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A theory is presented to study the plasma oscillations of theofttllr electron system of carbon nanotubes.
Cylindrical charge density was supposed to represent the electron distribution within the shells of the tubule
and an integral equation is derived for the perturbation caused by an external electric field. From the solution
of this equation the dynamical dipole polarizability is calculated in the energy range above 10 eV. For
single-shell nanotubes a double-peaked spectrum resulted resembling the slow tangential and the fast radial
dipole active mode of a classical spherical shell of finite width. The peak positions are around 17 and 22 eV for
the smallest tubule radius and with increasing radius the low-energy peak shifts to a lower energy, the
high-energy peak to a higher energy. For multishell nanotubes a strong shell-shell interaction is found, as a
result of which the double-peaked structure of the innermost shell will be the dominant part in the imaginary
part of the polarizability. With increasing shell number the low-energy peak shifts to a higher energy, the
high-energy peak to lower energy; this is just the opposite tendency found in the radius dependence. For a large
enough shell number the two peaks coincide at about 19 eV, and this value is independent of the radius of the
innermost shell. Although the numbers mentioned may vary within 3—4 eV depending on the parameters of our
models, the tendencies are in overall agreement with the existing electron energy loss spectroscopy measure-
ments and with other theoretical predictiohS0163-182@07)03308-0

I. INTRODUCTION layers, which affect the energy loss spectrum. Although the
beam diameter was also larger than the tube diameters, the
There is considerable research activity to clarify theloss was measured on individual multishell nanotubes. Bursil
physical properties of the recently discovered multishell, coet al!® have used a narrow electron beam diamétemo-
axial carbon nanotubés® and the single-shell carbon probe as small as about 2 nm which is smaller than the tube
tubuled as well. Tight-binding calculations® and density ~diameter and found a broad plasmon peak at around 15 eV
functional theory® for isolated single-shell nanotubes and but only for thin tubes consisting of less than 12 layers. This
for microbundles of these tubufésonfirm the early results, was interpreted as a surface plasmon. For 17 and 20 layers
that graphitic nanotubes exhibit metallic, semimetallic, orthey found a superposition of the 15 eV and the 24 eV peaks,
semiconducting electronic properties depending on their raand for 29 layers they found only the 24 eV peak, which was
dii and helicity. The interlayer interaction is found to be low measured also in a graphite slab containing 50 sheets lying
in tight-binding calculations for bilayer and multilayer parallel to the incident electron beam. This 24 eV peak was
nanotubes?'® The experimental verification of these results interpreted as a bulkr+ 7 plasmon of graphite. The mea-
is an outstanding task, mainly because of the difficulties irsured EELS spectra also showed thelasmon around 6 eV.
controlling the fine structure, like helicity, radius, number of In the theoretical calculations for collective excitations
layers, etc., of the nanotubes. the electron gas is supposed to be confined to the two-
Parallel to the effort of finding the one-particle spectrumdimensional surface of one or more cylindrical surfaces. Lin
there are investigations to understand the collective excitaand Shungf evaluated the dielectric function within the ran-
tions of this new form of carbon clusters. Experimentally thedom phase approximatiofiRPA), the zeros of this function
electron energy loss spectroscafBELS) is a direct way to  defining the plasmon modes. They have found uncoupled
measure the spectrum of plasma oscillations. To our knowlacoustic and optical plasmon branches for zero or nonzero
edge until now only measurements on multishell nanutubeangular momentum changes, respectively. For double layer
are available. Kuzuet al}*found 7 plasmons at 5.2 and 6.4 nanotubes the coupling between the two layers lead to im-
eV, o+ 7 plasmons between 22.0 and 24.5 eV. They haveportant modifications. In their recent paper Lin and SHéing
used a relatively large beam spot, so they probably measurexhd Lin et al!® replaced the two-dimensional confinement
more nanotubes simultaneously. Ajayeinal’® have seen a by a tight-binding model but only for the electrons and the
broad plasmon peak at about 27 eV in bulk graphite, and &(w) dielectric function was calculated within the gradient
systematic shift of this peak with a decreasing number ofpproximatior?’ and within the RPA? The EELS defined
nanotube layers down to 18 eV for the smallest number ofis Inj —1/e(w)] shows the dominantr plasmon peak at
shells. This was interpreted as thet = plasmon. Ther  2y,=6 eV, wherey, is the resonance integral in the tight-
plasmon peak appeared only in the case of a larger shdflinding scheme. Satet al?* also calculated, within the
number. The position of the+ 7 peak depends also on the RPA, the dielectric function of an electron gas confined to
diameter of the innermost tubule. This means that there artne surface of a hollow cylinder and found steplike behavior
two parameters, the diameter of the tube, and the number @nd a broad peak in the imaginary parteftv), as well as a
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dimensional crossover from two-dimensional to one-inside of the tubule walls produces very nearly the same
dimensional character with decreasing tubule radius. Longplasmon spectrum as the density calculated from the spheri-
and Bos# used the two-dimensional model with the RPA cal well model. Therefore we used this simpler electron den-
for single-shell tubules and a classical dynamical model fosity to calculate the polarizability for multishell nanotubes
multishell tubules to calculate the dielectric function and thealso.
dispersion relations for the collective oscillations and found  The outline of this paper is the following. In Sec. Il we
one acoustic and several optical branches. Huaxargg?®  first give a short summary of the ML theo(it A), then we
started from the tight-binding model for the one-electronPrésent its application to cylindrical systeri&B). In Sec.
spectrum and calculated the imaginary pas(w), of the IIl we introduce the simple rectangL_JIar potential well mod'el
dielectric function for polarizations parallel to the tubule (Il A) to calculate an electron density and present numerical
axis. For single-shell tubules the,(w), which is propor- results fqr the_ po_larl_zab|llty of single-shell nanotubes. Usmg
tional to the photoabsorption coefficient, is very similar to € Steplike distribution for the shape of the electron density
the metallic and semiconducting geometries and shows & Sec. Il B a theory is developed and numerical results are
broad peak around 15 eV, but is rather different below 8.gJiven for plasma oscillations and for the polarizability of
eV for the two types of microtubules. This may be the con-Multishell nanotubes. In Sec. !V we compare our results with
sequence of the fact that for small energies the dielectrid"€asured EELS data, and with other theoretical approaches
function is influenced mainly by the single-particle excita- 2"d summarize the results.
tions, and they are different for the metallic and the semicon-
ducting tubules. Davidet al?* considered ther electrons Il. PLASMA OSCILLATIONS IN CYLINDRICAL
on the surface of a single cylindrical shell as an interacting SYMMETRICAL SYSTEMS
two-dimensional Fermi gas, and.calculated the quasiparticle A Review of the Mukhopadhyay and Lundquist theory
energy spectrum analytically within the Hartree-Fock ap- 2 29, )
proximation, and the density-density response function in the The use of the ML theoR/~**is advantageous if someone
RPA in order to get the dielectric function, the plasmon dis-iS interested only in the collgcuvg oscnlgtlons of an inhomo-
persion relations, and the differential cross section fofd€neous electron system, since it provides a way to separate
electron-electron scattering. Numerical result were given fofh€ individual and collective components of the excitations.
the cross sections for tubules of two different radii. For theHere we are giving a short summary of the ML theory.
smallest tubule of radiusR=0.35 nn) they have got a large COHSId?I’ an electron system characterized by its density
resonance at 8.0 eV and a much broader resonance arougperator p(r,t). Suppose that an external potential,
24-25 eV, for a tubule of larger radiuR€1.45 nn the Ve (r,t) is applied to the system, and as a result of it an
low-energy resonance is absent and the high-energy resextra charge densityp,(r,t), is induced. In the linear re-
nance occurs around 22 eV. This is somewhat surprisingponse theory(r,t) andVe(r,t) are related by the equa-
because the model treated theelectrons only. Using a two- tion
dimensional classical hydrodynamical model for single and
multishell nanotubes Yannouleas al.25'_26_found a dimen- Pl(f't)=f P dtHE T t—t )Wt ), (1)
sionality crossover from a characteristic one-dimensional
plasmon behavior to a three-dimensional one as the numbw
of graphitic sheets increased.

The aim of the present paper is to find further details for
the collective motion of the electron system in nanotubes. Py s pYITa
We follow the formalism developed first by Mukhopadhyay H =) = =10 = UX[p(r0.p(r. ). ()
and Lundquist’=2° (ML) for the inhomogeneous electron Here®(t) is the Heaviside step functiof,) means the sta-
system and applied it for theggfullerenes by @tling et al.  tistical average and =1 is in this chapter.
30|n the ML theory one can separate the single particle and The inducedp,(r,t) charge density produces an extra po-
collective components of the excitations, therefore it is partential within the electron system, so the effective potential is
ticularly suitable if someone is interested only in the plasmagiven by
oscillations of the electron system. The ML theory leads to
an integral equation for the perturbation of the electron den- _ 3. , ) )
sity caused by an external field. The integral equation needs Veﬁ(r’t)_f drv(rr)py(r O+ Vedr',n, (3
Cnpenurbedt eleciron system. To calculate this data e inrqereY (r:r)=€?llr | is the Coulomb potential. The re-
duced a simple model: the single—shell tubule is represente%‘Oorlse to the effective potential is described by
by a macroscopically long cylinder with finite thickness. The
potential is a rectangular well: zero outside of the tubule and pl(r,t)=f d3rdt’h(r,r',t—t")Ve,r',t’), (4)
a (negative constant inside. We call this model the rectan-
gular potential model. In our earlier papethis model was with the retarded response functibir,r’,t—t’) related to
used to calculate the polarizability and the EELS data oH by the equatioid =h-+hvH. In lowest ordeh is given in
fullerenes supposing a spherical rectangular potential welhe terms of noninteracting system having the same ground-
and got reasonable results for the plasmon excitations both istate density distribution function
the gas and the solid phase of,C It turned out that the R R
steplike electron density, which is zero outside and constant  h(r,r’,t—t")=—i®(t—t"){[p(r,t),p(r",t')])g. (5

here the retarded density-density response function
H(r,r’,t—t") is given in the terms of the density operator
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This approach is equivalent to the random phase approxima- ) . 2
tion. Differentiating Eq.(4) twice with respect to timeé and |—1=Sf redrio®—wg(r)Jf(r), (12)
using the equation of motion fai(r,t), ML proved that after

Fourier transforming with respect to time can be separated where we have introduced

into two partsh=(h;+ h.)/ w?, whereh; depends only on the e? (2r S
individual particle-hole excitations, artg. only on the col- f(r)y=— s dé cog 0)f dz f d3r'H(r,r’,w)x’,
lective properties of the electron system: 0 0 13
, S| DR () da(r') ey (1) with S for the length of the system along the cylindrical axis.
hi(r.r’, @)= _; U otie—w,  wtietwn |’ In the terms of thig (r) function the dipolar polarizability is
(6) given simply by
1 =Sf r2f(r)dr. 14
o(r,17)= = —[p(r) V26(r —1')+ V(1) ¥, (1 ~1")]. ate) " 4

(7) Similarly the first term of the right-hand side of E®) leads

to
Here w,= €,— €y, is the particle-hole excitation energy, and
bna(r) = (N () is the corresponding density amplitude L S zdwfﬂ(r) dr (15
in the noninteracting system. Since we are interested only in 277, dr

the collective behaviors of the carbon nanotubeshthiadi- o )
vidual components will be neglected. In this approximationTO carry out a similar calculation for the second term of the

the H response function satisfies the right-hand side of Eq(8) one needs the expansion of the
Coulomb potential in cylindrical coordinat®s
[w®—wy(DIH(r,I, @) g2
1 v(r,r')=— 2 elm(ﬂfﬁ)
=—h(r,r')— aV,p(r)Vrf EBrv(r—rHT" 1’ o) T m==e
8 X fo dk cogk(z—2") ]I (kr o )K(Kr),
integral equation where (16)
4e’p(r) wherel ,(x) andK(x) are themth-order modified Bessel
wp(N=\—7 (9 functions of the first and second kind, respectively,
(r-) are the smalleflargep of r andr’. The main advantage
is the local plasma frequency. of this expansion is that it makes the integral with respect to

the variablesf and z calculable, leaving only then==*=1
term from the summation and leading to a Di&dunction
) in the k integral. As a result one can get from the second
Let us suppose that the unperturbed charge density pogerm of the right-hand side of E¢8)
sesses a cylindrical symmetrg(r)=p(r), where ¢,0,2)
are the cylindrical coordinates. We are interested now in the S dw2|(r)
i i iHati i i Ly=——| r2dr ——=| dr'K(r,r)f(r’). (17
collective density oscillations of this system under the influ- 3 4 dr (r, (r').
ence of a homogeneous external field perpendicular to the
cylindrical axis; Vey(r,»)=—exEw) with x=r cos@). Collecting the three terms together one arrives to an integral

B. Plasma oscillations and polarizability in cylindrical systems

The induced dipole momentum is equation for the functiori(r) as follows:
P(w)=e f B xp1(r,w). (10 [wz—wﬁ.(r)]f(r)=g(r){1+f dr’K(r,r)f(r’)|,
(18)
Using the Fourier transform of Eq1) and the definition where
a(w)=P(w)/E(w), we get for the dipolar polarizability
- 1 dawj(r) 19
r = H
a(m)=—e2j d3r d3r/xH(r,r",w)x’. (11 g 4 dr
and
To calculatea(w) we have to multiply Eq.(8) from the
left-hand side by, from the right-hand side by’ and inte- r'\? e
grate with respect to the variablesandr’. Turning to the 2|+ mr=r
cylindrical coordinates and taking into account that the den- K(r,r')= 0 it r—r’ (20

sity p(r) depends only on the radial varialileone can get
for the left-hand side of Eq38), 2 if r'>r.
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Equations(14) and (18)—(20) are the basic result of the ML 2d2R drR s
theory for the collective motion of a cylindrical electron sys- Y ar Y dy +[y“=17]R=0, (23

tem. Supposing that the charge density, i.e., the local plasma

frequency,wé(r), and its derivative with respect to the cy- with y=ry—Uq+«?+k? if r is inside the tubule,
lindrical radiusr is given, thef(r) solution provides the R;=<r<R,. The regular solutions of these equations
dipolar polarizabilitya(w) with the help of Eq.(14).

A|||(y) if r$R1
ll. SIMPLE MODELS AND RESULTS R(y)=1{ BIli(Y)+CY|(y) if Ri<Sr<R, (29
A. The rectangular potential well model DiKi(y) if Rp=r,

for single-shell nanotubes wherel,(y) andK(y) are, as earlier, the modified Bessel

1. The electron density distribution functions,J;(y) andY,(y) are themth order Bessel functions

To get a physically realistic still numerically manageabIeOf the first and second kind, respectively. Prescribing the

electron density we apply a simple model, which is similar gocontinuity conditions forR(y) and.for its derivatives aR;
the empty lattice model used in solid state physics to degind R, one can get for the energies

scribe the electronic band structure of simple solids. We sup- 52

pose that a nanotube can be represented by a long, hollow E i(K)=x ;+ ==k (25)
cylinder along thez axes of our coordinate system, with a ' To2m

finite thicknessv, and with an inner radiu®,, and outer Fqr gach angular momentum quantum number an additional

radiusRy, with v =R, —R,. The detailed geometrical struc- ingex i is necessary because the finite potential well may

ture can be described by starting from a monatomic sheet %ssesses one, two, or more eigensolutions depending on

graphite® First choose an arbitrary lattice point as the origin,;, and U, and I. In the case of zero width one should

and then another one with .Iat.tl.ce vectBr=n,a; + n,ay, get x,= — Ug+#212/2mR2 with no additional index. The

where a, and a, are the primitive vectors of the two- gnergy spectrun25) consists of one-dimensional parabolic

dimensional hexagonal lattice. Next we roll the sheet so thaénergy bands, shifted by thedependentx, ; values. All

the second lattice point is superimposed on the origin. Thi$he "pands have their own Fermi 'momentzk,ﬁ i

gives us the skeleton of a carbon nanotube. We are using the ) VI ; ; : ’

notations of Whiteet al.® hencen;=n,=0. All the geomet- V(2m/A%) (e =i,)- The e Fermi energy is defined by

ric parameters of the tubule can be given in terms of the 2

integers n; and n,. The radius of the tubuleR n0=—2 p,(2m/h2)(eF—x|,i). (26)

=dg3(nf+n3+nny) Y427, so Ry=R—v/2 and R,=R T

+v/2, wheredy=0.142 nm is the interatomic distance in the Hereny=n,ng /S, is the number of electrons in a tubule of

graphitic sheet. The length of the unit cell in the z directionunit length,n,, is the number of electrons per carbon atoms

is Sy=3do(n3+ n3+n;n,)*?/L, the number of carbon atoms constituting the tubule. The parametgr=1 if |=0, and

within this unit cell is ny=4(n3+n3+n;n,)/L. Here p,=2 otherwise, corresponds to the degeneracy of the angu-

L=N, whereN is the largest common divisor ai; and lar momentum quantum numbér The volume density of

n,, except if (1;—n,)/3N is an integer, in that case electrons, needed for the local plasmon frequency in(g)q.

L=3N. is given by
Using the one-electron approximation to describe the

electron density within the tubule we suppose that the poten-

tial is constant,— U, inside R; andR,, and zero outside.

The one-electron Schdinger equation should be written in ] ] )

cylindrical coordinates and the wave function can be sepaSuPPosing that th&, ;(r) radial wave functions are normal-

rated in the form ized to unity.

ke,
(=2 p—3 R (27)

W(r,0,z)=R(r)e' %, (21 2. Numerical results for single-shell tubules

Due to the rotational symmetry of our tubule potential the Our model for a single-shell nanotube contains four pa-
angular momentum quantum number has the value§@meters: First, the integers(,n,), which describe the ge-
|=0,+1,+2,.... In thez direction we introduce Born- ©Ometry, then the widthy, and the depthlJ,, of the rectan-
Karman periodic boundary conditions within a macroscopicgl“ar potential well, responsible for the physics of the tubule.

length'S of the tubule, leading to the quasicontinuous valuedn Our subsequent treatment it is supposed that we have four
of the wave numberk=(27/S)n, where n=0,=1, e€lectrons per carbon atoms, that is the fult- 7 electron

+2,... %N, and S=NS,. The radial component of the System is considered. In a similar calculafbfor the G,
wave function satisfies the equations for the one-particle enholecule the width was chosen as=0.30 nm. Requiring
ergy E with y=r i®+ K2, k2= — (2m/42)E, that the highest occupied orbital should reproduce the ioniza-
tion energy(7.54 eV} of the fullerene molecule gave us
2d2R dR - Uy=—30.0 eV. To our knowledge, there are no measure-
Y gty d_y_[y +17]R=0, (22 ments for the ionization energy in the case of carbon nano-

tubes, therefore we have used, somewhat arbitrarily, the
if r is outside the tubule,<R; orr>R,, and same numerical values forandUg in the calculations pre-
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FIG. 1. The one-electron energy spectrum for ¢(he,0 tubule with radiusR=0.391 nm in the rectangular cylindrical potential well
model. The spectrum consists of coaxial parabolas shifted by the eigenengrgiesf the potential well(a). The angular momentum
quantum numbek, and the index are shown in diagrarth) for each of the eigenenergies. The density of stateexhibits singularities at
X i, due to the free motion of the electrons along the one-dimensional tubule axig-Fhe7.18 eV Fermi energy is determined by the
number of atomg40 for this tubuleé and the number of electrons per atéfin our model. The width of the potential wely =2.5 nm and
the depthU,= —34.5 eV.

sented in this paper. It turned out that our results are not very The polarizabilties of single-shell nanotubes can be seen

sensitive for the actual values of and Uy, supposing that
the Fermi energy remained around 7.0 eV.

The single-particle energy spectrum for t#i€,0 tubule
is shown in Fig. 1 together with thie angular momentum
quantum numbers for thg ; energy eigenvalues. It is re-
markable that thel(x, ;) plot is nearly parabolic, as it should
be in the case of the two-dimensional cylindrical model o

on Figs. 3 and 4. One can see a characteristic two-peak struc-
ture for the imaginary part ok(w), the intensity of the
low-energy peak is higher than that of the high-energy peak.
The width and the absolute magnitude of the peaks are de-
pendent on thd" artificial imaginary part ofw, therefore
they have no physical meaning. Similar results were pub-
flished for the Gy molecule by Lambiret al** According to

their model we may call the lower-energy peak the tangen-
tial, slow mode, and the higher-energy peak the radial, fast
dipole active mode. For the smallest tubule radius the tan-

zero width. The density of states curves show the one
dimensional type of singularities representing the free mo
tion of the electrons along theaxis. In our simple model the

nanotubes are always metallic, therefore the energy spectrum

1301
is not comparable with the results of tight binding or density 120
functional calculations, which lead to a metallic, or semicon-
ducting energy spectrum. Since we are interested now in the 0
collective excitations of ther+ 7 electron system with en- 160
ergies mainly above 10 eV, it is not critical whether the real 0.90
system is metallic or semiconducting with an energy gap of o 0.80
1-2 eV. What we need is the electron density, which readily 35 -,
can be calculated from the wave functions using EY). f\ 060
The results are shown in Fig. 2 for two tubules with radii & ™
R=0.391 andR=1.174 nm. One can see that the shape of < 930
the electron spatial distribution is almost independent of the 0.40
radius of the single-shell tubules, therefore it is not necessary 0.30
to recalculate them for larger radii. There is a small asym- 0.20
metry between the increasing and the decreasing sides of the 010
density profiles mainly for a smaller tubule radius, and a ) : .
shallow minimum appears at the cylinder axis, because of 0.00% e T 00 125 Bo 175 200

the nodes of the wave functions for odd angular momentum

r (A
guantum numbers. ®

To solve the integral equatiofi8) an imaginary part,
iT", was attributed to the energy variate For that reason a

FIG. 2. Electron densities in atomic units for tubu(&®,0 with
radiusR=0.391 nm and for30,0 with radiusR=1.17 nm. The

full Complex arithmetic was used to get the CompleX SOIUtiOﬂparameters of the potential well=0.25 nm,U,=—34.5 eV (full

f(r), and the complex polarizability(w). The numerical
value ofI'=1 eV was supposed throughout the calculation
reported in this paper.

line) andv =0.30 nm,U,= —30.0 eV(dotted ling. The dashed line
Son the tubule(10,0 shows the rectangular density profile used in
Sec. Il B.
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FIG. 3. Imaginary part of the polarizability of the tubul&0,0 FIG. 5. The transmission electron energy loss spectrum for the
for two sets of the potential parameters=0.25 nm,Uy,=—34.5 bundles of nanotubesn(0), where n=8 (circles, n=9,10,12,
eV (full line) andv=0.30 nm,U,=—30.0 eV (dotted ling. 15,20(successive full lines andn=30 (crosses

gential peak is at about 17 eV, the radial one is at about 2¢&5nce between two tubules. We may suppose that
eV. With an increasing radius the position of the tangentigbozo_342 nm, which is the interlayer distance in solid
component tends to a lower energy and that of the radigyraphite. The number density of nanotubes in the plane per-
component to a higher energi;ﬂg. 4). For a fix radius the pendicular to the tube axis is= (4/y27)/d2. Neglecting the
tangential component remains at the same energy, but thgieraction between the individual nanotubes the complex
radial one shifts to somewnhat higher energies with decreasjjie|ectric function can be calculated from our polarizability
ing width of the potential wellFig. 3). _ _as e(w)=1+4mna(w). The transmission electron energy
Instead of a single nanotube, one may be interested in thg g gpectra, measured on the bundle of these nanotubes are
properties of a bundle of tubules. We can imagine such roportional to Inf—1/e(w)). The loss spectra are also
bundle as being made from single-shell nanotubes, with §,hje peaked, with the remarkable difference that the
pgrallel axis forming a hgxagorjal Iatticg. The perpendiCUIahigher-energy peak at about 28 eV is independent of the
distance between two neighboring axed s2R+ Do, where  yhyje radius, while the position of the low-energy peak
R is the radius of a single tube, amg is the smallest dis-  gpifis to lower energies with an increasing radifi. 5).

; B. Rectangular density distributions, multishell tubules

1200 i
5
1222 l,'l‘ v=0.3nm 1. The dipole polarizability for multishell tubules
i The generalization of the theory described in Sec. Ill A
900y 1 1(30,0) for multiple layer nanotubes is straightforward, but its nu-
5 800% : : merical realization, especially the solution of the integral
°® 700 P equation(18)—(20) is a formidable task. To simplify the
3 600 i 'l treatment we introduce a furthe_:r assumption to our model.
5 o The shape of the electron density distributiéig. 2) is ap-
g 0 _," '1 proximated with a steplike function, which is zero outside
400 . the tubule and constant inside. We call this model the rect-
300 P angular density model. This model was already successfully
FE “ applied for the G molecule by @®tling etal® and
200 J L (00) i Vasvai,*! and for multishell carbon onions by Apadt al3*
oy 7 AN 7N Suppose, that we have a multishell tubule withNanumber
P T S of coaxial cylindrical shells, each having a radRsand the
5 0 520 25 30 35 40 same thickness. The squared local plasma frequency,
energy, eV which is proportional to the electron density is defined as

FIG. 4. Imaginary part of the polarizability of the tubul€s0),
(10,0, and (30,0 with radii 0.274, 0.391, and 1.174 nm, respec- N
tively. The potential well parameters here and in the following fig- wgl(r): w% 2 O(r—a)0(b—r), (28)
ures:v=0.30 nm,Uy=—30.0 eV. i=1
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wherea;=R;—v/2 andb;=R;+v/2, andO(r) is the Heavi- by=0.342 nm. According to this model, the geometry of
side step function. The innermost tubule, its radRis is  each multishell tubule is characterized by the integers for the
defined by the pair of integerq{,n,). For this tubule we innermost shell, if;,n,), and the number of layend, with
calculated the electron density(r) as in the case of the the same charge density on each shell.

single tubule using the same parametelandU, as before. For the solution of the integral equatigh8) we use the
Then the parameteﬁg was chosen by requiring that the area ansatz

vw(z) should be equal to the area under the full local plasmon

N
frequency curve on the axis (see Fig. 2 f(r)=S [A8(r—a)+B;8(r—b))]. (30)
=1
w§=(1h)(4me’/m) jo n(r)dr. (29 supstituting this form forf(r) into Eq. (18) after a lengthy

but straightforward algebra one can get a set of linear inho-
The parameters and w3 were the same for all the shells, mogeneous equations for the coefficients and B,
each radiusR; was bigger than the previous one byi=1,... N,

N wg wé wg wg
2 —
jgl HZK(ai,aj)'i" w —3) 5ij AJ+TK(ai,bj)Bj}_—Z,
3 wg wg wg wg
2 —
121 |—ZK(bi,aj)Aj+ — 4 Kbi,bp)+| —7)5”}51.]_71 (31)

with theK (r,r") function given by Eq(20). The polarizabil- For the w=0 static dipole polarizability this gives for a
ity can be expressed in the terms of the coefficiggt®; as  single-shell tubule of unit Iength(0)=b§/2.
follows:

N 2. Numerical results for multishell tubules

a(w)=_21 [Ajaf+B;b?]. (32 The first question to be answered is how do the two solu-
o tions for the single wall nanotube agree with each other?
For a single-shell tubuleN=1, these equations can be Figure 6 shows the comparison of tti,0 nanotube with a
solved explicitly: smaller radius R=0.39 nnj and of the(30,0 nanotube with
a larger oneR=1.17 nnj. One can see the overall similarity
wé of the two approaches, although there are some differences
also, mainly in the relative height of the peaks and somewhat

4D(w) ' ; 2 ;.

in the positions, too. These deviations are the consequences

w2 w2 a2 of the differences in the shape of the electron density distri-

B,= 0O |2 _0( _% , (33  butions, which is a bit asymmetrical in the case of the rect-

4D(w) 2 b1 angular potential model, and completely symmetrical in the

where case of the rectangular density model. The qualitative results
of the two models are the same. For that reason, we may use

w2\? wfa? the simplified rectangular density model to calculate some

D(w)= ( w’— 7) "2 52 (39 characteristic tendencies of the multishell nanotubes.
1

First we have to find out the intensity of the shell-shell

is the determinant of the corresponding homogeneous equépteraction in the multishell tubules. For that reason we have

tion. The zeros of this determinant give the eigenfrequenciesalculated the imaginary part of the polarizability first for
of a single wall tubule two separate single-shell tubules(@0,0 and (50,0 with a

large difference between their radiiR;=0.391 and
a; R,=1.96 nm, respectivelyjdashed and dotted lines of Fig.
ib_l ' (39 7(b)], next for a system of a double-shell nanotube with the
same shell radii. The shell-shell interaction is represented in
the smaller being the tangential, the larger the radial dipolgur basic equatioii31) by the kernelK(r,r’) when one of
active mode. The polarizability its variables is from one shell and the other variable is from
the other shell. If we artificially switch off this term from Eq.
(31) then we get simply the sum of the two polarizabilities
[dashed-dotted line Fig.(®)]. Switching on the interaction,

2
2 _ %o
RN

2

()= F(Ow) (a2 -bd). (36)

2
2 %o
02— —

2
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FIG. 6. C . f th larizabilit lculated f th FIG. 7. The effect of the shell-shell interaction. The imaginary
- 9. Lomparnson ot the polanzabiities calicuiated from the part of the polarizability for a double-shell nanotuk@, the shell is
rectangular potentialp) model and the rectangular densitd)(

the (10,0 type with radius 0.391 nm, the outer shell is 28,0
model for the tubule$10,0 (a), and(30,0 (b). type with radius 0.782 nm. Dotted and dashed lines are the polar-

izabilities of the single-shellss nanotubeg10,0 and (20,0, re-

spectively. The dash-dotted line is the double-stadl polarizabil-

ity with the shell-shell interaction switched off, the full line is the ds
one can see that the effect is small, but not negligible still inpolarizability with the interaction involvedb) The same with the
this case of large distances between the two shtllsline  tubules(10,0 and (50,0 with outer radius 1.958 nm. For such a
of Fig. 7(b)]. There is a small shift downward on the energy large distance between the two shells their interaction is reduced,
scale for the lower-energy peak position of the outer tubulebut still not negligible.
while the higher-energy peak practically remains at the same
position. There is, however, a considerable decrease of the
outer peak intensities and an increase of the inner intensities
as an effect of interaction. FigurgaJ shows the same for The same effect is manifested when the number of sheets
tubules(10,0 and (20,0, R,=0.782 nm, with a smaller dif- of a multishell nanotube changes. Figure 10 shows the po-
ference in the shell radii. One can see a strong effect of th&rizability from the single-shell tubule to shell number
shell-shell interaction, a larger shift in the peak positionsN=25. The innermost tubule is tHg0,0 tube with radius
and an almost complete disappearing of the peaks of thR=0.39 nm with two peaks, one around 14.0 eV and another
outer shell, and a considerable increase of the intensities bene around 22.5 eV. Increasing the number of shells only
longing to the inner shell. To see the details of these drathese two peaks remain, getting closer and closer to each
matic changes Fig. 8 shows this tendency for gradually deether, forming a single peak around 19.0 eV for the shell
creasing the distances of the tubule shells froimy 60  numberN=20. We obtained the same trend for the other
by=0.34 nm, which is the distance of the carbon sheets imadius for the innermost tubule, with the difference that with
solid graphite. Practically the peaks corresponding to then increasing radius the two peaks of the innermost tubule
outer shell disappeared, and the positions of the two peaksecame more separatéérig. 11), therefore they will form a
corresponding to the inner shell shifted towards each other asingle peak only for larger shell numbers. For the biggest
a consequence of the shell-shell interaction. The same tefRnermost tubule investigated in this papé0,0, with ra-
dency can be discovered for a three-shell nanotube(Bigo  dius R=1.96 nm, the two peaks are around 7.1 eV and 25.5
9). Hence we have to realize that the interaction between theV for a single-shell tubule, and they approach each other as
tubule shells is far from being negligible. close as 18.1 eV and 19.3 eV for a multishell tubule with a
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shell numbemMN=100. This looks like a single peak for the
case of a spectroscopic resolution less than 1-1.5 eV.

IV. DISCUSSION AND SUMMARY

First of all we have to emphasize that the ML theory that
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. . _ FIG. 10. Shell-number dependence of the polarizability. The
we have app.IIEd. for carbon nan.otub.e's neglects the Slngle|nnermost tubuld N=1, full line on (a)] is of the (10,0 type, the
particle contributions to the polarizability, therefore, our re-Subsequent shells follow to a distarizg=0.342 nm from the pre-
sults are definitely not applicable in the energy range below\'/ious one. The subsequent curves on diagrémsand (b) corre-

Say’_5_7 eV, where the eleCtron_'hO|e excitations play th‘:'épond to different shell numbebl$, as indicated on the figure.
dominant role. Also, the broadening of the plasmon peaks

are the consequence of the single-particle excitations, there-
fore, the width of the peaks, which is produced in our calcu-
lations by the artificially chosen imaginary part of the
energy, does not bear on physical meaning. Other reason of
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FIG. 9. The same as Fig. 8 but for a three-shell tubule. nermost tubules of typel0,0, . . . (50,0.
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the broadening of the experimental peaks may be the dispepared to our results for the nanotubes, and up to 40 shells
sion of the plasmon frequencies. It may occur that a momentheir peaks remain separated. The largest peaks also corre-
tum transfer is also present in the experimental circumspond to the innermost g molecule, but the next shell’s
stances, and our calculations correspond to the case of zecontributions are not as screened as in the case of nanotubes.
momentum transfer. It should also be noticed that we havén the case of the onions, there is no way to vary the radius
calculated only the dipole excitation$=1), while in the of the innermost shell, it is always theg@mnolecule.

actual situation multipole transitions may also be present, Inthe case of the nanotubes the majority of the theoretical
giving rise to further broadening of the spectrum. We have tgapers treat ther electrons only,/ 1%212224therefore we
mention that in deriving our formulas we suppose the exci-cannot compare our results with them for the- = elec-
tations are induced by a homogeneous electric field, perpenrons. Huaxianget al?® calculated the imaginary part of the
dicular to the cylinder axis. This condition is usually fulfilled djelectric function for thes+ 7 electrons for two types of

in optical measurements, but it may be questionable irsingle-shell nanotubes, but for polarization vectors parallel to
EELS, if the diameter of the electron beam is less than ofnhe tubule axis, while in our calculations it was perpendicular
comparable to the tube diameter. This was the case in thg it Nevertheless they have the main peak ok(m), at
experiments of Bursilet al® For all of these reasons we do 15.5 eV, and two other peaks at 9.0 eV and 20.0 eV for both
not expect a quantitative agreement between our calculatqg s of wbules. These are to be compared with the polariz-
spectrum and the presently available _ex_perimental data, blétbility in our calculations(Figs. 3, 4. Our Ima(w) has a

we do expect that our results are predictive for the measuredouble-peak character with peak positions depending on the

ments of optical absorption coefficient on individual nano- . . .
tubes of either single- or multishell type, and at least thedlameter and somewhat on the width of the potential wel,
' e closest is thd€7,0) tubule to the results of Huaxiang

eak positions of the EELS results can be interpreted in th :
P P P et alZ® The reason for the presence of more peaks in Hua-

terms of our model. .
To our knowledge there were no optical measurements ofia"d €t al. may be that they calculated the full spectrum,

nanotubes until now. In EELS experiments the number ofnvolving the single-particle excitations too, and our calcula-
shells and the diameter of the innermost tubule are not afion contains only the collective contributions. In the detailed
ways indicated in the published results. The width of thecalculations of Yannouleast al.?>?® only the frequencies
measured EELS peaks is as large as 8—10 eV, and they d@r the collective modes of a nanotube with zero momentum
not exhibit a double-peak character. We expect that in th&ansfer §=0) and with angular momentumm=1 can be
case of large innermost radius and small shell numbers the@@mpared with our dipole polarizability(w). Their results
should be a double-peak spectrum in optical and EELS meder multishell tubules is based on a model where each shell is
surements also. The measured EELS peak positions are dedpposed to be a two-dimensional cylindrical surface of zero
pendent both on the number of shells and the diameter of theidth. In this model only the low-energy tangential mode is
nanotubes?~1® There is a single broad peak around 15-18active, therefore, for each shell numiey they got exactly

eV for a smaller(less than~12) shell number and a shift of N eigenfrequencies. The oscillator strength is the largest for
this peak to 22—27 eV with increasing shell number. In ourthe top level eigenfrequency and this can be compared to the
calculated Ina(w) functions the small-energy peak always lower-energy peak position of our kfw) curves. For
has a higher intensity than the high-energy one, especialli{=1 and tube radiufRo~1.69 nm they got the eigenfre-
for the more precise rectangular potential well motsde quency at about 6.9 elsee Fig. 8 of Ref. 25, which is
Figs. 3, 4, 6. In the case of the nanotubes witl{l#,0-type  favorable comparable to our value 6f7.5 eV (Figs. 4, 11
innermost tube the calculated low-energy peak position infor the tubule(45,0 with a similar radius. By increasing the
creases from 14 eV for a single-shell tubule to 18.7 eV for ashell number this peak position, which is the top level of the
large shell number. From shell number 15 the difference befrequency band, tends to 18 eV in the Yannouleas calcu-
tween the positions of the low- and large-energy peaks is ledations, and to~18.7 eV in our calculations. There is, how-
than 1 eV, and remains constant at about 19 eV, indeperever, a discrepancy, the zero momentum transfer@) val-
dently of the radius of the innermost shéfig. 11). If we  ues of the top level frequency for lard¢ values strongly
attribute our low-energy dipole active mode to the measuredepends on the innermost rad[see Fig. &) of Ref. 25 and
EELS spectrum, then the general tendencies of the measur&igs. 1a) and 3 of Ref. 2§ while it tends to the same value

spectrum are in agreement with our calculated data. in our case(Fig. 11). For nonzero momentum transfer this
Regarding the published theoretical results we can comdiscrepancy quickly disappears.
pare our results with the calculations of Apetlal®* for the In summary, plasma oscillations of a cylindrical electron

multishell fullerene onions. We followed nearly the samesystem was investigated in this paper. The main results are
model for the cylindrical carbon nanotubes as they have useithe following.

for the spherical grbased multishell fullerene molecules.  The theory of Mukhopadhyay and Lundqvfst® for the

The results of the two calculations are very much similarcollective oscillations of an inhomogeneous electron system
with differences originating from the fact that they applied it is specified for cylindrical charge distributions. A rectangular
to the 7 electrons only, and they have used a much smallepotential well model was introduced to calculate the charge
width for the steplike charge density distributions. They alsodensity of single-shell nanotubes. The single-particle spec-
have a double-peaked structure for a single-shell fullerengrum exhibits an interesting quasi-one-dimensional character
with a higher intensity for the lower-energy peak; the dis-with singularities in the density of states.

tance between the two peaks is also decreasing with increas- In the case of single-shell nanotubes the imaginary part of
ing shell number, although with a much less amount comthe dipole polarizabilty shows a double-peaked character.
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