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Dynamics of domain walls in an incommensurate phase near the lock-in transition:
One-dimensional crystal model
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A phase transition from a high-symmetry to a low-symmetry commensurate phase through an incommen-
surate phase was studied in the framework of the one-dimensional elastically hinged molecule model which
includes only a fourth-order anharmonic potential. The phase diagram with respect to the harmonic-potential
coefficient and the external force was obtained. From the numerical analysis of the equation of motion, it was
shown that the incommensurate phase near the lock-in transition contains a periodic system of energetically
equivalent domain walls which are mutually repulsive. The properties of the domain walls were studied and the
lock-in transition was described as the annihilation process of the walls when the repulsion is changed to
attraction.@S0163-1829~97!01614-7#
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I. INTRODUCTION

The incommensurate~IC! phase of various crystals exis
in a temperature range between high-symmetry and l
symmetry commensurate phases.1,2 The lower-temperature
transition from the IC phase to a low-symmetry phase atTc
is a first-order transition, and the higher-temperature tra
tion from a high-symmetry to an IC phase atTi is a continu-
ous structural transition of second order. The condensatio
a soft mode in a certain point inside the Brillouin zone atTi
generates the IC phase as a modulated structure. NearTi the
modulation has the sinusoidal form but further cooling
wards Tc changes the modulation to a rectangular fo
which can be considered as an array of commensurate
mains separated by the discommensurations~domain walls!.
As a result of the so-called lock-in transition atTc , the walls
disappear and the commensurate structure with an elem
tary period, which is usually a multiple of the basic period
the high-symmetry phase, is formed. The existence of a
riodic array of domains within the IC phase was observed
Rb2ZnCl4 by transmission electron microscopy.3 The six
types of domains which differ either by the direction of the
spontaneous polarization or by the relative translatio
phase shifts were observed~see the comments on Ref. 3
Ref. 2!. The process of nucleation and annihilation of d
commensurations in the first-order IC-commensurate tra
tion in K2ZnCl4 have been studied by Sakataet al.

4 and Ha-
mano et al.5 using etching, powder, replica, an
transmission-electron microscopy techniques.

The first theoretical investigations of IC phases were p
vided within the framework of the phenomenological Land
theory.1,2,6 In contrast, the microscopic theories of displaci
modulation take into account the discrete structure of
system and usually use an empirical description of in
atomic interactions.1 The model proposed here belongs to t
550163-1829/97/55~13!/8155~10!/$10.00
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second type. The finding of the sufficient conditions for
phase formation is one of the central applications of su
models. For the IC phase formation in the frame of t
Frenkel-Kontorova model, the period of a sinusoidal ba
ground potential and equilibrium interatomic distance of h
monically coupled chain must be different~see the contribu-
tion of Pokrovskyet al. in Ref. 7!. For the models with a
double-well background potential, not only the first- but al
the second-neighbor harmonic interatomic interaction sho
be taken into account.8 In order to obtain the model with the
acoustic mode, Janssen and Tjon9 did not introduce any
background potential but in this case they showed that
presence of the third-neighbor interaction is essential for
IC phase formation and at least one of the coefficients sho
be negative to produce the competing interactions. T
model of Chen and Walker10 with the competing interactions
has a reach phase diagram which they studied to explain
sequences of phase transitions in various crystals of
A2BX4 family.

All the above models are one dimensional and each a
has one degree of freedom. Two-dimensional models w
also studied by Parlinski and two-dimensional IC modu
tions (2q) were observed.11

The microscopic models usually deal with a phase tran
tion from a high-symmetry to an IC phase. We do not kno
an adequate description of the lock-in transitions. In this
per, we propose an elastically hinged molecule~EHM!
model of a crystal. In the frame of the model, the lock-
transition can be treated as a result of motion and annih
tion of domain walls. Janssen,1 discussing the lock-in transi
tion, pointed out that the discommensurations arrange th
selves in the ground state in such a way that they are
equidistant as possible. The conditions when this situa
does not take place will be found in the present model. T
annihilation ~fusion! of domain walls colliding with the
8155 © 1997 The American Physical Society
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8156 55DMITRIEV, SHIGENARI, VASILIEV, AND ABE
small velocity was found for thew4 equation by Aubry.12

Besides this process, another channel of the annihilatio
domain walls was found for the EHM model. The nucleati
and evolution of the discommensurations in two- and thr
dimensional crystalline models have been studied also
Refs. 13 and 14.

The EHM model consists not of atoms but of molecu
connected by hinges. The Hamiltonian of the model is id
tical to that for a linear chain with a local fourth-order pol
nomial potential and harmonic first- and second-neighbor
teractions. The last model has already been studied8 but only
for the double-well background potential and usually it tre
only the case of a modulation with a long-wavelength s
mode. Here the case of a single-well fourth-order poten
and the transitions with short-wavelength soft modes will
considered. One will see that for the formation of IC stru
ture, the background potential does not need to be do
well. In the frame of the EHM model for the IC phase fo
mation the presence of the pressure term is necessary.
influence of the external compression on the commensur
incommensurate phase transition has been studied num
cally by Parlinskiet al.15 It has also been studied experime
tally. The temperature region of the IC phase in quartz~SiO2!
becomes wider with the increase of the external unia
stress and the 1q state increases proportional to the mag
tude of stress.16,17 The width of the IC phase increases wi
hydrostatic pressure in NaNO2.

18,19 Physically, taking into
account the pressure term does not necessarily mean
presence of the external pressure. In some cases, e.g
quartz, one may consider a two- or three-dimensional cry
as a set of chains of molecules a subset of which may b
compression but other chains in tension so that the avera
deformation of the crystal is equal to zero.

In Sec. II we describe the EHM model of a crystal and
Sec. III the phase diagram of the model is plotted. Section
is concerned with the description of the change of the reg
from a sinusoidal modulation to an array of domain wa
Finally in Sec. V, the static and dynamic properties of t
domain walls and the possible lock-in transition are d
cussed. The partial results of Secs. II and III were reporte
Ref. 20.

II. EHM MODEL OF CRYSTAL

Let us consider that the one-dimensional model of a cr
tal consists of the undeformable molecules of lengthh which
are connected with each other by the elastic hinges~see Fig.
1!. The hinges of the chain and the molecules are numbe

FIG. 1. The chain of molecules of lengthh connected by the
hinges ~EHM model!. The action of the background potential
depicted by springs;un denotes the displacement ofnth hinge. The
chain is compressed by the forcep along its axis.
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by integer-valued indexn so that thenth molecule has
hinges with numbersn andn11. Each hinge has one degre
of freedom, namely, the transversal displacementun . If the
angle between the axes of the neighboring molecules is
equal to 0, the elastic hinge produces the moment wh
tends to decrease the absolute value of the angle. The
ness of the hinge is characterized by the coefficientf . The
hinges are in the anharmonic background poten
(r /2)u n

21(s/4)u n
4. Finally, suppose that the chain of mo

ecules is compressed by the forcep>0 along its axis.
In this paper we will consider the limiting case of sma

displacements (un!h). Under this assumption the angle o
rotation of thenth moleculean can be expressed in terms o
displacements as

an5
Dun
h

, ~2.1!

whereDun5un112un .
The potential energy of the crystal can be written as

U5
f

2 (
n

~an2an21!
21(

n
S r2 un

21
s

4
un
4D2

p

2h (
n

Dun
2.

~2.2!

The first term on the right-hand side of Eq.~2.2! is the po-
tential energy accumulated by the hinges, the second ter
the energy of hinges in the background potential, and
third term represents the work of the compression force. T
expression1

2hDu n
2 in the last term represents the change

the horizontal projection of the molecule due to its rotatio
The mass of the moleculem is concentrated in its hinges

The Hamiltonian of the one-dimensional cryst
H05U1(m/2)S(dun/dt)

2 may be written in the following
form:

H5
1

2 (
n

F S dyndt D 21F~Dyn2Dyn21!
2G

1
1

2 (
n

F2PDyn
21Ryn

21
S

2
yn
4G , ~2.3!

where yn5unAusu/ur u, t5tAur u/m, H5H0usu/r
2, F5 f /

(ur uh2), P5p/(ur uh), R5r /ur u561, S5s/usu561.
It can be shown that this is the Hamiltonian for a line

chain with a local potential of the form of a fourth-orde
polynomial and harmonic first- and second-neighbor inter
tions. IfR521 andS51, the local potential is a double-we
potential, but below we consider the caseR5S51 in which
the potential has a single minimum.

From the Hamiltonian~2.3! the following equation for
motion of thenth hinge may be obtained:

d2yn
dt2

1F~yn2224yn2116yn24yn111yn12!

1P~yn2122yn1yn11!1yn1yn
350. ~2.4!

A few types of periodic solutions to Eq.~2.4!, for which
yn5yn1N , can be easily found. Obviously, it has a trivi
solution

yn50, n50,61,62, . . . . ~2.5!
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55 8157DYNAMICS OF DOMAIN WALLS IN A N . . .
The solution with the periodN52,

y2n52y2n215Y2 , ~2.6!

whereY 2
254P216F21, which is possible ifP.4F11/4.

The solution with the periodN53,

y3n5Y3 , y3n215y3n225kY3 , ~2.7!

where Y 3
252(2k11)/(2k311), 3k5a2A3 2bg21/3

1(1/A3 2)g1/3, a51/(6F22P), b52a(a13), d52a3

19a2227/2, g5d1A4b31d2. This solution exists if
P.3F11/3 and21/A3 2,k<21/2.

The four-periodic solution

y4n5y4n2152y4n2252y4n235Y4 , ~2.8!

whereY 4
252P24F21, exists ifP.2F11/2.

Substituting solutions~2.5!–~2.8! into the Hamiltonian
~2.3!, one finds the following expressions for the potent
energy per molecule:

U150, ~2.9!

U252
1

4
~24P116F11!2, ~2.10!

U35
1

3 S ~3F2P!~12k!21k21
1

2DY3
21

1

12
~2k411!Y3

4,

~2.11!

U452
1

4
~22P14F11!2 ~2.12!

for the trivial solution and for two-, three-, and four-period
solutions, respectively.

III. PHASE DIAGRAM

In the subsequent discussion the parametersP andF will
be considered temperature dependent. Changing of the
perature leads to the changing of the parameters, which
be described as the motion of the representative point in
phase space.

In Fig. 2 the phase diagram of the model is plotted in
P,F plane. The parabola 1 (F5P2/4) and the straight line 2
(F5P/421/16) smoothly join at the point [P(2),F(2)] and
they define the boundary of the region where only the triv
solution exists.

Let the representative point move very slowly in t
phase space from the region where the trivial solution
stable and crosses the boundary of stability. From the lin
ized equation~2.4! it follows that when the point crosses th
boundary a new pattern appears gradually. It can be rega
as the freezing of the soft mode since the appearance
new stationary solution means a change in the symmetr
the system and therefore a phase transition. The soft mo
proportional to the function

yn5sin~2pnk!, ~3.1!

where
l

m-
an
e

e

l

s
r-

ed
f a
of
is

k5
1

p
arcsinAP/~8F ! for F.

P

8
~3.2!

and

k5
1

2
for F<

P

8
. ~3.3!

In the first case the point crosses the parabola 1 and
wavelength of the soft model51/k is the function of the
P,F. In the second case the point crosses line 2 and
structure~2.6! with period 2 is formed. In fact, the crysta
structure necessarily will contain the randomly spaced
main walls forming due to the random nucleation proces

Let us discuss the stability of the modes with the ratio
wavelength

l5
N

M
, M51,2, . . . , N>2M , ~3.4!

whereN,M are given coprime numbers. Such a mode ha
periodN and it changes the sign 2M times within a period.
The mode with wavelengthl.2 appears when the represe
tative point crosses parabola 1 at the point with the coo
nates

P~l!5
1

2 S sin p

l D 22

, F~l!5
P2~l!

4
. ~3.5!

The solution of the nonlinear equation of motion~2.4!
along a path of the representative point was found num
cally. The periodic boundary conditions and the trivial initi
conditions with very small perturbation were assumed. In
immediate vicinity of the parabola 1 or the line 2 the d
placements are small. In this region the influence of the n
linear term is small and one can expect that the nonlinear
~2.4! retains the principal properties of the associated line

FIG. 2. The phase diagram of the model in theP,F plane. Curve
1 is the parabolaF5P2/4 and line 2 isF5P/421/16. Curves 4–7
are the hyperbolas~3.8! for l52,3,7/2,4, respectively. The points o
tangency of hyperbolas 4–7 with parabola 1 are marked by the s
circles. The dashed line 3 isF5P/8.
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8158 55DMITRIEV, SHIGENARI, VASILIEV, AND ABE
ized equation. Computer calculations show that it is so
was found that after the representative point crosses the
rabola at the point [P(l),F(l)], the N-periodic solution
which changes the sign 2M times within one period was
formed. The same number of signs changes has the
mode~3.1! obtained from the linearized equation of motio
If M is big enough theN-periodic solution (N.2M ) may be
considered as the IC phase. In other words, crossing para
1 by the representative point at the point [P(l),F(l)],
wherel has a big denominator, is the phase transition fr
the high-symmetry phase~trivial solution! to the IC phase.

Numerical calculations show that when the representa
point moves away from the parabola, the number of s
changes of the solution does not change. However, the tr
formation of the IC structure takes place and it reduces to
formation of a new low-symmetryN* -periodic phase with
wavelengthl*5N* /M* which is close tol5N/M but with
a significantly smaller periodN*!N. As a result of the pro-
cess, a set of domain walls appears. The density of dom
walls can be expressed as

r5
K

N
uNM*2MN* u, ~3.6!

whereK51 or 2 for an even or an oddN* , respectively. If
N* is an even number theN* -periodic structure has only on
type of domain, but ifN* is an odd number, there are1 and
2 domains.

In the following, we shall find for a given path the poin
in the phase diagram from which the discommensurati
exist in the form of domain walls by the comparison of t
energies of the IC and the low-symmetry phases.

In Figs. 3~a!–3~c!, the structure transformation describe
above is presented for the path of the representative p
F5F(76/25). Note, thatl576/25 is only slightly greater
than 3. In Fig. 3~a! the structure in the immediate vicinity o
parabola 1 is shown. It is the 76-periodic solution with

FIG. 3. The evolution of the crystal structure along the li
F5F(l), ~a!–~c! for l576/25 and~a8!–~c8! for l577/19. In ~a!,
~a8!, the structures in the immediate vicinity of parabola 1 are p
sented. In~b!, ~b8! and ~c!, ~c8!, the structures for increasing mag
nitudes ofP are shown. In~c! the low-symmetry three-periodic
structure with two domain walls per 76 molecules is formed. In~c8!
there is the low-symmetry four-periodic structure with one dom
wall per 77 molecules. The amplitude of displacements increa
with P, but for these pictures they were normalized to the sa
value.
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sign changes within a period. In Figs. 3~b! and 3~c!, the
structures for increasing magnitudes ofP are shown. In Fig.
3~c!, the low-symmetry three-periodic structure with two d
main walls per 76 molecules is formed. There are domain
two types.

In Figs. 3~a8!–3~c8! the same results but for pat
F5F(77/19) are presented. Nowl577/19 is close to 4. In
the immediate vicinity of parabola 1, the 77-periodic soluti
with 38 sign changes within a period is formed. In Fig. 3~c8!
the low-symmetry four-periodic structure with one doma
wall per 77 molecules is formed. There is only one type
domain.

We shall use the following results related to the pha
diagram ~Fig. 2!. The equilibrium solution which appear
after the representative point crosses parabola 1 at the p
[P(l),F(l)], l>2 exists in the area where

F.
P~l!

2
P2F~l!. ~3.7!

The boundary of the stability region for this solution is th
hyperbola

F21
F~l!

12
P22

P~l!

2
FP1

2F~l!

3
F,0 ~3.8!

in the regionF.P/8 and the smoothly joined straight line

F.
P2Q

G
1
Q

8
~3.9!

in the region F<P/8, where G5[32F(l)26]/[8F(l)
23P(l)], Q5[16F(l)]/[12P(l)216F(l)23]. The join-
ing takes place at the lineF5P/8. The hyperbola~3.8! is
tangent to parabola 1 at the point [P(l),F(l)]. Curves 4–7
in Fig. 2 are the boundaries of stability for the solutions w
l52,3,7/2,4, respectively. The dashed line 3 isF5P/8.

The energy of the trivial solution is equal to 0. Any oth
equilibrium solution which corresponds to a givenl has a
negative energy per molecule

Ul52F F

2F~l!
2

P

P~l!
1
1

2G2. ~3.10!

One can check that the energyUl does not depend onP and
F along any line of the set

F5
P~l!

2
P2D, D>F~l!. ~3.11!

The lines of the set are parallel to the tangent to parabola
the point [P(l),F(l)].

Note, that Eqs.~3.7!–~3.11! are accurate only forl52,4,
i.e., for solutions~2.6! and~2.8!. For any otherl they give a
qualitatively good approximation.

Now one can choose any path in the phase space w
crosses parabola 1 at the point [P(l),F(l)] and compare
the energy of theN-periodic IC structure with the energy o
the N* -periodic low-symmetry structure which is forme
when the representative point moves away from the
rabola. For simplicity let us consider the pathF5F(l)
5const. The reminder between the energies is

-
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e
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AuUlu2AuUl* u5PS 1

P~l* !
2

1

P~l! D2
F~l!

2F~l* !
1
1

2
.

~3.12!

The conditionAuUlu2AuUl* u50 gives the critical value of
P:

Pcr52
F~l!2F~l* !

P~l!2P~l* !

P~l!

P~l* !
. ~3.13!

While P<Pi5P(l), the crystal has the high-symmetr
phase~trivial solution!. At P5Pi the phase transition from
the high-symmetry to IC phase takes place and the sinuso
modulation is formed. The contribution of the higher ha
monics increases asP moves fromPi to Pcr and forP.Pcr
the modulation takes the form which may be considered
set of domains of the low-symmetryN* -periodic commen-
surate phase which are separated by the discommensura
~domain walls!.

In the following sections, the properties of the doma
walls will be studied.

IV. TYPES OF DOMAIN WALLS

Let us describe the features of the set of domain walls
the structure with periodl*5N* /M* which appears as a
result of the motion of the representative point along the p
F5const away from the point~Pcr ,F!. The set of all the
hinges of a chain is conveniently divided intoN* subsets.
The subset with numberi , where i may take one of the
values 0, . . . ,N*21, contains the hinges with numbe
N* n1 i , wheren is any integer. Let us define on thei th
subset the functionv i which takes the values equal to th
displacements of the hinges of the subset. SinceN*!N, the
oscillation of the functionsv i is much slower than that of th
displacementsyn . In the immediate vicinity of parabola 1
the functionsv i are, in very good approximation, sinusoid
with the wavelengthL5N* /r. The functionv i is obtained by
shifting v i11 by L/N* . The functionsv i tend to become the
step functions as the distance from the critical point
creases. The steps are formed at the places where at lea
of the functionsv i changes the sign. It leads to the formati
of KN* steps within the wavelengthL, whereK51 or 2 for
an even or an odd numberN* , respectively. ClearlyKN* is
an even number. All theKN* walls within a wavelengthL
are different even though they have the same energy. In e
wall within a periodL the functionsv i with different num-
bers have the steps of specified height and sign. This dif
ence is important as far as the possibility of the annihilat
of domain walls is concerned. The wall with numberj ,
where j51, . . . ,KN* /2, can annihilate in principle only
with the wall j1KN* /2.

Except for the structure withl*52, it is important
whetherl*,l or l*.l. In the first case the domain wall i
formed by adding one molecule into the ideall* -periodic
structure, but in the second case by the removal of a m
ecule. In what follows these domain walls will be calle
compressed and extended walls, respectively. The two ty
of walls in general differ energetically. Only in the two
periodic structure are the extended and compressed wall
distinguishable.

All of the preceding are illustrated in Figs. 4~a! and 4~b!
al
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for the structure withl*53 and Figs. 4~a8! and 4~b! for
l*54. In Figs. 4~a! and 4~a8!, the functionsv i in the vicinity
of parabola 1, where they are sinusoidal with the wavelen
L, are shown. In Figs. 4~b! and 4~b8!, the functionsv i are
shown at the moment when the representative point is ra
far from parabola 1. Forl*53 we haveN*53, K52, and
the number of domain walls within a periodL is equal to 6.
If L*54 thenN*54, K51 and the number of domain wall
within the periodL is equal to 4. It is clear from Fig. 4~b8!
that domain wall 1 can annihilate, in principle, only wit
domain wall 3.

Summing up, the set of domain walls in an IC phase is
regular arranged system of walls ofKN* different types.
One type of wall can annihilate, in principle, only with th
wall of other specific type. Ifl*,l, all the walls are the
compressed ones, in the opposite case they are the exte
ones.

V. PROPERTIES OF DOMAIN WALLS

A. Analytical solutions

Among the possible periodic structures the two- and fo
periodic structures are fully considered. Let us obtain
approximate solution to Eq.~2.4! in the form of a moving
domain wall in the periodic structures.

In the casel*52, we consider two functionsv i(n) in-
stead ofy(n), one of which is defined on the hinges with th
even numbers and the other on that with the odd numb
moreover,v052v15v. Equation~2.4! becomes

d2vn
dt2

1F~vn2214vn2116vn14vn111vn12!

2P~vn2112vn1vn11!1vn1vn
350. ~5.1!

In the long-wave approximation, one obtains from E
~5.1!

FIG. 4. Change of regime from a sinusoidal modulation to
array of domains inl* -periodic commensurate structure,~a!, ~b! for
l*53 and ~a8!, ~b8! for l*54. The lines of different type corre
spond to the functionsv i . In the vicinity of parabola 1@~a!, ~a8!#
the modulations are sinusoidal with the wavelengthL. Rather far
from the parabola in~b! we have six different domain walls within
a period and in~b8! there are four walls. The microscopic structu
of the domain walls one can find in Fig. 3.
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8160 55DMITRIEV, SHIGENARI, VASILIEV, AND ABE
Vtt1h0
2~8F2P!Vxx1~16F24P11!V1V350, ~5.2!

where V(x,t) is the unknown slowly varying continuou
function and h05hAur /su. The numerical results of the
present paper were obtained ath051. SubstitutingV(x,t)
5V(x2ct) into Eq. ~5.2! gives

Vjj1ABV2BV350, ~5.3!

where j5x2ct, A54P216F21, B5[h 0
2(P28F)

2c2]21. The general solution to Eq.~5.3! is

j1j05E SE2ABV21
B

2
V4D 21/2

dV, ~5.4!

whereE,j0 are the arbitrary constants. IfE5(A2B)/2 one
obtains the solution in the form of a solitary wave:

V56AA tanhSAAB

2
~j1j0! D . ~5.5!

With this result one can write the solution to Eq.~2.4! in the
form of a moving domain wall in the two-periodic structur

yn56~21!nAA tanhSAAB

2
@~n1n0!h02ct# D . ~5.6!

There are two types of walls,1 and2. For unu→` Eq. ~5.6!
gives the solution~2.6!. The solution exists ifA.0 andAB
.0. The first condition is condition~3.7! for the existence of
the two-periodic solution. From the second condition it
clear that solution~5.6! exists not in the whole region wher
the two-periodic structure exists, but only in the regi
F,P/8. The solution of the considered type in the regi
F.P/8 should be found from Eq.~5.4!. The width of the
wall A2/(AB) increases as the magnitude ofAB tends to 0
and decreases as the velocity of the wallc is increased. The
limiting value of the velocity is equal toh0

2AP28F.
In the casel*54, we introduce four functionsv i defined

on the hinges with the numbers 4n,4n11,4n12,4n13, re-
spectively. From the numerical results shown in Fig. 4~b8!
one can see that for any type of walls they have the follo
ing symmetry:v052v25v, v152v35w. The equations
for motion of the two neighboring hinges are

d2vn
dt2

1F~2vn2214wn2116vn24wn112vn12!

2P~wn2112vn2wn11!1vn1vn
350,

d2wn

dt2
1F~2wn2224vn2116wn14vn112wn12!

2P~2vn2112wn1vn11!1wn1wn
350. ~5.7!

In the long-wave approximation after the substituti
V(x,t)5V(x2ct), W(x,t)5W(x2ct), from Eqs. ~5.7!
one obtains

~c224h0
2F !Vjj12h0~P24F !Wj

1~4F22P11!V1V350,
-

~c224h0
2F !Wjj22h0~P24F !Vj

1~4F22P11!W1W350, ~5.8!

wherej5x2ct. Note, that on the lineF5P/4, the equations
of systems~5.7! and ~5.8! become independent. Under th
condition the crystal splits into two embedded sublattices
each of which the waves of the considered symmetry m
without interaction.

Suppose that a domain wall is formed by an intersect
of the functionsW~j! and2W~j!. Then the functionV~j! is
almost constantAA and the terms withVjj ,Vj may be omit-
ted in Eqs.~5.8!. The second equation takes the form~5.3!
with the coefficientsA52P24F21,B51/(4h 0

2F2c2) and
its solitonlike solution is given by Eq.~5.5!. Then the func-
tion V~j! can be found from the first equation. It is conv
nient to simplify it by settingV(j)5AA1e(j) and to lin-
earize with respect toe~j!, in view of the smallness of the
function e~j!. As a result one obtains

V~j!5AA2
h0
A

~P24F !Wj . ~5.9!

Now the solution may be made more precisely. Substitut
of Eq. ~5.9! into the second equation of Eq.~5.8! gives a
more exact equation forW~j! in which only the coefficientB
will be changed. The solution to Eq.~2.4! in the form of
moving domain wall in the four-periodic structure may b
written as

y4n56AA2AB

2
h0~P24F !cosh22SAAB

2
n8D ,

y4n115AA tanhSAAB

2
n8D ,

y4n1252y4n ,

y4n1352y4n11 , ~5.10!

where n85h0(n1n0)2ct, A52P24F21, B51/(4h 0
2F

2c2) or more preciselyB5[4h 0
2F2(2h 0

2/A)(P24F)2

2c2]21. There exist eight different domain walls. To d
scribe the four compressed walls it is necessary to cho
sign 1 in the first equation of Eqs.~5.10! and to shift the
indices by unity sequentially. Four extended walls cor
spond to sign2. The solution exists ifA.0 andAB.0, i.e.,
in the whole region where the four-periodic structure exi
@see Eq.~3.7! for l54#. For unu→`, Eqs.~5.10! give solu-
tion ~2.8!. On the lineF5P/4 the motion of the domain wal
in the sublattice with odd hinges does not influence the m
tion of the even hinges and they may be at rest.

B. Static properties of domain walls

In Fig. 5~a! the energy variation of the domain wall whic
is at rest~c50! in the two-periodic structure along the lin
~3.11! with l52,D5F(2)11024 is plotted as a function of
F. In Fig. 5~b!, similar results are plotted for the extende
wall ~solid line! and the compressed wall~dashed line! in the
four-periodic structure along the line~3.11! with l54,
D5F(4)1231023. Along the considered lines the energ
of the corresponding structures does not change. Equat
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55 8161DYNAMICS OF DOMAIN WALLS IN A N . . .
~5.6! and ~5.10! were used in the numerical calculations
the initial conditions. They give a good approximation in t
region far from the boundary of their stability or existenc
For two-periodic structure, the solution in regionF.P/8
was found by slowly changing the parametersP,F along the
considered line from the region where the solution is know
To avoid the oscillations which appeared in the region wh
the initial conditions were not exact, the dissipative term w
added to Eq.~2.4!.

We emphasize that the stable domain walls with a ne
tive energy exist at some domains of parameterF. This is a
consequence of the fact that inside these domains the
two- or four-periodic structures are metastable.

In Fig. 6~a!, the change of the displacements of hing
near the domain wall in the two-periodic structure along
considered line~3.11! is shown for different parametersF. In

FIG. 5. The energy variation of the domain walls atc50 as a
function ofF. In ~a! the wall is in the two-periodic structure and th
representative point moves along the line~3.11! with l52,
D5F(2)11024. In ~b! the extended wall~solid line! and the com-
pressed wall~dashed line! are in the four-periodic structure. Th
representative point moves along the line~3.11! with l54,
D5F(4)1231023. At pointsA andB the walls become unstable

FIG. 6. The displacements of hinges near the domain wal
different F for ~a! a domain wall in the two-periodic structure
P54F11/411024 and~b! a compressive domain wall in the fou
periodic structure,P52F10.51231023.
.
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Fig. 6~b!, the same results for a compressive domain wal
the four-periodic structure are presented.

C. Creation and annihilation of domain walls

The curves in Figs. 5~a! and 5~b! terminate at the points
where the domain walls become unstable. In the po
marked by the letterA, the domain wall breaks up into two
autosolitons moving in opposite directions. The autosoli
transforms the ideal metastable two- or four-periodic str
ture into one of the structures with smaller energy. The
ergy given out provides the motion of the autosoliton with
constant velocity, even though there is the dissipation in
system. The domain wall fulfills the role of a nucleus of t
new low-energy phase and that is why it can have nega
energy. Formation and motion of the autosolitons in the tw
periodic structure is presented in Fig. 7. This process
many feautes of the martensite transformation. It also may
initialized by a collision of two stable walls with negativ
energy.

In the points marked by the letterB in Fig. 5~b! the ex-
tended~compressed! domain wall with rather high positive
energy breaks up into three compressed~extended! domain
walls with energy about zero. One wall is at rest and t
others move in opposite directions. This process is show
Fig. 8.

Let us discuss the features of the collision of the dom
walls. Equation~2.4! will be considered now without the
dissipative term.

For the two-periodic structure in the regionF,P/8,
rather wide walls move along the crystal without the loss
energy but during the collision they necessarily lose a par
their kinetic energy and emit phonons. As a consequenc
this feature, if the velocity of collision is less than a limitin
value then the fusion of the walls takes place and their to
energy is slowly dissipated along the chain. This proces
shown in Fig. 9.

There is another channel of domain-wall annihilati
when they can collide with a velocity higher than the fusi
limiting value, but in this case no less than three walls m
be involved in the collision. In Fig. 10, one can see t

t

FIG. 7. The breakup of the unstable domain wall in the tw
periodic structure into two autosolitons moving with a constant
locity in the opposite directions.F50.066,P54F11/411024.
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8162 55DMITRIEV, SHIGENARI, VASILIEV, AND ABE
collision of four walls with the annihilation of two of them
and in Fig. 11 the same with the annihilation of all fo
walls. For this type of annihilation, the mutual arrangem
of the walls att50 is not arbitrary. The changing of th
relative positions of the walls may destroy the annihilati
process.

Figures 9–11 are plotted for the coordinates of the rep
sentative pointF50.04,P54F11/411024 which is inside
the regionF,P/8. In this case the domain walls are a
tracted to one another if they are not too far from each oth

To study the collision between walls in the regionF.P/8
we first obtained the walls with velocityc50 by using the
dissipative term and, second, we canceled the dissipa
term and then two walls of opposite sign were accelera
toward each other by adding the term~21!nd on the right-
hand side of Eq.~2.4!. This term describes the influence
an external field. After the walls were accelerated to the n
essary velocity, this term was canceled as well. The wall
the regionF.P/8 constantly radiate the phonons during t
motion and so their velocity constantly reduces. The co
sion also leads to the emission of the phonons. In the reg
F.P/8 the walls are repelled from each other. That is w
the cores of two colliding walls may not pass through ea
other if the velocity of collision is less than a limiting valu

FIG. 8. The breakup of the unstable compressed domain wa
the four-periodic structure into three extended domain walls, on
which is at rest; two others move in opposite directions. The m
ing walls slow down due to the presence of the dissipati
F50.237,P52F10.51231023.

FIG. 9. Fusion of two domain walls in the two-periodic structu
at F50.04,P54F11/411024. The absolute value of the velocit
of the wallsc50.01 is less than the fusion limiting value.
t
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This is the difference from the caseF,P/8. If the velocity
of collision is very high the walls pass through each oth
There is an intermediate range of the velocity when the
netic energy of the walls is large enough for the cores to p
through each other, but not enough to go away from e
other. In this range the annihilation of walls takes place.

In the four-periodic structure there are several types
domain walls and the number of collisions between differ
pairs of walls is rather high. Two general types of collisio
are distinguished, the collision between the walls which c
annihilate in principle and that between the walls which ca
not annihilate. In the first case the behavior of the wa
during the collision is very similar to the collision betwee
walls in the two-periodic structure. The collision is accom
panied by the loss of a part of the kinetic energy, there is
effect of fusion of slowly moving walls and there is the a
nihilation effect for many-walls collision. For the wall
which cannot annihilate in principle, the loss of the ener
and all the other manifestations of the collision are mu
smaller.

For the walls in the four-periodic structure, one new effe
arises when the representative point is close to the
F5P/4. Mention has already been made that on this l
Eqs. ~5.7! and hence Eqs.~5.8! become independent. Nea
this line the extended and compressed walls have the s
energy@see Fig. 5~b!#. In Fig. 12~a! one can see the result o
a collision of two walls which can annihilate. The magn

in
of
-
.

FIG. 10. The collision of four walls with the annihilation of tw
of them in the two-periodic structure atF50.04, P54F11/4
11024. The absolute value of the velocity for slow walls
c50.022 and for fast ones isc50.08 which is larger than the fusion
limiting value.

FIG. 11. The collision of four walls with the annihilation of a
of them in the two-periodic structure at F50.04,
P54F11/411024. The absolute value of the velocity for slow
walls is c50.026 and for fast ones isc50.08 which is larger than
the fusion limiting value.
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55 8163DYNAMICS OF DOMAIN WALLS IN A N . . .
tudes of parameters areF50.251, P52F10.51231023

which is near the lineF5P/4. During the collision the
phonons were emitted and the velocity of domain walls w
decreased and their width increased. It is of interest that o
the hinges with numbers 4n11 and 4n13 are involved in
the motion. The hinges with even numbers are at rest
only during the motion of the walls along the chain but a
during their collision. This effect manifests itself mo
clearly for the case of collision between the walls whi
cannot annihilate in principle. The results are depicted in F
12~b! for the same magnitudes of parametersP,F. The walls
move in different sublattices and they do not interact w
each other at all. They collide not only without loss of e
ergy but even without the phase shift.

In the regionF.P/4 the compressed walls in the fou
periodic structure repel each other, but in the regionF,P/4
they attract each other. The opposite situation takes place
the extended walls.

D. Lock-in transition in the EHM model

Now we can describe the phase transformations along
pathF5const. The case of phase transition from the hig
symmetry phase to the commensurate four-periodic struc
through the IC phase will be discussed.

As an example let us consider the phase transformat
along the pathF5F(l) for l577/19. In Fig. 13~a!, the
phase diagram in the vicinity of the point@P~77/19!, F~77/
19!#5~1.020 82, 0.260 52! is schematically shown. The poin
[P(l* ),F(l* )]5[P(4),F(4)] has coordinates~1, 0.25!.
We kept the notations which were used in Fig. 2 for parab
F5P2/4 ~curve 1! and for the hyperbola~3.8! with l54
~curve 7!. Curvea is the hyperbola~3.8! with l577/19 and
line b is F5P/4. The dashed horizontal line is the consi
ered path of the representative point which moves from

FIG. 12. The collision of two walls in the four-periodic structu
atF50.251,P52F10.51231023 which is near the lineF5P/4.
In ~a! the case when walls can annihilate in principle is presen
Only the hinges with odd numbers are involved in the motion. T
hinges with even numbers are at rest during the collision. In~b! the
walls cannot annihilate in principle. They move in the differe
sublattices and do not interact with each other at all. They col
not only without loss of energy but even without the phase shif
s
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to right. In Fig. 13~b!, we schematically compare the energ
of the ideal four-periodic solution~2.8! ~solid line! with the
energy of the 77-periodic solution depicted in Figs. 3~a!–3~c!
~dashed line! along the path. These two curves are defined
Eq. ~3.10! at l54 andl577/19, respectively.

While P<Pi5P(77/19), the crystal has the high
symmetry phase~trivial solution! with the energyU50.
When the representative point crosses parabola 1, the p
transition from the high-symmetry to the IC phase tak
place. In the vicinity of the parabola the modulation has
sinusoidal form. The solid line in Fig. 13~b! starts from the
point with abscissaP151.021 15 which corresponds to th
intersection between the path and the hyperbola 7 in F
13~a!. The curves depicted in Fig. 13~b! cross each other a
the pointPcr51.0316, defined by Eq.~3.13!. The contribu-
tion of the higher harmonics increases asP changes fromPi

to Pcr and for P.Pcr in the crystal there are domains o
the low-symmetry four-periodic commensurate phase se
rated by the compressed domain walls. In the regionF.P/4
the compressed domain walls are mutually repulsive wh
makes them equally spaced. The walls start to attract e
other when lineb is crossed by the representative po
(F.P/4). The abscissa of this point is denoted asPc . One
can find thatPc51.042 08. The equidistant arrangement
the mutually attractive walls becomes unstable and when
attraction becomes strong enough they start move and a
hilate. The thermal fluctuations can play a role of perturb
tion of the positions of the walls and can help to overco
the Peierls barrier.7 The energy of the walls near the lin
F5P/4 is positive@see Fig. 5~b!#; that is why their annihi-

d.
e

e

FIG. 13. Schematic representation of~a! the phase diagram in
the vicinity of the point [F(l),P(l)]5[F(77/19),P(77/19)] and
~b! theP dependence of the energy along the pathF5F(77/19) for
the ideal four-periodic solution~solid line! and for the 77-periodic
solution depicted in Figs. 3~a8!–3~c8! ~dashed line!. Curve 1 in~a!
is the parabolaF5P2/4; curves 7 anda are the hyperbolas~3.8! for
l54, 77/19, respectively; lineb is F5P/4 and the dashed horizon
tal line is the path of the representative point which moves from
to right. The curves in~b! cross each other at a valuePcr . While
P<Pi5P(77/19), the crystal has the high-symmetry phase~trivial
solution! with the energyU50. The contribution of the higher har
monics increases asP moves fromPi to Pcr and forP.Pcr there
appear the domains of the low-symmetry four-periodic commen
rate phase separated by the discommensurations.Pc corresponds to
the lock-in transition. In the regionP.Pc there exists an idea
four-periodic structure.
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8164 55DMITRIEV, SHIGENARI, VASILIEV, AND ABE
lation is the phase transition of the first-order~the lock-in
transition!. In the regionP.Pc there exists the ideal four
periodic structure.

It should be emphasized that the pointPc is not critical
for four-periodic structure itself, but it is critical for the set o
domain walls. Therefore in this model the lock-in transiti
can be regarded as the phase transition in the domain-
subsystem.

VI. CONCLUSION

First, the phase diagram of the proposed one-dimensi
crystal model was obtained in theP,F plane nearby the
boundary of stability of the trivial solution. The motion o
the representative point in the phase space along a path
constantF was studied. It was shown that the crossing of
boundary at the point [P(l),F(l)], where l5N/M has a
big denominator, leads to the formation of a structure w
long periodN.2M ~IC structure!. When the representativ
point moves away from the boundary of trivial solution s
bility, one of the solutions with a significantly smaller d
nominatorM* and with a wavelengthl*5N* /M* which is
close to l5N/M is formed ~low-symmetry N* -periodic
commensurate phase,N*!N!. As a result of the process
system of regularly arranged domain walls appears.

Second, the properties and the behavior of the dom
walls in two- and four-periodic structures were studied
solving the equation of the motion numerically. It was sho
that if l*,l, the set of domain walls containsKN* com-
pressed walls of different types, whereK51 or 2 if N* is an
e
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o
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all

nal

ith
e

h
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y
n

even or an odd number, respectively; otherwise it conta
the same number of extended walls. A certain type of w
can annihilate with walls of only one different type. Th
channels of the annihilation of the walls were found. T
mechanisms of the annihilation make it possible to und
stand the nature of the lock-in phase transition. It is the ph
transition in the domain-wall subsystem.

In the metastable periodic structure coexisting with the
structure, the domain wall with a negative energy can ex
At some magnitudes of parametersP and F such a wall
becomes unstable and breaks up into two autosolitons m
ing in the opposite directions. The autosolitons transform
ideal periodic structure into one of the structures with
smaller energy. This phase transition is a kind of the mart
site transition. The transition may be initialized also by t
collision of two stable walls with a negative energy.

For the four-periodic structure the relationship betweenP
andF at which the crystal splits into two independent, em
bedded sublattices was found. Under this condition, wave
specified symmetry of hinge displacements move in differ
sublattices without interaction. For example, two doma
walls moving in different sublattices collide not only withou
loss of the energy but even without the phase shift.
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