conclude
the statistically available information of the tilings obtaine
from different samples of Al-Co-Ni lead to the results sum
marized in Table I. Note that only the geometrical inform

TABLE I. Geometrical nature of the tilings superimposed on
the different decagonal phases of Al-Co-Ni.

Type Geometrical nature of tiling

Basic Ni-rich Ideal quasiperiodic
Type-I Random
S1 Random
Type-II Random
Fivefold Random
Basic Co-rich Random~not presented here!

FIG. 12. Absolute value of the Fourier transformation of t
internal coordinates of the decomposed tiling of the basic Ni-r
phase~Fig. 2! and its contour plot.
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55 8181DISTINGUISHING QUASIPERIODIC FROM RANDOM . . .
tion of the tilings superimposed onto HRTEM images h
been analyzed.

IV. DISCUSSION AND CONCLUSION

The results of the geometrical analysis, which is summ
rized in Table I, need some comments. TheS1 superstruc-
ture is a high-temperature phase. Its tiling seems to be q
a good random tiling~at least! near equilibrium. It consists o
hexagons, polygonal kidney-shaped, and S-shaped tiles
of these tiles can be decomposed into pentagons an
rhombi. Therefore, one can assume that possible inner v
ces of these tiles cannot be seen due to phason-related s
ing disorder.28 The twofold diffraction patterns indeed sho
diffuse layers perpendicular to the tenfold axis, indicati
this stacking disorder. A simulation28 of the influence of
stacking disorder in corresponding HRTEM images supp
this argument. If, for example, inside a hexagon the cluste
the inner vertex flips to the second possible position a
approximately half of the specimen thickness, the cor
sponding wheel contrast which marks the clusters~and thus
the vertices of the tiling! is extinguished. This phason flip o
one column of the atom clusters corresoponds to a local
ear stacking defect.

The type-I sample has a wide-spread internal cloud~see
Fig. 3!. Since it is a low-temperature phase, it might be

FIG. 13. Absolute value of the Fourier transformation of t
internal coordinates of type-I superstructure~Fig. 3! and its contour
plot.
s
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sumed that it corresponds to a quenched random tiling
from equilibrium. The phason fluctuations of the rando
phase are frozen in due to the low temperature.

The really surprising result of the geometrical analysis
the tilings is the finding that the basic Ni-rich typ
corresponds—from a geometrical point of view—to an ide
quasiperiodic tiling. On the one hand, it is a pure hig
temperature phase which decays below 800 °C into theS1
phase plus crystalline phases.18 On the other hand, it can b
the high-temperature phase ofS1. This means a transforma
tion from a random tiling to an ideal quasiperiodic structu
by increasing the temperature. This is indeed not the
pected process. A transformation from ideal quasiperiodic
random with increasing temperature would make sense in
random tiling hypothesis.

In the following we will propose two possible explana
tions for this surprising behavior:

The first is that the effect is only due to the projectio
which is obtained in a HRTEM image. This projection alon
the periodic direction could eliminate~by averaging! the ran-
domness of a periodic stack of random tilings and a som
what more quasiperiodic image would remain.29 A model
like this will have stacking disorder and an occupation de
sity of the atomic columns below one. There are two cou
terarguments against this explanation. The first one is: w
does this happen in the basic Ni-rich samples only and no

FIG. 14. Absolute value of the Fourier transformation of t
internal coordinates of theS1 superstructure~Fig. 4! and its contour
plot.
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the other ones? The second, more severe one: there is
very little diffuse scattering and, therefore, no stacking d
order and moreover a very high occupation density in
columns of atoms which belong to the vertex defining
Å clusters.

The second possible explanation is the following: T
random tiling hypothesis explains the stability of the qua
crystal phases by the positive entropy density of the tilin
If this density is high enough and the neccessary temp
tures are well below the melting point this can lead to
minimum in the free energy and thus to a stabilization of
phase. The nature of the entropy is thought to be pu
phasonic, i.e., the entropy is due to a possible rearrangem
of tiles by phasonic flips, zipper-moves, etc.16 The typical
range of entropy densities of 2D tilings is 0.1–0.8 per vert
Theoretical30 and experimental28 observations suggest tha
only a small number of atoms~in comparison to the numbe
of atoms per tile! must move to generate a flip in the tiling
Typically only 1/10 must move distances of 1–2 Å. Ther
fore, the realistic scale for the entropy density of a 2D syst
is 0.01–0.08.

However, there is another natural source of entropy wh
is not only restricted to quasicrystals and has nothing to
with any tiling scenario: chemical entropy by chemical~and
not geometrical! disorder. A rough estimate may be the fo
lowing: Take any lattice and assume chemical disorder o

FIG. 15. Absolute value of the Fourier transformation of t
internal coordinates of type-II superstructure~Fig. 5! and its contour
plot.
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for the Co and Ni atoms in the basic Ni-rich structure~e.g.,
Al70Co11Ni19): The entropy density of this Bernoulli-System
is given by:31

20.30F1130lnS 1130D1
19

30
lnS 1930D G'0.20. ~2!

This rough estimate shows that chemical disorder can g
an amount of entropy that is at least comparable to the p
sible entropy contribution of random tilings.

A possible explanation for the existence of an ideal q
siperiodic tiling as a high-temperature phase of random
ings is that the chemical entropy density is higher than
phasonic one. In this case, the loss of entropy which w
occur by a transition from the geometrically disordered ra
dom tiling to the geometrically ordered ideal quasiperiod
state will be more than compensated by the gain of entr
by chemical disorder. The suggestion of the existence
such a transformation is supported by electron-diffract
patterns of the different Al-Co-Ni phases. In all random va
ants we find diffuse background scattering intensities wit
the tenfold and diffuse layers between the Bragg layers in
twofold diffraction patterns. This is partially also due
stacking disorder as has already been mentioned. By c
trast, we observe nearly no diffuse scattering and no diff
layers in the case of the basic Ni-rich phase. One sim

FIG. 16. Absolute value of the Fourier transformation of t
internal coordinates of the fivefold phase~Fig. 6! and its contour
plot.
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mechanism to gain geometrical order is the healing of a
ear stacking defect by glueing together two columns se
rated by a phason flip. This process leads to higher order,
it can create chemical disorder if the two columns have
ferent chemical compositions.

To be precise: We do not have any experimental or th
retical proof for our suggestion, but several facts that fit. T
observation of an ideal quasiperiodic tiling~with defects!
obtained from a pure high-temperature phase as well as
transition with an increase of temperature from a rand
tiling phase to this ideal state needs new interpretations.
o
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