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Complementary variational theorems for inhomogeneous superconductors

T. C. Choy
Department of Physics, Monash University, Clayton, Victoria 3168, Australia

~Received 9 September 1996!

We present complementary variational theorems for an inhomogeneous London superconductor, in which
both the London penetration lengthlL(r ) and permeabilitym(r ) vary randomly. A characteristic feature here
is the explicitly self-consistent coupling between the magnetic and supercurrent polarization effects due to
these inhomogeneities. Our results may be important to composite systems containing magnetic~normal! and
superconducting components. Applications of the theorems to such systems and their relationship to nonlinear
composites will also be discussed.@S0163-1829~97!00713-3#
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An inhomogeneouslocal superconductor is well known to
be described by the free energy~in the London gauge div
A50! ~Ref. 1! as

Ū5
1

8pE dr F2
4p

c
J~r !•A~r !1B~r !•H~r !G , ~1!

where J52@c/4plL
2(r )#A is the local diamagnetic supe

current, whileB5curl A5m(r )H is the local magnetic in-
duction field. We wish to emphasize at the outset the r
dom, spatially varying character ofboth the material
parameterslL andm, and the coupling of the two terms i
Eq. ~1!, which is in fact quite general. The only assumpti
is the validity of London-Maxwell electrodynamics1 and it
applies equally to inhomogeneous superconductors
superconductor/normal composites. It can of course be m
specific by assuming a granular system, for example. Th
strictly not necessary for the purpose of our paper, but it w
be useful later on for illustrating its application to physic
systems.

In this case we shall have superconducting grainsa with
a lLa and normal grainsi with a m i , all of which are uni-
form within each grain. By virtue of a well-known vecto
identity @see Eq.~18! below#, Eq. ~1! for a granular model is
then

Ū5
1

8p(
a

E n•@Ha~r !3Aa~r !# dS

1(
i
E drB i~r !•H i~r ! , ~2!

where the first integral, over the surface of each superc
ducting grain is the London energy and the second inte
over the volume of each normal grain is the magnetic ene
The complexity of this~random! boundary value problem
Eq. ~2!, i.e., to find a solution forA(r ) that will satisfy the
boundary conditions oneachgrain, highlights the usefulnes
of our variational methods. Note also that the tradition
form Eq. ~1! has also some mathematical conveniences,
upon the standard variation with respect toA(r ), we easily
obtain the well-known London equation@Eq. ~3!# as the
Euler-Lagrange equation for the system, which is less tra
parent via Eq.~2!.
550163-1829/97/55~13!/8098~4!/$10.00
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For the oxide high-Tc superconductors, the coheren
length j is known to be small, typically several Å, and th
order parameterc(r ) is gradient free:¹c(r )50, which is
the characteristic of a local~London! superconductor. On
macroscopic scales of several thousand Å, wherem andlL
can vary either due to impurities or to stoichiometric var
tions in the microstructure, we cannot ignore the coupl
betweenboth magnetic and superconducting inhomogen
ities in our boundary value problem. In fact this is an impo
tant question for experiments, since the effective parame
m̄ and l̄L are accessible quantities, via the magnetizati
microwave absorption, ormSR measurements.2 A similar
situation exists, no doubt, in other contexts; as in the e
tromagnetic properties of composites where the magn
and dielectric properties vary macroscopically. Here the c
pling is a direct consequence of the displacement cur
term in the Maxwell equations.3,4

A superior approach that can treat this coupling se
consistently and has the potential to go beyond effecti
medium theory5 is that based on variational theorems, t
most well known being that derived by Hashin an
Shtrikman6 and its later generalizations, e.g., to elas
composites.7 These theorems are rigorous and they prov
additional insights on variationally optimal approximatio
schemes when detailed statistical information on the mic
structure is absent. A revival of interest in variational me
ods is seen in recent works on dynamical problems, as
porous-elastic solids8 and in strongly nonlinear
composites.9,10

The appropriate mathematical tool for a variational tre
ment of coupled fields with Lagrangian densities like Eq.~1!
is no doubt that formulated via a canonical Hamiltoni
variational principle for complementary bounds,11 which in-
cidentally has interesting nonlinear generalizations. As fa
we know, its application to inhomogeneous superconduc
in a formulation involving generalized polarization field6

has not been obtained. Unfortunately, without the latter c
cepts, these variational methods11 do not offer new physical
insights as the optimum fieldsH and here alsoA are impos-
sible to guess.12 Bounds obtained as such using naive tr
field functionsH andA are generally inferior to an effective
medium approximation. In this paper we shall report on
derivation of two complementary variational theorems
the inhomogeneous London superconductor Eq.~1! which
8098 © 1997 The American Physical Society
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will ~i! provide the foundations underlying earlier effectiv
medium approximations,5 and~ii ! open a path to study simi
lar coupled systems and their dynamics. We shall first s
these theorems, then provide the proofs for the superc
ductor Eq.~1! and later show their applications, which
appropriate limiting cases recover earlier results.5

The magnetic inductionB and field intensityH for the
superconductor Eq.~1!, obey the London equation,1

curl„lL
2~r !curl H…52B. ~3!

We first consider a homogeneousfinite superconducting ref-
erence body withm0 andlL0 and of volumeV and surface
S. This body is subjected to a prescribed surface poten
c0(S) such thatH0(S)52grad c0(S) on the infinitesimal
outer boundary ofS. In the bulk of this sample Eq.~3! is
obeyed together withB05m0H0, in which m0 and lL0 are
constants. We now replace this reference system by ou
homogeneous superconductor Eq.~1!, without in any way
changing the prescribed surface potential.

Theorem 1. With this reference system for whichm0 and
lL0 arehomogeneousbut in whichH0(r ) is not necessarily
uniform,12,13 the functional

UF5lL0
2 ^curl H0 ,curl H0&2K Fs ,

Fs

lL
22lL0

2 L
12^Fs ,curl H0&1^Fs ,curl H8&1m0^H0 ,H0&

2K Fm ,
Fm

m2m0
L 12^Fm ,H0&1^Fm ,H8& , ~4!

is stationary for arbitrary variations of the supercurrent p
larization fieldFs and magnetic polarization fieldFm , re-
spectively, subject to the subsidiary conditions:

curl Fs1lL0
2 curl curl H852Fm2m0H8 , ~5!

and the boundary conditions~for the parallel and norma
components!:

Hi8~S!50⇒curl' H8~S!50 , ~6!

if

Fs5~lL
22lL0

2 !curl H ~7!

and

Fm5~m2m0!H . ~8!

HereH8 is the magnetic perturbation field due to the inh
mogeneities, i.e.,H5H01H8 and we have used a compa
scalar product notation11 in which ^f,g&5(1/8p)*dr (f•g).
Moreover the stationary functional is the physical ene
functional of Eq.~1! which we can rewrite as

ŪF5^lL
2 curl H,curl H&1^mH,H&. ~9!

The complementary theorem that we can similarly prove
quires an alternative viewpoint. Here the magnetic vec
potentialA and superconducting currentJ for the supercon-
ductor Eq.~1!, obey the equivalent London equation1
te
n-

al

n-

-

-

y

-
r

curl„m̃~r !curl A…5
4p

c
J, ~10!

where m̃5m21. Our homogeneousfinite superconducting
reference body of volumeV and surfaceS is defined by
m̃05m0

21 and l̃L05lL0
21. This body is now subjected to

prescribed surface magnetic vector potentialA0(S) @equiva-
lently a superconducting currentJ0(S)# on the infinitesimal
inner boundary ofS. In the bulk of this sample Eq.~10! is
obeyed together withJ052(c/4p)l̃L0

2 A0, in which m̃0 and
l̃L0 are constants. We now replace this reference system
our inhomogeneous superconductor Eq.~1!, without in any
way changing the prescribed surface vector poten
A0(S).

Theorem 2. With this reference system for whichm̃0 and
l̃L0 arehomogeneousbut in whichA0(r ) is not necessarily
uniform,12,14 the functional:

UQ5m̃0^curl A0 ,curl A0&2K Qm ,
Qm

m̃2m̃0
L

12^Qm ,curl A0&1^Qm ,curl A8&1l̃L0
2 ^A0 ,A0&

2K Qs ,
Qs

l̃L0
2 2l̃L

2 L 12^Qs ,A0&1^Qs ,A8&, ~11!

is stationary for arbitrary variations of the supercurrent p
larization fieldQs and magnetic polarization fieldQm , re-
spectively, subject to the subsidiary conditions:

curl Qm1m̃0 curl curl A852Qs2l̃L0
2 A8 , ~12!

and the boundary conditions:

Ai8~S!50⇒curl' A8~S!50 , ~13!

if

Qm5~m̃2m̃0!curl A ~14!

and

Qs5~ l̃L
22l̃L0

2 !A . ~15!

HereA8 is the supercurrent perturbation field due to the
homogeneities, i.e.,A5A01A8 and the stationary functiona
is the physical energy functional of Eq.~1! which can also be
rewritten as

ŪQ5^m̃ curl A,curl A&1^l̃L
2A,A& . ~16!

In addition these stationary energy functionals Eqs.~9! and
~16! are absolute maximum, i.e.,ŪF>UF ~convexity! if
lL.lL0 and m.m0 or absolute minimum, i.e.,ŪF<UF

~concavity! if lL,lL0 and m,m0, the situation being re-
versed for the complementary functionalsŪQ andUQ , ac-
cordingly. Thus UF<ŪF5ŪQ<UQ ~for lL.lL0 and
m.m0) and UQ<ŪF5ŪQ<UF ~for lL,lL0 and
m,m0), are the two-sided~rather tight! bounds in this paper
Equality of these bounds occur if the polarization fiel
F’s andQ’s are exact.

Before discussing the proofs we emphasize that th
theorems are nontrivial extensions of the classic Hash
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Shtrikman theorems.6 This is because~i! here the reference
fieldsH0 andA0 are not homogeneous in general,12 ~ii ! the
appropriate choice of conjugate fields, curlH8 and curlA8 is
not obvious, complicating the task~iii ! for finding the appro-
priate subsidiary conditions Eqs.~5! and ~12!. The latter are
dictated by the canonical Hamilton equations of motion,11 in
order thatboth polarization fieldsFm , Fs and their respec-
tive conjugatesH8,curl H8 can be subjected to independe
arbitrary variations. In turn this poses certain difficulties
extending the classic arguments6 that must be resolved. Th
proofs proceed in three steps:~a! proof of stationarity~b!
proof of convexity or concavity, and finally~c! proof that the
extremums are indeed the physical energy functionals.
show these steps for Theorem 1.

~a! This step is by far the easiest. The first-order variat
dUF , upon use of Eqs.~7! and ~8! is easily shown to be

dUF5^Fs ,curl dH8&2^dFs ,curl H8&1^Fm ,dH8&

2^dFm ,H8& . ~17!

The last two terms, which are similar butnot equivalent to
Ref. 6, must here be reduced using the variation on Eq.~5!,
i.e., curldFs1lL0

2 curl curl dH852dFm2m0dH8 and a
well-known vector identity:

^h,curl A&5^A,curl h&1E n•~h3A!dS, ~18!

where the surface terms vanish by virtue of Eq.~6!. Then

^Fm ,dH8&52m0^H8,dH8&2^Fs ,curl dH8&

2lL0
2 ^curl H8,curl dH8& . ~19!

Similarly the last term in Eq.~17! can also be shown to be

^dFm ,H8&52m0^dH8,H8&2^dFs ,curl H8&

2lL0
2 ^curl dH8,curl H8&, ~20!

so that stationaritydUF50 is thus proved.
~b! The proof of convexity is also straightforward6 using

the method outlined above, and we arrive at

dUF
2 52K dFs ,

dFs

lL
22lL0

2 L 2K dFn ,
dFm

m2m0
L

2m0^dH8,dH8&2lL0
2 ^curl dH8,curl dH8&,

~21!

hence proving an absolute maximum condition, i.
dUF

2 ,0 if lL.lL0 andm.m0. The proof of concavity is
however not as straightforward. First the equatio
div Fm52m0div H8 as satisfied trivially by Eq.~5!, leads
to the variation:dFm52m0dH81dCn , whereCn is a di-
vergence free function. Equation~5! itself can be suitably
manipulated into the formFs1lL0

2 curl H85Cs , whereCs

is however not divergence free. Upon variation and subst
tions ofdH8 and curl dH8 thus obtained into Eq.~21!, then
e

n

,

:

-

dUF
2 52K dFs ,dFsF 1

lL
22lL0

2 1
1

lL0
2 G L

2K dFn ,dFnF 1

m2m0
1

1

m0
G L 1

1

lL0
2 ^dCs ,dCs&

1
1

m0
^dCn ,dCn& , ~22!

thereby proving the absolute minimum property, i.
dUF

2 .0 if lL,lL0 andm,m0.
~c! No new steps are required for the proof of the physi

energy apart from the judicious use of the vector identity E
~18! and the London equation forH0. The algebra, however
is lengthy and will not be reproduced here. We can ea
arrive at the result Eq.~9!. The proof for Theorem 2 is simi-
lar and shall not be repeated here.

We shall now consider the application of these theore
in the light of earlier results.5 The key to applications is the
choice of the reference system (m0 ,lL0), which represents
our lack of detailed statistical information on the inhomog
neities. Considerable care must be exercised in defining
effective material parametersl̄L and m̄ by the use of the
energy expressions Eqs.~9! or ~16!. This is in contrast to the
simple expression:

m̄5
8pŪF

VH0
2 ~23!

@see Eq.~3.1! in Ref. 6#, since our total energy Eq.~9! con-
tains two parts which in generalare coupled. As such any
thermodynamic measurement will in general involveboth
l̄L and m̄. A full discussion of this point will have to be
deferred elsewhere.16 It suffices here to note that physicall
onemustchoose the reference parametersin accordance with
the experimental situation. In the following we shall restrict
ourselves to a binary granular superconductor/normal c
posite model Eq.~2!, in the two limiting casesT→Tc and
T→0, respectively, where the simple expression Eq.~23! or
its analog for superconductors

l̃L
25

8pŪQ

VA0
2 , ~24!

is valid.
We shall consider for this system, a normal compon

(m5mg), while the other component is superconducting b
nonmagnetic (m51,lL5lLs). The statistics of this compos
ite is assumed to be random, characterized solely by the
ume fractions of the respective materials, which in analo
with Ref. 6 defines an equivalent concentric shell model
two components. Here we shall chooselL0→`, ~i.e.,
T→Tc), so that the field is assumed to penetrate the sam
entirely; thenH0 is now uniformwhile Fs can be taken to be
zero. The latter follows because we can nowreplace the
superconducting component by an equivalent magnetic c
ponent whose permeability isms . This equivalent permeabil
ity can be easily determined, in this case by equating
magnetic dipole polarizability of a superconducting sph
with a normal sphere of permeabilityms , as in Ref. 5:
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ms5m0S 12ZL~a/lLs!

11
1

2
ZL~a/lLs!

D , ~25!

wherea is the radius of the sphere andZL(a/lLs) is related
to the Langevin function.5 Then the equivalent ansatz6 for
our two-phase system, one with permeabilitymg and another
with permeabilityms is in this case

Fm5 (
iP

normal
phase

Tgu i~r !1 (
jP

superconducting
phase

Tsu j~r ! , ~26!

where now the magnetic dipole polarizationsTg andTs are
uniform.15 The evaluation of the integrals in Eq.~4! using the
above ansatz now follows essentially the same route as
17. After minimizing with respect toTg andTs and using the
definition Eq. ~23!, we obtain the Hashin-Shtrikman-typ
bound:

m̄>m01m0ygS mg2m0

mg12m0
D2m0ys

1

2
ZL~a/lLs! , ~27!

where yg and ys are the volume fractions of normal an
superconductor grains, respectively. The effective-med
approximationm̄5m0 now recovers the result Eq.~14a! of
Refs. 5 and 18. A shortcoming of the latter theory is n
clearly seen here, since at percolationm05m̄→0, which is
incompatible with the assumptionlL0→` and a uniform
reference fieldH0.

For the complementary case, we shall choose for the
erence system a superconductor withm̃0→` andA0 is now
uniform, appropriate to the same sample but nearT50.
e

s

r

ef.

m

w

ef-

Theorem 2 is then applicable in the same way as the ab
example to yield an effectivel̄L using the definition Eq.
~24!:19

l̃L
2<l̃L0

2 1l̃L0
2 ysS l̃Ls

2 2l̃L0
2

l̃Ls
2 12l̃L0

2 D 2l̃L0
2 yg

1

2
. ~28!

A more sophisticated ansatz than Eq.~26! will have to be
investigated in a future study. Here we shall point out
interesting reformulation of the above problem by noting th
Eq. ~9! can also be written asŪF5^B,H& with the nonlinear
magnetic induction:

B5mH F11
lL
2

m

~curl H!2

H2 G , ~29!

thereby showing that our coupled system can be viewed
nonlinear inhomogeneous composite.9 This relation offers a
potentially usefullinear perspective for nonlinear system
by subsuming the nonlinearities of the permeability into t
properties of a canonically conjugate field. We note that
computations, Eqs.~4! and ~11! furnish ideal Monte Carlo-
type algorithms hitherto uninvestigated, especially for sup
conductors.

In conclusion, we have derived complementary theore
for an inhomogeneous superconductor where the coup
due to inhomogeneities inlL and m are treated self-
consistently. Further insight is offered by the choice of t
reference system to the experimental situation, as well a
alternate perspective for nonlinear composites. Genera
tions to include weak links can also be achieved and w
introduce new coupled fields with additional parameters.
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don,Superfluids~John Wiley, New York, 1950!, Vol. I.

15In general these polarizations, even if assumed to be identica
each phase~Ref. 12! are however not uniform, except for thi
limiting case, by construction.

16l̄L can be accessed independently, by microwave ormSR mea-
surements~Ref. 2!.
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