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Collective resonances in carbon nanotubes
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Department of Theoretical Physics, Technical University of Budapest, Budafoki ut 8, P.O. Box 112,

Budapest H-1111, Hungary
~Received 18 October 1996!

A theory is presented to study the plasma oscillations of the fulls1p electron system of carbon nanotubes.
Cylindrical charge density was supposed to represent the electron distribution within the shells of the tubule
and an integral equation is derived for the perturbation caused by an external electric field. From the solution
of this equation the dynamical dipole polarizability is calculated in the energy range above 10 eV. For
single-shell nanotubes a double-peaked spectrum resulted resembling the slow tangential and the fast radial
dipole active mode of a classical spherical shell of finite width. The peak positions are around 17 and 22 eV for
the smallest tubule radius and with increasing radius the low-energy peak shifts to a lower energy, the
high-energy peak to a higher energy. For multishell nanotubes a strong shell-shell interaction is found, as a
result of which the double-peaked structure of the innermost shell will be the dominant part in the imaginary
part of the polarizability. With increasing shell number the low-energy peak shifts to a higher energy, the
high-energy peak to lower energy; this is just the opposite tendency found in the radius dependence. For a large
enough shell number the two peaks coincide at about 19 eV, and this value is independent of the radius of the
innermost shell. Although the numbers mentioned may vary within 3–4 eV depending on the parameters of our
models, the tendencies are in overall agreement with the existing electron energy loss spectroscopy measure-
ments and with other theoretical predictions.@S0163-1829~97!03308-0#
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I. INTRODUCTION

There is considerable research activity to clarify t
physical properties of the recently discovered multishell,
axial carbon nanotubes,1–3 and the single-shell carbo
tubules4 as well. Tight-binding calculations5–9 and density
functional theory10 for isolated single-shell nanotubes an
for microbundles of these tubules11 confirm the early results
that graphitic nanotubes exhibit metallic, semimetallic,
semiconducting electronic properties depending on their
dii and helicity. The interlayer interaction is found to be lo
in tight-binding calculations for bilayer and multilaye
nanotubes.12,13The experimental verification of these resu
is an outstanding task, mainly because of the difficulties
controlling the fine structure, like helicity, radius, number
layers, etc., of the nanotubes.

Parallel to the effort of finding the one-particle spectru
there are investigations to understand the collective exc
tions of this new form of carbon clusters. Experimentally t
electron energy loss spectroscopy~EELS! is a direct way to
measure the spectrum of plasma oscillations. To our kno
edge until now only measurements on multishell nanutu
are available. Kuzuoet al.14 foundp plasmons at 5.2 and 6.
eV, s1p plasmons between 22.0 and 24.5 eV. They ha
used a relatively large beam spot, so they probably meas
more nanotubes simultaneously. Ajayanet al.15 have seen a
broad plasmon peak at about 27 eV in bulk graphite, an
systematic shift of this peak with a decreasing number
nanotube layers down to 18 eV for the smallest numbe
shells. This was interpreted as thes1p plasmon. Thep
plasmon peak appeared only in the case of a larger s
number. The position of thes1p peak depends also on th
diameter of the innermost tubule. This means that there
two parameters, the diameter of the tube, and the numbe
550163-1829/97/55~12!/7993~11!/$10.00
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layers, which affect the energy loss spectrum. Although
beam diameter was also larger than the tube diameters
loss was measured on individual multishell nanotubes. Bu
et al.16 have used a narrow electron beam diameter~nano-
probe! as small as about 2 nm which is smaller than the tu
diameter and found a broad plasmon peak at around 15
but only for thin tubes consisting of less than 12 layers. T
was interpreted as a surface plasmon. For 17 and 20 la
they found a superposition of the 15 eV and the 24 eV pea
and for 29 layers they found only the 24 eV peak, which w
measured also in a graphite slab containing 50 sheets l
parallel to the incident electron beam. This 24 eV peak w
interpreted as a bulks1p plasmon of graphite. The mea
sured EELS spectra also showed thep plasmon around 6 eV

In the theoretical calculations for collective excitatio
the electron gas is supposed to be confined to the t
dimensional surface of one or more cylindrical surfaces.
and Shung17 evaluated the dielectric function within the ran
dom phase approximation~RPA!, the zeros of this function
defining the plasmon modes. They have found uncoup
acoustic and optical plasmon branches for zero or nonz
angular momentum changes, respectively. For double la
nanotubes the coupling between the two layers lead to
portant modifications. In their recent paper Lin and Shun18

and Lin et al.19 replaced the two-dimensional confineme
by a tight-binding model but only for thep electrons and the
e(v) dielectric function was calculated within the gradie
approximation,20 and within the RPA.19 The EELS defined
as Im@21/e(v)# shows the dominantp plasmon peak at
2g0.6 eV, whereg0 is the resonance integral in the tigh
binding scheme. Satoet al.21 also calculated, within the
RPA, the dielectric function of an electron gas confined
the surface of a hollow cylinder and found steplike behav
and a broad peak in the imaginary part ofe(v), as well as a
7993 © 1997 The American Physical Society
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7994 55B. VASVÁRI
dimensional crossover from two-dimensional to on
dimensional character with decreasing tubule radius. Lo
and Bose22 used the two-dimensional model with the RP
for single-shell tubules and a classical dynamical model
multishell tubules to calculate the dielectric function and
dispersion relations for the collective oscillations and fou
one acoustic and several optical branches. Huaxianget al.23

started from the tight-binding model for the one-electr
spectrum and calculated the imaginary part,e2(v), of the
dielectric function for polarizations parallel to the tubu
axis. For single-shell tubules thee2(v), which is propor-
tional to the photoabsorption coefficient, is very similar
the metallic and semiconducting geometries and show
broad peak around 15 eV, but is rather different below
eV for the two types of microtubules. This may be the co
sequence of the fact that for small energies the dielec
function is influenced mainly by the single-particle excit
tions, and they are different for the metallic and the semic
ducting tubules. Davidset al.24 considered thep electrons
on the surface of a single cylindrical shell as an interact
two-dimensional Fermi gas, and calculated the quasipar
energy spectrum analytically within the Hartree-Fock a
proximation, and the density-density response function in
RPA in order to get the dielectric function, the plasmon d
persion relations, and the differential cross section
electron-electron scattering. Numerical result were given
the cross sections for tubules of two different radii. For t
smallest tubule of radius (R50.35 nm! they have got a large
resonance at 8.0 eV and a much broader resonance ar
24–25 eV, for a tubule of larger radius (R51.45 nm! the
low-energy resonance is absent and the high-energy r
nance occurs around 22 eV. This is somewhat surpris
because the model treated thep electrons only. Using a two
dimensional classical hydrodynamical model for single a
multishell nanotubes Yannouleaset al.25,26 found a dimen-
sionality crossover from a characteristic one-dimensio
plasmon behavior to a three-dimensional one as the num
of graphitic sheets increased.

The aim of the present paper is to find further details
the collective motion of the electron system in nanotub
We follow the formalism developed first by Mukhopadhy
and Lundqvist27–29 ~ML ! for the inhomogeneous electro
system and applied it for the C60 fullerenes by O¨ stling et al.
30 In the ML theory one can separate the single particle
collective components of the excitations, therefore it is p
ticularly suitable if someone is interested only in the plas
oscillations of the electron system. The ML theory leads
an integral equation for the perturbation of the electron d
sity caused by an external field. The integral equation ne
as input functions the electron density and its gradient of
unperturbed electron system. To calculate this data we in
duced a simple model: the single-shell tubule is represe
by a macroscopically long cylinder with finite thickness. T
potential is a rectangular well: zero outside of the tubule a
a ~negative! constant inside. We call this model the recta
gular potential model. In our earlier paper31 this model was
used to calculate the polarizability and the EELS data
fullerenes supposing a spherical rectangular potential w
and got reasonable results for the plasmon excitations bo
the gas and the solid phase of C60. It turned out that the
steplike electron density, which is zero outside and cons
-
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inside of the tubule walls produces very nearly the sa
plasmon spectrum as the density calculated from the sph
cal well model. Therefore we used this simpler electron d
sity to calculate the polarizability for multishell nanotub
also.

The outline of this paper is the following. In Sec. II w
first give a short summary of the ML theory~II A !, then we
present its application to cylindrical systems~II B !. In Sec.
III we introduce the simple rectangular potential well mod
~III A ! to calculate an electron density and present numer
results for the polarizability of single-shell nanotubes. Usi
the steplike distribution for the shape of the electron den
in Sec. III B a theory is developed and numerical results
given for plasma oscillations and for the polarizability
multishell nanotubes. In Sec. IV we compare our results w
measured EELS data, and with other theoretical approac
and summarize the results.

II. PLASMA OSCILLATIONS IN CYLINDRICAL
SYMMETRICAL SYSTEMS

A. Review of the Mukhopadhyay and Lundqvist theory

The use of the ML theory27–29is advantageous if someon
is interested only in the collective oscillations of an inhom
geneous electron system, since it provides a way to sepa
the individual and collective components of the excitatio
Here we are giving a short summary of the ML theory.

Consider an electron system characterized by its den
operator r̂(r ,t). Suppose that an external potentia
Vext(r ,t) is applied to the system, and as a result of it
extra charge density,r1(r ,t), is induced. In the linear re
sponse theoryr1(r ,t) andVext(r ,t) are related by the equa
tion

r1~r ,t !5E d3r 8dt8H~r ,r 8,t2t8!Vext~r 8,t8!, ~1!

where the retarded density-density response func
H(r ,r 8,t2t8) is given in the terms of the density operato

H~r ,r 8,t2t8!52 iQ~ t2t8!^@ r̂~r ,t!,r̂~r 8,t8!#&. ~2!

HereQ(t) is the Heaviside step function,^ & means the sta-
tistical average and\51 is in this chapter.

The inducedr1(r ,t) charge density produces an extra p
tential within the electron system, so the effective potentia
given by

Veff~r ,t !5E d3r 8v~r ,r 8!r1~r 8,t !1Vext~r 8,t !, ~3!

wherev(r ,r 8)5e2/ur2r 8u is the Coulomb potential. The re
sponse to the effective potential is described by

r1~r ,t !5E d3r 8dt8h~r ,r 8,t2t8!Vext~r 8,t8!, ~4!

with the retarded response functionh(r ,r 8,t2t8) related to
H by the equationH5h1hvH. In lowest orderh is given in
the terms of noninteracting system having the same grou
state density distribution function

h~r ,r 8,t2t8!52 iQ~ t2t8!^@ r̂~r ,t !,r̂~r 8,t8!#&0 . ~5!
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55 7995COLLECTIVE RESONANCES IN CARBON NANOTUBES
This approach is equivalent to the random phase approx
tion. Differentiating Eq.~4! twice with respect to timet and
using the equation of motion forr̂(r ,t), ML proved that after
Fourier transforming with respect to time,h can be separate
into two partsh5(hi1hc)/v

2, wherehi depends only on the
individual particle-hole excitations, andhc only on the col-
lective properties of the electron system:

hi~r ,r 8,v!52(
n

vn
2Ffn~r !fn* ~r 8!

v1 i e2vn
2

fn~r 8!fn* ~r !

v1 i e1vn
G ,

~6!

hc~r ,r 8!52
1

m
@r~r !¹ r

2d~r2r 8!1¹r~r !•¹ rd~r2r 8!#.

~7!

Herevn5ep2eh is the particle-hole excitation energy, an
fn(r )5cp* (r )ch(r ) is the corresponding density amplitud
in the noninteracting system. Since we are interested onl
the collective behaviors of the carbon nanotubes thehi indi-
vidual components will be neglected. In this approximati
theH response function satisfies the

@v22vpl
2 ~r !#H~r ,r 8,v!

52hc~r ,r 8!2
1

m
¹ rr~r !•¹ rE d3r 9v~r2r 9!H~r 9,r 8,v!

~8!

integral equation where

vpl~r !5A4pe2r~r !

m
~9!

is the local plasma frequency.

B. Plasma oscillations and polarizability in cylindrical systems

Let us suppose that the unperturbed charge density
sesses a cylindrical symmetry,r(r )5r(r ), where (r ,u,z)
are the cylindrical coordinates. We are interested now in
collective density oscillations of this system under the infl
ence of a homogeneous external field perpendicular to
cylindrical axis; Vext(r ,v)52exE(v) with x5r cos(u).
The induced dipole momentum is

P~v!5e E d3r xr1~r ,v!. ~10!

Using the Fourier transform of Eq.~1! and the definition
a(v)5P(v)/E(v), we get for the dipolar polarizability

a~v!52e2E d3r d3r 8xH~r ,r 8,v!x8. ~11!

To calculatea(v) we have to multiply Eq.~8! from the
left-hand side byx, from the right-hand side byx8 and inte-
grate with respect to the variablesr and r 8. Turning to the
cylindrical coordinates and taking into account that the d
sity r(r ) depends only on the radial variabler , one can get
for the left-hand side of Eq.~8!,
a-

in

s-

e
-
e

-

L15SE r 2dr@v22vpl
2 ~r !# f ~r !, ~12!

where we have introduced

f ~r !52
e2

SE0
2p

du cos~u!E
0

S

dz E d3r 8H~r ,r 8,v!x8,

~13!

with S for the length of the system along the cylindrical ax
In the terms of thisf (r ) function the dipolar polarizability is
given simply by

a~v!5SE r 2f ~r !dr. ~14!

Similarly the first term of the right-hand side of Eq.~8! leads
to

L252
S

4E r 2
dvpl

2 ~r !

dr
dr. ~15!

To carry out a similar calculation for the second term of t
right-hand side of Eq.~8! one needs the expansion of th
Coulomb potential in cylindrical coordinates32

v~r ,r 8!5
2e2

p (
m52`

m5`

eim~u2u8!

3E
0

`

dk cos@k~z2z8!#I m~kr,!Km~kr.!,

~16!

where I m(x) andKm(x) are themth-order modified Besse
functions of the first and second kind, respectively,r,

(r.) are the smaller~larger! of r andr 8. The main advantage
of this expansion is that it makes the integral with respec
the variablesu and z calculable, leaving only them561
term from the summation and leading to a Dirac-d function
in the k integral. As a result one can get from the seco
term of the right-hand side of Eq.~8!

L352
S

4E r 2dr
dvpl

2 ~r !

dr E dr8K~r ,r 8! f ~r 8!. ~17!

Collecting the three terms together one arrives to an inte
equation for the functionf (r ) as follows:

@v22vpl
2 ~r !# f ~r !5g~r !F11E dr8K~r ,r 8! f ~r 8!G ,

~18!

where

g~r !52
1

4

dvpl
2 ~r !

dr
, ~19!

and

K~r ,r 8!5H 22S r 8r D 2 if r 8,r

0 if r5r 8

2 if r 8.r .

~20!
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7996 55B. VASVÁRI
Equations~14! and ~18!–~20! are the basic result of the ML
theory for the collective motion of a cylindrical electron sy
tem. Supposing that the charge density, i.e., the local pla
frequency,vpl

2 (r ), and its derivative with respect to the cy
lindrical radius r is given, the f (r ) solution provides the
dipolar polarizabilitya(v) with the help of Eq.~14!.

III. SIMPLE MODELS AND RESULTS

A. The rectangular potential well model
for single-shell nanotubes

1. The electron density distribution

To get a physically realistic still numerically manageab
electron density we apply a simple model, which is similar
the empty lattice model used in solid state physics to
scribe the electronic band structure of simple solids. We s
pose that a nanotube can be represented by a long, ho
cylinder along thez axes of our coordinate system, with
finite thicknessv, and with an inner radiusR1, and outer
radiusR2, with v5R22R1. The detailed geometrical struc
ture can be described by starting from a monatomic shee
graphite.8 First choose an arbitrary lattice point as the orig
and then another one with lattice vectorR5n1a11n2a2,
where a1 and a2 are the primitive vectors of the two
dimensional hexagonal lattice. Next we roll the sheet so
the second lattice point is superimposed on the origin. T
gives us the skeleton of a carbon nanotube. We are using
notations of Whiteet al.,8 hencen1>n2>0. All the geomet-
ric parameters of the tubule can be given in terms of
integers n1 and n2. The radius of the tubuleR
5d0A3(n1

21n2
21n1n2)

1/2/2p, so R15R2v/2 and R25R
1v/2, whered050.142 nm is the interatomic distance in th
graphitic sheet. The length of the unit cell in the z directi
isS053d0(n1

21n2
21n1n2)

1/2/L, the number of carbon atom
within this unit cell is nat54(n1

21n2
21n1n2)/L. Here

L5N, whereN is the largest common divisor ofn1 and
n2, except if (n12n2)/3N is an integer, in that cas
L53N.

Using the one-electron approximation to describe
electron density within the tubule we suppose that the po
tial is constant,2U0, insideR1 andR2, and zero outside
The one-electron Schro¨dinger equation should be written i
cylindrical coordinates and the wave function can be se
rated in the form

c~r ,u,z!5R~r !eil ueikz. ~21!

Due to the rotational symmetry of our tubule potential t
angular momentum quantum number has the val
l50,61,62, . . . . In the z direction we introduce Born-
Karman periodic boundary conditions within a macrosco
lengthS of the tubule, leading to the quasicontinuous valu
of the wave number k5(2p/S)n, where n50,61,
62, . . . ,6N, and S5NS0. The radial component of the
wave function satisfies the equations for the one-particle
ergyE with y5rAk21k2,k252(2m/\2)E,

y2
d2R

dR2
1y

dR

dy
2@y21 l 2#R50, ~22!

if r is outside the tubule,r,R1 or r.R2, and
a

-
p-
ow

of
,
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he

e

e
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a-

s

c
s

n-

y2
d2R

dR2
1y

dR

dy
1@y22 l 2#R50, ~23!

with y5rA2U01k21k2, if r is inside the tubule,
R1<r<R2. The regular solutions of these equations

Rl~y!5H AlI l~y! if r<R1

BlJl~y!1ClYl~y! if R1<r<R2

DlKl~y! if R2<r ,

~24!

where I l(y) andKl(y) are, as earlier, the modified Bess
functions,Jl(y) andYl(y) are themth order Bessel functions
of the first and second kind, respectively. Prescribing
continuity conditions forR(y) and for its derivatives atR1
andR2 one can get for the energies

El ,i~k!5xl ,i1
\2

2m
k2. ~25!

For each angular momentum quantum number an additio
index i is necessary because the finite potential well m
possesses one, two, or more eigensolutions dependin
v and U0 and l . In the case of zero width one shou
get xl52U01\2l 2/2mR2 with no additional index. The
energy spectrum~25! consists of one-dimensional parabol
energy bands, shifted by thel -dependentxl ,i values. All
the bands have their own Fermi momenta,kFl ,i
5A(2m/\2)(eF2xl ,i). The eF Fermi energy is defined by

n05
2

p (
l ,i

pl~2m/\
2!~eF2xl ,i !. ~26!

Heren05natnel /S0 is the number of electrons in a tubule o
unit length,nel is the number of electrons per carbon atom
constituting the tubule. The parameter,pl51 if l50, and
pl52 otherwise, corresponds to the degeneracy of the an
lar momentum quantum numberl . The volume density of
electrons, needed for the local plasmon frequency in Eq.~9!,
is given by

r~r !5(
l ,i

pl
kFl ,i
p2 uRl ,i~r !u2, ~27!

supposing that theRl ,i(r ) radial wave functions are norma
ized to unity.

2. Numerical results for single-shell tubules

Our model for a single-shell nanotube contains four p
rameters: First, the integers (n1 ,n2), which describe the ge
ometry, then the width,v, and the depth,U0, of the rectan-
gular potential well, responsible for the physics of the tubu
In our subsequent treatment it is supposed that we have
electrons per carbon atoms, that is the fulls1p electron
system is considered. In a similar calculation31 for the C60
molecule the width was chosen asv50.30 nm. Requiring
that the highest occupied orbital should reproduce the ion
tion energy ~7.54 eV! of the fullerene molecule gave u
U05230.0 eV. To our knowledge, there are no measu
ments for the ionization energy in the case of carbon na
tubes, therefore we have used, somewhat arbitrarily,
same numerical values forv andU0 in the calculations pre-
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FIG. 1. The one-electron energy spectrum for the~10,0! tubule with radiusR50.391 nm in the rectangular cylindrical potential we
model. The spectrum consists of coaxial parabolas shifted by the eigenenergies,xl ,i , of the potential well~a!. The angular momentum
quantum numberl , and the indexi are shown in diagram~b! for each of the eigenenergies. The density of states~c! exhibits singularities at
xl ,i , due to the free motion of the electrons along the one-dimensional tubule axis. TheeF527.18 eV Fermi energy is determined by th
number of atoms~40 for this tubule! and the number of electrons per atom~4 in our model!. The width of the potential well,v52.5 nm and
the depthU05234.5 eV.
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sented in this paper. It turned out that our results are not v
sensitive for the actual values ofv andU0, supposing that
the Fermi energy remained around 7.0 eV.

The single-particle energy spectrum for the~10,0! tubule
is shown in Fig. 1 together with thel angular momentum
quantum numbers for thexl ,i energy eigenvalues. It is re
markable that the (l ,xl ,i) plot is nearly parabolic, as it shoul
be in the case of the two-dimensional cylindrical model
zero width. The density of states curves show the o
dimensional type of singularities representing the free m
tion of the electrons along thez axis. In our simple model the
nanotubes are always metallic, therefore the energy spec
is not comparable with the results of tight binding or dens
functional calculations, which lead to a metallic, or semico
ducting energy spectrum. Since we are interested now in
collective excitations of thes1p electron system with en
ergies mainly above 10 eV, it is not critical whether the re
system is metallic or semiconducting with an energy gap
1–2 eV. What we need is the electron density, which rea
can be calculated from the wave functions using Eq.~27!.
The results are shown in Fig. 2 for two tubules with ra
R50.391 andR51.174 nm. One can see that the shape
the electron spatial distribution is almost independent of
radius of the single-shell tubules, therefore it is not necess
to recalculate them for larger radii. There is a small asy
metry between the increasing and the decreasing sides o
density profiles mainly for a smaller tubule radius, and
shallow minimum appears at the cylinder axis, because
the nodes of the wave functions for odd angular momen
quantum numbers.

To solve the integral equation~18! an imaginary part,
iG, was attributed to the energy variablev. For that reason a
full complex arithmetic was used to get the complex solut
f (r ), and the complex polarizabilitya(v). The numerical
value ofG51 eV was supposed throughout the calculatio
reported in this paper.
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The polarizabilties of single-shell nanotubes can be s
on Figs. 3 and 4. One can see a characteristic two-peak s
ture for the imaginary part ofa(v), the intensity of the
low-energy peak is higher than that of the high-energy pe
The width and the absolute magnitude of the peaks are
pendent on theG artificial imaginary part ofv, therefore
they have no physical meaning. Similar results were p
lished for the C60 molecule by Lambinet al.33 According to
their model we may call the lower-energy peak the tang
tial, slow mode, and the higher-energy peak the radial,
dipole active mode. For the smallest tubule radius the t

FIG. 2. Electron densities in atomic units for tubules~10,0! with
radiusR50.391 nm and for~30,0! with radiusR51.17 nm. The
parameters of the potential wellv50.25 nm,U05234.5 eV ~full
line! andv50.30 nm,U05230.0 eV~dotted line!. The dashed line
on the tubule~10,0! shows the rectangular density profile used
Sec. III B.
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7998 55B. VASVÁRI
gential peak is at about 17 eV, the radial one is at abou
eV. With an increasing radius the position of the tangen
component tends to a lower energy and that of the ra
component to a higher energy~Fig. 4!. For a fix radius the
tangential component remains at the same energy, but
radial one shifts to somewhat higher energies with decre
ing width of the potential well~Fig. 3!.

Instead of a single nanotube, one may be interested in
properties of a bundle of tubules. We can imagine suc
bundle as being made from single-shell nanotubes, wit
parallel axis forming a hexagonal lattice. The perpendicu
distance between two neighboring axes isd52R1b0, where
R is the radius of a single tube, andb0 is the smallest dis-

FIG. 3. Imaginary part of the polarizability of the tubule~10,0!
for two sets of the potential parameters:v50.25 nm,U05234.5
eV ~full line! andv50.30 nm,U05230.0 eV~dotted line!.

FIG. 4. Imaginary part of the polarizability of the tubules~7,0!,
~10,0!, and ~30,0! with radii 0.274, 0.391, and 1.174 nm, respe
tively. The potential well parameters here and in the following fi
ures:v50.30 nm,U05230.0 eV.
2
l
al

he
s-

he
a
a
r

tance between two tubules. We may suppose t
b050.342 nm, which is the interlayer distance in so
graphite. The number density of nanotubes in the plane
pendicular to the tube axis isn5(4/A27)/d2. Neglecting the
interaction between the individual nanotubes the comp
dielectric function can be calculated from our polarizabil
as e(v)5114pna(v). The transmission electron energ
loss spectra, measured on the bundle of these nanotube
proportional to Im„21/e(v)…. The loss spectra are als
double peaked, with the remarkable difference that
higher-energy peak at about 28 eV is independent of
tubule radius, while the position of the low-energy pe
shifts to lower energies with an increasing radius~Fig. 5!.

B. Rectangular density distributions, multishell tubules

1. The dipole polarizability for multishell tubules

The generalization of the theory described in Sec. III
for multiple layer nanotubes is straightforward, but its n
merical realization, especially the solution of the integ
equation ~18!–~20! is a formidable task. To simplify the
treatment we introduce a further assumption to our mod
The shape of the electron density distribution~Fig. 2! is ap-
proximated with a steplike function, which is zero outsi
the tubule and constant inside. We call this model the re
angular density model. This model was already successf
applied for the C60 molecule by Östling et al.30 and
Vasvári,31 and for multishell carbon onions by Apellet al.34

Suppose, that we have a multishell tubule with anN number
of coaxial cylindrical shells, each having a radiusRi and the
same thicknessv. The squared local plasma frequenc
which is proportional to the electron density is defined as

vpl
2 ~r !5v0

2(
i51

N

Q~r2ai !Q~bi2r !, ~28!-

FIG. 5. The transmission electron energy loss spectrum for
bundles of nanotubes (n,0!, where n58 ~circles!, n59,10,12,
15,20~successive full lines!, andn530 ~crosses!.
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whereai5Ri2v/2 andbi5Ri1v/2, andQ(r ) is the Heavi-
side step function. The innermost tubule, its radiusR1, is
defined by the pair of integers (n1 ,n2). For this tubule we
calculated the electron densityn(r ) as in the case of the
single tubule using the same parametersv andU0 as before.
Then the parameterv0

2 was chosen by requiring that the ar
vv0

2 should be equal to the area under the full local plasm
frequency curve on ther axis ~see Fig. 2!:

v0
25~1/v !~4pe2/m!E

0

`

n~r !dr. ~29!

The parametersv andv0
2 were the same for all the shells

each radiusRi was bigger than the previous one b
e

qu
cie

o

n

b050.342 nm. According to this model, the geometry
each multishell tubule is characterized by the integers for
innermost shell, (n1 ,n2), and the number of layersN, with
the same charge density on each shell.

For the solution of the integral equation~18! we use the
ansatz

f ~r !5(
i51

N

@Aid~r2ai !1Bid~r2bi !#. ~30!

Substituting this form forf (r ) into Eq. ~18! after a lengthy
but straightforward algebra one can get a set of linear in
mogeneous equations for the coefficientsAi and Bi ,
i51, . . . ,N,
(
j51

N H Fv0
2

4
K~ai ,aj !1S v22

v0
2

2 D d i j GAj1
v0
2

4
K~ai ,bj !Bj J 52

v0
2

4
,

(
j51

N H 2
v0
2

4
K~bi ,aj !Aj1F2

v0
2

4
K~bi ,bj !1S v22

v0
2

2 D d i j GBj J 5
v0
2

4
, ~31!
lu-
er?

y
ces
hat
nces
tri-
ct-
the
ults
use
me

ell
ve
or

.
he
d in

om
.
s
,

with theK(r ,r 8) function given by Eq.~20!. The polarizabil-
ity can be expressed in the terms of the coefficientsAi ,Bi as
follows:

a~v!5(
i51

N

@Aiai
21Bibi

2#. ~32!

For a single-shell tubule,N51, these equations can b
solved explicitly:

A152
v0
2

4D~v!
v2,

B15
v0
2

4D~v! Fv22
v0
2

2 S 12
a1
2

b1
2D G , ~33!

where

D~v!5S v22
v0
2

2 D 22v0
4

4

a1
2

b1
2 ~34!

is the determinant of the corresponding homogeneous e
tion. The zeros of this determinant give the eigenfrequen
of a single wall tubule

v6
2 5

v0
2

2 S 16
a1
b1

D , ~35!

the smaller being the tangential, the larger the radial dip
active mode. The polarizability

a~v!5
v0
2

4D~v!
S v22

v0
2

2 D ~a1
22b1

2!. ~36!
a-
s

le

For the v50 static dipole polarizability this gives for a
single-shell tubule of unit lengtha(0)5b1

2/2.

2. Numerical results for multishell tubules

The first question to be answered is how do the two so
tions for the single wall nanotube agree with each oth
Figure 6 shows the comparison of the~10,0! nanotube with a
smaller radius (R50.39 nm! and of the~30,0! nanotube with
a larger one (R51.17 nm!. One can see the overall similarit
of the two approaches, although there are some differen
also, mainly in the relative height of the peaks and somew
in the positions, too. These deviations are the conseque
of the differences in the shape of the electron density dis
butions, which is a bit asymmetrical in the case of the re
angular potential model, and completely symmetrical in
case of the rectangular density model. The qualitative res
of the two models are the same. For that reason, we may
the simplified rectangular density model to calculate so
characteristic tendencies of the multishell nanotubes.

First we have to find out the intensity of the shell-sh
interaction in the multishell tubules. For that reason we ha
calculated the imaginary part of the polarizability first f
two separate single-shell tubules of~10,0! and ~50,0! with a
large difference between their radii,R150.391 and
R251.96 nm, respectively,@dashed and dotted lines of Fig
7~b!#, next for a system of a double-shell nanotube with t
same shell radii. The shell-shell interaction is represente
our basic equation~31! by the kernelK(r ,r 8) when one of
its variables is from one shell and the other variable is fr
the other shell. If we artificially switch off this term from Eq
~31! then we get simply the sum of the two polarizabilitie
@dashed-dotted line Fig. 7~b!#. Switching on the interaction
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one can see that the effect is small, but not negligible stil
this case of large distances between the two shells@full line
of Fig. 7~b!#. There is a small shift downward on the ener
scale for the lower-energy peak position of the outer tubu
while the higher-energy peak practically remains at the sa
position. There is, however, a considerable decrease of
outer peak intensities and an increase of the inner intens
as an effect of interaction. Figure 7~a! shows the same fo
tubules~10,0! and~20,0!, R250.782 nm, with a smaller dif-
ference in the shell radii. One can see a strong effect of
shell-shell interaction, a larger shift in the peak positio
and an almost complete disappearing of the peaks of
outer shell, and a considerable increase of the intensities
longing to the inner shell. To see the details of these d
matic changes Fig. 8 shows this tendency for gradually
creasing the distances of the tubule shells from 6b0 to
b050.34 nm, which is the distance of the carbon sheets
solid graphite. Practically the peaks corresponding to
outer shell disappeared, and the positions of the two pe
corresponding to the inner shell shifted towards each othe
a consequence of the shell-shell interaction. The same
dency can be discovered for a three-shell nanotube also~Fig.
9!. Hence we have to realize that the interaction between
tubule shells is far from being negligible.

FIG. 6. Comparison of the polarizabilities calculated from t
rectangular potential (p) model and the rectangular density (d)
model for the tubules~10,0! ~a!, and~30,0! ~b!.
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The same effect is manifested when the number of sh
of a multishell nanotube changes. Figure 10 shows the
larizability from the single-shell tubule to shell numb
N525. The innermost tubule is the~10,0! tube with radius
R50.39 nm with two peaks, one around 14.0 eV and anot
one around 22.5 eV. Increasing the number of shells o
these two peaks remain, getting closer and closer to e
other, forming a single peak around 19.0 eV for the sh
numberN520. We obtained the same trend for the oth
radius for the innermost tubule, with the difference that w
an increasing radius the two peaks of the innermost tub
became more separated~ Fig. 11!, therefore they will form a
single peak only for larger shell numbers. For the bigg
innermost tubule investigated in this paper,~50,0!, with ra-
diusR51.96 nm, the two peaks are around 7.1 eV and 2
eV for a single-shell tubule, and they approach each othe
close as 18.1 eV and 19.3 eV for a multishell tubule with

FIG. 7. The effect of the shell-shell interaction. The imagina
part of the polarizability for a double-shell nanotube,~a! the shell is
the ~10,0! type with radius 0.391 nm, the outer shell is the~20,0!
type with radius 0.782 nm. Dotted and dashed lines are the po
izabilities of the single-shell~ss! nanotubes~10,0! and ~20,0!, re-
spectively. The dash-dotted line is the double-shell~ds! polarizabil-
ity with the shell-shell interaction switched off, the full line is the d
polarizability with the interaction involved.~b! The same with the
tubules~10,0! and ~50,0! with outer radius 1.958 nm. For such
large distance between the two shells their interaction is redu
but still not negligible.
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shell numberN5100. This looks like a single peak for th
case of a spectroscopic resolution less than 1–1.5 eV.

IV. DISCUSSION AND SUMMARY

First of all we have to emphasize that the ML theory th
we have applied for carbon nanotubes neglects the sin
particle contributions to the polarizability, therefore, our r
sults are definitely not applicable in the energy range bel
say, 5–7 eV, where the electron-hole excitations play
dominant role. Also, the broadening of the plasmon pe
are the consequence of the single-particle excitations, th
fore, the width of the peaks, which is produced in our cal
lations by the artificially chosen imaginary part of thev
energy, does not bear on physical meaning. Other reaso

FIG. 8. Two-shell tubule with decreasing shell-shell distan
Dashed-dotted line is for distanced56b0, whereb050.342 nm is
the interplanar distance in solid graphite. Subsequent dotted
correspond tod55b0, d54b0, d53b0, d52b0; full line: d5b0.

FIG. 9. The same as Fig. 8 but for a three-shell tubule.
t
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FIG. 10. Shell-number dependence of the polarizability. T
innermost tubule@N51, full line on ~a!# is of the ~10,0! type, the
subsequent shells follow to a distanceb050.342 nm from the pre-
vious one. The subsequent curves on diagrams~a! and ~b! corre-
spond to different shell numbersN, as indicated on the figure.

FIG. 11. Shell-number dependence of peak positions for
imaginary part of the polarizability for nanotubes with various i
nermost tubules of type~10,0!, . . . ,~50,0!.



p
e
m
z
av

n
t
c
e
d

o
t
o
at
b
ur
o
th
th

o
o
a
h
y
th
he
e

f t
18
f
u
ys
ia

in
r
b
le
e

re
u

om

e
s
s.
ila
it
lle
ls
n
is
ea
m

ells
orre-

bes.
ius

ical

e

l to
lar

oth
riz-

the
ell,
g
ua-
,

la-
ed

um

ll is
ero
is

for
the

-

e
he
-
-

e
is

on
are

tem
lar
rge
ec-
cter

t of
ter.

8002 55B. VASVÁRI
the broadening of the experimental peaks may be the dis
sion of the plasmon frequencies. It may occur that a mom
tum transfer is also present in the experimental circu
stances, and our calculations correspond to the case of
momentum transfer. It should also be noticed that we h
calculated only the dipole excitations (l51), while in the
actual situation multipole transitions may also be prese
giving rise to further broadening of the spectrum. We have
mention that in deriving our formulas we suppose the ex
tations are induced by a homogeneous electric field, perp
dicular to the cylinder axis. This condition is usually fulfille
in optical measurements, but it may be questionable
EELS, if the diameter of the electron beam is less than
comparable to the tube diameter. This was the case in
experiments of Bursillet al.16 For all of these reasons we d
not expect a quantitative agreement between our calcul
spectrum and the presently available experimental data,
we do expect that our results are predictive for the meas
ments of optical absorption coefficient on individual nan
tubes of either single- or multishell type, and at least
peak positions of the EELS results can be interpreted in
terms of our model.

To our knowledge there were no optical measurements
nanotubes until now. In EELS experiments the number
shells and the diameter of the innermost tubule are not
ways indicated in the published results. The width of t
measured EELS peaks is as large as 8–10 eV, and the
not exhibit a double-peak character. We expect that in
case of large innermost radius and small shell numbers t
should be a double-peak spectrum in optical and EELS m
surements also. The measured EELS peak positions are
pendent both on the number of shells and the diameter o
nanotubes.14–16 There is a single broad peak around 15–
eV for a smaller~less than;12) shell number and a shift o
this peak to 22–27 eV with increasing shell number. In o
calculated Ima(v) functions the small-energy peak alwa
has a higher intensity than the high-energy one, espec
for the more precise rectangular potential well model~see
Figs. 3, 4, 6!. In the case of the nanotubes with a~10,0!-type
innermost tube the calculated low-energy peak position
creases from 14 eV for a single-shell tubule to 18.7 eV fo
large shell number. From shell number 15 the difference
tween the positions of the low- and large-energy peaks is
than 1 eV, and remains constant at about 19 eV, indep
dently of the radius of the innermost shell~Fig. 11!. If we
attribute our low-energy dipole active mode to the measu
EELS spectrum, then the general tendencies of the meas
spectrum are in agreement with our calculated data.

Regarding the published theoretical results we can c
pare our results with the calculations of Apellet al.34 for the
multishell fullerene onions. We followed nearly the sam
model for the cylindrical carbon nanotubes as they have u
for the spherical C60-based multishell fullerene molecule
The results of the two calculations are very much sim
with differences originating from the fact that they applied
to thep electrons only, and they have used a much sma
width for the steplike charge density distributions. They a
have a double-peaked structure for a single-shell fullere
with a higher intensity for the lower-energy peak; the d
tance between the two peaks is also decreasing with incr
ing shell number, although with a much less amount co
er-
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pared to our results for the nanotubes, and up to 40 sh
their peaks remain separated. The largest peaks also c
spond to the innermost C60 molecule, but the next shell’s
contributions are not as screened as in the case of nanotu
In the case of the onions, there is no way to vary the rad
of the innermost shell, it is always the C60 molecule.

In the case of the nanotubes the majority of the theoret
papers treat thep electrons only,17–19,21,22,24therefore we
cannot compare our results with them for thes1p elec-
trons. Huaxianget al.23 calculated the imaginary part of th
dielectric function for thes1p electrons for two types of
single-shell nanotubes, but for polarization vectors paralle
the tubule axis, while in our calculations it was perpendicu
to it. Nevertheless they have the main peak of Ime(v), at
15.5 eV, and two other peaks at 9.0 eV and 20.0 eV for b
kinds of tubules. These are to be compared with the pola
ability in our calculations~Figs. 3, 4!. Our Ima~v! has a
double-peak character with peak positions depending on
diameter and somewhat on the width of the potential w
the closest is the~7,0! tubule to the results of Huaxian
et al.23 The reason for the presence of more peaks in H
xiang et al. may be that they calculated the full spectrum
involving the single-particle excitations too, and our calcu
tion contains only the collective contributions. In the detail
calculations of Yannouleaset al.,25,26 only the frequencies
for the collective modes of a nanotube with zero moment
transfer (q50) and with angular momentumm51 can be
compared with our dipole polarizabilitya(v). Their results
for multishell tubules is based on a model where each she
supposed to be a two-dimensional cylindrical surface of z
width. In this model only the low-energy tangential mode
active, therefore, for each shell numberN, they got exactly
N eigenfrequencies. The oscillator strength is the largest
the top level eigenfrequency and this can be compared to
lower-energy peak position of our Ima(v) curves. For
N51 and tube radiusR0;1.69 nm they got the eigenfre
quency at about 6.9 eV@see Fig. 3~a! of Ref. 25#, which is
favorable comparable to our value of;7.5 eV ~Figs. 4, 11!
for the tubule~45,0! with a similar radius. By increasing th
shell number this peak position, which is the top level of t
frequency band, tends to;18 eV in the Yannouleas calcu
lations, and to;18.7 eV in our calculations. There is, how
ever, a discrepancy, the zero momentum transfer (q50) val-
ues of the top level frequency for largeN values strongly
depends on the innermost radius@see Fig. 3~b! of Ref. 25 and
Figs. 1~a! and 3 of Ref. 26#, while it tends to the same valu
in our case~Fig. 11!. For nonzero momentum transfer th
discrepancy quickly disappears.

In summary, plasma oscillations of a cylindrical electr
system was investigated in this paper. The main results
the following.

The theory of Mukhopadhyay and Lundqvist27–29 for the
collective oscillations of an inhomogeneous electron sys
is specified for cylindrical charge distributions. A rectangu
potential well model was introduced to calculate the cha
density of single-shell nanotubes. The single-particle sp
trum exhibits an interesting quasi-one-dimensional chara
with singularities in the density of states.

In the case of single-shell nanotubes the imaginary par
the dipole polarizabilty shows a double-peaked charac
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The peak positions are at 17 and 22 eV for the tubule~7,0!
with the smallest radiusR50.274 nm. With an increasing
radius the peaks tend to separate from each other; the pe
low energy shifts to a lower energy, and the one at h
energy to a higher energy~see Fig. 4!.
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