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Indirect RKKY interaction in any dimensionality
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We present an analytical method which enables one to find the exact spatial dependence of the indirect
RKKY interaction between the localized moments via the conduction electrons for the arbitrary dimensionality
n. The corresponding momentum dependence of the Lindhard function is exactly found for anyvell.
Demonstrating the capability of the method we find the RKKY interaction in a system of metallic layers
weakly hybridized to each other. Along with usudt2in-plane oscillations, the RKKY interaction has the
sign-reversal character in a direction perpendicular to layers, thus favoring the antiferromagnetic type of layers’
stacking.[S0163-182€07)05406-4

The Ruderman-Kittel-Kasuya-YosidRKKY) interaction  Here Matsubara frequency,=«T(2l+1) and the elec-

was found to play an important role in various problemstronic Green’s function is
involving the interaction of the localized moments in a metal . ]
via polarization of conduction electrons. In this paper we Gliw.R)= d'k exp(ikR) @
provide the exact derivation of the spatial and momentum ’ 2m" iw—g
dependence of RKKY interaction for arbitrary dimensional-
ity. In three dimensions the spatial dependence of this inter- We focus our attention below at the case of low tempera-
action was obtained in Ref. 1 about 40 years ago. It tookures and use the limiting relatiohs|— [~ dw/(27).
some time to obtain the corresponding exact expression in The quadratic electron dispersion indimensions is ex-
two dimensiong. The primary goal of this paper is thus to plicitly assumed:
present a promising analytical method for evaluation of the )
corresponding expressions. ex=K2m—p ®)

. The pbtai_ned gxpressions being the analytical function ofvith the Fermi energy.= k§/2m. First we use the following
d|menS|onaI|ty.m|gh_t prove to pe useful fpr_theoretmal apP-representation of the Green’s function:
proaches dealing with the fractional and infinitely large di-

mensions. Closer to practical needs, we apply our method for (= d"k . _ k2
an analysis of multilayer metal structure. We demonstrateG(iw,R)=e '“fo de (2 e ikR+7el?| 2= 5|,
here the sign-reversal character of the interaction in a direc- )

tion perpendicular to layers. The period of these oscillations

coincides with a double interlayer spacing thus favoring thewhere we introduced the valuez=pu+iw and
antiferromagnetic ordering of layers. It is interesting to notea=sgn(w) /2. The Gaussian integration oviergives

that the above alternation of sign of the interaction coexists

n/2
with the usual in-plane 2- oscillations. : _(m 7ia(l+n/2)J'w dr ja_ P i«
We begin with conventional form of the exchange inter- G @R (277 € o 2% rzet-oe
action between the localized momehtand electron spin )
densitys(r):

with p=mR2. We notice that the last integral can be ex-
pressed via the modified BesséMcdonald function?

V(r)=—AJR)Sr)8(R—T). @ hamely,

HereA is the exchange coupling constant. The RKKY inter- m\ "t =275\
action between two localized moments via the conducting G(iw,R)=—2(Z> ( p) K, (V—2zp). (8

electrons may then be written in the following form:
We definedv=n/2—1 here. In this equation the branch of
) root v/ —2zp should be chosen from the condition of its posi-
Hrkky =~ §A J1d2x(Ry2), vy tive real part. In particular, this latter condition means that
the argument of Mcdonald functiod, (v —2zp) has a dis-
where theR-dependent part of the interaction coincides with continuity atw=0:
the Fourier transform of the nonuniform static susceptibility i
x(q) (Lindhard function and is given by %IeW”ZH(Vl)(kFR), w—+0,
K,(V—2zp)= i

> e MPHP(keR),  0——0,

x(R)= —TZ G(iw ,R)2 (3)
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whereH?(x) are Hankel functiong. .

Next we observe that one can change the variable X(q):f d"Re' Ry (R)
w—Z=+—2zp in Eqg. (3) and integrate over compleX 3
using the exact form for the Green’s functi@). Note that AL ke |" [~ 1-,+ 19
the limits of integration by are (1+i)o. Without the above “2(1—n) (ﬁ) fo dxx ‘]”(k_fx> Pn().
discontinuity atZ= *i+2up one could shift the integration
contour toZ— + o0 and obtain zero for Eq3) in view of the (15)
propertyK ,(Z)=e~%. Due to the discontinuity, the function We see thaty(q) is reduced to the Mellin convolution of

x has a finite value. After some calculations we’get J,(x) and ®,(x). A straightforward calculation then gives
the answer expressed via the Gauss hypergeometric function
(R):_mﬂ- Ke nRZq) (keR) (99) oFila,b,c;z]:
X710 27R nt e
_ q

()= Iz 100 Yz 100+ Iy X) Yoo ). (9D) X(q>—N(EF>¢n<sz>' (163
This expression is the main finding of this section. Let us 5 1 1
take a closer look at this result. First we note that €xy.is X_F{li_;lJr E; Sl x=1,
the continuous function of both distan&eand the dimen- n 2" 2'x
sionality n. bn(X)= 3 (160

At large distanceskcR>1 the leading terms of the F 1,l—§;§;X2 , xs1l.

asymptotes of Bessel functions appearing in &.cancel
each other. The next terms produce the followingAgain, the result is the continuous function bothgnand

expressior n. From the general properties of hypergeometric function,
o \n one has ¢,(0)=1, ¢,(x>1)~1/(nx?), and ¢,(1)
m F ; =1/(n—1). At last, one can easily verifythat the expres-
= — + . . - . .
X(R) E(ZTHQ) SIN(2KgR+mn/2) (10 sions known prewousi‘yz’Gare reproduced in particular cases
n=1,2,3.

In particular cases of physical interest the general expres- |t s interesting to note that both exa® and asymptotic
sion (9) |mmed|ate|y prOVideS the exact form of the RKKY (10) expressions fOR(R) let one mimic the “Switching on”
interaction in three and two dimensioh$Forn=3 one has  the extra dimensionality of a metal by simple change of the

mk Sin2ke-R index n. Thus at first _si_ght one co_uld tackle the case of a
Y(R)=— —5— ( coskrR— ——— |, (11)  System of weakly hybridized metallic planes by ascribing the
8m°R 2keR dimensionality 2+ e to it. Actually the situation is more
and forn=2 complicated as we discuss below.
Let us consider thé@nfinite) set of metallic layers, weakly

mkﬁ connected to each other. By this we assume the following
X(R)==7—[Jo(keR)Yo(keR) + J1(KeR) Y1 (keR) ]. dispersion:

(12) o= (KR+K2)2m—pu—{  cosk, (17)

The one-dimensional case can be obtained either by thgy, /<, and|k,| < . The Fermi surface has a cylinder-
continuatioft of Bessel functions in Eq9) upon the index __like shape with maximum and minimum in-plane radii de-
n or py the direct evaluation of_ the integral with a Green’s 4 bykZ = 2m(x = {). We write KR=k/R,+k,| where
function (8) atn=1. The result i$ | is the integer number of layers. Below we retain the defi-

m nitions ofp= ma‘z andkg= vy2mu for the simplicity of writ-
x(R)=—=si(2kgR) (n=1) (13 ing.
™ Using Egs.(4) and(7) we come to expression
with the sine integral
m dr ' P .
dt G(R)=——e 'a'f —Jl(Tg)exp( rzd*——e m).
si(x)= | ——sint 2m o7 27
x t (18)

The latter integral can be evaluatéfdr large in-plane dis-
etance$ by the steepest descent method. We note that when
2zp=kgR>1, the principal contribution to the integral
comes from the vicinity of the point,=\/p/2z=KgR}/2p,

K2 |-t more rigorously, atr= o[ 1+ (kgR)) ~*20(1)]. It follows
2771“—[n/2](ﬂ) (14)  then that atk,:R”s(,u/g)2 one can replace by 7 in an
argument of the Bessel function in Ed.8). As a result the
Now knowing the exact expressi@f) for the RKKY inter-  quasi-two-dimensional RKKY interaction is

action inR space one can find its correspondenceg space ) | )
as follows: X(R)=x2p(R)IF(R/Ro)(—1)', Ry=kegRp, (19

It is useful to define here the density of states at th
Fermi level N(Eg)=[d"k/(2m)"8(g, ) =— 7 IMG(iw—
+i0,R—0). From Eq.(8) one immediately finds

N(Eg)=
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where keRy=2u/>1 and y,p(R) is given by Eqg.(12).  We believe however that the RKKY interaction in this case
Analyzing this expression we first note the appearance of thpreserves the general forth9) and(20) with the anisotropic
length scaleR, inversely proportional to the strength of hy- in-plane form of interactiory,p(k|) andR, defined by some

bridization of layers. Sincel,(x)=(x/2)"/I! for x<1, at
moderate in-plane distancB$<R, the interaction(19) rap-
idly decays as a function df

More interesting however is the fact afign-reversal
character of interactiorin a direction perpendicular to lay-
ers. This modulation of interaction has a perixhctly co-
inciding with a double lattice parameter and should obvi-
ously lead to the preferential antiferromagnetic stacking o
layers. This phenomenon is accompanied by the uskal 2
oscillations of the in-plane term,p(R)).

We can further clarify this point by performing the Fou-
rier transform with the resuit

A Rk
X(k):J dZRe'k'RXzD(R)Jo(Z—”COS—Z)
Ro %2

de
ZJ ﬁ)(zo(k\ﬁk*), (20
with k, =(2/Rgp)cok/2<1. The last integration is over the
angleg of k, in the plane, i.e., the pointg+k, lie on the
circle of radiusk, and with center ak; .
According to Eq.(2) a maximum ofy,p(kj) at somekg

corresponds to the possible in-plane magnetic ordering, chal

acterized by this wave vector. We see from E2f) that the
inclusion of weak interplane hopping leads to the position o
a true maximum ak,= 7, whenk, =0. The other values of

k, cause the loss in the magnetic energy of order of the valu

X(ko)K2/KE .

It is worth noting that the weak interplane hoppitigind
large effective in-plane Fermi momentuka are obviously
realized in the highF. cuprates. It is known that the 2D

effective ke~1. It is also known that in the compounds
RBa,Cu;0-_ s the subsystem of rare-earth ions undergoes a
magnetic ordering transition at low temperatutegnerally

the type of ordering depends on a particular A", A
remarkable fact is however thédr all substances the anti-
ferromagnetic stacking of magnef®" layers was reported

g’n accordance with our findinglL9).

Concluding this section, we wish to stress the following
point. It was previously showrt® for the case of a compli-
cated Fermi surfacé&9) that the period of oscillation&@nd
general power-law behavipof the RKKY interaction is de-
termined by the calipering pairs of points on the FS. These
are the points where the direction of normal to the FS is
(antparallel to the direction oR. One can see that the very
notion of calipering points implies the closeness of the Fermi
surface at a given direction &. In contrast, the FS is ob-
viously open in our case at thedirection and the oscilla-
tions exist, albeit the roughly exponential law of their decay.

In conclusion, we found the exact form of the spatial de-
pendence of the RKKY interaction for arbitrary dimension-
ality. Its counterpart in momentum space is also found. Ap-
p_lying our method to the system of weakly hybridized
metallic layers, we demonstrate the existence of spatial os-

Icillations of indirect RKKY exchange in the direction per-

pendicular to layers. The period of oscillations equals exactly
gouble interlayer spacing, which indicates the preferential
antiferromagnetic ordering of layers.
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