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Renormalization effects in a dilute Bose gas
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The low-density expansion for a homogeneous interacting Bose gas at zero temperature can be formulated
as an expansion in powers gpa’, wherep is the number density ana is the S'wave scattering length.
Logarithms ofpa® appear in the coefficients of the expansion. We show that these logarithms are determined
by the renormalization properties of the effective field theory that describes the scattering of atoms at zero
density. The leading logarithm is determined by the renormalization of the pointlik8 3cattering ampli-
tude.[S0163-18207)00414-1

The successful achievement of Bose-Einstein condensa- Our starting point is an effective field thedrihat de-
tion of atomic gases in magnetic tragss created an explo- scribes atoms with momenta much lower than their inverse
sion of interest in Bose gases of atoms. While a qualitativesize, which is on the order of the Bohr radiag Since the
description of the condensation can be obtained using meamange of the interaction potential between two or more atoms
field method$, a more quantitative treatment requires includ-is also on the order af,, the interactions appear pointlike on
ing corrections from fluctuations around the mean field. Theahe scale of the de Broglie wavelengths of the atoms. The
relative magnitude of these corrections grows with the numatoms can therefore be described by a field theory with a
ber density of the atoms. They will therefore become moreHamiltonian density that is a local function of the field:
important as higher trap densities are achieved.

In order to develop a deeper understanding of the fluctua- 1 1 1
tions, it is worthwhile to go back to the simpler problem of a H= — ﬁwvzw Zg(z//Tw)ZJr %gs(ww)% (2
homogeneous gas of interacting bosons at zero temperature.

This problem was studied intensively in the 1050sA For simplicity, we have assumed that the atoms have spin 0
simple review was given by Yang in 198@.he properties of pleity, : pin Y,
P that they can be represented by a single complex field

the system can be calculated as an expansion in powers § The (' )? term represents 22 scattering through an
Vpa’, wherep IS the number density of atoms aads.thew S-wave interaction with scattering length given by
S-wave scattering length. For example, the expansion for th8=8wa/m while the term ¢/1)? represents 33 scatter-

energy density has the form ing. By adding additional terms that are higher order in the
5 derivatives or in the number of fields, one can describe
o 27p af 14 128 Jod® n—n scattering of atoms in the vacuum with whatever ac-
l 15{7 P curacy is desired. In principle, the coefficients of these terms
can be calculated from the-body potentials that describe
s interatomic interactions. In the absence of such calculations,
pa’+---t, (1)  they can be taken as phenomenological parameters.

By treating the interaction terms as perturbations, we can
calculate the amplitudes for scattering of atoms with mo-
menta on the order g as an expansion in powers pfy.
This expansion is complicated by the presence of ultraviolet

] 3 3
gﬂgrg"?;g aal:ép S ) SV\; ﬁa%gzilfgﬂretgimj, ;33}/ i?rhg:;}?siltz divergences. For example, the amplitude for the scattering of
' y : p two atoms with momenta,; andp,, including the first per-

term in the expansion that is sensitive to atomic parameter, . A
other than the scattering length. We have recently succeedé%rbauve correction, is

,_Mg J d3k 1 3

2 ®

in calculating the constant.®
2m)° k*—(p1+py)-kK+pi-py—ie)

+ §(4w— 33)In(pad) + «

where we have set=1. The coefficient ofypa® was first
obtained by Lee and Yang for a hard sphere %jake coef-

In this paper, we use a minimal subtraction renormaliza-
tion scheme to deduce the general structure of the low-
density expansion. We show that logarithmspaf® are re-
lated to the renormalization of the effective field theory thatThe integral, which is ultraviolet divergent, can be regular-
describes the scattering of atoms in the vacuum. In particuzed by imposing a cutoffk| <A. The linear divergence can
lar, the Inpa®) term in Eq.(1) is related to the renormaliza- then be cancelled by adding a counterterm proportional to
tion of the 3—3 scattering amplitude. We reproduce the mg?A (¢ )? to the effective Hamiltoniar2). The resulting
leading logarithms in previous calculations using simpleexpression for the scattering amplitude is rather complicated,
renormalization group methods. Our approach can also bas it includes terms that are suppressed by powers oA
used to determine the logarithms that appear at higher ordeemnd p,/A. A simple analytic result is obtained only in the
in the low-density expansion. limit A—o0.
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A power ultraviolet divergence, such as the linear diver-
gence in Eq.(3), indicates extreme sensitivity to short-
distance atomic physics that is not accurately described by
the effective Hamiltoniarf2). A simple momentum cutoff is
not an accurate model for the way atomic physics cuts off the
momentum integrals. There is an alternative cutoff proce-
dure, called “minimal subtraction,” which is no more accu-
rate a model for the cutoff, but provides an equally accurate
description of the long-distance physics and has the virtue of
simplicity. In minimal subtraction, linear, quadratic, and
other power ultraviolet divergences are removed as part of
the regularization scheme by subtracting the appropriate
power ofk from the momentum space integrand. In the case
of the amplitude(3), 1k? is subtracted from the integrand.

The justification for this procedure is that the terms that are

subtracted are dominated by short distances and can be can-

celed by counterterms in the Hamiltonian. In minimal sub-

traction, logarithmic ultraviolet divergences are treated dif-

ferently from power divergences. This is reasonable, because

logarithmic ultraviolet divergences represent real physical ef- FIG. 1. Two-loop diagrams that give logarithmically ultraviolet
fects, while power ultraviolet divergences are simply arti-divergent contributions to the-33 scattering of atoms.

facts of the regularization procedure. This difference is re-

flected in the fact that the coefficient of a power divergencecal significance. The scale-invariant parametetefined by
AP depends on the regularization prescription, while the cominimal subtraction provides an equally accurate description
efficient of In(\) does not. The reason for this is that the Of the long-distance physics.

logarithm of A must match the logarithm of some physical  In the vacuum, the simplest quantity in which logarithmic
momentum scale, and therefore its coefficient has a redlltraviolet divergences appear is the-3 scattering ampli-
physical meaning. We regularize logarithmic ultraviolet di- tude. There is a tree-level contribution from the'(4)* term
vergences by imposing a CUt0|ﬂk|<A on |00p integra|s_ in the effective Hamiltonian, but there are also additional
After using renormalization to remove divergences from subcontributions that involve successive-2 scatterings. They
diagrams, we isolate the divergent terms proportional tdnclude the two-loop diagrams shown in Fig. 1, which in-
In(A) and then take the limit\—c in the remainder. The Volve four successive-22 scatterings. These diagrams are
cutoff A is called the “renormalization scale.” With mini- logarithmically ultraviolet divergent. Removing the linear ul-
mal subtraction, all power divergences and those parts dfaviolet divergence from a subdiagram of the first diagram
logarithmic divergences that arise from momenta greateln Fig. 1 by a subtraction in the integrand and then imposing
than the renormalization scale are absorbed into the cou- @ cutoffA, we find that the logarithmically divergent term is
pling constants in the effective Hamiltonian. —3(4m—3\3)m’g*In(A)/(327°).

The advantage of minimal subtraction is that it makes it The renormalization scal& represents an arbitrary sepa-
much easier to disentangle the effects of different momenration between short-distance effects, which are taken into
tum scales in multiloop diagrams. With a conventional mo-account through the parameters in the effective Hamiltonian
mentum cutoff, a diagram can be an extremely complicated2), and long-distance effects, which are calculated using the
function of the cutoffA, the external momenta, and the mo- effective theory. Physical quantities, such as the 3 scat-
mentum scales that can be formed from the parameters in tHering amplitude, should therefore be completely indepen-
Hamiltonian. With minimal subtraction, the possible depen-dent of A. The explicit A dependence from the two-loop
dence of a diagram on the cutoff is greatly simplified. Thediagrams must therefore be canceled by implititdepen-
dependence can only be polynomial inA{ with the loga- dence from the coefficierd; in the tree-level contribution.
rithms arising from logarithmically ultraviolet-divergent sub- This statement can be expressed as a “renormalization group
diagrams. This makes it much easier to analyze the diverequation”
gences in a multiloop diagram. The relative simplicity of
minimal subtraction is illustrated by the fact that it gives d 3 3.4
a simple expression for the scattering amplitud® Agr9s(A)= W(A'W_?’\/g)m g (4)
that is independent of the renormalization scale
g[1+img|p;—p,|/(167)]. The renormalized parametgiis It tells us that the parametegpy, is really a “running coupling
independent ofA and satisfies a trivial renormalization constant” that increases logarithmically as the momentum
group equatiom\ (d/dA)g=0. With a conventional momen- scale is increased. The renormalization scalean be inter-
tum cutoff A, the amplitude(3) is a complicated function preted as the inverse of the spacial resolution. As this reso-
of p;, pa, and A. For A>|p,|,|p,|, it reduces to Ilution is decreased, we resolve part of the “pointlike”
g(A)[1—img|p1—p,|/(8w)], whereg(A) is a renormal- 3— 3 scattering amplitude into the successive 2 scatter-
ized coupling constant that satisfies\(d/dA)g(A) ings represented by the diagrams in Fig. 1. The contributions
=—mg’A/(47?). The running ofg(A) is generated by a from the two diagrams have opposite signs and the net effect
power ultraviolet divergence and therefore has no real physiis that the coupling constag decreases a& decreases.
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If the running coupling constarg; is determined at the tive to atomic physics parameters other than the scattering
scale 14, of atomic structure, it can be calculated at a lowerlength a. The only additional parameter that enters at this
momentum scale\ by solving the renormalization group order is the pointlike 3-3 scattering amplitudgs.
equation(4): The renormalization group together with minimal subtrac-

tion can also be used to determine the leading logarithms in
3 1 the low-density expansions for other quantities. Corrections
g3(A)=gs3(1/ag) — m(4ﬂ—3\/§)m394|n(ﬁ)- (5)  to the sound velocity have been calculated by Belfaav,
0 cluding the \pa® term and thepa®in(pa®) term. The loga-
Regardless of the sign af3(1/ap), 93(A) eventually turns  rithm can be obtained by calculating the logarithmic ultra-
negative for sufficiently smalk. In describing the scattering violet divergences in the two-loop corrections to the
of atoms with momenta on the order pfit is appropriate to  propagator. Alternatively, it can be obtained trivially using
choose the renormalization scaleto be of orderp. The the methods described above. Including the correction from
coefficients in the perturbation expansion can include logathe (#'#)® term in Eq.(2), the sound velocity at the tree
rithms of the form In(\/p), which are generated by logarith- level isv?=gp/(2m)+gz(A)p?/3. SettingA = \/167ap and
mically divergent subdiagrams. By choosingo be of order ~ using the expressiort5) for gs(A), we reproduce the

p, such large logarithms are removed from the coefficientg@’In(pa’) correction calculated by Beliaev. _
and absorbed into the parameters of the effective Hamil- These methods can also be used to determine the coeffi-

tonian. cients of _the Iogarit_hms that appear at hig_her orders in the
We now consider the energy densifyof the Bose gas low-density expansion for the energy density. For example,

H 3)3/2 3 ; P
with number densityp. In order for the system to have a there is a pa’)™In(pa’) correction to the energy density

homogeneous ground state that is stable, or at least metg-h":h arises from logarithmically divergent two-loop sub-

stable, the scattering length must be positive. Neglectin lagrams in three-loop diagrams. This terms can be deter-
' g 'eng b - V€9 9 mined easily by taking into account thes(y)® term in
for the moment the effects of fluctuations, the figidlevel- ; ;
; ) the Bogoliubov energy:
ops a vacuum expectation valy®. The energy density at
tree level is e(k)=kVk®+2mgp+2mgs(A)p?/3 /(2m).

_ 1, 2, 1 3 Inserting this into the one-loop expressiah for the ener
£0=40p"+ 5 Ga(A)p7H - . © density,gexpanding to first ordper gg and using the exprgeys-
Settingg=8ma/m, wherea is the S-wave scattering length, sion (5) for gs(\/16map), we obtain the ga®)*4n(pa®) cor-

the first term above reproduces the leading term in(Ey.  rection.

The one-loop contribution is the sum of the zero-point ener- Thus far we have only considered logarithms in the low-
gies of the Bogoliubov modes, with power ultraviolet diver- density expansion that are related to the renormalization of

gences removed by subtractions in the integrand: the 3— 3 scattering amplitude. At higher orders in the low-
density expansion, there are also logarithms that are related

k? gmp g?m?p? to the renormalization of other terms in the effective La-
e(k)— %( I+ =z W” (7)  grangian, such as the terga(¢'#)* which describes 4:4
scattering through a pointlike interaction. The-4 scatter-
where (k) =kk?+2mgp/(2m). This integral reproduces ing amplitude includes logarithmically ultraviolet divergent
the first correction term in Eq1). corrections from four-loop diagrams that involve seven suc-
The correction of ordepa® in Eq. (1) requires the calcu- cessive 2-2 scatterings and also from two-loop diagrams
lation of two-loop diagrams. However, the term proportionalthat involve three 2-2 scatterings and a-33 scattering.
to pa’in(pa®) can be obtained without any further calcula- The explicit A dependence from these loop diagrams must
tion. The reason is that this term is related to the renormalbe canceled by the implicit dependence from the pointlike
ization of the amplitude for 33 scattering in the vacuum. 4—4 scattering amplitude,(A). As a consequence, the
The two-loop diagrams for the energy density contain logarenormalization group equation analogous to E4). for
rithmic ultraviolet divergences. From the expression for the(Ad/dA)g, includes terms on the right side that are propor-
Bogoliubov energy, we see that the momentum scale assodional to m®g” and m3gg;. The solution forg,(A) analo-
ated with the quasiparticles modes\i&8mgp. The logarith- gous to Eq. (5 includes a term proportional to
mic ultraviolet divergences from the two-loop diagrams will még’In?(Aa,). ChoosingA = \/16mrap to avoid large loga-
therefore be proportional to IN(y2mgp). Large logarithms  rithms from loop diagrams, we find that the tegap* in the
such as this in the coefficients in the perturbation expansiomean-field expression for the energy density gives rise to a
can be avoided by choosing the renormalization sdal®  correction to Eq(1) that is proportional to ga®)?In?(pa).
be on the order of/2mgp. With this choice of the renormal- A renormalization group analysis of the dilute Bose gas at
ization scale, all such logarithms are absorbed into the panonzero temperature was recently carried out in Ref. 9. The
rameters in the effective Hamiltonian. Substituting authors derived renormalization group equations for the
A =+/16map in Eq. (6) and using the expression fgg(A) chemical potentiaj. and for the coupling constaM,=2g
in Eq. (5), we reproduce the term containing the logarithm inusing a conventional momentum cutoff. If they had used
Eg. (1). We have determined the constantinder the loga- minimal subtraction, their analysis would not have been
rithm by calculating the two-loop Feynman diagrams for themodified dramatically. Their equations fdu/dl would re-
energy density explicitly. The details of the calculation will main unchanged. In their equations Y, /dl, there would
be reported elsewhefeAs noted previously thepa® termis  be an additional terfv3mA/(272) on the right side which
the first term in the low-density expansiéh) that is sensi- cancels the leading power df in the equation aT=0. The

1 d%
&=3 (2m)3
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renormalization group trajectories for these two renormalizaThe maximum power of the logarithm has been determined
tion schemes would differ significantly only near the initial to bel ,=0,0,1,1,2 fom=0,1,2,3,4, respectively. The dimen-
cutoff, where both calculations would be dominated by cut-sionless coefficient€,,, are polynomials in the generalized
off artifacts. They would be essentially identical near thecoupling constants of higher-order terms in the effective
critical point for Bose condensation. The logarithmic evolu-Hamiltonian(2), with only a finite number of these coupling
tion of the coupling constarg; was not seen in the analysis -onstants appearing at any given order\ipa. The cou-

of Ref. 9, becal_Jse they considered renormalization effectﬁnng constants first appears at ordgra®. Additional cou-
from one-loop diagrams only. éaling constants enter at ordepd®)*2 The general structure

In th|s_ paper, we have shown how _the struc_ture of th in Eq. (8) follows automatically from the renormalization
low-density expansion for a Bose gas is determined by the . o ) N
renormalization properties of the effective Hamiltonian thatJ'ouP together with the minimal subtraction renormalization

describes the scattering of atoms at zero density. The IOv;_\(cheme. This powerful method should also be useful for ana-

density expansion for the energy density has the gener zing the corrections from fluctuations around the mean
ield for atomic gases in magnetic traps.
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