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Renormalization effects in a dilute Bose gas
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The low-density expansion for a homogeneous interacting Bose gas at zero temperature can be formulated
as an expansion in powers ofAra3, wherer is the number density anda is theS-wave scattering length.
Logarithms ofra3 appear in the coefficients of the expansion. We show that these logarithms are determined
by the renormalization properties of the effective field theory that describes the scattering of atoms at zero
density. The leading logarithm is determined by the renormalization of the pointlike 3→3 scattering ampli-
tude.@S0163-1829~97!00414-1#
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The successful achievement of Bose-Einstein conde
tion of atomic gases in magnetic traps1 has created an explo
sion of interest in Bose gases of atoms. While a qualita
description of the condensation can be obtained using m
field methods,2 a more quantitative treatment requires inclu
ing corrections from fluctuations around the mean field. T
relative magnitude of these corrections grows with the nu
ber density of the atoms. They will therefore become m
important as higher trap densities are achieved.

In order to develop a deeper understanding of the fluc
tions, it is worthwhile to go back to the simpler problem of
homogeneous gas of interacting bosons at zero tempera
This problem was studied intensively in the 1950s.3,4 A
simple review was given by Yang in 1960.5 The properties of
the system can be calculated as an expansion in powe
Ara3, wherer is the number density of atoms anda is their
S-wave scattering length. For example, the expansion for
energy density has the form

E5
2pr2a

m H 11
128

15Ap
Ara3

1F83 ~4p23A3!ln~ra3!1kGra31•••J , ~1!

where we have set\51. The coefficient ofAra3 was first
obtained by Lee and Yang for a hard sphere gas.3 The coef-
ficient of ra3ln(ra3) was calculated by Wu, by Hugenholt
and Pines, and by Sawada.4 The correctionkra3 is the first
term in the expansion that is sensitive to atomic parame
other than the scattering length. We have recently succee
in calculating the constantk.6

In this paper, we use a minimal subtraction renormali
tion scheme to deduce the general structure of the l
density expansion. We show that logarithms ofra3 are re-
lated to the renormalization of the effective field theory th
describes the scattering of atoms in the vacuum. In part
lar, the ln(ra3) term in Eq.~1! is related to the renormaliza
tion of the 3→3 scattering amplitude. We reproduce t
leading logarithms in previous calculations using sim
renormalization group methods. Our approach can also
used to determine the logarithms that appear at higher or
in the low-density expansion.
550163-1829/97/55~13!/8090~4!/$10.00
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Our starting point is an effective field theory7 that de-
scribes atoms with momenta much lower than their inve
size, which is on the order of the Bohr radiusa0. Since the
range of the interaction potential between two or more ato
is also on the order ofa0, the interactions appear pointlike o
the scale of the de Broglie wavelengths of the atoms. T
atoms can therefore be described by a field theory wit
Hamiltonian density that is a local function of the field:

H52
1

2m
c†¹2c1

1

4
g~c†c!21

1

36
g3~c†c!31•••. ~2!

For simplicity, we have assumed that the atoms have spi
so that they can be represented by a single complex fi
c. The (c†c)2 term represents 2→2 scattering through an
S-wave interaction with scattering lengtha given by
g58pa/m, while the term (c†c)3 represents 3→3 scatter-
ing. By adding additional terms that are higher order in t
derivatives or in the number of fields, one can descr
n→n scattering of atoms in the vacuum with whatever a
curacy is desired. In principle, the coefficients of these ter
can be calculated from then-body potentials that describ
interatomic interactions. In the absence of such calculatio
they can be taken as phenomenological parameters.

By treating the interaction terms as perturbations, we
calculate the amplitudes for scattering of atoms with m
menta on the order ofp as an expansion in powers ofpa0.
This expansion is complicated by the presence of ultravio
divergences. For example, the amplitude for the scatterin
two atoms with momentap1 andp2, including the first per-
turbative correction, is

gF12
mg

2 E d3k

~2p!3
1

k22~p11p2!•k1p1•p22 i eG . ~3!

The integral, which is ultraviolet divergent, can be regul
ized by imposing a cutoffuku,L. The linear divergence can
then be cancelled by adding a counterterm proportiona
mg2L(c†c)2 to the effective Hamiltonian~2!. The resulting
expression for the scattering amplitude is rather complica
as it includes terms that are suppressed by powers ofp1 /L
and p2 /L. A simple analytic result is obtained only in th
limit L→`.
8090 © 1997 The American Physical Society
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55 8091BRIEF REPORTS
A power ultraviolet divergence, such as the linear div
gence in Eq.~3!, indicates extreme sensitivity to shor
distance atomic physics that is not accurately described
the effective Hamiltonian~2!. A simple momentum cutoff is
not an accurate model for the way atomic physics cuts off
momentum integrals. There is an alternative cutoff pro
dure, called ‘‘minimal subtraction,’’ which is no more acc
rate a model for the cutoff, but provides an equally accur
description of the long-distance physics and has the virtu
simplicity. In minimal subtraction, linear, quadratic, an
other power ultraviolet divergences are removed as par
the regularization scheme by subtracting the appropr
power ofk from the momentum space integrand. In the ca
of the amplitude~3!, 1/k2 is subtracted from the integrand
The justification for this procedure is that the terms that
subtracted are dominated by short distances and can be
celed by counterterms in the Hamiltonian. In minimal su
traction, logarithmic ultraviolet divergences are treated d
ferently from power divergences. This is reasonable, beca
logarithmic ultraviolet divergences represent real physical
fects, while power ultraviolet divergences are simply a
facts of the regularization procedure. This difference is
flected in the fact that the coefficient of a power divergen
Lp depends on the regularization prescription, while the
efficient of ln(L) does not. The reason for this is that th
logarithm ofL must match the logarithm of some physic
momentum scale, and therefore its coefficient has a
physical meaning. We regularize logarithmic ultraviolet d
vergences by imposing a cutoffuku,L on loop integrals.
After using renormalization to remove divergences from s
diagrams, we isolate the divergent terms proportional
ln(L) and then take the limitL→` in the remainder. The
cutoff L is called the ‘‘renormalization scale.’’ With mini
mal subtraction, all power divergences and those parts
logarithmic divergences that arise from momenta grea
than the renormalization scaleL are absorbed into the cou
pling constants in the effective Hamiltonian.

The advantage of minimal subtraction is that it makes
much easier to disentangle the effects of different mom
tum scales in multiloop diagrams. With a conventional m
mentum cutoff, a diagram can be an extremely complica
function of the cutoffL, the external momenta, and the m
mentum scales that can be formed from the parameters in
Hamiltonian. With minimal subtraction, the possible depe
dence of a diagram on the cutoff is greatly simplified. T
dependence can only be polynomial in ln(L), with the loga-
rithms arising from logarithmically ultraviolet-divergent su
diagrams. This makes it much easier to analyze the di
gences in a multiloop diagram. The relative simplicity
minimal subtraction is illustrated by the fact that it giv
a simple expression for the scattering amplitude~3!
that is independent of the renormalization scaleL:
g@11 imgup12p2u/(16p)#. The renormalized parameterg is
independent ofL and satisfies a trivial renormalizatio
group equationL(d/dL)g50. With a conventional momen
tum cutoff L, the amplitude~3! is a complicated function
of p1, p2, and L. For L@up1u,up2u, it reduces to
g(L)@12 imgup12p2u/(8p)#, where g(L) is a renormal-
ized coupling constant that satisfiesL(d/dL)g(L)
52mg2L/(4p2). The running ofg(L) is generated by a
power ultraviolet divergence and therefore has no real ph
-
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cal significance. The scale-invariant parameterg defined by
minimal subtraction provides an equally accurate descrip
of the long-distance physics.

In the vacuum, the simplest quantity in which logarithm
ultraviolet divergences appear is the 3→3 scattering ampli-
tude. There is a tree-level contribution from the (c†c)3 term
in the effective Hamiltonian, but there are also addition
contributions that involve successive 2→2 scatterings. They
include the two-loop diagrams shown in Fig. 1, which i
volve four successive 2→2 scatterings. These diagrams a
logarithmically ultraviolet divergent. Removing the linear u
traviolet divergence from a subdiagram of the first diagr
in Fig. 1 by a subtraction in the integrand and then impos
a cutoffL, we find that the logarithmically divergent term
23(4p23A3)m3g4ln(L)/(32p3).

The renormalization scaleL represents an arbitrary sep
ration between short-distance effects, which are taken
account through the parameters in the effective Hamilton
~2!, and long-distance effects, which are calculated using
effective theory. Physical quantities, such as the 3→3 scat-
tering amplitude, should therefore be completely indep
dent of L. The explicitL dependence from the two-loo
diagrams must therefore be canceled by implicitL depen-
dence from the coefficientg3 in the tree-level contribution.
This statement can be expressed as a ‘‘renormalization g
equation’’

L
d

dL
g3~L!5

3

32p3 ~4p23A3!m3g4. ~4!

It tells us that the parameterg3 is really a ‘‘running coupling
constant’’ that increases logarithmically as the moment
scale is increased. The renormalization scaleL can be inter-
preted as the inverse of the spacial resolution. As this re
lution is decreased, we resolve part of the ‘‘pointlike
3→3 scattering amplitude into the successive 2→2 scatter-
ings represented by the diagrams in Fig. 1. The contributi
from the two diagrams have opposite signs and the net ef
is that the coupling constantg3 decreases asL decreases.

FIG. 1. Two-loop diagrams that give logarithmically ultraviol
divergent contributions to the 3→3 scattering of atoms.
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If the running coupling constantg3 is determined at the
scale 1/a0 of atomic structure, it can be calculated at a low
momentum scaleL by solving the renormalization grou
equation~4!:

g3~L!5g3~1/a0!2
3

32p3 ~4p23A3!m3g4lnS 1

La0
D . ~5!

Regardless of the sign ofg3(1/a0), g3(L) eventually turns
negative for sufficiently smallL. In describing the scattering
of atoms with momenta on the order ofp, it is appropriate to
choose the renormalization scaleL to be of orderp. The
coefficients in the perturbation expansion can include lo
rithms of the form ln(L/p), which are generated by logarith
mically divergent subdiagrams. By choosingL to be of order
p, such large logarithms are removed from the coefficie
and absorbed into the parameters of the effective Ha
tonian.

We now consider the energy densityE of the Bose gas
with number densityr. In order for the system to have
homogeneous ground state that is stable, or at least m
stable, the scattering lengtha must be positive. Neglecting
for the moment the effects of fluctuations, the fieldc devel-
ops a vacuum expectation valueAr. The energy density a
tree level is

E05 1
4gr21 1

36g3~L!r31•••. ~6!

Settingg58pa/m, wherea is theS-wave scattering length
the first term above reproduces the leading term in Eq.~1!.
The one-loop contribution is the sum of the zero-point en
gies of the Bogoliubov modes, with power ultraviolet dive
gences removed by subtractions in the integrand:

E15
1

2E d3k

~2p!3Fe~k!2
k2

2m S 11
gmr

k2
2
g2m2r2

2k4 D G , ~7!

where e(k)5kAk212mgr/(2m). This integral reproduces
the first correction term in Eq.~1!.

The correction of orderra3 in Eq. ~1! requires the calcu-
lation of two-loop diagrams. However, the term proportion
to ra3ln(ra3) can be obtained without any further calcul
tion. The reason is that this term is related to the renorm
ization of the amplitude for 3→3 scattering in the vacuum
The two-loop diagrams for the energy density contain lo
rithmic ultraviolet divergences. From the expression for
Bogoliubov energy, we see that the momentum scale ass
ated with the quasiparticles modes isA2mgr. The logarith-
mic ultraviolet divergences from the two-loop diagrams w
therefore be proportional to ln(L/A2mgr). Large logarithms
such as this in the coefficients in the perturbation expans
can be avoided by choosing the renormalization scaleL to
be on the order ofA2mgr. With this choice of the renormal
ization scale, all such logarithms are absorbed into the
rameters in the effective Hamiltonian. Substitutin
L5A16par in Eq. ~6! and using the expression forg3(L)
in Eq. ~5!, we reproduce the term containing the logarithm
Eq. ~1!. We have determined the constantk under the loga-
rithm by calculating the two-loop Feynman diagrams for t
energy density explicitly. The details of the calculation w
be reported elsewhere.6 As noted previously,4 thera3 term is
the first term in the low-density expansion~1! that is sensi-
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tive to atomic physics parameters other than the scatte
length a. The only additional parameter that enters at t
order is the pointlike 3→3 scattering amplitudeg3.

The renormalization group together with minimal subtra
tion can also be used to determine the leading logarithm
the low-density expansions for other quantities. Correctio
to the sound velocity have been calculated by Beliaev,8 in-
cluding theAra3 term and thera3ln(ra3) term. The loga-
rithm can be obtained by calculating the logarithmic ultr
violet divergences in the two-loop corrections to t
propagator. Alternatively, it can be obtained trivially usin
the methods described above. Including the correction fr
the (c†c)3 term in Eq. ~2!, the sound velocity at the tre
level isv25gr/(2m)1g3(L)r2/3. SettingL5A16par and
using the expression~5! for g3(L), we reproduce the
ra3ln(ra3) correction calculated by Beliaev.

These methods can also be used to determine the co
cients of the logarithms that appear at higher orders in
low-density expansion for the energy density. For examp
there is a (ra3)3/2ln(ra3) correction to the energy densit
which arises from logarithmically divergent two-loop su
diagrams in three-loop diagrams. This terms can be de
mined easily by taking into account the (c†c)3 term in
the Bogoliubov energy:

e~k!5kAk212mgr12mg3~L!r2/3 /~2m!.

Inserting this into the one-loop expression~7! for the energy
density, expanding to first order ing3, and using the expres
sion ~5! for g3(A16par), we obtain the (ra3)3/2ln(ra3) cor-
rection.

Thus far we have only considered logarithms in the lo
density expansion that are related to the renormalization
the 3→3 scattering amplitude. At higher orders in the low
density expansion, there are also logarithms that are rel
to the renormalization of other terms in the effective L
grangian, such as the termg4(c

†c)4 which describes 4→4
scattering through a pointlike interaction. The 4→4 scatter-
ing amplitude includes logarithmically ultraviolet diverge
corrections from four-loop diagrams that involve seven s
cessive 2→2 scatterings and also from two-loop diagram
that involve three 2→2 scatterings and a 3→3 scattering.
The explicitL dependence from these loop diagrams m
be canceled by the implicitL dependence from the pointlik
4→4 scattering amplitudeg4(L). As a consequence, th
renormalization group equation analogous to Eq.~4! for
(Ld/dL)g4 includes terms on the right side that are prop
tional tom6g7 andm3g3g3. The solution forg4(L) analo-
gous to Eq. ~5! includes a term proportional to
m6g7ln2(La0). ChoosingL5A16par to avoid large loga-
rithms from loop diagrams, we find that the termg4r

4 in the
mean-field expression for the energy density gives rise t
correction to Eq.~1! that is proportional to (ra3)2ln2(ra3).

A renormalization group analysis of the dilute Bose gas
nonzero temperature was recently carried out in Ref. 9.
authors derived renormalization group equations for
chemical potentialm and for the coupling constantV052g
using a conventional momentum cutoff. If they had us
minimal subtraction, their analysis would not have be
modified dramatically. Their equations fordm/dl would re-
main unchanged. In their equations fordV0 /dl, there would
be an additional termV0

2mL/(2p2) on the right side which
cancels the leading power ofL in the equation atT50. The
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55 8093BRIEF REPORTS
renormalization group trajectories for these two renormali
tion schemes would differ significantly only near the initi
cutoff, where both calculations would be dominated by c
off artifacts. They would be essentially identical near t
critical point for Bose condensation. The logarithmic evo
tion of the coupling constantg3 was not seen in the analys
of Ref. 9, because they considered renormalization eff
from one-loop diagrams only.

In this paper, we have shown how the structure of
low-density expansion for a Bose gas is determined by
renormalization properties of the effective Hamiltonian th
describes the scattering of atoms at zero density. The l
density expansion for the energy density has the gen
form

E5
r2a

m (
n50

`

(
l50

l n

Cnl~ra3!n/2lnl~ra3!. ~8!
-

-

-

ts

e
e
t
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The maximum power of the logarithm has been determin
to bel n50,0,1,1,2 forn50,1,2,3,4, respectively. The dimen
sionless coefficientsCnl are polynomials in the generalize
coupling constants of higher-order terms in the effect
Hamiltonian~2!, with only a finite number of these couplin
constants appearing at any given order inAra3. The cou-
pling constantg3 first appears at orderra

3. Additional cou-
pling constants enter at order (ra3)3/2. The general structure
in Eq. ~8! follows automatically from the renormalizatio
group together with the minimal subtraction renormalizati
scheme. This powerful method should also be useful for a
lyzing the corrections from fluctuations around the me
field for atomic gases in magnetic traps.
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