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Local polarization distribution in quadrupolar glasses
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We consider the semimicroscopic symmetry-adapted random-bond-random-field model of quadrupolar
glasses such as NaCN:KCN and KBr:KCN, assuming strong lattice anisotropy which restricts the equilibrium
orientations of the CN molecules to a set of discrete directions along the(@fflcaxes. Applying the replica
theory of orientational glasses, we calculate the probability distributi§p,,p,) for the two independent
components of local quadrupolar polarizatippandp, in the replica-symmetric quadrupolar glass phase. The
reduced distribution®V,(p,) = [W(p,,p,)dp, andW,(p,)=SW(p,,p.)dp, are shown to be related to the
quadrupole-perturbed NMR line shap@) of the **N nucleus[S0163-18287)01802-X]

I. INTRODUCTION ing temperaturel;, which depends on the strength of the
random strain fields.
Quadrupolar glasse®G’s) are random molecular crys- Recently, the RBRF model of QG’s has been formulated

tals with specific physical properties, which are in manyin terms of symmetry-adapted order parameter fielgls
ways analogous to magnetic spin glassesThe low-  with r=s—1 relevant components, which are linear combi-
temperature phase of a QG is characterized by a randomations of the Potts variables and transform according to the
freezeout of molecular orientations and of the accompanyingreducible representations of the cubic grddp.This for-
quadrupolar degrees of freeddnHistorically, among the mulation has been motivated by the following fadtsiocal
first such systems to be studied were solid mixtures of orthorandom strains can be uniquely represented by their irreduc-
para hydrogefi® More recently, there has been much ible components, which are linearly coupled to the order pa-
theoreticai™® and experimentdl interest in mixed alkali rameter fields of the same symmetiyi) in experimental
halide-cyanide systems, for example, KBL(CN),, studies of the elastic behavior, irreducible stresses are
NaCl;_,(CN),, and related compounds, and in mixed alkali applied and the response due to the quadrupolar degrees of
cyanides such as(NaCN);_,(KCN),. In the high- freedom of the same symmetry is monitoréil; the NMR
temperature phase, the average structure of these systemditie shape is for certain directions of the magnetic field di-
cubic. In general, they are characterized by strong crystaiectly related to the probability distribution for the symme-
anisotropy'® which restricts the rotational motion of CN trized components of the local quadrupolar polarization. As
molecules at temperatures below40 K to a set of equilib- shown earlier for dipolar glassé$, quadrupole-perturbed
rium orientations, which are typically along th€l00), NMR and related techniques are suitable for monitoring the
(111), or (110 crystallographic direction. On a coarse- temperature dependence of the quadrupolar Edwards-
grained mesoscopic scale, compositional disorder in thesdnderson order parametgga(T). In the mixed cyanide sys-
systems gives rise to random interactions between the quatems N&CN),Cl;_, and (NaCN);_4(KCN),, qea(T) has
rupole moments, which are mediated by short-wavelengtibeen determined from the second moments of the NMR
lattice vibrations. Another feature, not having an analogy in spectra of**Cl and ZNal’ A more recent investigation is
spin glasses, is the occurrence of local random elastic fieldsased on the quadrupole-perturbed NMR spectrum of the
acting on the orientational degrees of freeddri? 14N nucleust® which directly follows the orientation of the

It has been shown earlier that the equilibrium propertiesCN quadrupolar axis.
of random systems containing bistable electric dipoles, such To our knowledge, a complete theory of the NMR line
as proton and deuteron glasses, can be well described by thbape of a QG based on the appropriate microscopic model
Ising random-bond-random-fieldRBRP model®® In a  has not yet been worked out. Here we consider the mixed
more general case of a QG with more than two discrete equisyanide systems and apply the symmetry-adapted random-
librium orientations, the orientational fluctuations can be repbond—random-fieldSARBRF model in order to calculate
resented by a set of Potts variabt&§ which are simply the NMR line shape within a replica mean-field theory. Since
related to the discrete-state occupation numbers. Specificallin the range of concentrations where QG behavior is ob-
for cubic systems with 4100, (111), or (110 equilibrium  served the most probable equilibrium orientation of the CN
direction of the quadrupolar axis the appropriate choice is thguadrupolar axis is along the three cubi®0) directions®
RBRF s-state Potts model, wheres=3, 4, or 6, we will focus onthe =2 SARBRF model with two relevant
respectivel\’. In analogy with dipolar glasses, the presencequadrupolar degrees of freedom. These are associated with
of random fields gives rise to a nonzero component of théhe two independent components of the local quadrupolar
QG order parameter in the high-temperature phase. Howpolarization, namelyp; and p,. The problem then reduces
ever, the freezing phase transition into a nonergodic QQGo calculating the probability distributiow/(p,,p,) for these
phase still exists, and can be interpreted as the onset of iftwo components, which can be simply related to the NMR
stability of the replica-symmetric QG phase below the freezspectrum. For a specific direction of the external magnetic
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field, the NMR spectrum depends on one of these variables<100>_ 7. = \/g(,;l K )

only, and is thus determined by the reduced probability dis- Cof V2R T2

tribution obtained by integrating out the remaining compo-

nent. We will consider explicitly those orientations, which (11

are relevant to the quadrupole-perturbed NMR of i '

nucleus of the CN molecule itNaCN) ; _(KCN),.*8 Z3=Ng+N;—No,—N,; (5)
The organization of the paper is as follows: In Sec. Il we

outline the mean-field theory of the static properties of . BN AN NN

QG's!® In Sec. Ill we calculate the probability distribution (110: z,= \/;(NZJFNS N3~ Ne),

W(p4,p,) in the entire space of local quadrupolar polariza-

tion componentg, and p,, from which the reduced distri-

Zl=&l+|’\\12_l’\\l3_l’\\l4, 22=N2+N3_N1_N4,

Z,= \@(2'\‘1‘F 2N4—N;—N3—Ns—Npg),

butionsW,(p,) («=1,2) are then obtained. In Sec. IV, the Z.=3 N, —N ), Zs=+3 N.—N )
relation between the NMR line shapér) andW,(p,) in * (Al A4 N (N2=Ns
the slow- and fast-motion limits is derived. Section V con- Zs=3(N3—Np). (6)

tains a short summary and discussion. The normalization in Eqs4)—(6) is chosen in such a way

that
Il. EQUILIBRIUM PROPERTIES

OF A QUADRUPOLAR GLASS r
2 _
A. SARBRF model ;1 Zip=T 0

In the case of strong crystal anisotropy, such as ingne can readily write down the inverse relations
(NaCN); _(KCN), and related compounds, the equilibrium

orientations of the quadrupolar axis of the CN molecules are N 1[0
along the(100), (111), or (110 crystallographic direction of Nim=g2 alwzm, (8
a cubic lattice. As usual,we will ignore the head-to-tail w=1

electric dipolar degrees of freedom; thus the corresponding;;,herealq =a,m,
number of equilibrium orientations for the above three casegyre relation(3).
will be equal tos = 3, 4, or 6, respectively. The occupation  |n Eq. (1), the compositional disorder leading to QG be-
numberN;r, for themth orientation of theth quadrupole can  havior is represented by quenched random infinite-range in-
thus have the value Qunoccupiedi or 1 (occupied, with  teractionsJ;; and and local random fields;,,, which are

m=1,2,...s. In order to describe the equilibrium proper- assumed to be uncorrelated and described by a joint Gauss-
ties of QG's of the above type we adopt the SARBRF modelan distribution with mean value$(J;;)]a=Jo/N and

which should be supplemented by the clo-

of orientational glasses;, [hiJa=0 and with variances[(J;)?]o=J*N and
L ) ; [hi,hj,]a=A0%5,6,,, respectively.
_ Formally, model(1) is also applicable to Ising dipolar
=3 Y 7,7, hi,+E,)Z,
H 2;2,- J"le S Z#E:l( wt BuZin, glasses, where one hass=2 or r=1 and

(1 Z;=N;;—Njp,=S==*1.
which is formulated in terms of the symmetry-adapted order- AS discussed in more detail in Sec. IV, the quantities of
parameter fieldsZ;,, where u=12,...7, with r=1-s, mtergst in NMR and related experiments are the quadrupolar
labels the irreducible representations of the cubic grdop ~ Pelarizations
a discussion of discrete-state models appropriate to orienta- 1
tional glasses of vgrious symmetries see Ref. 15, tp be re- pﬂzﬁz (Zi,)=[{Zi) av: 9)
ferred to as ). The fieldsz;, will be defined here as linear !

combinations of the Potts variabléd,,=Nin—1/s rather  \hereN is the number of CN moleculeg; - -} represents

than occupation numbets;,.*> Thus we write the thermal average, afd- - ],, the random average. Equa-
s tion (9) is a straightforward generalization of the local polar-
7 - 2 a N @) ization in Ising dipolar glassé$.In further analogy with
gy Temime dipolar glasses one can introduce the quadrupolar Edwards-

Anderson(EA) order parameters

1

s 0 =52 (Zi)*=[(Zi) v (10
> Nim=0. 3) '
Therefore, one haZ;==,%,N;»=0, and there are only B. {100 case: Results of replica theory
r=s—1 nontrivial fieldsZ;,, (v=1,2,...71). In the following we will focus on thg100 orientation

The coefficients,,, in Eq. (2), which are elements of an model =2) and briefly review some of the results of rep-
r X s matrix, are fixed by group theory and can be identifiedlica theory** which are relevant to further discussion. As
from the following explicit relationgwe drop the site indices discussed in more detail in I, in the replica-symmetric QG
i) for the three cubic cases: phase the problem reduces to an effective single-site system
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in a vector Gaussian random fiefd= (x;,%,,X3). Alterna-  feplica-symmetric quadrupolar order parametgiare equal,
tively, one can derive equivalent results without the use of-€.,d,=d for =1 and 2, so that one is left with a single

replicas from a dynamic theory, whexeis interpreted as a QC Order parametey.

static excess noise field.The average free energy per CN

molecule is thus given by Ill. DISTRIBUTION OF LOCAL
QUADRUPOLAR POLARIZATIONS

_ _1p272 PRY N2 1 peff p2 2
f==2f (=D (2= )"+ 2ar]+ 283, (P1+P3) The probability distribution of local quadrupolar polariza-

+oo +oo +oo tions for the(100) case is generally defined as
—(2w)*3’2f dxlf dxzf dxg
— 0 — 0 — 0 —_ R R 1 R R
., W(Ps.P2) = g2 8(P1—(Zin)) (P2~ (Ziz)).  (16)
Xexp(—x</2)Ing(H,H>), (11 [
whereJe“EJ0+,8J2/2 and we have introduced the local par- In the replica theory, it turns out to be more convenient to
tition fu(r)mtion deal with rescaled local polarizations
g(Hy,H,)=2costiy3/28H,)exp( — BH,/\2) P1(X)=C1P1(X),  Pa(X)=CoPa(X), 17)
here the purpose of the coefficiemts (u=1,2) is to com-
+exp(V2B8H,), 12 W _ L
XP(V2H>) (12 pensate the prefactors in E¢), implying c,=+2/3 and
with effective local fieldsH ,= HM()Z) (n=1,2): c,=1/2. The corresponding probability distribution can then

be written as

Hi=3(as+ A= a0t Ja et J51Py + (121287 W(p1.p2) =[8(p1—pa(X)8(P2—po(XN)]5.  (18)
1:M2)— 1~ M1 27 M2 X

In the replica-symmetric phase, according to E4®)—
+(\/§/4)/3'2J2(q1—q2). (13 (14), the two independent local quadrupolar polarizations

pl(i) and pz(f) are given by the following expressions:
In terms of these variables the local quadrupolar polariza-

Ha=J(da+A—ar) 2, + Jo7 x5+ 35"P,

tions can be expressed as . 2sini(y/3/28H,)
. p1(X)= TRHALH,) (19
p.(X)=dIng/d(BH,) (n=1,2). (14

- exp(3BH,/\2)—cosh(/3/2B8H
The conditionsdf/oP,=---=0f/9qr=0 then lead to a po(X)=2 P3AH, V2) “\/_'B l), (20

set of coupled equations for the order parameteys, q,,, R(Hy,Ho)
andgy. These can be written in compact form in terms of\where

the above local polarizations;(x) andp,(x), namely,

R(H;,H,)=2cosli\/3/28H,) +exp(38H,/+/2), (21)
P,=[p,.¥1, a,=[P2(¥)]x, qT=[ﬁl<i>ﬁz<x‘>](;is) with

H,=d(g+A)", (u=1.2). (22)

The symbol - - - ]y means a triple Gaussian average over the (e

variablesx,, x,, andxs. The replica-symmetric order param-

erg. | m re of the physically relevant drupolar The random fieldsx; and x, are due to the combined
eterg,, 1S a measure of the physicaly relevant quadrupolaiygra .t of QG orderingg# 0, and local random strain fields,
Edwards-Anderson order parametgy*.

W . din th G oh ith | A+#0. On the level of a mean-field theory of QG’s these
e are interested in the QG phase without long-ranggie| s are Gaussiafef. Eq. (11)]. The double-Gaussian dis-

ferro_ela;tlc order, i.eP,=0. _lt turns out that in practical t(r:jbution of x; and x, determines the distribution of local
applications one can always find a range of temperatures an L - . . .
polarization componentp,(x) and p,(x) in the isotropic

. . eff_ _
concentrations for_ which J5'=0 and thus no Io_ng range %G phase via Eq€19) and (20), which can be inverted fo
order appears, as indeed seems to be the case in mixed cya- ,
ive X1(p1,p2) andx,(p1,p,). We find

nide systems? The problem of long-range order can be ¥
avoided® by replacing the isotropic scalar interactidg in

x;=a[In(2+3p;—p,s)—In(2—3p;— , 23
Eq. (1) by a general randomly anisotropic interactiafy”; 1=afln( P1P2)~In( P1=P)] 23
Eg\r/éever, we will not enter a discussion of this alternative x,=(2a/\3){In(2+2p,)
. The tempterature gnd rand(t))m—fie;ld ld;ap:jar;denca;s ofbthe or- —3In[(2+3p;—p,)(2—3p1—p2) 1}, (29

er parameterg, andg; can be calculated from the above B

expressions and are given in detail ifske Figs. 1 and 2 of Wherea=[6(q+A)BJ]"*. Thus
). It is also shown there that in the replica-symmetric QG
phase one hag;=0, which eliminates the Gaussian integra-

1
- _v2n__ 2
tion over x3. Moreover, the diagonal components of the W(p1.P2) ijexq Xil2=x312), @9
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FIG. 1. The probability distributioWV(p;,p-) Vs p1,p, for four different values of the reduced temperatlifd=1.5 (a), 1.25(b), 1.0

(c), and 0.95(d), and for fixedA=0.1.

introducing J=d(x1,X,)/d(p1,p,) for the Jacobian of the
transformation:

. 36a?/3
(P2 D(p—2)2-9piT

(26)

Combining the expressiond9)—(26) we can calculate
the probability distributionW(p4,p,) numerically. The re-
sults are shown in Fig. 1 fak= 0.1 and four different values
of the reduced temperatufigJ.

It should be noted that according to E¢k9) and(20) the
components p, and p, belong to the intervals
—1<p;<+1 and—1<p,<+2, respectively. At low tem-
peratures the distributiotW(p,,p,) shows a three-peak
structure, with the location of the peaks @t (p,) close to
(=1,-1),(+1,—-1), and (0;+2). At T=0 the peaks would
be exactly at these positions, the intensity of the last peak
being exactly twice the intensity of the other two. With in-
creasing temperature the three peaks move toward the center,
and for T well above the nominal transition temperature
Ty=J merge into a single peakf. Fig. 1).
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FIG. 2. Reduced probability distributio®(p,) vs p; defined in FIG. 3. Same as Fig. 2, but for the distributid(p,) defined

Eq. (27) for A=0.1 and six values of the reduced temperaturein Eg. (28).
T/J=2.0, 1.5(top row), 1.25, 1.0(middle), and 0.75, 0.%bottom).
IV. RELATION TO NMR LINE SHAPE
Finally, it will be useful to define the reduced probability

distributionsWy(p,) andWa(p,), Here we apply the theory of quadrupole-perturbed NMR

(Ref. 20 to the QG system, which is described by the dis-
crete model with equilibrium orientations of the CN mol-
ecules along thé100), (111), or (100 cubic direction. We
consider the case of #N nucleus with spirl =1, which is
rigidly connected with the CN molecule. The electric field
and gradient(EFG) tensor at the!’N site is cylindrically sym-
metric and its largest principal axis,, is parallel to the C-N
‘1 bond. The quadrupole-perturbed Larmor frequency of the
Wz(pz):f dp,W(p1,p,), (28)  ith YN nucleus in a cylindrically symmetric EFG tensor de-
-1 pends on the orientation &f,, with respect to the external

magnetic fieldB and is thus determined by the occupation
probabilitiesN;, ; i.e., we can write

+2
Wi(pq) = fﬁl dp,W(p1,p2) (27)

in terms of which the EA order paramet&r0) can be ex-

pressed as
S
ea_ L 2 vi=p tp 2 a, N (30
U =z | APuPLWL(PL)  (k=1.2). (29) PSP~ EmiNime
y73
The last result follows from the second of relatiqi$). Here v, is the unperturbed Larmor frequency and

In Figs. 2 and 3,W;(p;) and W,(p,) are shown for vc=3K/8, with K=e?qQ/h standing for the!*N quadru-
A=0.1 for a set of representative values of the reduced tenpole coupling constarf. Furthermore, a,,=3co$6,,—1,
peratureT/J. where 6,, represents the angle between the direction of the
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magnetic fieldB and themth equilibrium orientation of the 2 S

quadrupolar axis of the CN molecule. _ Ma=2 Vimz_:l ah. (36)
Using the relationg4)—(6) betweenN;, and Z;,, and

considering the order parameter fields as dynamic variables |n the following we will limit ourselves to the case of the

with instantaneous valueg ,(t), we can rewrite Eq30) as (1000 QG model and consider three special cases of mag-

netic field orientation, namel)é along the[ 001], [110], and

r
+ i 1 3 3 1 i

vE(t) = v + v 2 9,Zi (1), (31) [201] directions?® For B a!or?g the[OOll direction ong has

u=1 a;=a,=—1 andaz=2. Similarly, for B||[110] one finds

where we have introduced a1=a;=1/2 andaz=—1, whereas foB||[ V201] one has

a;=1, a,=—1, anda3z=0. The corresponding values of
1.5 the second moment in the SML are thus
g/.L:ngl ama;m . (32)

MIOOU—g,2  MIH0—,2 - \D2Z0U—g,2/3  (37)

The inhomogeneous NMR line shape is characterized by the |+ snould be noted that in the SML thé®N nucleus

- . . b 1
average frequency distribution functfdrf “sees” the instantaneous C-N bond orientation and that one-

dimensional1D) NMR cannot be used to determine the QG
I(v)= iE Re fwdt gi2m (v- vt order parametegg, or the quadrupolar polarization distribu-
N 0 tion. This is, however, not the case for two-dimensiq24)
r exchange NMR* which extends the NMR frequency obser-
t o vation window from 16—10° Hz into the mHz region, i.e.,
< COS( 2m v ;::1 I fo Zi(t)dt )H : well into the SML. A detailed study of this technique in the
case of QG'’s is reserved for a subsequent paper.

X

(33

In principle, the time dependence of the variablgs(t) B. Fast-motion limit (FML )

could be obtained from a dynamic model in analogy to Ising In the FML, the average time between successive CN
dipolar glasse$? however, this task is beyond the scope ofreorientations, is much shorter than the characteristic
the present paper. We will consider the line shafpe in NMR observation time, i.e.7g<<1/vx. Thus the dynamic
two limiting cases, namely, in thelow andfast-motion lim-  variablesz; ,(t") in Eq. (33) can be replaced by their time-

its, to be referred to as SML and FML, respectively. averaged values, which are equivalent to the local thermody-
namic averagesZ;,). Again we consider separately three
A. Slow-motion limit (SML) relevant cases of magnetic field orientation, namgdp1],

_ [110], and[ y201].
In the SML the jump rate X of the CN molecules be-

tween their equilibrium orientations is much smaller than the 1. B||[001]

characteristic quadrupolar frequency, i.e.;7o¥ vy . This

follows by analogy with the Glauber model of an Ising di- ~ Here 63=0 and 6;=6,==/2. Thus from Eq.(31) we
polar glas® and implies that the symmetry-adapted vari- have

ables Z; ,(t") in Eq. (33) can be replaced by their time- o,

independent  values Z;,. Transforming back to Vi = EvkCa(Zig), (38)

Nim=Nim—1/s via Eq. (2) and using the fact that where we have used the definiti¢) of the order-parameter
NN =NpSmm and limy_.(1/N)2N;,= 1/s, we obtain field Z,. Since the local thermodynamic averagg,) plays

after straightforward integration, the role of the local polarizatiop,(x) introduced in Eq.
s (14), ar_1d Eéf(g?z’)/cz actc):ordinglj to Iqu(l?), the randlom av—h
. erage in Eq. can be evaluated as an integral over the
l(v)= Emzl [6(v=v = viam) + o(v=v +veam)]. corresponding probability distributio’W,(p,). Equation
(34) (38) suggests that the symmetry-adapted order-parameter
field Z;, is a physical observable in the FML.

Thus in the SML the line shape is in general given by a sum  Combining Eqs(16), (28), (33), and (38) we obtain the
of 2s é&-like terms, whose frequencies depend on the orienre|ation

tations of the C-N bond direction with respect to the mag-

netic field B. | )_i
The second moment of the NMR line is generally defined V= 2%

as

v—rL

e V) } (39)
[4¢

This can also be expressed in differential form

WA

Yk

M= f:r:dv(v—vL)zl(v). (35 | (v)dv=Wy(p;)dp;, (40

where we have introduced the symmetrized probability dis-
In the SML one thus obtains from E(B4) tribution Wy(p,)=[W,(p2) +W,(—p,)]. From the mea-
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FIG. 4. Symmetrized probability distributionWg(p,)
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accomplished by cutting off the integration at some large
enough frequency,,., 22 such that no obervable part of the
NMR spectrum exists for> v, -

2. Case H|[110]
Now 653=7/2 and6,= 6,= m/4. From Eq.(30) one finds

+

vi = v ¥ 30CxAZia), (42)

and the relation betwedi{v) andW,(p,) is thus analogous
to the previous case as given by E89), but with v¢ re-
placed bywvy/2. In particular, the second moment of the
NMR line shape is now given by

Mol

= v QEa- (43

3. Case B|[v201]

In this casef,=m/2; i.e., B lies in the &,z) plane at
0,=54.7° (i.e., magic angleand #;=35.3°. Thus Eq(30)
yields

v =v = wey(Zi), (44)
leading to the following results for the line shape,
2 v— v
I(v)=—W, : (45)
4 (43
and its second moment:
M52U= 212 qen. (46)

By performing an experiment with the above orientation
of the magnetic field one thus has the possibility to deter-
mine the probability distributioW;(p,).

V. DISCUSSION AND CONCLUSIONS

sured NMR line shape one can thus simply deduce the prob- We have presented a calculation of the local quadrupolar

ability distribution of local quadrupolar polarization
W;(p») and compare it with model calculations. In Fig. 4 the
calculated distributiorW(p,) is plotted for six different
temperatures.

polarization distributionW(p4,p,) in quadrupolar glasses
(QG's) with pseudocubic symmetry and equilibrium orienta-
tions of the quadrupolar axis along t{i#00) directions. The
investigation is based on the semimicroscopic symmetry

From Eq.(39) one can easily evaluate the observable sec@dapted random-bond random-fie{l@ARBRF model of

ond moment of the NMR line. The result is

M[2001]=2Vﬁf dpngwz(p2)=4 VﬁqEA: (41)

where the last relation follows from E@29). This shows
that the order parameteg, and its temperature dependence

can be simply obtained from the second moment of the mea-
It should be noted that the exact

sured NMR line shape.
value of M5, i.e., the one obtained by integrating over an
infinite frequency interval, is not affected by molecular mo-
tion and should always be given by the general re@.?°
This is, however, not observable. Expressi@ii) differs

QG’s within the framework of a replica mean-field theory.
The model contains two physical parameters, i.e., the
random-bond and random-field strengthsaand A, respec-
tively. In the (100) or r=2 case there are two nontrivial
components of the local polarization, namegldy,andp, cor-
responding to the symmetry-adapted order-parameter fields
Z;, (n=1,2), and one has in the replica-symmetric phase a
single QG order parametey.

The results are applicable to QG’s with strong crystal an-
isotropy such agNaCN);_,(KCN),, KBr;_,(CN),, and
related systems. A powerful experimental method to investi-
gate the QG ordering in these systems is the quadrupole-
perturbed NMR of the!*N nucleus of the CN molecule. In

part of the spectrum has been eliminated in replacing th&he[100] or [110] direction, the NMR spectrum is given by
time dependence of the local polarization by its long-timethe symmetrized form of the reduced local polarization dis-

average value. Experimentally, the same reductioMegfis

tribution W,(p,)=SW(p;,p,)dp;. For B||[y201], how-
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ever, the line shape is determined by rather small, and it is thus unlikely that they could be ob-

Wy (p1) =S W(p1,p,)dp,. Preliminary results foB||[100]  served experimentally.

and L5>||[110] show a qualitative agreeméhwith the pre- An interesting p_roblem is the crossover between thg FML
dicted line shape in the FML as shown in Fig. 4 for and SML on lowering the 'temp('aratu.re. It seems plau5|ble_to
T/3=0.75. The case§||[ﬁ01] has not yet been investi- assume that the CN reorlentat|02n2 time obeys an Arrhenius
gated experimentally. For temperatures much higher than th|7f=3“/va?1];I tge ct())/EI%IT%e Lm;i);ﬁgg/dk-lf?’om"‘,:ﬁ@ﬁ_.f.hedggagifés
potential anisotropy, other orientations of the CN moleculest%1 5><a106 Hz18 the EML condition 7.v ;1 is.easily
besides(100 will become populated. Therefore, tie-2 saKltisfiéd at terr;peratures much abO\?eKthe the freezing
model cannot be expected to provide a detailed descriptio

of the system, and should be generalized to a combination mperature T;, ~which is —about ~110 K- in
’ —~ i 9
ther=2, 3, and 5 discrete models, or even replaced by th 8CN) 0.41(KCN) 0.5 and ~64 K in (KBI)g4/KCN)oss.

h licated i hindered-rotati s the temperature is lowered, increases and the SML is
mggeﬂ more ~ complicated — continuous hindered-rotalion o 5 -heq at some point, resulting in a gradual increase of

In the FML, the observable second moment of the NMRM2 towards its maximum value. One expects no dramatic

line M, is proportional to the guadrupolar Edwards- changes irM, to occur atT¢, since the individual CN reori-

. ntations ar ing on even in the frozen ph n
Anderson order parametef,. Thus by measuring, at Oétato S are going on eve the frozen phase and #us

vari temperatur ne can determine the temperatur oes not diverge at the transition. This is to be contrasted
arious temperatures one c ete € the temperalure qfiin the behavior of the dynamic response function

pendence ofjea. In this paper we present the results of aG(w) 19 which can be characterized by an effective relax-
replica theory based on the SARBRF model, from which ON€ion ,time ro —ilim,, 0dG(w)/de. On approachingr,
. . _ . d e w—0 .

can readily calculate the replica-symmetric QG order paramg abover diverges, giving rise to some typical glassy

eterq for the three relevant cases of quadrupolar orientation henomena like the splitting between the field-cooled and

As alrgady noted in Ref. 15, an approximate thegry based o ero-field-cooled elastic susceptibilities and the divergence
the Ising RBRF model of dipolar glasses provides a very f th I tibilitids
ood estimate of the temperature dependence of the orddr '€ nominear Susceptibiiies. -

garamete 17 By relatin to the theoretical value of It would be interesting to test the predictions of the
P q. By 9 ea present work by analyzing the NMR spectra of the mixed

gg)sevw:)hr:z ;T}ijﬁ‘%gi’;lénfodzlegr?ﬁ gergg(;g';ﬁncrgg;ct cyanides and then use the values of the model parameters to
values of the model parametedsand A, from which the Iculate other physical properties of these systems.

freezing temperatur&; can then be calculatéed.
Below T;, replica symmetry is_b_roken argq, should be ' ACKNOWLEDGMENT
related to the corresponding Parisi order parameter function
q(x).X* The analogy with dipolar glasses suggests, however, This work was supported by the Ministry of Science and
that the effects of broken replica symmetry gfx) are  Technology of the Republic of Slovenia.
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