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Dynamics of domain walls in an incommensurate phase near the lock-in transition:
One-dimensional crystal model
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A phase transition from a high-symmetry to a low-symmetry commensurate phase through an incommen-
surate phase was studied in the framework of the one-dimensional elastically hinged molecule model which
includes only a fourth-order anharmonic potential. The phase diagram with respect to the harmonic-potential
coefficient and the external force was obtained. From the numerical analysis of the equation of motion, it was
shown that the incommensurate phase near the lock-in transition contains a periodic system of energetically
equivalent domain walls which are mutually repulsive. The properties of the domain walls were studied and the
lock-in transition was described as the annihilation process of the walls when the repulsion is changed to
attraction.[S0163-18207)01614-1

[. INTRODUCTION second type. The finding of the sufficient conditions for IC
phase formation is one of the central applications of such

The incommensuratdC) phase of various crystals exists models. For the IC phase formation in the frame of the
in a temperature range between high-symmetry and lowFrenkel-Kontorova model, the period of a sinusoidal back-
symmetry commensurate phasésThe lower-temperature ground potential and equilibrium interatomic distance of har-
transition from the IC phase to a low-symmetry phas&at monically coupled chain must be differefsee the contribu-
is a first-order transition, and the higher-temperature transition of Pokrovskyet al. in Ref. 7). For the models with a
tion from a high-symmetry to an IC phaseTatis a continu-  double-well background potential, not only the first- but also
ous structural transition of second order. The condensation dhe second-neighbor harmonic interatomic interaction should
a soft mode in a certain point inside the Brillouin zonélat  be taken into accoufitin order to obtain the model with the
generates the IC phase as a modulated structure. Tyehe  acoustic mode, Janssen and Tjatid not introduce any
modulation has the sinusoidal form but further cooling to-background potential but in this case they showed that the
wards T, changes the modulation to a rectangular formpresence of the third-neighbor interaction is essential for the
which can be considered as an array of commensurate dé€ phase formation and at least one of the coefficients should
mains separated by the discommensuratiglosnain wall3.  be negative to produce the competing interactions. The
As a result of the so-called lock-in transition®t, the walls  model of Chen and Walk&twith the competing interactions
disappear and the commensurate structure with an elemehas a reach phase diagram which they studied to explain the
tary period, which is usually a multiple of the basic period of sequences of phase transitions in various crystals of the
the high-symmetry phase, is formed. The existence of a peA,BX, family.
riodic array of domains within the IC phase was observed in All the above models are one dimensional and each atom
Rb,ZnCl, by transmission electron microscopyThe six has one degree of freedom. Two-dimensional models were
types of domains which differ either by the direction of their also studied by Parlinski and two-dimensional IC modula-
spontaneous polarization or by the relative translationations (2q) were observed*
phase shifts were observésee the comments on Ref. 3in  The microscopic models usually deal with a phase transi-
Ref. 2. The process of nucleation and annihilation of dis-tion from a high-symmetry to an IC phase. We do not know
commensurations in the first-order IC-commensurate transian adequate description of the lock-in transitions. In this pa-
tion in K,ZnCl, have been studied by Sakathal’ and Ha- per, we propose an elastically hinged molec(EHM)
mano etal® using etching, powder, replica, and model of a crystal. In the frame of the model, the lock-in
transmission-electron microscopy techniques. transition can be treated as a result of motion and annihila-

The first theoretical investigations of IC phases were protion of domain walls. Janssémdiscussing the lock-in transi-
vided within the framework of the phenomenological Landaution, pointed out that the discommensurations arrange them-
theory!2®In contrast, the microscopic theories of displaciveselves in the ground state in such a way that they are as
modulation take into account the discrete structure of theequidistant as possible. The conditions when this situation
system and usually use an empirical description of interdoes not take place will be found in the present model. The
atomic interactiond.The model proposed here belongs to theannihilation (fusion) of domain walls colliding with the
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by integer-valued indexr so that thenth molecule has
hinges with numbera andn+1. Each hinge has one degree
of freedom, namely, the transversal displacemegntIf the
angle between the axes of the neighboring molecules is not
equal to 0O, the elastic hinge produces the moment which
tends to decrease the absolute value of the angle. The stiff-
ness of the hinge is characterized by the coefficferithe
hinges are in the anharmonic background potential
FIG. 1. The chain of molecules of length connected by the (r/2)u2+(s/4)uf. Finally, suppose that the chain of mol-
hinges (EHM mode). The action of the background potential is ecules is compressed by the foqges0 along its axis.
depicted by springsj,, denotes the displacement mth hinge. The In this paper we will consider the limiting case of small
chain is compressed by the forpealong its axis. displacementsu,<<h). Under this assumption the angle of
rotation of thenth moleculew,, can be expressed in terms of
small velocity was found for thes* equation by Aubry?  displacements as
Besides this process, another channel of the annihilation of
domain ngls was found for the EHM modgl. The nucleation an:Au“,
and evolution of the discommensurations in two- and three- h
dimensional crystalline models have been studied also i
Refs. 13 and 14.
The EHM model consists not of atoms but of molecules
connected by hinges. The Hamiltonian of the model is iden- f s
tical to that for a linear chain with a local fourth-order poly- U= 5 E (an—an-1)*+ ; n

(2.1

WhereAu,=u,,;—u,.
The potential energy of the crystal can be written as

Terduwl-Psaw
: . L . . n 2 4 2h 5

nomial potential and harmonic first- and second-neighbor in- 2.2
teractions. The last model has already been stfdiationly '
for the double-well background potential and usually it treatsThe first term on the right-hand side of E.2) is the po-
only the case of a modulation with a long-wavelength softtential energy accumulated by the hinges, the second term is
mode. Here the case of a single-well fourth-order potentiathe energy of hinges in the background potential, and the
and the transitions with short-wavelength soft modes will bethird term represents the work of the compression force. The
considered. One will see that for the formation of IC struc-expressiong; Au? in the last term represents the change of
ture, the background potential does not need to be doublée horizontal projection of the molecule due to its rotation.
well. In the frame of the EHM model for the IC phase for-  The mass of the molecula is concentrated in its hinges.
mation the presence of the pressure term is necessary. TA®e Hamiltonian of the one-dimensional crystal
influence of the external compression on the commensuratédo= U + (m/2)3 (du,/dt)> may be written in the following
incommensurate phase transition has been studied numefrm:
cally by Parlinskiet alX® It has also been studied experimen-

- - 1 dy,\?
tally. The temperature region of the IC phase in quésiD,) H= = ; {( n) n F(Ayn_Aynl)z}

becomes wider with the increase of the external uniaxial dr
stress and thé%% state increases proportional to the magni- 1 s
tude of stress>*’ The width of the IC phase increases with 2 4

: \ . o + = —PAY.+RY A+ - yol, 2.3
hydrostatic pressure in NaNG®!® Physically, taking into 2 zn: [ Yot RY; 2 y”} @3
account the pressure term does not necessarily mean th B _ B 2 _
presence of the external pressure. In some cases, e.g., Hfi'c's Yn=UnvIsl/|r], 7=ty]r[/m, H=Ho|s|/r*, F=f/

r|h?), P=p/(|r|h), R=r/|r|=%1, S=s/|s|==1.

guartz, one may consider a two- or three-dimensional cryst be sh hat this is th iitonian f i
as a set of chains of molecules a subset of which may be in_!t €an be shown that this is the Hamiltonian for a linear

compression but other chains in tension so that the averagédfin With a local potential of the form of a fourth-order

deformation of the crystal is equal to zero. polynom|al and harmonic first- and secqnd_—nelghbor interac-
In Sec. Il we describe the EHM model of a crystal and intions- IfR=—1 andS=1, the local potential is a double-well

Sec. Il the phase diagram of the model is plotted. Section Potential, but below we consider the cdge S=1 in which

is concerned with the description of the change of the regimd1€ Potential has a single minimum. .

from a sinusoidal modulation to an array of domain walls. oM the Hamiltonian(2.3) the following equation for

Finally in Sec. V, the static and dynamic properties of theMotion of thenth hinge may be obtained:

domain walls and the possible lock-in transition are dis- d2y

cussed. The partial results of Secs. Il and IIl were reported in 2”

Ref. 20. T

+ F(yn—2_4yn—1+6yn_4yn+1+yn+2)

+P(yn—l_2yn+yn+1)+yn+yﬁzo- (2.9
Il. EHM MODEL OF CRYSTAL
A few types of periodic solutions to E@2.4), for which
Let us consider that the one-dimensional model of a crysy =y, can be easily found. Obviously, it has a trivial

tal consists of the undeformable molecules of lerfgthhich  gglution
are connected with each other by the elastic hinges Fig.
1). The hinges of the chain and the molecules are numbered ypo=0, n=0,x1,+2,... . (2.5
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The solution with the periotN=2, 0.4 : : : : ,
Yon=—Yan-1= Y2, (2.6)
whereY 5=4P—16F — 1, which is possible iP>4F +1/4. oal
The solution with the periotN=3, 1
Trivial P(4),F(4)
Yan=Y3, Y3n-1=Yan-2=KY3, (2.7 [ solution
where  Y3=—(2k+1)/(2k3+1), 3k=a—32bg 13 P02 7
+(1R2)g*®, a=1/(6F—2P), b=-a(a+3), d=2a°
+9a?-27/2, g=d+ 4b%+d? This solution exists if ~ + S T
P>3F+1/3 and— 1R2<k=—1/2. oal ’ ]
The four-periodic solution N
Yan=Yan-1= ~Yan-2= ~Yan-3= Y4, (2.8
2_ . . | L
whereY ;=2P—4F -1, exists ifP>2F+ 1/2. o 02 0.4 05 08 1 12

Substituting solutiong2.5—(2.8) into the Hamiltonian
(2.3), one finds the following expressions for the potential

energy per molecule:
FIG. 2. The phase diagram of the model in thé plane. Curve

U,;=0, (2.9 1 is the parabol& = P?/4 and line 2 isF = P/4— 1/16. Curves 47
are the hyperbola@.8) for A\=2,3,7/2,4, respectively. The points of
1 tangency of hyperbolas 4—7 with parabola 1 are marked by the solid
U,=— 7 (—4P+16F+1)2, (2.10 circles. The dashed line 3 B=P/8.

1 P
1 1, 1 4 k= — arcsin/P/(8F) for F>— (3.2
Us=3 (3F—P)(1—k)2+k2+§ Y3+1—2(2k4+1)Y , ™ 8

3
(2.19) and

1 P
1 _Z <=
Uy=— 7 (~2P+4F+1)2 (2.12 k=5 for F<g. (33

o _ _ . In the first case the point crosses the parabola 1 and the
for the trivial solution and for two-, three-, and four-periodic \yayelength of the soft mode=1/x is the function of the

solutions, respectively. P,F. In the second case the point crosses line 2 and the
structure(2.6) with period 2 is formed. In fact, the crystal
ll. PHASE DIAGRAM structure necessarily will contain the randomly spaced do-

main walls forming due to the random nucleation process.

In thg subsequent discussion the paramd?eeqndF wil Let us discuss the stability of the modes with the rational
be considered temperature dependent. Changing of the te'%‘avelength

perature leads to the changing of the parameters, which can
be described as the motion of the representative point in the N
phase space. A= M, M=1,2,..., N=2M, (34)
In Fig. 2 the phase diagram of the model is plotted in the
P,F plane. The parabola IF(= P?/4) and the straight line 2 whereN,M are given coprime numbers. Such a mode has a
(F=P/4—1/16) smoothly join at the pointf(2),F(2)] and  periodN and it changes the sign\ times within a period.
they define the boundary of the region where only the trivialThe mode with wavelength>2 appears when the represen-
solution exists. tative point crosses parabola 1 at the point with the coordi-
Let the representative point move very slowly in the nates
phase space from the region where the trivial solution is _2 5
stable and crosses the boundary of stability. From the linear- P(\)= } (sin z) Fv) = P<(N) _ 3.5
ized equatior(2.4) it follows that when the point crosses the 2 N 4
boundary a new pattern appears gradually. It can be regarded . ) ) .
as the freezing of the soft mode since the appearance of a 1he solution of the nonlinear equation of motié2.4)
new stationary solution means a change in the symmetry @/0Ng @ path of the representative point was found numeri-
the system and therefore a phase transition. The soft mode §&lly- The periodic boundary conditions and the trivial initial

proportional to the function conditions with very small perturbation were assumed. In the
immediate vicinity of the parabola 1 or the line 2 the dis-
Y =sin(2mn) (3.0 placements are small. In this region the influence of the non-

linear term is small and one can expect that the nonlinear Eq.
where (2.4) retains the principal properties of the associated linear-
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LA A nmnmadd A AR A0 0 sign changes within a period. In Figs(b3 and 3c), the
(a) structures for increasing magnitudesPfre shown. In Fig.
A A N a2 22D 3(c), the low-symmetry three-periodic structure with two do-
(b) NNy YV V VvV Vrrreved main walls per 76 molecules is formed. There are domains of
two types.
In Figs. 3a’)-3(c’) the same results but for path

F=F(77/19) are presented. Now=77/19 is close to 4. In
n the immediate vicinity of parabola 1, the 77-periodic solution
(aj%%ﬂﬂ%%% with 38 sign changes within a period is formed. In Fi¢c'3
) ﬁ ﬂ ﬁ ﬁ ﬂ ?3 A AAAN ﬁi A ﬁ ﬁ n A H p 0 the low-symmetry four-periodic structure with one domain
wall per 77 molecules is formed. There is only one type of
©) AAAMAAMMMAMMP“ domain.
We shall use the following results related to the phase

diagram (Fig. 2). The equilibrium solution which appears

FIG. 3. The evolution of the crystal structure along the line after the representative point crosses parabola 1 at the point
F=F(\), (@—(c) for \=76/25 and(@)—(c') for \=77/19. In(a),  [P(X\),F(A)], A=2 exists in the area where
(@), the structures in the immediate vicinity of parabola 1 are pre-
sented. In(b), (b’) and(c), (c’), the structures for increasing mag- F>l)\) P—E(\) 3.7)
nitudes of P are shown. In(c) the low-symmetry three-periodic 2 ’ ’
structure with two domain walls per 76 molecules is formedclh
there is the low-symmetry four-periodic structure with one domainThe boundary of the stability region for this solution is the
wall per 77 molecules. The amplitude of displacements increaseByperbola
with P, but for these pictures they were normalized to the same
value.

F(N) ' P(N) Epa 2F(N)

2
P+ 2 3

F<0 (3.9

ized equation. Computer calculations show that it is so. It

was found that after the representative point crosses the pi the regionF>P/8 and the smoothly joined straight line

rabola at the point P(\),F(\)], the N-periodic solution

which changes the sign\2 times within one period was F>P_Q N Q 3.9

formed. The same number of signs changes has the soft G 8 )

mode(3.1) obtained from the linearized equation of motion.

If M is big enough th&-periodic solution N>>2M) may be in the region F<P/8, where G=[32F(\)—-6]/[8F())

considered as the IC phase. In other words, crossing parabota3P(A)], Q=[16F(\)]/[12P(\) —16F(N) —3]. The join-

1 by the representative point at the po||’f?(i\)’|:(}\)]' Ing takes place at the linE=P/8. The hyperb0|d38) is

where\ has a big denominator, is the phase transition fronfangent to parabola 1 at the poiR(\),F(N)]. Curves 4-7

the high_symmetry phaqe”\”aj So|ution) to the IC phase_ in Flg 2 are the boundaries of Stab|l|ty for the solutions with
Numerical calculations show that when the representativa =2,3,7/2,4, respectively. The dashed line 3is P/8.

point moves away from the parabo|a, the number of Sign The energy of the trivial solution is equal to 0. Any other

changes of the solution does not change. However, the trangduilibrium solution which corresponds to a giverhas a

formation of the IC structure takes place and it reduces to th8egative energy per molecule

formation of a new low-symmetriN* -periodic phase with 5

wavelength\* =N*/M* which is close to\=N/M but with Uo—— F P 1 (3.10

a significantly smaller periotl* <N. As a result of the pro- A 2F(N) P(N) 2] ‘

cess, a set of domain walls appears. The density of domain
walls can be expressed as One can check that the energy does not depend oA and

F along any line of the set

K
p= 1 INM* = MN*], (3.6) P(\)

F=TP—D, D=F(\). 3.1)
whereK =1 or 2 for an even or an odN*, respectively. If

N* is an even number the* -periodic structure has only one The lines of the set are parallel to the tangent to parabola 1 at
type of domain, but iN* is an odd number, there areand  the point [P(\),F(\)].
— domains. Note, that Eqs(3.7)—(3.11) are accurate only fox=2,4,

In the following, we shall find for a given path the point i.e., for solutiong2.6) and(2.8). For any othei they give a
in the phase diagram from which the discommensurationgualitatively good approximation.
exist in the form of domain walls by the comparison of the Now one can choose any path in the phase space which
energies of the IC and the low-symmetry phases. crosses parabola 1 at the poiR()\),F(N\)] and compare

In Figs. 3a)—3(c), the structure transformation described the energy of théN-periodic IC structure with the energy of
above is presented for the path of the representative poithe N*-periodic low-symmetry structure which is formed
F=F(76/25). Note, that\=76/25 is only slightly greater when the representative point moves away from the pa-
than 3. In Fig. 8a) the structure in the immediate vicinity of rabola. For simplicity let us consider the pabh=F(\)
parabola 1 is shown. It is the 76-periodic solution with 50 =const. The reminder between the energies is
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1 1) Fn 1
V|UK|_V|U“|:P<P(>\*) P()\))_ZF()\*)+§'
(3.12

The conditiony|U,|— v|U,«|=0 gives the critical value of
P:

FIN-F(\") P(\)

P 2B —PO) POV (313
While P<P;=P(\), the crystal has the high-symmetry 4
phase(trivial solution). At P=P; the phase transition from TN o
the high-symmetry to IC phase takes place and the sinusoidal (b)—%; I " A

modulation is formed. The contribution of the higher har-

monics increases @ moves fromP; to P, and forP>P, . : . .

the modulation takes the form which may be considered as a | '; 4- Change of regime from a sinusoidal modulation o an
. * o array of domains in*-periodic commensurate structuta), (b) for

set of domains of the low-symmetiy*-periodic commen-

. . . \*=3 and (@), (b’) for A*=4. The lines of different type corre-
?urate phase$wh|ch are separated by the dlscommensurano;b%nd to the functions; . In the vicinity of parabola 1(a), (a)]
domain wall3. ’

. . . . the modulations are sinusoidal with the wavelengthRather far
In the foIIowmg sections, the properties of the dc)mamfrom the parabola irfb) we have six different domain walls within
walls will be studied. a period and irb’) there are four walls. The microscopic structure
of the domain walls one can find in Fig. 3.
IV. TYPES OF DOMAIN WALLS
. . . for the structure with\*=3 and Figs. 4’) and 4b) for
Let us describe the features of the set of domain walls iN%—4 In Figs. 4a) and 4a), the functions; in the vicinity

H H * _N|* * H
tzzulsttgi‘iwe:emvc\)lggnp(;riﬁg\re_ ’;les/xtatwlzlcgir?fgli?lrs tﬁg aat of parabola 1, where they are sinusoidal with the wavelength
P P 9 P , are shown. In Figs. #) and 4b’), the functionsv; are

Ei:ngsgf nggamog gc])iv%ﬂinetrilch?i\-/iggg i?](:dg*oéuilsé?se shown at the moment when the representative point is rather
9 y " far from parabola 1. For* =3 we haveN*=3, K=2, and

\-Il—glieSSUbOS et V\Iclt*h—rlumct())?lria\i,\r/lrs]ert?l:a Tﬁ]y éik(\a/vi?r? enﬁfmtl?eers the number of domain walls within a periodis equal to 6.
o ’ 9 If A*=4 thenN*=4, K=1 and the number of domain walls

N*n+i, wheren is any integer. Let us define on thén I . ; : S
’ . : within the periodA is equal to 4. It is clear from Fig.(8")
subset the functiow; which takes the values equal to the that domain wall 1 can annihilate, in principle, only with

displacements of the hinges of the subset. SMteN, the .
oscillation of the functions; is much slower than that of the domain Wa” 3. . . ,
: Summing up, the set of domain walls in an IC phase is the

displacementy,,. In the immediate vicinity of parabola 1, regular arranged system of walls KIN* different types.

the functionsv; are, in very good approximation, sinusoidal e ; . ;
) : . . One type of wall can annihilate, in principle, only with the
—NI*
with the wavelengti\=N*/p. The functiorv; is obtained by wall of other specific type. I\* <\, all the walls are the

e _ " i _
shifting Vit1 by A/N". Th? functionsy; tend to.b.ecome. thg compressed ones, in the opposite case they are the extended
step functions as the distance from the critical point in-hes

creases. The steps are formed at the places where at least one

of the functions; changes the sign. It leads to the formation

of KN* steps within the wavelength, whereK =1 or 2 for V. PROPERTIES OF DOMAIN WALLS
an even or an odd numba&*, respectively. Clearl K N* is
an even number. All th&N* walls within a wavelength
are different even though they have the same energy. In each Among the possible periodic structures the two- and four-
wall within a periodA the functionsy; with different num-  periodic structures are fully considered. Let us obtain the
bers have the steps of specified height and sign. This differ@pproximate solution to Eq¢2.4) in the form of a moving
ence is important as far as the possibility of the annihilationrdomain wall in the periodic structures.

A. Analytical solutions

of domain walls is concerned. The wall with numbgr In the casex*=2, we consider two functions;(n) in-
where j=1, ... KN*/2, can annihilate in principle only stead ofy(n), one of which is defined on the hinges with the
with the wall j + KN*/2. even numbers and the other on that with the odd numbers,

Except for the structure witth\*=2, it is important ~moreovery,=—v;=v. Equation(2.4) becomes
whether\* <\ or A*>\. In the first case the domain wall is
formed by adding one molecule into the idedl-periodic d?v,
structure, but in the second case by the removal of a mol- g2 TFn-2t4va-1+6v,+4vn,0+0042)
ecule. In what follows these domain walls will be called
compressed and extended walls, respectively. The two types

3_
of walls in general differ energetically. Only in the two- —P(vn-1t2vntvne1) toaton=0. (5.1)
periodic structure are the extended and compressed walls in-
distinguishable. In the long-wave approximation, one obtains from Eg.

All of the preceding are illustrated in Figs(a} and 4b) (5.7
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V., +h2(8F — P)V,+ (16F — 4P+ 1)V+V3=0, (5.2

where V(x,7) is the unknown slowly varying continuous
function and ho=hy/|r/s|. The numerical results of the
present paper were obtained lg=1. SubstitutingV(x, )
=V(x—c7) into Eq. (5.2 gives

Vee+ABV-BV3=0, (5.3

where ¢=x—cr, A=4P—-16F—1, B=[h3(P—8F)
—c?]71. The general solution to E@5.3) is

—12
§+§o=f ) dav,

whereE, ¢, are the arbitrary constants. E=(AB)/2 one
obtains the solution in the form of a solitary wave:

V=2 A tanr( V% (£+&)

With this result one can write the solution to E8.4) in the
form of a moving domain wall in the two-periodic structure:

yn=i(—1)”\/ﬂtan?'( \/?[(m—no)ho—cﬂ). (5.6

There are two types of walls; and —. For|n|— Eq. (5.6)
gives the solution(2.6). The solution exists iA>0 andAB
>0. The first condition is conditiofB.7) for the existence of
the two-periodic solution. From the second condition it is
clear that solutior{5.6) exists not in the whole region where
the two-periodic structure exists, but only in the region
F<P/8. The solution of the considered type in the region
F>P/8 should be found from Eq5.4). The width of the
wall y2/(AB) increases as the magnitude AB tends to 0
and decreases as the velocity of the veai increased. The
limiting value of the velocity is equal th3y/P—8F.

In the case\* =4, we introduce four functions; defined
on the hinges with the numbersi4in+1,4n+2,4n+ 3, re-
spectively. From the numerical results shown in Fi¢o'%
one can see that for any type of walls they have the follow
ing symmetry:vg=—v,=v, v1=—v3z=W. The equations
for motion of the two neighboring hinges are

B
E—-ABV?+ — V4

5 (5.9

(5.9

d%v,
EZ_+F(_Un72+4anl+60n_4wn+l_vn+2)

- P(anl“'Zvn_Wn+1)+Un+U§:O,
d’w

n
d2 +F(=W,_o—4v, 1 +6Wh+4v,, 1 —Wyyo)

—P(—vn_1+2Wa+vpsq) W+ W=0.

(5.7
In the long-wave approximation after the substitution

V(x,7)=V(x—c7), W(X,7)=W(x—cr), from Egs. (5.7)
one obtains

(C2—4h3F)V e+ 2ho(P— 4F)W,
+(4F—2P+1)V+V3=0,
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(C2—4h§F)W . — 2ho(P—4F)V,
+(4F —2P+1)W+W3=0, (5.8

whereé=x—cr. Note, that on the lin€ = P/4, the equations

of systems(5.7) and (5.8) become independent. Under this
condition the crystal splits into two embedded sublattices, in
each of which the waves of the considered symmetry move
without interaction.

Suppose that a domain wall is formed by an intersection
of the functionsW(§) and —W(§). Then the functiorV(§) is
almost constany/A and the terms witlV .,V may be omit-
ted in Egs.(5.8. The second equation takes the fo(3)
with the coefficientA=2P—4F —1, B=1/(4h3F —c?) and
its solitonlike solution is given by Eq5.5). Then the func-
tion V(¢ can be found from the first equation. It is conve-
nient to simplify it by settingV(&)= A+ e(£) and to lin-
earize with respect te(¢), in view of the smallness of the
function €(£). As a result one obtains

h
V(§)=\/K—KO(P—4F)W§. (5.9
Now the solution may be made more precisely. Substitution
of Eq. (5.9 into the second equation of E¢5.8) gives a
more exact equation fal(&) in which only the coefficienB
will be changed. The solution to E¢2.4) in the form of
moving domain wall in the four-periodic structure may be
written as

B AB
Yan=* VA— \[5 hO(P—4F)cosh‘2< N7 n’),
AB
Yans1= VA tan)‘( N7 n’),

Yan+2= ~Yan,

Yan+3= ~Yan+1, (5.10

where n’=hy(n+ny)—c7, A=2P—4F—1, B=1/(4h3F
—c?) or more preciselyB=[4h3F —(2h3/A)(P—4F)?
—c?] L. There exist eight different domain walls. To de-
scribe the four compressed walls it is necessary to choose
sign + in the first equation of Eqg5.10 and to shift the
indices by unity sequentially. Four extended walls corre-
spond to sign-. The solution exists iA>0 andAB>0, i.e.,

in the whole region where the four-periodic structure exists
[see Eq.3.7) for A=4]. For |n|—~, Egs.(5.10 give solu-
tion (2.8). On the lineF = P/4 the motion of the domain wall

in the sublattice with odd hinges does not influence the mo-
tion of the even hinges and they may be at rest.

B. Static properties of domain walls

In Fig. 5a) the energy variation of the domain wall which
is at rest(c=0) in the two-periodic structure along the line
(3.12) with A=2, D=F(2)+10 “* s plotted as a function of
F. In Fig. 5b), similar results are plotted for the extended
wall (solid line) and the compressed watlashed lingin the
four-periodic structure along the lin€3.11) with A=4,
D=F(4)+2x10 3. Along the considered lines the energy
of the corresponding structures does not change. Equations
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FIG. 5. The energy variation of the domain wallscatO as a
function of F. In (a) the wall is in the two-periodic structure and the FIG. 7. The breakup of the unstable domain wall in the two-
representative point moves along the lif8.11) with N=2,  periodic structure into two autosolitons moving with a constant ve-
D=F(2)+10 “. In (b) the extended wallsolid line) and the com- |ocity in the opposite directionss =0.066,P=4F + 1/4+ 10" 4.
pressed walldashed ling are in the four-periodic structure. The
representative point moves along the lif8.11) with A=4,

- : Fig. 6(b), the same results for a compressive domain wall in
D=F(4)+2X10 *. At pointsA andB the walls become unstable.

the four-periodic structure are presented.

(5.6) and (5.10 were used in the numerical calculations as

the initial conditions. They give a good approximation in the C. Creation and annihilation of domain walls

region far from the boundary of their stability or existence. The curves in Figs. ®) and 5b) terminate at the points
For two-periodic structure, the solution in regiéh>P/8  \yhere the domain walls become unstable. In the points
was found by slowly changing the parametBr§ along the  marked by the letteA, the domain wall breaks up into two
considered line from the region where the solution is knowngytosolitons moving in opposite directions. The autosoliton
To avoid the oscillations which appeared in the region whergransforms the ideal metastable two- or four-periodic struc-
the initial conditions were not exact, the dissipative term wasyre into one of the structures with smaller energy. The en-
added to Eq(2.4). . . ergy given out provides the motion of the autosoliton with a
~ We emphasize that the stable domain walls with a negaconstant velocity, even though there is the dissipation in the
tive energy exist at some domains of paraméteffhis is a  system. The domain wall fulfills the role of a nucleus of the
consequence of the fact that inside these domains the idegky low-energy phase and that is why it can have negative
two- or four-periodic structures are metastable. ~ energy. Formation and motion of the autosolitons in the two-

In Fig. 6a), the change of the displacements of hingesperiodic structure is presented in Fig. 7. This process has
near the domain wall in the two-periodic structure along themany feautes of the martensite transformation. It also may be
considered lin¢3.11) is shown for different parametefs I jnitialized by a collision of two stable walls with negative
energy.

In the points marked by the lett& in Fig. 5b) the ex-
tended(compresseddomain wall with rather high positive
energy breaks up into three compressgextended domain
walls with energy about zero. One wall is at rest and two
others move in opposite directions. This process is shown in

Fig. 8.
Let us discuss the features of the collision of the domain
i3 vv_all_s. E_quation(2.4) will be considered now without the
mme | TTeanes dissipative term.
F=0296 g For the two-periodic structure in the regida<P/8,
_mtl rather wide walls move along the crystal without the loss of
F=0.251 e (b) energy but during the collision they necessarily lose a part of
their kinetic energy and emit phonons. As a consequence of
F=0.238 e this feature, if the velocity of collision is less than a limiting
6 ' 100 ' 200 value then the fusion of the walls takes place and their total
n energy is slowly dissipated along the chain. This process is

shown in Fig. 9.

FIG. 6. The displacements of hinges near the domain wall at There is anoth_er Ch_annel of fjom_ain-wall annihilati_on
different F for (a) a domain wall in the two-periodic structure, When they can collide with a velocity higher than the fusion
P=4F +1/4+ 10 * and(b) a compressive domain wall in the four- limiting value, but in this case no less than three walls must
periodic structureP=2F +0.5+2x 103, be involved in the collision. In Fig. 10, one can see the
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FIG. 10. The collision of four walls with the annihilation of two
of them in the two-periodic structure &=0.04, P=4F+1/4
+107%. The absolute value of the velocity for slow walls is
¢=0.022 and for fast ones ts=0.08 which is larger than the fusion
limiting value.

| S| | R )

FIG. 8. The breakup of the unstable compressed domain wall in
the four-periodic structure into three extended domain walls, one of his is the difference from the case<P/8. If the velocity
which is at rest; two others move in opposite directions. The mov-Of collision is very high the walls pass through each other.
ing walls slow down due to the presence of the dissipation.There is an intermediate range of the velocity when the ki-
F=0.237,P=2F +0.5+2x10"%. netic energy of the walls is large enough for the cores to pass

through each other, but not enough to go away from each
collision of four walls with the annihilation of two of them other. In this range the annihilation of walls takes place.
and in Fig. 11 the same with the annihilation of all four In the four-periodic structure there are several types of
walls. For this type of annihilation, the mutual arrangementdomain walls and the number of collisions between different
of the walls at7=0 is not arbitrary. The changing of the pairs of walls is rather high. Two general types of collisions
relative positions of the walls may destroy the annihilationare distinguished, the collision between the walls which can
process. annihilate in principle and that between the walls which can-

Figures 9—11 are plotted for the coordinates of the reprenot annihilate. In the first case the behavior of the walls
sentative poinE =0.04, P=4F + 1/4+ 10 * which is inside  during the collision is very similar to the collision between
the regionF<P/8. In this case the domain walls are at- walls in the two-periodic structure. The collision is accom-
tracted to one another if they are not too far from each othempanied by the loss of a part of the kinetic energy, there is the

To study the collision between walls in the regie-P/8  effect of fusion of slowly moving walls and there is the an-
we first obtained the walls with velocity=0 by using the nihilation effect for many-walls collision. For the walls
dissipative term and, second, we canceled the dissipativehich cannot annihilate in principle, the loss of the energy
term and then two walls of opposite sign were acceleratednd all the other manifestations of the collision are much
toward each other by adding the tefm1)"5 on the right- smaller.
hand side of Eq(2.4). This term describes the influence of  For the walls in the four-periodic structure, one new effect
an external field. After the walls were accelerated to the necarises when the representative point is close to the line
essary velocity, this term was canceled as well. The walls ifF =P/4. Mention has already been made that on this line
the regionF > P/8 constantly radiate the phonons during theEgs. (5.7) and hence Eq95.8) become independent. Near
motion and so their velocity constantly reduces. The colli-this line the extended and compressed walls have the same
sion also leads to the emission of the phonons. In the regioanergy[see Fig. B)]. In Fig. 12a) one can see the result of
F>P/8 the walls are repelled from each other. That is whya collision of two walls which can annihilate. The magni-
the cores of two colliding walls may not pass through each
other if the velocity of collision is less than a limiting value.

—n

| s | ) | s
-200 0 200 n FIG. 11. The collision of four walls with the annihilation of all
of them in the two-periodic structure atF=0.04,
FIG. 9. Fusion of two domain walls in the two-periodic structure P=4F +1/4+ 10 *. The absolute value of the velocity for slow
atF=0.04,P=4F +1/4+10™“. The absolute value of the velocity walls isc=0.026 and for fast ones i5=0.08 which is larger than
of the wallsc=0.01 is less than the fusion limiting value. the fusion limiting value.
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FIG. 13. Schematic representation (@ the phase diagram in
the vicinity of the point F(\),P(\)]=[F(77/19) P(77/19)] and
(b) the P dependence of the energy along the gathF(77/19) for
the ideal four-periodic solutiofsolid line) and for the 77-periodic

FIG. 12. The collision of two walls in the four-periodic structure solution depicted in Figs.(2')—3(c’) (dashed ling Curve 1 in(a)

atF=0.251,P=2F + 0.5+ 2x 10" 3 which is near the lin& = P/4.

is the parabold = P?/4; curves 7 and are the hyperbolas.8) for

In (a) the case when walls can annihilate in principle is presented\=4, 77/19, respectively; linb is F=P/4 and the dashed horizon-
Only the hinges with odd numbers are involved in the motion. Thetal line is the path of the representative point which moves from left

hinges with even numbers are at rest during the collisiorib)rthe

to right. The curves irnlb) cross each other at a vallr,,. While

walls cannot annihilate in principle. They move in the different P<P;=P(77/19), the crystal has the high-symmetry phésgial
sublattices and do not interact with each other at all. They collidesolution) with the energy =0. The contribution of the higher har-

not only without loss of energy but even without the phase shift.

tudes of parameters afe=0.251, P=2F +0.5+2x10 3
which is near the lineF=P/4. During the collision the

phonons were emitted and the velocity of domain walls wa;

monics increases @& moves fromP; to P, and forP>P_, there
appear the domains of the low-symmetry four-periodic commensu-
rate phase separated by the discommensuratiynsorresponds to
the lock-in transition. In the regio®>P. there exists an ideal
gour-periodic structure.

decreased and their width increased. It is of interest that only

the hinges with numbersnd1 and s+3 are involved in

to right. In Fig. 13b), we schematically compare the energy

the motion. The hinges with even numbers are at rest natdf the ideal four-periodic solutiof2.8) (solid line) with the
only during the motion of the walls along the chain but alsoenergy of the 77-periodic solution depicted in Fig&)33(c)
during their collision. This effect manifests itself more (dashed lingalong the path. These two curves are defined by
clearly for the case of collision between the walls whichgq. (3.10 at \=4 and\=77/19, respectively.

cannot annihilate in principle. The results are depicted in Fig. while P<P,=P(77/19), the crystal has the high-

12(b) for the same magnitudes of parameterf. The walls

symmetry phasdtrivial solution) with the energyU=0.

move in different sublattice_s and they do_ not interact withyshen the representative point crosses parabola 1, the phase
each other at all. They collide not only without loss of en-i5nsition from the high-symmetry to the IC phase takes

ergy but even without the phase shift.

In the regionF>P/4 the compressed walls in the four-

periodic structure repel each other, but in the redienP/4

they attract each other. The opposite situation takes place fgr

the extended walls.

D. Lock-in transition in the EHM model

place. In the vicinity of the parabola the modulation has a
sinusoidal form. The solid line in Fig. 18 starts from the
oint with absciss&?,=1.021 15 which corresponds to the
intersection between the path and the hyperbola 7 in Fig.
13(a). The curves depicted in Fig. (3 cross each other at
the pointP,=1.0316, defined by Eq3.13. The contribu-
tion of the higher harmonics increasesrashanges fronP;

Now we can describe the phase transformations along th@ Per @and for P>P¢ in the crystal there are domains of
path F=const. The case of phase transition from the highthe low-symmetry four-periodic commensurate phase sepa-
symmetry phase to the commensurate four-periodic structur@ted by the compressed domain walls. In the regionP/4

through the IC phase will be discussed.

the compressed domain walls are mutually repulsive which

As an example let us consider the phase transformation®akes them equally spaced. The walls start to attract each

along the pathF=F(\) for A=77/19. In Fig. 18a), the
phase diagram in the vicinity of the poif®(77/19, F(77/
19)]=(1.020 82, 0.260 52s schematically shown. The point
[P(N*),F(A*)]=[P(4),F(4)] has coordinates(1, 0.25.

other when lineb is crossed by the representative point
(F>P/4). The abscissa of this point is denotedRas One

can find thatP,=1.042 08. The equidistant arrangement of
the mutually attractive walls becomes unstable and when the

We kept the notations which were used in Fig. 2 for parabolattraction becomes strong enough they start move and anni-

F=P?/4 (curve ) and for the hyperbold3.8) with A\=4
(curve 9. Curvea is the hyperbold3.8) with A\=77/19 and

line b is F=P/4. The dashed horizontal line is the consid-

hilate. The thermal fluctuations can play a role of perturba-
tion of the positions of the walls and can help to overcome
the Peierls barrief.The energy of the walls near the line

ered path of the representative point which moves from lefff = P/4 is positive[see Fig. §)]; that is why their annihi-
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lation is the phase transition of the first-ordée lock-in  even or an odd number, respectively; otherwise it contains
transition. In the regionP>P,. there exists the ideal four- the same number of extended walls. A certain type of wall
periodic structure. can annihilate with walls of only one different type. The
It should be emphasized that the poly is not critical  channels of the annihilation of the walls were found. The
for four-periodic structure itself, but it is critical for the set of mechanisms of the annihilation make it possible to under-
domain walls. Therefore in this model the lock-in transition stand the nature of the lock-in phase transition. It is the phase
can be regarded as the phase transition in the domain-waHansition in the domain-wall subsystem.
subsystem. In the metastable periodic structure coexisting with the IC
structure, the domain wall with a negative energy can exist.
VI]. CONCLUSION At some magnitudes of parametedPsand F such a wall

] ] ] _ becomes unstable and breaks up into two autosolitons mov-
First, the phase diagram of the proposed one-dimensionghg in the opposite directions. The autosolitons transform the

crystal model was obtained in the,F plane nearby the jgeal periodic structure into one of the structures with a
boundary of stability of the trivial solution. The motion of smaller energy. This phase transition is a kind of the marten-
the representative point in the phase space along a path wifie transition. The transition may be initialized also by the
constant was studied. It was shown that the crossing of thegg|lision of two stable walls with a negative energy.
boundary at the pointRf(\),F()\)], where A=N/M has a For the four-periodic structure the relationship betw&en
big denominator, leads to the formation of a structure withyndE at which the crystal splits into two independent, em-
long periodN>2M (IC structurg. When the representative pedded sublattices was found. Under this condition, waves of
point moves away from the boundary of trivial solution sta-gpecified symmetry of hinge displacements move in different
bility, one of the solutions with a significantly smaller de- g pjattices without interaction. For example, two domain
nominatorM™ and with a wavelength* =N*/M* which is  \ajis moving in different sublattices collide not only without

close to A=N/M is formed (low-symmetry N*-periodic  |oss of the energy but even without the phase shift.
commensurate phasl* <N). As a result of the process a

system of regularly arranged domain walls appears.

Second, the properties and the behavior of the domain
walls in two- and four-periodic structures were studied by The authors would like to thank T. A. Aslanian for dis-
solving the equation of the motion numerically. It was showncussions and fruitful comments. The work was partly sup-
that if \* <\, the set of domain walls contaiféN* com-  ported by the Ministry of Education, Science and Culture of
pressed walls of different types, whefe=1 or 2 if N* isan  Japan.
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