*T***² relaxation due to two-level field fluctuations**

J. Witteveen

Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

(Received 8 August 1996)

The NMR relaxation rates T_1 and T_2 are usually assumed to be proportional to the spectral density of the field fluctuations at some frequency ω_p . While this is true for T_1 (with ω_p the Larmor frequency), this study of T_2 relaxation induced by two-level fluctuations of the *z* component of the magnetic field shows that T_2 cannot be described by taking the spectral density function at any one frequency. $[**SO163-1829(97)04613-4**]$

The NMR spin-phase memory time T_2 is often used as a probe for low-frequency magnetic field oscillations. For example, it allows the study of the mobility of vortices in superconductors. $1-5$ However, relating the spin-phase memory relaxation time to physical parameters is not trivial: We show that even in the simplest case, the two-level fluctuation of the *z* component of the field, room for improvement of current understanding is available. It is generally assumed that T_2^{-1} probes the fluctuating field spectral density $f(\omega)$ at some frequency ω_p , so that $T_2^{-1} \propto \gamma_n^2 f(\omega_p)$. This probing frequency ω_p is often approximated by 0, although it has been argued¹ that $\omega_p = T_{\text{2res}}^{-1}$ gives better results, with T_{2res} the relaxation time in the absence of these fluctuating fields. While this spectral density approach works for T_1 (with ω_p equal to the Larmor frequency), this article shows that for T_2 , no such simplification can be made.

For the analysis, we take an infinite number of spins, oriented in the *xy* plane (the situation after a $\pi/2$ pulse and during a $\pi/2$ - π pulse T_2 measurement). All spins "feel" an individual magnetic field b_z jumping between $\pm b_z$ with a correlation time $\tau \left[\langle b_z(0) b_z(t) \rangle = b_z^2(0) \exp(-t/\tau) \right]$. Spinlattice and spin-spin interactions are neglected. The time derivative of the phase in the presence of the field is $\Omega = \pm \gamma_n b_z$. The number of spins per phase unit with a given phase ϕ at time *t* is written as $\Phi(\phi, t)$. At $t=0$, we prepare the sample with $\overline{\Phi}(\phi,0) = \delta(\phi)$ (the situation after prepare the sample with $\Phi(\phi, 0) = \delta(\phi)$ (the situation after
the $\pi/2$ pulse). Obviously, $\overline{\Phi} = \overline{\Phi}_+ + \overline{\Phi}_-$, with $\overline{\Phi}_\pm$ the density of spins that ''feel'' a positive resp. negative field. The differential equations that govern all are

$$
\frac{d\overline{\Phi}_{\pm}(\phi,t)}{dt} = \mp \Omega \frac{d}{d\phi} \overline{\Phi}_{\pm}(\phi,t) + \tau^{-1} [\overline{\Phi}_{\mp}(\phi,t) - \overline{\Phi}_{\pm}(\phi,t)].
$$
\n(1)

Using $\overline{\Phi}_{+}(\phi,t) = \overline{\Phi}_{-}(-\phi,t)$, and substituting $\Phi_{\pm}(\phi,t)$ $\mathbf{v}_{\pm}(\varphi, t) = \mathbf{v}_{\pm}(-\varphi, t)$, and substituting $\mathbf{v}_{\pm}(\varphi, t) = e^{t/\tau} \overline{\Phi}_{\pm}(\varphi, t)$, this simplifies to the uncoupled differential equations

$$
\frac{d\Phi_{\pm}(\phi,t)}{dt} = \mp \Omega \frac{d}{d\phi} \Phi_{\pm}(\phi,t) + \tau^{-1} \Phi_{\pm}(-\phi,t). \quad (2)
$$

With the definitions $x = (t\Omega - \phi)/\tau\Omega$ and *y* $=\sqrt{x(t\Omega+\phi)/\tau\Omega}$ it can easily be seen that for all⁶ $|\phi| \leq \Omega t$ (or all real *y*)

$$
4\tau\Omega\Phi_{\pm}(\pm\phi,t) = 2\tau\Omega\delta(\phi-\Omega t) + I_0(y) + xy^{-1}I_1(y),
$$
\n(3)

with

$$
I_0(y) = \sum_{n=0}^{\infty} \frac{y^{2n}}{(n!2^n)^2}
$$

and

$$
I_1(y) = \frac{y}{2} \sum_{n=0}^{\infty} \frac{y^{2n}}{(n!2^n)^2(n+1)}
$$

the zeroth- and first-order modified Bessel functions, is a solution to Eq. (2) ; see also Fig. 1. It may be noted that, had the initial distribution been $\Phi'(\phi,0) = \delta(\phi - \phi_0)$, it evolves just like Eq. (3), only with the $2\delta+I_1$ term shifted by ϕ_0 to the left and the I_0 term shifted by the same amount to the right. This is useful in calculating the time evolution of a given $\Phi_0(\phi,t)$ (as was done in the numerical analysis later in this article).

Next the echo intensity decay after a $\pi/2$ - $t/2$ - π - $t/2$ pulse sequence will be evaluated, in the limits $\tau\Omega \ll \sqrt{2}$ and $\tau\Omega \gg \sqrt{2}$. In the first limit $\tau\Omega \ll \sqrt{2}$, all real decay takes place when $t/\tau \geq 1$: The signal amplitude decreases from the initial *M*(0) to $\left[1-\alpha(\tau\Omega)^2\right]M(0)$ at $t=\tau$ (with α of order 1), and

FIG. 1. Evolution of the phase density $\overline{\Phi}_{+}(\phi,t)$ of spins that ''feel'' a positive field at the time of measurement. The initial δ function at $t=0$ can be seen to move with angular frequency Ω to the right $(\Omega = \gamma_n b_z = 1 \text{ s}^{-1}$ for all curves). At long times, the distribution becomes Gaussian [the line indicated with "Gaussian" is Eq. (5) with $t=5$ s]. For all curves, $\tau=1$ s.

0163-1829/97/55(13)/8083(3)/\$10.00 55 8083 © 1997 The American Physical Society

FIG. 2. Relaxation curves for various values of $\tau\Omega$ $(\Omega = 1.0s^{-1}$ for all curves). The oscillation of the $\tau\Omega = 3.8$ line is not due to noise.

all measurable decay takes place when $t/\tau \ge 1$. On the other hand, in the limit of $\tau\Omega \gg 1$, one can simply observe the intensity of the δ peak that contains the spins whose field has not changed, and thus falls off in time as $e^{-t/\tau}$.

The total magnetization at time *t* can be evaluated using

$$
M_x(t) = e^{-t/\tau} \int_{\phi = -\infty}^{\phi = +\infty} d\phi \cos \phi [\Phi_+(\phi, t) + \Phi_-(\phi, t)]. \tag{4}
$$

When $t/\tau \gg 1$ (the limit where all decay happens when $\tau\Omega \ll \sqrt{2}$, the Bessel functions can be approximated by $I_n(y) = (2\pi y)^{-1/2}e^y$, and, as $\Phi(\phi, t)$ is multiplied by $e^{-t/\tau}$, only values of $y \approx t/\tau$ or $|\phi| \ll t\Omega$ contribute in Eq. (4). Thus, we can approximate $y = t/\tau - \frac{1}{2}\phi^2/\tau t \Omega^2$, and $xy^{-1} = 1$, and the resulting phase distribution becomes

$$
\overline{\Phi}_{\pm}(\phi,t) = \frac{1}{2\Omega\sqrt{2\pi t\tau}}e^{(-\phi^2/\tau t\Omega^2)/2}.
$$
 (5)

As this phase distribution is symmetric in ϕ , the π pulse at time $t/2$ can be neglected, giving an echo (and free induction decay, in the case of no additional static line broadening) magnetization intensity of

$$
M_x(t) = e^{-\tau t \Omega^2/2} = e^{-\tau (\gamma b_z)^2 t/2}.
$$
 (6)

Thus, $T_2^{-1} = \frac{1}{2}\tau(\gamma b_z)^2$ for $\tau \Omega \le 1$.

In the other limit $\tau\Omega \gg \sqrt{2}$, we only need to consider the evolution of the δ peak [as soon as a field hops, the phase of the corresponding spin moves so fast away from 0 that $\cos \phi$ averages to 0 in Eq. (4)], and Eqs. (3) and (4) simplify to

$$
\overline{\Phi}_{\pm}(\phi,t) = \frac{1}{2}\delta(\phi)e^{-t/\tau},\tag{7}
$$

$$
M_x(t) = e^{-t/\tau}.\tag{8}
$$

The δ peak is at zero as t is the time of the echo. Equation (8) gives $T_2 = \tau$ when $\tau \Omega \gg \sqrt{2}$.

To address the region where $\tau\Omega \approx \sqrt{2}$, Eq. (3) was evaluated numerically. A π pulse was simulated at time $t/2$ by inverting the ϕ axis, and to evaluate the total magnetization at echo time *t* the resulting distribution was allowed to evolve again in time [also Eq. (2) was simulated to confirm the correctness of Eq. (3) . This was done for various values

FIG. 3. T_2^{-1} vs τ . The simulation is for $\Omega = 1$ (upper curve) and Ω =0.5 (lower curve). The lines marked $\Omega = \frac{1}{2}$ and $\Omega = 1$ are the function $\tau\Omega^2/[2+(\tau\Omega)^2]$ with the above-mentioned Ω 's.

of Ω , τ , and *t*, and from these experiments, T_2 was obtained by taking the time at which the intensity dropped to 1/*e* of the maximum. Three of the obtained *M* vs *t* curves are shown in Fig. 2. It can clearly be seen that the relaxation for $\tau\Omega = \sqrt{2}$ is Gaussian-like.

The T_2^{-1} versus τ curves are shown in Fig. 3. The above predicted limiting cases can be seen to be very accurate, and the (empirical) formula

$$
T_2^{-1} = \tau \Omega^2 / [2 + (\tau \Omega)^2]
$$
 (9)

describes the data very well, with some deviation in the middle region. If we measure T_2 as a function of temperature (and thus vary τ), the condition for the fastest relaxation rate becomes $\tau \gamma_n b_z = \sqrt{2}$, with the optimum rate $T_2^{-1} =$ $\frac{1}{4}\sqrt{2}\gamma_n b_z$.

In conclusion, we have shown that in the limit of $\tau \gamma_n b_z$ very large or very small, the spin-spin relaxation caused by a fluctuation of the *z* component of the magnetic field is equal to $T_2^{-1} = \tau(\gamma_n b_z)^2 / [2 + (\tau \gamma_n b_z)^2]$. This contrasts with the spectral density approach $[T_2^{-1} \propto f(\omega_p)]$, with ω_p some given probing frequency, usually approximated by 0, sometimes taken to be just a low frequency. For example, in the two-level fluctuation case studied here, the spectral density is given by $f(\omega_p) \propto b_z^2 \tau / [1 + (\tau \omega_p)^2]$, suggesting a relaxation rate $T_2^{-1} = (\gamma_n b_z)^2 \tau / [1 + (\tau \omega_p)^2]$. This gives, whatever value of ω_p we take, incorrect T_2 values (a) at "optimum" τ , as we show it to be proportional to b_z , whereas the spectral density approach predicts $T_2 \propto b_z^2$, and (b) in the long- τ limit, as T_2 is shown to be independent of b_z in this limit, but the spectral density again predicts a proportionality to b_z^2 (this is because the ω_p in the spectral density approach is constant, and does not depend on b_z). Note that the exact rate in the small- τ limit differs by a factor of 2 from that derived by Slichter,⁷ as the τ he uses is twice the average time between hops.

These results allow an estimation of b_z and τ from experimental T_2 curves.

I would like to thank Hans B. Brom and Evgenii N. Nikolaev for fruitful discussions.

- 1Y.-Q. Song, S. Tripp, W. P. Halperin, I. Tonge, and T. J. Marks, Phys. Rev. B 50, 16 570 (1994).
- 2B. J. Suh, D. R. Torgeson, and F. Borsa, Phys. Rev. Lett. **71**, 3011 (1993).
- 3V. D. Ashkenazy, G. Jung, and B. Ya. Sharpiro, Phys. Rev. B **53**, 2686 (1996).
- 4W. G. Clark, F. Lefloch, and W. H. Wong, Phys. Rev. B **52**, 7488

 $(1995).$

- 5E. N. Nikolaev, J. Witteveen, M. de Kok, and H. B. Brom, Phys. Rev. B (to be published).
- ⁶At $|\phi| = \Omega t$ (or $y=0$), the δ function should be used, and the
- $xy^{-1}I_1(y)$ term ignored.
⁷C. P. Slichter, *Principles of Magnetic Resonance* (Springer-Verlag, Berlin, 1990), p. 213.