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Local polarization distribution in quadrupolar glasses

B. Tadić, R. Pirc, and R. Blinc
Jožef Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia

~Received 11 July 1996; revised manuscript received 23 September 1996!

We consider the semimicroscopic symmetry-adapted random-bond–random-field model of quadrupolar
glasses such as NaCN:KCN and KBr:KCN, assuming strong lattice anisotropy which restricts the equilibrium
orientations of the CN molecules to a set of discrete directions along the cubic^100& axes. Applying the replica
theory of orientational glasses, we calculate the probability distributionW(p1 ,p2) for the two independent
components of local quadrupolar polarizationp1 andp2 in the replica-symmetric quadrupolar glass phase. The
reduced distributionsW2(p2)[*W(p1 ,p2)dp1 andW1(p1)[*W(p2 ,p1)dp2 are shown to be related to the
quadrupole-perturbed NMR line shapeI (n) of the 14N nucleus.@S0163-1829~97!01802-X#
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I. INTRODUCTION

Quadrupolar glasses~QG’s! are random molecular crys
tals with specific physical properties, which are in ma
ways analogous to magnetic spin glasses.1,2 The low-
temperature phase of a QG is characterized by a ran
freezeout of molecular orientations and of the accompany
quadrupolar degrees of freedom.3 Historically, among the
first such systems to be studied were solid mixtures of ort
para hydrogen.4,5 More recently, there has been muc
theoretical6–8 and experimental9 interest in mixed alkali
halide-cyanide systems, for example, KBr12x~CN! x ,
NaCl12x~CN! x , and related compounds, and in mixed alk
cyanides such as~NaCN! 12x~KCN! x . In the high-
temperature phase, the average structure of these syste
cubic. In general, they are characterized by strong cry
anisotropy,10 which restricts the rotational motion of CN
molecules at temperatures below;40 K to a set of equilib-
rium orientations, which are typically along thê100&,
^111&, or ^110& crystallographic direction. On a coars
grained mesoscopic scale, compositional disorder in th
systems gives rise to random interactions between the q
rupole moments, which are mediated by short-wavelen
lattice vibrations.6 Another feature, not having an analogy
spin glasses, is the occurrence of local random elastic fi
acting on the orientational degrees of freedom.11,12

It has been shown earlier that the equilibrium propert
of random systems containing bistable electric dipoles, s
as proton and deuteron glasses, can be well described b
Ising random-bond–random-field~RBRF! model.13 In a
more general case of a QG with more than two discrete e
librium orientations, the orientational fluctuations can be r
resented by a set of Potts variables,14,6 which are simply
related to the discrete-state occupation numbers. Specific
for cubic systems with â100&, ^111&, or ^110& equilibrium
direction of the quadrupolar axis the appropriate choice is
RBRF s-state Potts model, wheres53, 4, or 6,
respectively.6 In analogy with dipolar glasses, the presen
of random fields gives rise to a nonzero component of
QG order parameter in the high-temperature phase. H
ever, the freezing phase transition into a nonergodic
phase still exists, and can be interpreted as the onset o
stability of the replica-symmetric QG phase below the fre
550163-1829/97/55~2!/816~8!/$10.00
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ing temperatureTf , which depends on the strength of th
random strain fields.

Recently, the RBRF model of QG’s has been formula
in terms of symmetry-adapted order parameter fieldsZim
with r5s21 relevant components, which are linear com
nations of the Potts variables and transform according to
irreducible representations of the cubic group.8,15 This for-
mulation has been motivated by the following facts:~i! Local
random strains can be uniquely represented by their irred
ible components, which are linearly coupled to the order
rameter fields of the same symmetry;~ii ! in experimental
studies of the elastic behavior, irreducible stresses
applied9 and the response due to the quadrupolar degree
freedom of the same symmetry is monitored;~iii ! the NMR
line shape is for certain directions of the magnetic field
rectly related to the probability distribution for the symm
trized components of the local quadrupolar polarization.
shown earlier for dipolar glasses,16 quadrupole-perturbed
NMR and related techniques are suitable for monitoring
temperature dependence of the quadrupolar Edwa
Anderson order parameterqEA(T). In the mixed cyanide sys
tems Na~CN! xCl 12x and ~NaCN! 12x~KCN! x , qEA(T) has
been determined from the second moments of the N
spectra of35Cl and 23Na.17 A more recent investigation is
based on the quadrupole-perturbed NMR spectrum of
14N nucleus,18 which directly follows the orientation of the
CN quadrupolar axis.

To our knowledge, a complete theory of the NMR lin
shape of a QG based on the appropriate microscopic m
has not yet been worked out. Here we consider the mi
cyanide systems and apply the symmetry-adapted rand
bond–random-field~SARBRF! model in order to calculate
the NMR line shape within a replica mean-field theory. Sin
in the range of concentrations where QG behavior is
served the most probable equilibrium orientation of the C
quadrupolar axis is along the three cubic^100& directions,10

we will focus on ther52 SARBRF model with two relevan
quadrupolar degrees of freedom. These are associated
the two independent components of the local quadrup
polarization, namely,p1 and p2. The problem then reduce
to calculating the probability distributionW(p1 ,p2) for these
two components, which can be simply related to the NM
spectrum. For a specific direction of the external magne
816 © 1997 The American Physical Society
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55 817LOCAL POLARIZATION DISTRIBUTION IN . . .
field, the NMR spectrum depends on one of these varia
only, and is thus determined by the reduced probability d
tribution obtained by integrating out the remaining comp
nent. We will consider explicitly those orientations, whic
are relevant to the quadrupole-perturbed NMR of the14N
nucleus of the CN molecule in~NaCN! 12x~KCN! x .

18

The organization of the paper is as follows: In Sec. II w
outline the mean-field theory of the static properties
QG’s.15 In Sec. III we calculate the probability distributio
W(p1 ,p2) in the entire space of local quadrupolar polariz
tion componentsp1 andp2, from which the reduced distri
butionsWm(pm) (m51,2) are then obtained. In Sec. IV, th
relation between the NMR line shapeI (n) andWm(pm) in
the slow- and fast-motion limits is derived. Section V co
tains a short summary and discussion.

II. EQUILIBRIUM PROPERTIES
OF A QUADRUPOLAR GLASS

A. SARBRF model

In the case of strong crystal anisotropy, such as
~NaCN! 12x~KCN! x and related compounds, the equilibriu
orientations of the quadrupolar axis of the CN molecules
along thê 100&, ^111&, or ^110& crystallographic direction of
a cubic lattice. As usual,6 we will ignore the head-to-tai
electric dipolar degrees of freedom; thus the correspond
number of equilibrium orientations for the above three ca
will be equal tos 5 3, 4, or 6, respectively. The occupatio
numberNim for themth orientation of thei th quadrupole can
thus have the value 0~unoccupied! or 1 ~occupied!, with
m51,2, . . . ,s. In order to describe the equilibrium prope
ties of QG’s of the above type we adopt the SARBRF mo
of orientational glasses,8,15

H52
1

2(i j Ji j (
m51

r

ZimZjm2(
i

(
m51

r

~him1Em!Zim ,

~1!

which is formulated in terms of the symmetry-adapted ord
parameter fieldsZim , wherem51,2, . . . ,r , with r512s,
labels the irreducible representations of the cubic group~for
a discussion of discrete-state models appropriate to orie
tional glasses of various symmetries see Ref. 15, to be
ferred to as I!. The fieldsZim will be defined here as linea
combinations of the Potts variablesN̂im[Nim21/s rather
than occupation numbersNim.

15 Thus we write

Zim5 (
m51

s

ammN̂im . ~2!

The Potts variablesN̂im satisfy the closure relation

(
m51

s

N̂im50. ~3!

Therefore, one hasZis[(m51
s N̂im50, and there are only

r5s21 nontrivial fieldsZim (m51,2, . . . ,r ).
The coefficientsamm in Eq. ~2!, which are elements of an

r3s matrix, are fixed by group theory and can be identifi
from the following explicit relations~we drop the site indices
i ) for the three cubic cases:
es
-
-

f

-

-

n

e

g
s

l

r-

ta-
e-

^100&: Z15A3
2 ~N̂12N̂2!, Z25A1

2 ~2N̂32N̂12N̂2!;
~4!

^111&: Z15N̂11N̂22N̂32N̂4 , Z25N̂21N̂32N̂12N̂4 ,

Z35N̂31N̂12N̂22N̂4 ; ~5!

^110&: Z15A3
2 ~N̂21N̂52N̂32N̂6!,

Z25A 1
2 ~2N̂112N̂42N̂22N̂32N̂52N̂6!,

Z35A3~N̂12N̂4!, Z45A3~N̂22N̂5!,

Z55A3~N̂32N̂6!. ~6!

The normalization in Eqs.~4!–~6! is chosen in such a way
that

(
m51

r

Zim
2 5r . ~7!

One can readily write down the inverse relations

N̂im5
1

s(m51

r

amm
T Zim , ~8!

whereamm
T 5amm , which should be supplemented by the cl

sure relation~3!.
In Eq. ~1!, the compositional disorder leading to QG b

havior is represented by quenched random infinite-range
teractionsJi j and and local random fieldshim , which are
assumed to be uncorrelated and described by a joint Ga
ian distribution with mean values@(Ji j )#av5J0 /N and
@him#av50 and with variances @(Ji j )

2#av5J2/N and
@himhjn#av5DJ2d i jdmn , respectively.

Formally, model~1! is also applicable to Ising dipola
glasses, where one hass52 or r51 and
Zi15N̂i12N̂i2[Si561.

As discussed in more detail in Sec. IV, the quantities
interest in NMR and related experiments are the quadrup
polarizations

Pm5
1

N(
i

^Zim&5@^Zim&#av, ~9!

whereN is the number of CN molecules,^•••& represents
the thermal average, and@•••#av the random average. Equa
tion ~9! is a straightforward generalization of the local pola
ization in Ising dipolar glasses.16 In further analogy with
dipolar glasses one can introduce the quadrupolar Edwa
Anderson~EA! order parameters

qm
EA5

1

N(
i

^Zim&25@^Zim&2#av. ~10!

B. Š100‹ case: Results of replica theory

In the following we will focus on thê 100& orientation
model (r52) and briefly review some of the results of re
lica theory,14 which are relevant to further discussion. A
discussed in more detail in I, in the replica-symmetric Q
phase the problem reduces to an effective single-site sys



o

N

r-

iza

o

th
-
la

g
l
a
e
c
e

ive

o
e
f
G
a-
he

e

a-

to

en

ns

,
se
-
l

818 55B. TADIĆ, R. PIRC, AND R. BLINC
in a vector Gaussian random fieldxW5(x1 ,x2 ,x3). Alterna-
tively, one can derive equivalent results without the use
replicas from a dynamic theory, wherexW is interpreted as a
static excess noise field.19 The average free energy per C
molecule is thus given by

f52 1
4b2J2@~q121!21~q221!212qT#1 1

2bJ0
eff~P1

21P2
2!

2~2p!23/2E
2`

1`

dx1E
2`

1`

dx2E
2`

1`

dx3

3exp~2xW2/2!lng~H1 ,H2!, ~11!

whereJ0
eff[J01bJ2/2 and we have introduced the local pa

tition function

g~H1 ,H2!52cosh~A3/2bH1!exp~2bH2 /A2!

1exp~A2bH2!, ~12!

with effective local fieldsHm5Hm(xW ) (m51,2):

H15J~q11D2qT!1/2x11JqT
1/2x31J0

effP11~A2/2!bJ2qT ,

H25J~q21D2qT!1/2x21JqT
1/2x31J0

effP2

1~A2/4!b2J2~q12q2!. ~13!

In terms of these variables the local quadrupolar polar
tions can be expressed as

p̂m~xW !5] lng/]~bHm! ~m51,2!. ~14!

The conditions] f /]P15•••5] f /]qT50 then lead to a
set of coupled equations for the order parameters,Pm , qm ,
andqT . These can be written in compact form in terms
the above local polarizationsp̂1(xW ) and p̂2(xW ), namely,

Pm5@ p̂m~xW !#xW , qm5@ p̂m
2 ~xW !#xW , qT5@ p̂1~xW ! p̂2~xW !#xW.

~15!

The symbol@•••#xW means a triple Gaussian average over
variablesx1, x2, andx3. The replica-symmetric order param
eterqm is a measure of the physically relevant quadrupo
Edwards-Anderson order parameterqm

EA .
We are interested in the QG phase without long-ran

ferroelastic order, i.e.,Pm50. It turns out that in practica
applications one can always find a range of temperatures
concentrationsx for which J0

eff50 and thus no long-rang
order appears, as indeed seems to be the case in mixed
nide systems.10 The problem of long-range order can b
avoided19 by replacing the isotropic scalar interactionJi j in
Eq. ~1! by a general randomly anisotropic interactionJi j

mn ;
however, we will not enter a discussion of this alternat
here.

The temperature and random-field dependences of the
der parametersqm andqT can be calculated from the abov
expressions and are given in detail in I~see Figs. 1 and 2 o
I!. It is also shown there that in the replica-symmetric Q
phase one hasqT50, which eliminates the Gaussian integr
tion over x3. Moreover, the diagonal components of t
f

-

f

e

r

e

nd

ya-

r-

replica-symmetric quadrupolar order parameterqm are equal,
i.e., qm5q for m51 and 2, so that one is left with a singl
QG order parameterq.

III. DISTRIBUTION OF LOCAL
QUADRUPOLAR POLARIZATIONS

The probability distribution of local quadrupolar polariz
tions for the^100& case is generally defined as

W̃~ p̂1 ,p̂2!5
1

N(
i

d~ p̂12^Zi1&!d~ p̂22^Zi2&!. ~16!

In the replica theory, it turns out to be more convenient
deal with rescaled local polarizations

p1~xW !5c1p̂1~xW !, p2~xW !5c2p̂2~xW !, ~17!

where the purpose of the coefficientscm (m51,2) is to com-
pensate the prefactors in Eq.~4!, implying c15A2/3 and
c25A2. The corresponding probability distribution can th
be written as

W~p1 ,p2!5@d„p12p1~xW !…d„p22p2~xW !…#xW . ~18!

In the replica-symmetric phase, according to Eqs.~12!–
~14!, the two independent local quadrupolar polarizatio
p1(xW ) andp2(xW ) are given by the following expressions:

p1~xW !5
2sinh~A3/2bH1!

R~H1 ,H2!
, ~19!

p2~xW !52
exp~3bH2 /A2!2cosh~A3/2bH1!

R~H1 ,H2!
, ~20!

where

R~H1 ,H2!52cosh~A3/2bH1!1exp~3bH2 /A2!, ~21!

with

Hm5J~q1D!1/2xm ~m51,2!. ~22!

The random fieldsx1 and x2 are due to the combined
effect of QG ordering,qÞ0, and local random strain fields
DÞ0. On the level of a mean-field theory of QG’s the
fields are Gaussian@cf. Eq. ~11!#. The double-Gaussian dis
tribution of x1 and x2 determines the distribution of loca
polarization componentsp1(xW ) and p2(xW ) in the isotropic
QG phase via Eqs.~19! and ~20!, which can be inverted to
give x1(p1 ,p2) andx2(p1 ,p2). We find

x15a@ ln~213p12p2!2 ln~223p12p2!#, ~23!

x25~2a/A3!$ ln~212p2!

2 1
2 ln@~213p12p2!~223p12p2!#%, ~24!

wherea[@A6(q1D)bJ#21. Thus

W~p1 ,p2!5
1

2p
Jexp~2x1

2/22x2
2/2!, ~25!
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FIG. 1. The probability distributionW(p1 ,p2) vs p1 ,p2 for four different values of the reduced temperatureT/J51.5 ~a!, 1.25~b!, 1.0
~c!, and 0.95~d!, and for fixedD50.1.
eak
-
nter,
re
introducingJ[](x1 ,x2)/](p1 ,p2) for the Jacobian of the
transformation:

J5
36a2/A3

~p211!@~p222!229p1
2#
. ~26!

Combining the expressions~19!–~26! we can calculate
the probability distributionW(p1 ,p2) numerically. The re-
sults are shown in Fig. 1 forD50.1 and four different values
of the reduced temperatureT/J.
It should be noted that according to Eqs.~19! and~20! the
components p1 and p2 belong to the intervals
21<p1<11 and21<p2<12, respectively. At low tem-
peratures the distributionW(p1 ,p2) shows a three-peak
structure, with the location of the peaks at (p1 ,p2) close to
(21,21), (11,21), and (0,12). At T50 the peaks would
be exactly at these positions, the intensity of the last p
being exactly twice the intensity of the other two. With in
creasing temperature the three peaks move toward the ce
and for T well above the nominal transition temperatu
Tg5J merge into a single peak~cf. Fig. 1!.
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Finally, it will be useful to define the reduced probability
distributionsW1(p1) andW2(p2),

W1~p1!5E
21

12

dp2W~p1 ,p2! ~27!

and

W2~p2!5E
21

11

dp1W~p1 ,p2!, ~28!

in terms of which the EA order parameter~10! can be ex-
pressed as

qm
EA5

1

cm
2 E dpmpm

2Wm~pm! ~m51,2!. ~29!

The last result follows from the second of relations~15!.
In Figs. 2 and 3,W1(p1) and W2(p2) are shown for

D50.1 for a set of representative values of the reduced te
peratureT/J.

FIG. 2. Reduced probability distributionW(p1) vs p1 defined in
Eq. ~27! for D50.1 and six values of the reduced temperatur
T/J52.0, 1.5~top row!, 1.25, 1.0~middle!, and 0.75, 0.5~bottom!.
-

IV. RELATION TO NMR LINE SHAPE

Here we apply the theory of quadrupole-perturbed NMR
~Ref. 20! to the QG system, which is described by the dis
crete model with equilibrium orientations of the CN mol-
ecules along thê100&, ^111&, or ^100& cubic direction. We
consider the case of a14N nucleus with spinI51, which is
rigidly connected with the CN molecule. The electric field
gradient~EFG! tensor at the14N site is cylindrically sym-
metric and its largest principal axisVzz is parallel to the C-N
bond. The quadrupole-perturbed Larmor frequency of th
i th 14N nucleus in a cylindrically symmetric EFG tensor de
pends on the orientation ofVzz with respect to the external
magnetic fieldBW and is thus determined by the occupation
probabilitiesNim ; i.e., we can write

n i
65nL6nK (

m51

s

amN̂im. ~30!

Here nL is the unperturbed Larmor frequency and
nK53K/8, with K5e2qQ/h standing for the14N quadru-
pole coupling constant.20 Furthermore,am53cos2um21,
whereum represents the angle between the direction of th

FIG. 3. Same as Fig. 2, but for the distributionW2(p2) defined
in Eq. ~28!.
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55 821LOCAL POLARIZATION DISTRIBUTION IN . . .
magnetic fieldBW and themth equilibrium orientation of the
quadrupolar axis of the CN molecule.

Using the relations~4!–~6! betweenN̂im and Zim , and
considering the order parameter fields as dynamic varia
with instantaneous valuesZim(t), we can rewrite Eq.~30! as

n i
6~ t !5nL6nK (

m51

r

gmZim~ t !, ~31!

where we have introduced

gm5
1

s(
m51

s

amamm
T . ~32!

The inhomogeneous NMR line shape is characterized by
average frequency distribution function20,21

I ~n!5
4

N(
i

ReE
0

`

dt e- i2p ~n - nL !t

3F K cos S 2p nK (
m51

r

gm E
0

t

Zim~ t8!dt8D L G
av

.

~33!

In principle, the time dependence of the variablesZim(t)
could be obtained from a dynamic model in analogy to Is
dipolar glasses;22 however, this task is beyond the scope
the present paper. We will consider the line shapeI (n) in
two limiting cases, namely, in theslow- andfast-motion lim-
its, to be referred to as SML and FML, respectively.

A. Slow-motion limit „SML …

In the SML the jump rate 1/t0 of the CN molecules be
tween their equilibrium orientations is much smaller than
characteristic quadrupolar frequency, i.e., 1/t0!nK . This
follows by analogy with the Glauber model of an Ising d
polar glass22 and implies that the symmetry-adapted va
ablesZim(t8) in Eq. ~33! can be replaced by their time
independent values Zim . Transforming back to
N̂im5Nim21/s via Eq. ~2! and using the fact tha
NmNm85Nmdmm8 and limN→`(1/N)( iNim51/s, we obtain
after straightforward integration,

I ~n!5
1

s(
m51

s

@d~n2nL2nKam!1d~n2nL1nKam!#.

~34!

Thus in the SML the line shape is in general given by a s
of 2s d-like terms, whose frequencies depend on the ori
tations of the C-N bond direction with respect to the ma
netic fieldBW .

The second moment of the NMR line is generally defin
as

M2[E
2`

1`

dn~n2nL!2I ~n!. ~35!

In the SML one thus obtains from Eq.~34!
es

e

g
f

e

-
-

d

M25
2

s
nK
2 (
m51

s

am
2 . ~36!

In the following we will limit ourselves to the case of th
^100& QG model and consider three special cases of m
netic field orientation, namely,BW along the@001#, @110#, and

@A201# directions.23 ForBW along the@001# direction one has
a15a2521 anda352. Similarly, for BW uu@110# one finds
a15a251/2 anda3521, whereas forBW uu@A201# one has
a151, a2521, anda350. The corresponding values o
the second moment in the SML are thus

M2
[001]54nK

2 , M2
[110]5nK

2 , M2
[A201]54nK

2 /3. ~37!

It should be noted that in the SML the14N nucleus
‘‘sees’’ the instantaneous C-N bond orientation and that o
dimensional~1D! NMR cannot be used to determine the Q
order parameterqEA or the quadrupolar polarization distribu
tion. This is, however, not the case for two-dimensional~2D!
exchange NMR,24 which extends the NMR frequency obse
vation window from 103–108 Hz into the mHz region, i.e.,
well into the SML. A detailed study of this technique in th
case of QG’s is reserved for a subsequent paper.

B. Fast-motion limit „FML …

In the FML, the average time between successive
reorientationst0 is much shorter than the characteris
NMR observation time, i.e.,t0!1/nK . Thus the dynamic
variablesZim(t8) in Eq. ~33! can be replaced by their time
averaged values, which are equivalent to the local thermo
namic averageŝZim&. Again we consider separately thre
relevant cases of magnetic field orientation, namely,@001#,
@110#, and@A201#.

1. B¢ zz†001‡

Here u350 and u15u25p/2. Thus from Eq.~31! we
have

n i
65nL6nKc2^Zi2&, ~38!

where we have used the definition~4! of the order-paramete
field Z2. Since the local thermodynamic average^Zi2& plays
the role of the local polarizationp̂2(xW ) introduced in Eq.
~14!, and p̂25p2 /c2 according to Eq.~17!, the random av-
erage in Eq.~33! can be evaluated as an integral over t
corresponding probability distributionW2(p2). Equation
~38! suggests that the symmetry-adapted order-param
field Zi2 is a physical observable in the FML.

Combining Eqs.~16!, ~28!, ~33!, and ~38! we obtain the
relation

I ~n!5
1

nK
FW2S n2nL

nK
D1W2S nL2n

nK
D G . ~39!

This can also be expressed in differential form

I ~n!dn5Ws~p2!dp2 , ~40!

where we have introduced the symmetrized probability d
tribution Ws(p2)[@W2(p2)1W2(2p2)#. From the mea-
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sured NMR line shape one can thus simply deduce the p
ability distribution of local quadrupolar polarizatio
Ws(p2) and compare it with model calculations. In Fig. 4 t
calculated distributionWs(p2) is plotted for six different
temperatures.

From Eq.~39! one can easily evaluate the observable s
ond moment of the NMR line. The result is

M2
[001]52nK

2 E dp2p2
2W2~p2!54 nK

2qEA , ~41!

where the last relation follows from Eq.~29!. This shows
that the order parameterqEA and its temperature dependen
can be simply obtained from the second moment of the m
sured NMR line shape. It should be noted that the ex
value ofM2, i.e., the one obtained by integrating over
infinite frequency interval, is not affected by molecular m
tion and should always be given by the general result~36!.20

This is, however, not observable. Expression~41! differs
from Eq.~36! by the factorqEA , because the high-frequenc
part of the spectrum has been eliminated in replacing
time dependence of the local polarization by its long-tim
average value. Experimentally, the same reduction ofM2 is

FIG. 4. Symmetrized probability distributionWs(p2)
5W2(p2)1W2(2p2) for the same set of parameters as in Figs
and 3.
b-

-

a-
ct

-

e

accomplished by cutting off the integration at some lar
enough frequencynmax,

22 such that no obervable part of th
NMR spectrum exists forn.nmax.

2. Case B¢ zz†110‡

Now u35p/2 andu15u25p/4. From Eq.~30! one finds

n i
65nL7 1

2nKc2^Zi2&, ~42!

and the relation betweenI (n) andW2(p2) is thus analogous
to the previous case as given by Eq.~39!, but with nK re-
placed bynK/2. In particular, the second moment of th
NMR line shape is now given by

M2
[110]5nK

2qEA . ~43!

3. Case B¢ zz†A201‡

In this caseu25p/2; i.e., BW lies in the (x,z) plane at
u1554.7° ~i.e., magic angle! andu3535.3°. Thus Eq.~30!
yields

n i
65nL6nKc1^Zi1&, ~44!

leading to the following results for the line shape,

I ~n!5
2

nK
W1S n2nL

nK
D , ~45!

and its second moment:

M2
[A201]5 4

3nK
2qEA . ~46!

By performing an experiment with the above orientati
of the magnetic field one thus has the possibility to det
mine the probability distributionW1(p1).

V. DISCUSSION AND CONCLUSIONS

We have presented a calculation of the local quadrup
polarization distributionW(p1 ,p2) in quadrupolar glasse
~QG’s! with pseudocubic symmetry and equilibrium orient
tions of the quadrupolar axis along the^100& directions. The
investigation is based on the semimicroscopic symme
adapted random-bond random-field~SARBRF! model of
QG’s within the framework of a replica mean-field theor
The model contains two physical parameters, i.e.,
random-bond and random-field strengthsJ and D, respec-
tively. In the ^100& or r52 case there are two nontrivia
components of the local polarization, namely,p1 andp2 cor-
responding to the symmetry-adapted order-parameter fi
Zim (m51,2), and one has in the replica-symmetric phas
single QG order parameterq.

The results are applicable to QG’s with strong crystal a
isotropy such as~NaCN! 12x~KCN! x , KBr 12x~CN! x , and
related systems. A powerful experimental method to inve
gate the QG ordering in these systems is the quadrup
perturbed NMR of the14N nucleus of the CN molecule. In
the fast motion limit~FML! and for magnetic fieldBW along
the @100# or @110# direction, the NMR spectrum is given b
the symmetrized form of the reduced local polarization d
tribution W2(p2)5*W(p1 ,p2)dp1. For BW uu@A201#, how-
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ever, the line shape is determined b
W1(p1)5*W(p1 ,p2)dp2. Preliminary results forBW uu@100#
andBW uu@110# show a qualitative agreement18 with the pre-
dicted line shape in the FML as shown in Fig. 4 f
T/J50.75. The caseBW uu@A201# has not yet been investi
gated experimentally. For temperatures much higher than
potential anisotropy, other orientations of the CN molecu
besides^100& will become populated. Therefore, ther52
model cannot be expected to provide a detailed descrip
of the system, and should be generalized to a combinatio
the r52, 3, and 5 discrete models, or even replaced by
much more complicated continuous hindered-rotat
model.7

In the FML, the observable second moment of the NM
line M2 is proportional to the quadrupolar Edward
Anderson order parameterqEA . Thus by measuringM2 at
various temperatures one can determine the temperatur
pendence ofqEA . In this paper we present the results of
replica theory based on the SARBRF model, from which o
can readily calculate the replica-symmetric QG order para
eterq for the three relevant cases of quadrupolar orientat
As already noted in Ref. 15, an approximate theory based
the Ising RBRF model of dipolar glasses provides a v
good estimate of the temperature dependence of the o
parameterq.17 By relating qEA to the theoretical value o
q(T) within the SARBRF model in the replica-symmetr
phase, one should be able to determine more precisely
values of the model parametersJ and D, from which the
freezing temperatureTf can then be calculated.15

BelowTf , replica symmetry is broken andqEA should be
related to the corresponding Parisi order parameter func
q(x).14 The analogy with dipolar glasses suggests, howe
that the effects of broken replica symmetry onq(x) are
ys

ys
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rather small, and it is thus unlikely that they could be o
served experimentally.

An interesting problem is the crossover between the F
and SML on lowering the temperature. It seems plausible
assume that the CN reorientation time obeys an Arrhen
law of the typet05t`exp(Ea /kT),

22 where the parameter
t` andEa could be estimated from the14N-T1 data. Since
nK'1.53106 Hz,18 the FML condition t0nK!1 is easily
satisfied at temperatures much above the the free
temperature Tf , which is about ;110 K in
~NaCN! 0.41~KCN! 0.59 and ;64 K in ~KBr! 0.47~KCN! 0.53.

9

As the temperature is lowered,t0 increases and the SML i
reached at some point, resulting in a gradual increase
M2 towards its maximum value. One expects no drama
changes inM2 to occur atTf , since the individual CN reori-
entations are going on even in the frozen phase and thut0
does not diverge at the transition. This is to be contras
with the behavior of the dynamic response functi
G(v),19 which can be characterized by an effective rela
ation time teff}2 i limv→0]G(v)/]v. On approachingTf
from aboveteff diverges, giving rise to some typical glass
phenomena like the splitting between the field-cooled a
zero-field-cooled elastic susceptibilities and the diverge
of the nonlinear susceptibilities.9

It would be interesting to test the predictions of th
present work by analyzing the NMR spectra of the mix
cyanides and then use the values of the model paramete
calculate other physical properties of these systems.
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