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Complementary variational theorems for inhomogeneous superconductors
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We present complementary variational theorems for an inhomogeneous London superconductor, in which
boththe London penetration lengi (r) and permeabilityx(r) vary randomly. A characteristic feature here
is the explicitly self-consistent coupling between the magnetic and supercurrent polarization effects due to
these inhomogeneities. Our results may be important to composite systems containing nfagnegag and
superconducting components. Applications of the theorems to such systems and their relationship to nonlinear
composites will also be discussd&0163-18207)00713-3

An inhomogeneoukcal superconductor is well known to For the oxide highF. superconductors, the coherence
be described by the free energy the London gauge div length ¢ is known to be small, typically several A, and the
A=0) (Ref. 1 as order parameter(r) is gradient freeV ¢ (r)=0, which is

the characteristic of a localLondon superconductor. On

1 A macroscopic scales of several thousand A, wherand \
U= ﬁf dr[ B TJ(r)~A(r)+ BI)-H(ND| v (@ ¢an vary either due to impurities or to stoichiometric varia-
tions in the microstructure, we cannot ignore the coupling
whereJ=—[c/4q-r)\f(r)]A is the local diamagnetic super- betweenboth magnetic and superconducting inhomogene-
current, whileB=curl A= u(r)H is the local magnetic in- ities in our boundary value problem. In fact this is an impor-
duction field. We wish to emphasize at the outset the rantant question for experiments, since the effective parameters
dom, spatially varying character oboth the material , and )\, are accessible quantities, via the magnetization,
parameters\; and u, and the coupling of the two terms in microwave absorption, oxSR measurementsA similar
Eq. (1), which is in fact quite general. The only assumptionsituation exists, no doubt, in other contexts; as in the elec-
is the validity of London-Maxwell electrodynamicand it  tromagnetic properties of composites where the magnetic
applies equally to inhomogeneous superconductors afind dielectric properties vary macroscopically. Here the cou-
superconductor/normal composites. It can of course be madsiing is a direct consequence of the displacement current
specific by assuming a granular system, for example. This igerm in the Maxwell equatioris?
strictly not necessary for the purpose of our paper, butitwill A superior approach that can treat this coupling self-
be useful later on for illustrating its application to physical consistently and has the potential to go beyond effective-
systems. medium theory is that based on variational theorems, the

In this case we shall have superconducting grainsith most well known being that derived by Hashin and
a\_, and normal grain$ with a u;, all of which are uni-  Shtrikma? and its later generalizations, e.g., to elastic
form within each grain. By virtue of a well-known vector composites. These theorems are rigorous and they provide
identity [see Eq(18) below], Eq. (1) for a granular model is  additional insights on variationally optimal approximation
then schemes when detailed statistical information on the micro-

structure is absent. A revival of interest in variational meth-

— 1 ods is seen in recent works on dynamical problems, as in
- G; f N [Ho(r) XA,(r)] dS porous-elastic  solifs and in strongly nonlinear
composites:1°
The appropriate mathematical tool for a variational treat-
+Ei f drB;(r)-Hi(r) @ ment of coupled fields with Lagrangian densities like Eq.

is no doubt that formulated via a canonical Hamiltonian
where the first integral, over the surface of each superconvariational principle for complementary boundsyhich in-
ducting grain is the London energy and the second integratidentally has interesting nonlinear generalizations. As far as
over the volume of each normal grain is the magnetic energywe know, its application to inhomogeneous superconductors
The complexity of this(random boundary value problem in a formulation involving generalized polarization fi€lds
Eq. (2), i.e., to find a solution foA(r) that will satisfy the  has not been obtained. Unfortunately, without the latter con-
boundary conditions orachgrain, highlights the usefulness cepts, these variational methdtiso not offer new physical
of our variational methods. Note also that the traditionalinsights as the optimum fieldd and here als@ are impos-
form Eq. (1) has also some mathematical conveniences, fosible to gues? Bounds obtained as such using naive trial
upon the standard variation with respectA¢r), we easily field functionsH andA are generally inferior to an effective-
obtain the well-known London equatiofEq. (3)] as the medium approximation. In this paper we shall report on the
Euler-Lagrange equation for the system, which is less trangderivation of two complementary variational theorems for
parent via Eq(2). the inhomogeneous London superconductor @g.which
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will (i) provide the foundations underlying earlier effective- _ A

medium approximationdand (ii) open a path to study simi- curl(u(r)curl A)=TJ, (10
lar coupled systems and their dynamics. We shall first state

these theorems, then provide the proofs for the supercowhere u=x 1. Our homogeneousinite superconducting
ductor Eq.(1) and later show their applications, which in reference body of volum& and surfaceS is defined by

appropriate limiting cases recover earlier restilts. ﬁoz,ugl and XL():)\[Ol. This body is now subjected to a
The magnetic inductiorB and field intensityH for the  prescribed surface magnetic vector potertig{S) [equiva-
superconductor Eq1), obey the London equatich, lently a superconducting curredg(S)] on the infinitesimal
5 inner boundary ofS. In the bulk of this sample Eq10) is
curl(\{(r)curl H)=—B. 3 obeyed together witdo= — (c/4m)Af3Ao, in which o and

We first consider a homogeneofisite superconducting ref- ALo are constants. We now replace this reference system by
erence body withu, and\,, and of volumeV and surface  OUr mhomogeneous supercpnductor ED, without in any _
S. This body is subjected to a prescribed surface potentia@y changing the prescribed surface vector potential
¥o(S) such thatH(S)= —grad #o(S) on the infinitesimal ~ Ao(S) o ,
outer boundary of. In the bulk of this sample Eq3) is - Theorem 2With this reference system for whigl, and
obeyed together wittB,= uoH,, in which wo and\ , are Ao @arehomogeneoubut in whichAy(r) is not necessarily
constants. We now replace this reference system by our ifiniform****the functional:
homogeneous superconductor Ed), without in any way o
changing the prescribed surface potential ~ m

Thgeo?em 15Vith this reference psystem for whigla, and U =mo(curl Ag,curl Ao) = < ®m’ﬁ_ﬁo>
Ao arehomogeneoubut in whichHgy(r) is not necessarily

uniform*#*3the functional +2(Op,curl Ag)+(@p,curl A')+N2o(Ag.Ag)
2 (I)s ®s
U(DZ)\LO<CUT| Hg,curl H0>— D, 5 - ®sv’ﬁ +2(0g,A0)+(0Og,A"), (11
A~ Ao No— A
+2(®g,curl Hp)+(®g,curl H' Y+ uo(Hg,Hp) is stationary for arbitrary variations of the supercurrent po-

larization field ®s and magnetic polarization fiel®,,, re-
_<(I)m’,u¢;n,;> + 2Dy Ho)+( P HY) (4 spectively, subject to the subsidiary conditions:
— Mo

. . _ o curl O+ 7o curl curl A'=—0s— N2 A, (12
is stationary for arbitrary variations of the supercurrent po- -
larization field®, and magnetic polarization field,,, re- ~and the boundary conditions:

spectively, subject to the subsidiary conditions:

A[(S)=0=curl, A'(S)=0 , (13
curl ®;+A\2, curl curl H'=—®,—uoH' , (5  if
and the boundary conditiongor the parallel and normal O,=(u—mo)curl A (14
components
and
H[(S)=0=curl, H'(§=0 , (6) G)S:(XE_XEO)A . (15)
if Here A’ is the supercurrent perturbation field due to the in-
s o homogeneities, i.eA=A,+ A’ and the stationary functional
D= (N[~ N{pcurl H (7)  is the physical energy functional of E() which can also be
rewritten as
and
Ue=(m curl A,curl AY+(\2A,A) . (16)

D, =(u—po)H . 8 N . .
_ _ o _ In addition these stationary energy functionals E&s.and
HereH’ is the magnetic perturbation field due to the |nho-(16) are absolute maximum, i.eUe=U, (convexity if
mogeneities, i.elH=Hy+H' and we have used a compact N>\ o and u>puo or absolute minimum, i.e.@,iuq,

scalar product notgtidﬁ in which (f,g)_=(1/87r)fd_r (f-g). (concavity if A <A o and u<puo, the situation being re-
Moreover the stationary functional is the physical energy d for th I tary f ' tionals. andU
functional of Eq.(1) which we can rewrite as versed for the complementary functionaly andUe, ac-

cordingly. Thus UgsUgs=Ug=<Ugq (for A >N and
Ugp={(\Zcurl H,curl H)+(uH,H). (9 HM>pmo) and UgsUgp=Ug=<Uq (for N <\, and
u<pug), are the two-side¢rather tighg bounds in this paper.
The complementary theorem that we can similarly prove reEquality of these bounds occur if the polarization fields
quires an alternative viewpoint. Here the magnetic vectodP’'s and@’s are exact.
potential A and superconducting curredtfor the supercon- Before discussing the proofs we emphasize that these
ductor Eq.(1), obey the equivalent London equatton theorems are nontrivial extensions of the classic Hashin-
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Shtrikman theorem%.This is becauséi) here the reference 1 1
fields Hy and A, are not homogeneous in genefalji) the sU%= —< 5‘Ds,5‘1’s[;2_—)\2—+ FD
appropriate choice of conjugate fields, cdrl and curlA’ is L 7o Lo
not obvious, complicating the tagki) for finding the appro-

priate subsidiary conditions Eq&) and(12). The latter are —< 5‘1%,5‘1%[
dictated by the canonical Hamilton equations of mofibm

order thatboth polarization fields®,,, ®; and their respec- 1

tive conjugatedH’,curl H' can be subjected to independent +M_<5Cn ,6Cp) (22
arbitrary variations. In turn this poses certain difficulties in 0

extending the classic argume?nhat must be resolved. The thereby proving the absolute minimum property, i.e
proofs proceed in three step&@) proof of stationarity(b) SUZ>0 if N\{ <\ o and u< pu,.

1
+_
M= Mo Mo

1
> +—5-(8Cs,5Cs)
)\LO

proof of convexity or concavity, and finalfg) proof that the (c) No new steps are required for the proof of the physical
extremums are indeed the physical energy functionals. Wenergy apart from the judicious use of the vector identity Eq.
show these steps for Theorem 1. (18) and the London equation fét,. The algebra, however,

(a) This step is by far the easiest. The first-order variations |engthy and will not be reproduced here. We can easily
6Uq , upon use of Eqy7) and(8) is easily shown to be  arrive at the result E(9). The proof for Theorem 2 is simi-
lar and shall not be repeated here.
SUg=(®s,curl SH")—{(5®,curl H')+{®,,5H") We shall now consider the application of these theorems
, in the light of earlier result3.The key to applications is the
—(6®p,H') . 17 choice of the reference systenud,\ o), which represents
our lack of detailed statistical information on the inhomoge-
neities. Considerable care must be exercised in defining the
effective material parametetg and u by the use of the
energy expressions Eq®) or (16). This is in contrast to the
simple expression:

The last two terms, which are similar banbt equivalent to
Ref. 6, must here be reduced using the variation on(&y.
i.e., curl 8®g+ N2, curl curl 6H'=—6®,—uoH' and a
well-known vector identity:

(h,curl A)=(A,curl h)+j n-(hxA)ds, (19 — 8mUq 23

where the surface terms vanish by virtue of Eg). Then [see Eq(3.1) in Ref. 6], since our total energy Eq9) con-

tains two parts which in generalre coupled As such any
(P, 0H")=—po(H',6H") —(Dg,curl 6H") thermodynamic measurement will in general involeth
/ / A_ and . A full discussion of this point will have to be
— N2 (curl H',curl 8H') . 19 L M ' :

Lol ) (19 deferred elsewher¥. It suffices here to note that physically
onemustchoose the reference parametaraccordance with
the experimental situatiorin the following we shall restrict
, S ) ourselves to a binary granular superconductor/normal com-
(6@, H')=—uo(6H',H") = (6P, curl H') posite model Eq(2), in the two limiting case§ — T, and

—Afo<curl SH' curl H'), (20) _T—>0, respectively, where the simple expression @§) or
its analog for superconductors

Similarly the last term in Eq(17) can also be shown to be

so that stationaritypU4=0 is thus proved. —
(b) The proof of convexity is also straightforw&rdsing T2 8mUg (24)
the method outlined above, and we arrive at

is valid.

) oD o, . .
oUG=—{ 6Bg,——— ) —( 6®,, We shall consider for this system, a normal component
M ~Mo M= Mo (w=pg), while the other component is superconducting but
— ol 6H’,5H’)—)\fo<curl SH' curl SH'), nonmagnetic =1\ =\ ¢). The statistics of this compos-

ite is assumed to be random, characterized solely by the vol-
(21 ume fractions of the respective materials, which in analogy

with Ref. 6 defines an equivalent concentric shell model of
hence proving an absolute maximum condition, i.e.,two components_ Here we shall Choo&QO*)OO' (i.e_,
6U3 <0 if A\ >\ o and u>uo. The proof of concavity is T—T,), so that the field is assumed to penetrate the sample
however not as straightforward. First the equation:entirely;thenH, is now uniformwhile ®, can be taken to be
div ®,,=— uediv H' as satisfied trivially by Eq(5), leads  zero. The latter follows because we can nosplace the
to the variation:6®,,= — ugéH’ + 6C,, whereC, is a di-  superconducting component by an equivalent magnetic com-
vergence free function. Equatigfd) itself can be suitably ponent whose permeability js;. This equivalent permeabil-
manipulated into the forn®,+ A2 curl H'=C,, whereC, ity can be easily determined, in this case by equating the
is however not divergence free. Upon variation and substitumagnetic dipole polarizability of a superconducting sphere
tions of SH’ and curl §H’ thus obtained into Eq21), then  with a normal sphere of permeabilifys, as in Ref. 5:
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1-Z (al\s) Theorem 2 is then applicable in the same way as the above
Ms=Hol =™ | » (25 example to yield an effectiva using the definition Eg.
1+ 5Z (alky) (24):1°
wherea is the radius of the sphere a#g(a/\,.) is related ~ o~y o~ 7\55— )\Eo ~ 1
to the Langevin functioﬁ.Thepn the e%qu(ivalé_rﬁ)t ansétfor )‘zg)‘EOH‘EO”s m _)\Eovgi ' (28)
our two-phase system, one with permeabifity and another Ls = =7L0
with permeabilityu, is in this case A more sophisticated ansatz than Eg6) will have to be
investigated in a future study. Here we shall point out an
o — 2 T.6.(r)+ z T.0.(r) . (26 interesting reformulation of the above problem by noting that
m | formal 9 j o supérconducting ST Eq. (9) can also be written ad , = (B,H) with the nonlinear
€ phase € phase

magnetic induction:
where now the magnetic dipole polarizatiohg and T are
uniform® The evaluation of the integrals in E@) using the
above ansatz now follows essentially the same route as Ref.

17. After minimizing with respect tdy andT and using the . .
definition Eq. (23), we obtain the Hashin-Shtrikman-type thereby showing that our coupled system can be viewed as a
bound: ' nonlinear inhomogeneous compositehis relation offers a

potentially usefullinear perspective for nonlinear systems,
Mg— Mo 1 by sub§uming the nor_1|inearitie§ of the_ permeability into the
m) ~kovsyZu(@/\s) . (27 properties of a canonically conjugate field. We note that for
g 0 computations, Eq94) and (11) furnish ideal Monte Carlo-

where vy and v are the volume fractions of normal and type algorithms hitherto uninvestigated, especially for super-
superconductor grains, respectively. The effective-mediunconductors.
approximationu = uy Nnow recovers the result Eql4g of In conclusion, we have derived complementary theorems
Refs. 5 and 18. A shortcoming of the latter theory is nowfor an inhomogeneous superconductor where the coupling
clearly seen here, since at percolatigg= x«—0, which is  due to inhomogeneities il and u are treated self-
incompatible with the assumption ,—o and a uniform consistently. Further insight is offered by the choice of the
reference fielH,. reference system to the experimental situation, as well as an

For the complementary case, we shall choose for the refalternate perspective for nonlinear composites. Generaliza-
erence system a superconductor with— andA, is now tions to include weak links can also be achieved and will
uniform, appropriate to the same sample but ndar0. introduce new coupled fields with additional parameters.

B=uH (29

A2 (curl H)2
TR
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