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Indirect RKKY interaction in any dimensionality
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Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188350, Russia

~Received 27 September 1996!

We present an analytical method which enables one to find the exact spatial dependence of the indirect
RKKY interaction between the localized moments via the conduction electrons for the arbitrary dimensionality
n. The corresponding momentum dependence of the Lindhard function is exactly found for anyn as well.
Demonstrating the capability of the method we find the RKKY interaction in a system of metallic layers
weakly hybridized to each other. Along with usual 2kF in-plane oscillations, the RKKY interaction has the
sign-reversal character in a direction perpendicular to layers, thus favoring the antiferromagnetic type of layers’
stacking.@S0163-1829~97!05406-4#
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The Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction
was found to play an important role in various problem
involving the interaction of the localized moments in a me
via polarization of conduction electrons. In this paper
provide the exact derivation of the spatial and moment
dependence of RKKY interaction for arbitrary dimension
ity. In three dimensions the spatial dependence of this in
action was obtained in Ref. 1 about 40 years ago. It to
some time to obtain the corresponding exact expressio
two dimensions.2 The primary goal of this paper is thus t
present a promising analytical method for evaluation of
corresponding expressions.

The obtained expressions being the analytical function
dimensionality might prove to be useful for theoretical a
proaches dealing with the fractional and infinitely large
mensions. Closer to practical needs, we apply our method
an analysis of multilayer metal structure. We demonstr
here the sign-reversal character of the interaction in a di
tion perpendicular to layers. The period of these oscillatio
coincides with a double interlayer spacing thus favoring
antiferromagnetic ordering of layers. It is interesting to no
that the above alternation of sign of the interaction coex
with the usual in-plane 2kF oscillations.

We begin with conventional form of the exchange inte
action between the localized momentJ and electron spin
densitys(r ):

V~r !52AJ~R!s~r !d~R2r !. ~1!

HereA is the exchange coupling constant. The RKKY inte
action between two localized moments via the conduct
electrons may then be written in the following form:

HRKKY52
1

2
A2J1J2x~R12!, ~2!

where theR-dependent part of the interaction coincides w
the Fourier transform of the nonuniform static susceptibi
x(q) ~Lindhard function! and is given by

x~R!52T(
l
G~ iv l ,R!2. ~3!
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Here Matsubara frequencyv l5pT(2l11) and the elec-
tronic Green’s function is

G~ iv,R!5E dnk

~2p!n
exp~ ikR!

iv2«k
. ~4!

We focus our attention below at the case of low tempe
tures and use the limiting relationT( l→*2`

` dv/(2p).
The quadratic electron dispersion inn dimensions is ex-

plicitly assumed:

«k5k2/2m2m ~5!

with the Fermi energym5kF
2/2m. First we use the following

representation of the Green’s function:

G~ iv,R!5e2 iaE
0

`

dtE dnk

~2p!n
expF ikR1teiaS z2

k2

2mD G ,
~6!

where we introduced the valuez5m1 iv and
a5sgn(v)p/2. The Gaussian integration overk gives

G~ iv,R!5S m2p D n/2e2 ia~11n/2!E
0

` dt

tn/2
expS tzeia2

r

2t
e2 iaD

~7!

with r5mR2. We notice that the last integral can be e
pressed via the modified Bessel~Mcdonald! function,3

namely,

G~ iv,R!522S m2p D n11SA22zr

r D n

Kn~A22zr!. ~8!

We definedn5n/221 here. In this equation the branch o
rootA22zr should be chosen from the condition of its pos
tive real part. In particular, this latter condition means th
the argument of Mcdonald functionKn(A22zr) has a dis-
continuity atv50:

Kn~A22zr!5H p i

2
enp i /2Hn

~1!~kFR!, v→10,

2
p i

2
e2np i /2Hn

~2!~kFR!, v→20,
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whereHn
(1,2)(x) are Hankel functions.3

Next we observe that one can change the varia
v→Z5A22zr in Eq. ~3! and integrate over complexZ
using the exact form for the Green’s function~8!. Note that
the limits of integration byZ are (16 i )`. Without the above
discontinuity atZ56 iA2mr one could shift the integration
contour toZ→1` and obtain zero for Eq.~3! in view of the
propertyKn(Z)}e

2Z. Due to the discontinuity, the functio
x has a finite value. After some calculations we get4

x~R!5
mp

12n S kF
2pRD nR2Fn~kFR!, ~9a!

Fn~x!5Jn/221~x!Yn/221~x!1Jn/2~x!Yn/2~x!. ~9b!

This expression is the main finding of this section. Let
take a closer look at this result. First we note that Eq.~9! is
the continuous function of both distanceR and the dimen-
sionalityn.

At large distanceskFR@1 the leading terms of the
asymptotes of Bessel functions appearing in Eq.~9! cancel
each other. The next terms produce the followi
expression:5

x~R!.
m

kF
2 S kF

2pRD nsin~2kFR1pn/2!. ~10!

In particular cases of physical interest the general exp
sion ~9! immediately provides the exact form of the RKK
interaction in three and two dimensions.1,2 For n53 one has

x~R!52
mkF
8p3R3 S cos2kFR2

sin2kFR

2kFR
D , ~11!

and forn52

x~R!52
mkF

2

4p
@J0~kFR!Y0~kFR!1J1~kFR!Y1~kFR!#.

~12!

The one-dimensional case can be obtained either by
continuation4 of Bessel functions in Eq.~9! upon the index
n or by the direct evaluation of the integral with a Green
function ~8! at n51. The result is6

x~R!5
m

p
si~2kFR! ~n51! ~13!

with the sine integral

si~x!5E
x

`dt

t
sint.

It is useful to define here the density of states at
Fermi level N(EF)5*dnk/(2p)nd(«k)52p21ImG( iv→
1 i0,R→0). From Eq.~8! one immediately finds

N~EF!5
m

2pG@n/2#
S kF24p D n/221

. ~14!

Now knowing the exact expression~9! for the RKKY inter-
action inR space one can find its correspondence inq space
as follows:
le

s

s-

he

e

x~q!5E dnReiqRx~R!

5
m

2~12n!
S kF

3

2pqD
nE

0

`

dxx12nJnS qkf xDFn~x!.

~15!

We see thatx(q) is reduced to the Mellin convolution o
Jn(x) andFn(x). A straightforward calculation then give
the answer expressed via the Gauss hypergeometric fun
2F1@a,b,c;z#:

x~q!5N~EF!fnS q

2kF
D , ~16a!

fn~x!5H x22

n
FF1,12 ;11

n

2
;
1

x2G , x>1,

FF1,12 n

2
;
3

2
;x2G , x<1.

~16b!

Again, the result is the continuous function both inq and
n. From the general properties of hypergeometric functi
one has fn(0)51, fn(x@1);1/(nx2), and fn(1)
51/(n21). At last, one can easily verify7 that the expres-
sions known previously1,2,6are reproduced in particular case
n51,2,3.

It is interesting to note that both exact~9! and asymptotic
~10! expressions forx(R) let one mimic the ‘‘switching on’’
the extra dimensionality of a metal by simple change of
index n. Thus at first sight one could tackle the case o
system of weakly hybridized metallic planes by ascribing
dimensionality 21e to it. Actually the situation is more
complicated as we discuss below.

Let us consider the~infinite! set of metallic layers, weakly
connected to each other. By this we assume the follow
dispersion:

«k5~kx
21ky

2!/2m2m2z coskz ~17!

with z!m and ukzu,p . The Fermi surface has a cylinde
like shape with maximum and minimum in-plane radii d
fined bykF

65A2m(m6z). We write kR5kiRi1kzl where
l is the integer number of layers. Below we retain the de
nitions ofr5mRi

2 andkF5A2mm for the simplicity of writ-
ing.

Using Eqs.~4! and ~7! we come to expression

G~R!52
m

2p
e2 ia lE

0

`dt

t
Jl~tz!expS tzeia2

r

2t
e2 iaD .

~18!

The latter integral can be evaluated~for large in-plane dis-
tances! by the steepest descent method. We note that w
A2zr.kFRi@1, the principal contribution to the integra
comes from the vicinity of the pointt05Ar/2z.kFRi/2m,
more rigorously, att5t0@11(kFRi)

21/2O(1)#. It follows
then that atkFRi&(m/z)2 one can replacet by t0 in an
argument of the Bessel function in Eq.~18!. As a result the
quasi-two-dimensional RKKY interaction is

x~R!5x2D~Ri!Jl
2~Ri /R0!~21! l , Ri&kFR0

2 , ~19!
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where kFR052m/z@1 and x2D(R) is given by Eq.~12!.
Analyzing this expression we first note the appearance of
length scaleR0 inversely proportional to the strength of hy
bridization of layers. SinceJl(x).(x/2)l / l ! for x,1, at
moderate in-plane distancesRi,R0 the interaction~19! rap-
idly decays as a function ofl .

More interesting however is the fact ofsign-reversal
character of interactionin a direction perpendicular to lay
ers. This modulation of interaction has a periodexactly co-
inciding with a double lattice parameter and should ob
ously lead to the preferential antiferromagnetic stacking
layers. This phenomenon is accompanied by the usualkF
oscillations of the in-plane termx2D(Ri).

We can further clarify this point by performing the Fo
rier transform with the result3

x~k!5E d2Rie
ikiRix2D~Ri!J0S 2Ri

R0
cos

kz
2 D

.E dw

2p
x2D~ki1k* !, ~20!

with k*5(2/R0)coskz/2!1. The last integration is over th
anglew of k* in the plane, i.e., the pointski1k* lie on the
circle of radiusk* and with center atki .

According to Eq.~2! a maximum ofx2D(ki) at somek0
corresponds to the possible in-plane magnetic ordering, c
acterized by this wave vector. We see from Eq.~20! that the
inclusion of weak interplane hopping leads to the position
a true maximum atkz5p, whenk*50. The other values o
kz cause the loss in the magnetic energy of order of the va
x(k0)k*

2 /kF
2 .

It is worth noting that the weak interplane hoppingz and
large effective in-plane Fermi momentumkF are obviously
realized in the high-Tc cuprates. It is known that the 2D
Fermi surface has a complicated form in these substanc8
d
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We believe however that the RKKY interaction in this ca
preserves the general form~19! and~20! with the anisotropic
in-plane form of interactionx2D(ki) andR0 defined by some
effective kF;1. It is also known that in the compound
RBa2Cu3O72d the subsystem of rare-earth ions undergoe
magnetic ordering transition at low temperatures;9 generally
the type of ordering depends on a particular ionR31. A
remarkable fact is however thatfor all substances the anti
ferromagnetic stacking of magneticR31 layers was reported
in accordance with our finding~19!.

Concluding this section, we wish to stress the followi
point. It was previously shown5,10 for the case of a compli-
cated Fermi surface~FS! that the period of oscillations~and
general power-law behavior! of the RKKY interaction is de-
termined by the calipering pairs of points on the FS. The
are the points where the direction of normal to the FS
~anti!parallel to the direction ofR. One can see that the ver
notion of calipering points implies the closeness of the Fe
surface at a given direction ofR. In contrast, the FS is ob
viously open in our case at thez direction and the oscilla-
tions exist, albeit the roughly exponential law of their deca

In conclusion, we found the exact form of the spatial d
pendence of the RKKY interaction for arbitrary dimensio
ality. Its counterpart in momentum space is also found. A
plying our method to the system of weakly hybridize
metallic layers, we demonstrate the existence of spatial
cillations of indirect RKKY exchange in the direction pe
pendicular to layers. The period of oscillations equals exa
double interlayer spacing, which indicates the preferen
antiferromagnetic ordering of layers.
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