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Structural instabilities of excited phases
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The structural stability of various elemental metdlg Sc, Al, Mo, and NB, ordered compound®tTi and
PtV), and disordered Ni-Cr alloys along distortion paths linking high-symmetry structures are investigated. A
number of high-symmetry nonequilibrium structures are found to be mechanically unstable for these deforma-
tion paths, even for structures that occur at high temperature. For Ti, the electronic entropy is found to stabilize
of the bcc phase at high temperatures, but without vibrational effects the Ihop transition would occur at
much higher temperatures than observed. To treat disordered alloys along the Bain distortion path, the cluster
expansion method is applied to the body-centered-tetragonal lattice, with particular choices of clusters in order
to guarantee that the effective cluster interactions comply with the symmetry conditions of the cubic lattices.
For disordered Ni-Cr alloys, the range of composition where the bcc and fcc phases are mechanically stable is
determined[S0163-18207)00102-]

[. INTRODUCTION connecting the beehcp, AuCd-CsCl, and AuCd
— CuAu-Il structures. The latter two are appropriate to the
The energies and entropies of both equilibrium and nonMartensitic transformations from the low-temperature AuCd
equilibrium phases are important to the phase diagram bgshases of PtTi and PtV, respectively; in one case the high-
havior of metals and alloys. Besides the issue of what are theemperature phase is metastable along the distortion path
low-temperature equilibrium phases, there are cases of strucensidered, while the other is locally unstable. In addition,
tural phase transitions at elevated temperatures. In additionjsordered Ni-Cr alloys along the Bain distortion path and
excited phases of some composition can have consequendée mechanical stability of the cubic alloy phases as a func-
for the alloying at another composition. Many such phasesion of composition will also be considered. The Ni-Cr sys-
can be related to another by lattice distortions: perhaps th&em was chosen since the instability of the Cr fcc phase is
most famous example of these is the Bain distortion whictseveré and Ni-Cr has both a fcc stabi@li-rich side of the
takes a bcc lattice int@or from) an fcc lattice via a tetragonal phase diagrajnand a bcc stabl€Cr-rich) region®?
distortion. It has been generally presumed that excited struc- The extremal condition arises when a lattice distortion of
tural phases, particularly if they are observed high-some given symmetry, for example tetragonal or orthorhom-
temperature phases, are metastable. Previously we habéc, passes through a structure of higher symmetry. If the
showrt? that large classes of these phases are, in fact, natistortion path is described in terms of a parameter con-
metastable but instead are locally unstable, i.e., are unstab$trained to satisfy certain conditions, the derivative of the
to lattice distortions. These instabilities can be seen in @&nergy with respect to the distortion parameter will be, by
number of previous calculatiofi€ and have implications for symmetry, zero valued upon passing through structures of
phase diagram constructs’ higher symmetry. Thus, the energy will be a minimum, a
The objectives of the present paper are threefold: First, ttnaximum, or an inflection point for such structures. In the
demonstrate that the mechanical instabilities found previcase of the tetragonal Bain distortion path for an elemental
ously are, in fact, ubiquitous; secondly, to show that theseolid or a disordered alloy, the condition requires that the
effects are not limited to ordered systems, but may also occugnergies of the fcc and bcc phases must be extrema. For a
in disordered alloys; and thirdly, to show that these types obinary ordered compound along a distortion path passing
instabilities may be present in systems that are stabilized bthrough the CsCl and the CuAu-I structures, however, the
entropy at high temperatures. Although these issues relatezbndition applies to the cubic bce-like CsCl phase, but not to
to phasdin)stability seem at first glance independent of eachthe fcc-like CuAu-1. Even though the latter is on an fcc lat-
other, they all need to be considered if one is to gain a betteice, the atomic packing makes the intrinsic symmetry tetrag-
understanding of phase diagrams from a microscégiec- onal and hence the same as the distortion. Of course, there
tronic structuré point of view. may well be an extremum near the CuAu-I structure, but its
Previously a condition regarding the topology of the en- c/a value will not be dictated by symmetr§Experimentally,
ergy surface along certain distortions was derived indicatingnost compounds that form in the CuAu-l structure have
when the energy must be an extremum along the path ancfa values deviating from the ideal fcc validhile the
examples were given for systems connected by Bain distoBain distortion is the best known case, distortion paths with
tions. The present paper will consider several other cases sfymmetry-dictated extrema can be derived for other cases
the Bain distortion and will also inspect deformation pathsalso; for example, the beehcp path is discussed in Appen-
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dix A. It is important to note that not all paths connecting temperature hcp phase will be considered.
two high-symmetry phases will have symmetry-dictated ex-

trema and even small deviations from the path may destroy Il. CALCULATIONS
the extremal properties.
The present investigations use first-principles methods A. Ordered systems
utilizing the local-density approximatiofLDA) for ex- The calculations for all the systems but Ni-Cr and the

change and correlation. The utility of this class of calcula-results in Appendix B employ the full-potential linearized
tions for elemental solids and their compounds has been th@ugmented Slater-type orbital methddFLASTO). In this
object of study for some years. As a rule, the observed lowmethod, Slater-type orbitals are used to construct wave func-
temperature phase has a computed total energy which is stéens in the interstitial region, augmented by explicit solu-
bler than that of other phases at the same composition antlons of radial wave equations within nonoverlapping atomic
for compounds, more stable than the two-phase mixture ofpheres at each atomic site for orbital momenta up to
phases at different composition, i.e., the observed phases are=8. Aspherical electron density and potential terms are
correctly predicted. Calculated enthalpies of formation arekept throughout space and the core electrons are treated self-
generally in accord with experiment for those phases fotonsistently and fully relativistically. Spin-orbit effects were
which there are experimental data; even the calculated emeglected in the self-consistent treatment of the valence
thalpies of transformation, e.g., the Ti hefbcc transition, shells, although they were turned on in a final iteration in
are in agreement although the high-temperature phase is lmost cases. When dealing with systems involving transition
cally unstable. This latter observation would suggest thametals, FLASTO may be considered superior to computa-
LDA is as accurate for nonequilibrium as it is for equilib- tional schemes neglecting aspherical terms and comparable
rium phases. There are, however, significant long standintp or superior to other schemes employed to estimate differ-
discrepancies between LDA predictions and certain succesgnces in energies between systems with the exception of the
ful constructs of phase diagrams. In particular, in the 1960'sull-potential linearized augmented plane-wave metfod
Kaufman and Bernstefrdeveloped empirical models that are which utilizes a more complete basis set in the interstitial
widely used to fit equilibrium phase diagrams of binary andregion. The Hedin-Lundqvist formalism for the local-density
multicomponent systems. In their scheme the energy differexchange and correlation potential was adopted.
ences between equilibrium and nonequilibrium structures of Sets of speciak points were used and were increased in
the pure elements play a key role. Although there is agreesize until details such as the behavior of the energy in the
ment between the LDA and the empirical modeling in manyvicinity of an extremum were accurately established. For ex-
cases, there have been two important areas of disagreementple, calculations following a Bain distortion employed
concerning the structural energy differences. First, the scalsets of 40, 126, 405, and 5%Qpoints and the latter two sets
of the energy differences between the bcc and the closewere in agreement for the systems reported h@reis was
packed fcc and hcp phases for metals in the middle of th@ot the case for L{Ref. 15 which very likely has the same
transition metal row deviate significantly. In a number of instability to local distortions as will be seen hgrSlater-
cases, these discrepancies are outside the LDA errors etype orbital basis sets of varying size were employed with
countered when calculated heats of formation or structurathe largest involving 2s-, 2 p-, 3 d-, 1 f-, and 1g-like
energy differences may be compared with experiment. Thigrbital for a transition metal and &, 2 p-, a d-, and an
issue remains unresolved between the two communities df-like set for Al.
practitioners. Secondly, the empirical construct requires that The remaining total-energy calculations used the linear-
for the bcc metals of the V and Cr columns of the periodicized muffin-tin orbital in the atomic-sphere approximation
table, the excited hcp structure be more bound than the fc§LMTO-ASA).2® This method allows, in a reasonable
LDA calculations to date have universally placed the fccamount of time, the calculation, of the large number of struc-
lower in energy, although the impact of théa ratio on the  tures usually required by the cluster expansion method dis-
energies of the hcp lattices was not investigated sufficientlycussed below. The calculations using the LMTO-ASA
The bce-hcp distortion path will be considered for Nb method were carried out self-consistently, including scalar-
and Mo, along with the hcp—fcc energy differences as aelativistic effects, but disregarding magnetic effects. The
function of the hcpe/a ratios. Nb—butnot Mo (nor Ta and  calculations used a basis set involviagp, andd orbitals,
W for which results have been previously obtaitige-will  and the Barth-Hedin formalism was used for the exchange-
be seen to have the hcp phase lower in energy, consistepbrrelation potential. The calculations used a numbek of
with the demands of Kaufman’s empirical construct and conpoints such that the total energy of the structures changed
trary to general LDA experience. It should be noted that suchess~0.1 mRy/atom. Depending on the number of atoms in
phase diagram constructs strongly depend on the nonequililhe structure’s basis, the number lofpoints in the calcula-
rium structures being metastable and, as observed above, thign ranged from 288 to 1000 points in an irreducible wedge
is generally not the case. This issue has been discussefthe Brillouin zone. The number & points were then kept

recently-*!“and there is a growing consensus that in thosesonstant for each structure throughout the Bain distortion
cases where the excited phases are locally unstable, the strygath.

tural energy differences of the empirical constructs are effec-
tive rather than true thermodynamic quantities. Finally, the
guestion of the extent to which the electronic entropy may
act to stabilize the high-temperature bcc phase of Ti which is To calculate the energy of the Ni-Cr disordered phase
locally unstable at zero temperature relative to the low-deformed through the Bain distortion path, the cluster expan-

B. Cluster expansion
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sion method’*8was used. In this method, a spinlike occu-
pation numbero; is assigned to each lattice poirit o —_—
in the crystal. The set ofN occupation numbers °
o={o4, ...,o0}, WhereN is the number of sites in the \
crystal, fully specify the configuration of the system. In the o] %0 |° N
cluster expansion method, the eneigy any function of a il
configurationc;) is written as a weighted sum of the multisite ol folo
cluster functionsb,(o): S @\
ol ©p 1% 2022579 5
E(0)=2 Vo@(0). (1) sre |90l [ L
n 101 £ o 1 520350"
(8) oFT (b)

The cluster functions form a complete basis in configura-
tional space and the expansion coefficievitsare called ef-
fective clusters interaction&Cl’s). In general, the ECI's are
of short range, which allows the expansion to be truncated at
a reasonably small number of clusters. It may be shown that
the ECI's have the symmetry of the lattice. This requirement

allows one to groupi)n(c;) in sets of equivalent clusters. The
average over the set of all clusters functions related by the
symmetry of the lattice is called a correlation function, and if
multiplied by the degeneracy of the ECI, can be used for the
expansion.

Since for the Ni-Cr system we are interested in the Bain
deformation path, the body-centered-tetragonal lattice is used
for the cluster expansioff:?° The ECI's can be determined
by matrix inversion or by a least-square fit using the calcu-
lated energies of selected structures at various volumes and FIG. 1. (a) Pair, (b) three-body,(c) and four-body clusters
c/a ratios, and their correlation functioRsThese ECI's will ~ of lattice points used in the cluster expansion. Clusters drawn with
then have a volume and/a ratio dependence, and the en- continuous lines are l_Jsed for the_ expansions of the cubic Iattic_es;
ergy for any ordered or disordered structure in the tetragondi® clusters drawn with broken lines are used for the expansion
lattice can be calculated. It is noted that @a=1 and of the tetragonal lattices but are incomplete at points of cubic
c/a= /2 the lattice is cubic so the ECI's at theska ratios symmetry.
must have the symmetry of the cubic lattice.

In order to determine the ECI’s as a functionosh ratio, To determine the ECI's foc/a ratios other than 1 or
we first consider the points of cubic symmetry of the lattice.\/2, we chose to fit the expansion parameters by minimizing
At c/a=1 andc/a=/2 the ECI's were fitted to the calcu- the error in the energy differences of the structures relative to
lated formation energies of the ordered structures at a corits energies in the cubic lattice. The formation energy ECI's
stant volume using a cluster expansion in a cubic latticewere then determined by adding the ECI’s calculated in the
Except for the empty and the point clusters, the clusters use@spective cubic lattices. Fera ratios<1.2 we minimized
for the expansion in the bcc and fcc lattice are drawn withthe error in the energy differences relative to the structures in
full line in Fig. 1. The bcc cluster expansion included, in the bcc lattice, while forc/a ratios>1.2 the energy differ-
addition to the empty and point clusters, pairs up to theence relative to the structure in the fcc lattice was used. This
fourth neighbor, three three-body clusters, and two four-bodyitting procedure guarantees that, @a=1 andc/a= V2,
clusters. The fcc cluster expansion included the empty anthe values of the ECI's comply with the symmetry require-
the point clusters, pairs up to third neighbor, three three-bodyents of the cubic lattice. A sixth-degree polynomial func-
clusters, and two four-body clusters. In Fig. 1 the lines contion was used for the/a dependence of the formation en-
necting the bcc and fcc clusters show the relation betweeargy ECI's. This polynomial function provides a satisfactory
the clusters in the two cubic lattices when deformed througtiit to the energy curves for the pure transition metals de-
a Bain distortion path. As the/a ratio changes from the formed through the Bain path calculated in Ref. 1. For all
points of cubic symmetry, the sets of equivalent clusters magymmetrically equivalent clusters, the slope of the ECI's
split into two or more sets of clusters in the body-centeredfunctions relative to the/a ratio were constrained to add to
tetragonalbct) lattice. Note that due to the truncation of the zero at the points of cubic symmetry. This requirement was
cluster expansion, some of these clusters in the tetragonareviously showff to be also symmetry dictated and guar-
lattice do not form a complete set when ttfa ratio reaches antees that all cubic structures, ordered or disordered, will
the opposite point of cubic symmetry. These incompletedisplay an energy extrema when deformed though a Bain
clusters are shown in dashed lines in Fig. 1, and were cordistortion. Conversely, no particular functional form was as-
strained to be zero so that the truncation in the tetragonalumed for the volume dependence. Each least-square fit was
lattice was in agreement with the one adopted in the cubicarried out at a constant volume of the bct lattice, and it was
lattices. repeated for a range of volumes between the equilibrium
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‘ there must be one more minimum than maximum. Hence, if
either the bcc or fcc structure is a maximum, another mini-
mum must exist, but its position is not determined by sym-
metry. For Ti, this minimum occurs &fa~0.85. Elements
do form in this compressed body-centered-tetragonal struc-
ture, the prototypes being Sn under pressure and protac-
tinium.
Like Ti, Sc has its volume minimum at 0.9V ,,s. How-

ever, in contrast to most of the transition metals,(5g. 2
has an inflection point at the bcc structure. Thus, bcc Sc is
locally unstable without having a local maximurfSc re-
mains hcp up to its melting point, in part because its melting
temperature is lower than Ti and the bcc—fcc/hcp energy
difference is largej. From these and previous results, we
have examples of transition metals which illustrate each of
the various possibilities of maxima, minima, or inflection
: . . ‘ , points at the high-energy phase, although maxima are the
08 1.0 0/22 1.4 16 rule rather than the exception.

The cases considered up to now have involved transition
metals. While there is no reason to expect that main group

_ FIG. 2. Energies of Ti, Sc, Al, and AuV_anng the Bain d'StO.r' elements should behave differently, it is still desirable to see
tion for the calculated fcc volume. For Ti and Sc, the energies

(©) for the observed volume¥,s are also shown. Note that the whether the high-energy phases are me_tastable or _th. Both
curves have been displaced vertically for clarity. the fcc and bcc phases of Al have their energy minima at

~0.96V,,s and the distortion path has been taken at this vol-
volume of Ni and the equilibrium volume of Cr. The volume ume. As seen in Fig. 2, the bcc has a local maximum with an
used for each fitting was determined by the weighted averagaccompanying minimum, while the low-temperature fcc
of volumes of the pure componenftgegard’'s law with an  phase is a minimum; the bcc—fcc energy difference is even
interval of composition of 0.05. Having the functions de- larger than those of Ti and Sc. The overall behavior of Al is
scribing thec/a dependence of the ECI's in a range of vol- similar to the transition metals; in all cases where a distortion

umes between pure Ni and pure Cr, one can calculate witpath has been followed through a low-temperature phase, an
Eq. (1) the energy of the disordered bcc and fcc phases desnergy minimum has been observed.

0.2

Energy (eV/atom)

0.0

formed through the Bain distortion path. AuV was chosen as an example of a compound which
should have &/a ratio close to the ideal fcc value since this

Hl. RESULTS system forms as a disordered fcc alloy at this composition.

A. Bain distortion: Ordered systems The results in Fig. 2 show a local maximum for the CsCl

o ) . i (c/la=1) structure, which being cubic must have an extre-
The Bain distortion for the transition metals series hasy,m No such condition holds for the ideal fcc-like CuAu-I
been dl_scussed PreV'OU§I§" Along th'.s p‘?‘th-_ the crysta_ll g:/az \J2) whose atomic packing makes it intrinsically te-

volume is constrained to be constant; implications associate, - - .
tragonal; in fact, the minimum occurs at a slightly larger than

with this are discussed in Appendix B. In Fig. 2, Several'dealc/a alue. A small break in smoothness of the plot can
examples demonstrating different aspects of the distortiot} value. : P

energetics are shown. be seen in Fhe vicinity of thi; minimum. It is_not an accident
First consider Ti whose high-temperature phase is bccc.nc the plotting or of the fltyng.scheme Wh'c.h lay a curve
The calculations for Ti giveT=0 K volumes that are thrc_Jugh the p_omt. Instead |t_a_r|ses from an |_nterplay_of the
roughly 90% of the observed hcp volume. Such contractionéec'procal'Iattlce cu'toff, ks f|n|.te LASTO ba§|s ahq_Jomt
are characteristic of LDA predictions, although they aresets’. and the Vafy'”@’ a. An improvement In basis and
much more severe for thed3transition-metal elements and K-point sets for this system would remove this feature.
their compounds than they are for theid 4nd 5 counter-
parts. There are extrema at both the bctaE1) and fcc
(c/a=/2) structures. As a function of volume, the bcc ex-
tremum evolves from a maximum at large volumes to a shal- To describe the hcp to bcc transition, we consider a dif-
low minimum at a volume of-0.9V,.. This minimum by ferent path. Both the bce and hcp structures can be described
itself, however, is not enough to explain the stability of thePy a based-centered orthorhombic two-atom unit cell de-
high-temperature bcc phase: The well depth is comparable t&£ribed by the lattice constardsb, andc. The atoms are at
or smaller than thermal vibrational energies and, more im{0,0,0 and (§a,0¢/2). The relationship between the ortho-
portantly, the thermal expansion of the lattice at the transirfhombic parameters and the conventional cells are: bcc struc-
tion temperature £3%) will cause the bce phase to be a ture, a=c=+2ap,, b=ay, and é=1/2; hcp structure,
local maximum. a= \/§ahcp, b=apcp, C=Cpep, andé=1/3. The nearest and
The distortion path has the general features that the emext-nearest neighbors ind{, d,, respectively and out-
ergy must grow for both small and large valuescod and  (ds, dg, respectively of plane are §>b)

B. hcp to bece path
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a®> b? 0.02
2_ } : :
=7+ (2a) _ ce *
d§=b2, (2b) g 0.00 |
8 + Mo
1\2 b? ¢? > o N
d2=a? ¢ E) L (20 3_32 -0.02 | ) b i
LIJg
s 0., C I 004} o 1
d2=a2e2+ —. 2 8 idea
j=a¢ 2 (2d) Ui v .« L
[ ]
Let d;=d; andd,=d,, i.e., (secondl nearest-neighbor dis- -0.06, : 75 - >
tances in and out of the plane be equal. If, in addition, the c/a

volume Q)= (1/2)abc remains constant, we obtain the fol-

lowing relationships: FIG. 3. Calculated total energy difference between the hcp and

c2 fce structures as a function afa for Mo and Nb. The ideat/a
P =4(1—§), (39 value of \/8/3 is given for comparison.

) does. If, however, the path is modified slightly so that the
b_ —¢ (3b) conditions are no longer satisfied, the energy will not have an
a? extremum(PathB of the inset to Fig. % pointing out the
obvious point that the energy at the nonequilibrium phase is
3 Q 30 a saddle point.
E1-9™ |
All the orthorhombic parameters are now given in terms of . C PtTi and Ptv .
the single parametef corresponding to the in-plane position PtTi and PtV form in the orthorhombic AuCd structure at
of the second atom in the basis. Moreover§atl/3 corre- low temperatures and undergo Martensitic transitions at

sponding to hexagonal in-plane ordering, ~1300 and 1773 K to the CsCl and CuAu-I structures, re-
c|? 8 1(c)\? @ - . : .
al 9 3la/, ; 05 L Mo i
i.e., the ideal hc/a. Likewise, foré=1/2, Eqs(3) give the . T
correct bece relationships. Thus the path from bec to ideal hep 5
defined by Egs.(3) maintains bond lengths while bond g
angles change. This path is a particular combination of a bcc :J"f 0.45
<

N-point T, phonon(corresponding to changes éfrom the
bcc position and a long-wavelength shear.

The transition metals which form in the hcp structure
havec/a ratios which are measurably smaller than the ideal
value of \/8/3. The bcc metals, however, have their energy
minima for the hcp at/a which are larger, as seen for Mo
and Nb in Fig. 3. While hcp Nb is lower in energy than fcc <
Nb, consistent with Kaufman’sassumptions, Mo hdss do
W and Ta(Ref. 11] the fcc structure lying lower. This re-
versal of the hcp—fcc energy differences has adverse conse-
quences for those typesf phase diagram constructs.

In Fig. 4 the energies along the bcc—hcp path are shown
for Mo and Nb. The total energies have extrema at both the
bcc and hcp positions. However, as seen in Fig. 3, neither bee hep
hcp Mo nor hcp Nb have/a ratios close to ideal. For non-
ideal hcpc/a values, the relationships given in Ed8) no
longer hold and must be modified. There are many possible
ways to alter the pattcorresponding to different mixtures of
the T, phonon and the sheabetween the hcp and bee struc- g, 4. Total energy along the bee to hep path for Mo and Nb.
tures, but not all will have extrema in the energy at the endeoy jgealc/a ratio, the path is defined by E¢B). For the calculated
points. As discussed in Appendix A, there are certaifhcpc/a ratio, PathA, described in Appendix A, is followed. In the
symmetry-dictated conditions that will guarantee that thergnset, the region around the hcp structure for Mo is shown, includ-
will be extrema; the ideat/a path satisfies these conditions ing a path (Path B) similar to PathA that does not satisfy
and the modification for nonideala given in Eq.(A9) also  &c/éx|—1=0 (x=3—6&).

0.43

E (eV/atom)

----idealc/a
optimized c/a (Path A)
— — - optimized c/a (Path B)

00 [

1 . . . 1
0 1
X
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spectively. The reporté@crystallographic data for the CsCl
structure indicates a larger volume per molecular unit than
for the low-temperature phase as is to be expected. The re-
verse is reported for PtV CuAu-l, which seems unlikely.
Nevertheless, the reporteda for the CuAu-I structure and
the reportect/a andb/a for the AuCd were employed and
lattice volumes were varied to determine the LDA energy
minima. (This choice was made because LDA calculations
usually yield c/a close to experiment with total energies
close to those calculated for the obsereéd and not search-

ing for these ratios represented significant savings in com-
puter time) The T=0 volumes of the high- and low-
temperature phases were found to be almost identical and
corresponded to 0.986,{AuCd) for PtTi and 0.955
VopdAuCd) for PtV. The AuCd structure has an internal pa-
rameter corresponding to adjacent lines of atoms parallel to
the ¢ axis sliding with respect to each other. With the posi-
tion of one line defined by the fractiox of the unit cell's

¢ value,x=0.25 corresponds to the regular spacing of the
CsCl and CuAu-I structures. The internal coordinates of the
AuCd structure were not reported in the crystallographic data
for either PtTi or PtV; the calculated values for these com-
pounds are 0.19 and 0.176, respectively. Given the lattice
parameters a simple distortion path interpolating between the
phases was chosen:

Energy (eV/atom)

Energy (eV/atom)
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FIG. 5. Total energies, relative to the low-temperature AuCd

(5).

phases, for PtTi and PtV along the distortion paths defined by Eq.

of seven used in the expansjoare plotted as a function of

c/a ratio in Fig. 6. The pair interactions are plotted for a

fixed volume given by Vegard'’s law, at a composition of 0.5

a=a(LT)—A[a(LT)—a(HT)], (5a)
b=b(LT)—A[b(LT)~b(HT)], (5b)
c=c(LT)—A[c(LT)—c(HT)], (50)

x=0.25- A[0.25-x(HT)], (5d)

Cr. Figure 6 shows that the first-neighbor ECI changes sign

when thec/a ratio changes from 1 tg2. The negative value

wherea, b, andc are the lattice constants of the lowT,

of the ECI in the bcc lattice suggests that the system in this

and high,HT, temperature phases. The energies, as a funqagice will tend to segregate, while the positive value in the

tion of A, appear in Fig. 5(For PtV, results for one inter-

fcc lattice suggests that in this lattice, the system will tend to

mediate value ofA is shown to indicate the height of the rder. This change in the sign of the ECI is reflected in the
barrier between the two phasesThe high-temperature \jicr phase diagram. In the Crrich side of the phase dia-

phases are seen to have energy extrema for the chosen digam, where the bec lattice is more stable, there is a tendency

tortion path: PtTi is a local maximum, as has usually been
the case, while PtV is a minimum which is unusual and
likely is associated with the calculated near degeneracy of
the two phases. The AuCd phases show minima whose po-
sitions are not controlled by symmetry considerations. The
chosen distortion path, Eg&), constrains thd/a andc/a

to particular combinations and they are such that the calcu-
lated minimum occurs at A somewhat larger than one for
PtTi. (These paths do not have symmetry-dictated extrema at
A=0 or 1) For PtV, the high-temperature phase is calcu-
lated to have a slightly lower energy than the low-
temperature AuCd structure. Suffice it to say, the important
feature of these results is that a compound having a high-
temperature Martensitic phase is calculated to be unstable to
local distortions, while another compound is found to be lo-
cally stable.

D. Ni-Cr system
As described in Sec. Il, the energy of the disordered Ni-Cr

The three first pair interactions in the tetragonal latficet

60

40 |

20 +

ECI (meV)

Vo

-40

Vi

I L L

0.9

1.0
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FIG. 7. Formation energy of disordered Ni-Cr alloys along a

constant volume Bain distortion path for various concentrations of F!G- 8. Shear constan’ = (cy,—¢4,)/2 plotted as a function
Cr. of composition for the fcc and bce phases in the Ni-Cr system.

for segregation. Conversely, in the Ni-rich side, where thestable for concentrations lower than 41% Cr. As the concen-
fcc lattice is more stable, the Ni-Cr system orders in atration of Cr increases, the bcc phase becomes mechanically
MoPt, prototype structuré’ stable. Both phases are stable up to a concentration of 65%
In addition to showing the change in sign of the first- Cr. For concentrations higher than 65% Cr, the bcc phase is
neighbor ECI, Fig. 6 exemplifies the splitting of some clus-mechanically stable to this deformation mode, while the fcc
ters when the symmetry of the lattice is broken.cAa=1  phase is unstable. As discussed in the Introduction, some
the set of first-neighbor pairs in the tetragonal lattice is alssemiempirical methods to construct phase diagrams implic-
the set of first-neighbor pairs in the bcc lattice and do noitly assume that the nonequilibrium phase is metastable,
split as thec/a ratio deviates from 1. At/a= \J2, the set of which guarantees that the free energy of the phase is defined
first-neighbor pairs in the bct lattice comprise eight of thethroughout the whole composition range. Clearly the as-
fcc’s first neighbors. The remaining first neighbors in the fccsumption of metastability for the nonequilibrium phases is
lattice come from the set of second-neighbor pairs in the bofot fulfilled for the whole composition range.
lattice. A similar splitting of sets of clusters occurs with the A further result that can be obtained from our calculation
second pair in the bec lattice, also shown in Fig. 6. Wheris the relationship between energy difference of the cubic
passing from a cubic to a tetragonal lattice, the splitting ofohases and thé’ shear constants. Willst al observed that
sets of clusters will occur every time one set in the bcc latticdor the pure elements in thed3transition-metal series, the
is related by the distortion to more than one set in the fcdC’' shear constant of the lower energy phase is approxi-
lattice or vice versa. Figure 1 gives the relation between thénately proportional to the energy difference between the bce
clusters used in the bcc and fcc lattices. and fcc phases. Although this observation may apply to the
The energy of the disordered Ni,Cr, alloy deformed pure elements, our results show that it does not apply for
through a Bain distortion is plotted in Fig. 7 for a range of disordered compounds in the Ni-Cr system. At a concentra-
compositionx=0.3 to 0.7. Each curve is drawn at constanttion of ~57% Cr, the fcc and bcc phases have the same
volume determined by Vegard's law. Figure 7 shows theenergy. According to the assumption of Wik al., at this
transition in mechanical stability of the bcc and fcc phasesgoncentration the second derivative of the energy with re-
At 30% Cr, the fcc phase lies in a local minimum in energy,spect toc/a ratio of either phases should be zero. Figure 8
while the bcc phase has a local maximum, similar to pure Nishows that at 57% Cr, both structures have'ashear con-
As the concentration of Cr increases, there is a compositioatant different from zero.
range where both the bcc and fcc phases are at a local A better correlation between th@' and the energy dif-
minima in energy, thus being mechanically stable to this deference between the bcc and fcc phases can be determined
formation mode. As the concentration of Cr increases furfrom the symmetry-dictated conditions on the topology of
ther, the bcc phase remains at a minimum but the fcc phagée energy curve of a disordered system. For the Bain distor-
becomes unstable, similar to the behavior of pure Cr. tion path at a constant volume, the first derivative of the
A quantitative analysis of the mechanical stability of theenergy relative ta/a must vanish at/a=1 andc/a= 2.
disordered bcc and fcc structures can be obtained from thassuming a fourth degree polynomial for tieéa ratio de-
calculation of the elastic constar@s =(c,;—C4)/2. For the  pendence of the energy, the zero slope constrain implies that
Bain distortion path at constant volume, the curvature of theg,.— Ey, < 1/2C;..— C{... Although this relation is not valid
energy function at/a=1 and atc/a= /2 are proportional for higher-order polynomials, it suggests that the energy dif-
to the C’ shear constants of the bcc and fcc phases. Thederence between the cubic phases can be correlated to a dif-
elastic constants are plotted in Fig. 8. The region of mechaniference in theC’ shear constants of the bcc and fcc phases.
cal stability of each phase is given by the sign of the shealThe difference in th&€’ shear constant plotted as a function
constant. Figure 8 shows that @ K only the fcc phase is of the energy difference between the bcc and fcc phases is
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FIG. 9. Correlation between the difference in bce and fcc shear FIG. 10. Gibbs energh G(P=0), including electronic entropy
constants C{..— C{.. and energy differences;,.—Eyc., for the  contributions, for Ti along the hcp-bcc path at various temperatures.
disordered Ni-Cr system at different concentrations. Energies are given relative to the hcp phase at each temperature.

shown in Fig. 9. The plot is shown for the whole range ofcontribution of the vibrational entropy to the free energy,
composition with an increment of 0.05 between each pointespecially when phases are mechanically unstable.

As shown in the plot, a good correlation is found between |n this section, we will present results for Ti along the
the two quantities. Also plotted in Fig. 9 is a linear fit to the hep—bec distortion path at finitelectronictemperature, thus
C’ shear constant difference as a function of the energy difincluding the electronic entropy, but ignoring the vibrational
ference between the cubic phases. entropy. Even in this drastic approximation there are notable
effects with temperature. A simple example is the lattice ex-
pansion (because of the filing of more antibondinglike
state$: the lattice expands, but the coefficient of linear ther-

As discussed briefly previously, a number of elements andnal expansion is about an order of magnitude smaller than
compounds are experimentally found to have a structurathe experimentally observed one, as one would expect. More
phase transition at high temperature, even though the higtimportant for this paper and questions of mechanical stability
temperature phase is mechanically unstableTat0. Al-  are how the energy differences between different phases
though the expansion of the lattice with temperature willchange.
affect the energies, the local stability of these high- The results of the electronic entropy for Ti at various
temperature phases still must be due in large part to entropgggmperatures are shown in Fig. 10. As the temperature is
contributions, both electronic and vibrational, to the freeincreased, the difference between the bcc and hcp phases
energy! While vibrational contributions are generally con- decreases, i.e., the electronic entropy stabilizes the bcc
sidered to be more importafit?* differences in the elec- phase. At an electron temperature 2525 K, the hcp
tronic contributions between different phases have beephase is no longer a local minimum, abdth the bcc and
showrf® to be of the same magnitude as the entropy changescp phases are mechanically unstable. Not until temperatures
inferred from experiments. Conceptually, the simplest modebf around 3350 K does the bcc phase become lower in en-
of these phase transitions is the soft-mode picture. For Tiergy than the hcp, but the minimum occurs fob &etween
however, there is strong experimental evidéfdgat this the hcp and bce structures. Finally, at an electron tempera-
simple picture is not applicable, even though there are lowture of around 4000 K the bcc phase becomes both mechani-
energy phonons in the high-temperature bcc phase. Anotheally stable and lowest in energy. Thus, for Ti at least, ther-
class of models, which does not require soft modes, atmal electronic excitations are enough to cause a phase
tributes these Martensitic transformations to fluctuations retransition, albeit at extremely higlabove the melting poiit
lated to anharmonicitie€.° temperatures.

Recently a number of different approaches have coupled Our value of 3350 K for the electron temperature where
first-principles electronic structure calculations with otherthe bcc is lower in energy than the hcp phase is significantly
models such as anharmonic phonon perturbation tR&orylarger than found2050 K) by Moroniet al? This difference,
and Landau-Ginzburg modéfsto investigate these phase however, is simply related to the fact that we find a larger
transitions. In addition, direct calculation of the entropy con-hcp—bcc energy differencg99 meV/atom versus 62
tributions to the free energy has also been attempWittile ~ meV/atond); almost perfect agreement is obtained by simply
progress has been made, none of these models are yet ablest@ling the temperatures by the hcp—bcc energy differences.
predict the transition temperatures from first principles. TheThe discrepancy between the calculations most likely results
major difficulty in all these studies is in determining the from Moroniet al.'s use of the atomic-sphere approximation,

IV. FINITE-TEMPERATURE EFFECTS
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instead of a full potential method such as used héall- In this paper, we have addressed a number of apparently
potential LMTO calculatior§ give 0.09 eV/atom, in reason- independent issues, but which are all related to the question
ably good agreement with our results. of the mechanical stability of excited phases. Although not

The phase transition is experimentally determined to ocevery system will show such instabilities, the possibility
cur at 1153 K, rather than the 4000 K expected if only elecshould not be excluded. While we have presented arguments
tronic effects are considered. Thus, vibrational, particularlyof where instabilities might occur and given specific ex-
anharmonic, contributions to the free energy must be signifiamples, the stability of an excited phase ultimately depends
cant. While a detailed modeling of the hcp—bcc transition ison the specifics of the system. Furthermore, the experimental
beyond the scope of this paper, several observations can lobservation of, for example, a high-temperature phase or a
made:(i) The scale of the energies shown in Fig. 10 is thedisordered alloy at some concentration, does not mean that
same akgT at the transition temperaturéi) At the ob- these systems are mechanically stable at different tempera-
served transition temperature, the bcc phase is still mechaniures or compositions. Models of phase diagrams that ignore
cally unstable, but both the hcp—bcc energy difference ishese issues may well generate good interpolation schemes,
smaller and £ w)? of the unstable bctN-point T; phonon  but the underlying microscopic basis will need to be reexam-
decreases in magnitude by20%. (iii) The electronic con- ined. Finally, the results presented in this paper demonstrate
tributions to the entropy are important, but only provide that microscopic electronic structure calculations can directly
about 1/3 of the entropy required at the experimental transiaddress macroscopic questions such as the mechanical stabil-
tion temperature, consistent with the estimate of 70% for théty of alloy phases.
vibrational contributions inferred from experimé&hand es-
timates made previous?j This observation, however, 'is ACKNOWLEDGMENTS
contrary to that of Moronket al® who conclude from their
approximate calculations of the vibrational entropy that the The work at Brookhaven was supported by the Division
electronic energies are the major driving force of the hcp-of Materials Sciences, U.S. Department of Energy, under
bce transition. Note that combining their estimates ofContract No. DE-AC02-76CHO00016 and by a grant of com-
AG,;, with the more accurate full-potential hcp—bcc energyputer time at the National Energy Research Supercomputer
differences implies a calculated transition temperature for TCenter. The work at the University of Texas at Austin was
that is far too large(by a factor of 2—3 This discrepancy supported by the National Science Foundation under Grant
requires further investigation, particularly whether importantNo. DMR-91-14646. P.J.C. wishes to acknowledge CNPq
contributions to the vibrational entropy have been neglectedBrazil) for their financial support.

(iv) As is obvious from Fig. 10, the potential describing Ti is

temperature dependent on a scale comparable to the tempera- oppENDIX A: SYMMETRY-DICTATED EXTREMA

ture itself. The modef§3 used to describe entropy-driven

phase transitions will need to be extended to include this As in the case of the fcc to bce Bain distortion, the bec to

temperature dependence also. hcp path will have symmetry-dictated zero derivatiyes-
trema in the total energy if certain conditions are met. Let
x=3—6¢& be a measure of the distortion along the bcc

V. CONCLUSIONS (x=0) to hcp &=1) path. As defined in Sec. Il B is a

measure of the atomic position along thexis of one of the

two atoms in the base-centered-orthorhombic cell. If the dis-

tortion is at constant volume, then

Although perhaps surprising, structural instabilities of ex-
cited (nonequilibrium phases appear to be ubiquitous. As
discussed previousfythese instabilities have important con-
sequences for the modeling of phase diagrams and the inter- sa b sc
pretation of the parameters in those constructs. In this paper, iy 2o, (A1)
we have extended the previous sthidipth to different sys- a b c

tems and to different distortion paths. As for the Bain distor-_l_h inale ind d defining th h
tion, symmetry-dictated extrema of the energy exist for prop- e single independent parameter defining the atid the

erly chosen paths connecting different high—symmetr))attice pargmete_ra, b, andc) is x. For the energy, ors_imilar
structures. The systems considered in this paper illustrate tH4P€ function, given byy=U(a,b,c;x), the change in en-
different behaviors possible and clarify the nature of the€r9y due to variations in the parameters is

symmetry arguments.

An important advance has been made in determining the _ 5_U §+ 5_U 5_b+ ‘S_U ﬁ) (A2)
elastic constantémechanical stability of disordered alloys da ox ob ox  dc &x)
by using a cluster expansion appropriate to the tetragonal . o i
lattice. TheC’ elastic constants were calculated for both theUSing Ed.(Al) to eliminatesb results in
bcc and fcc phases along the Bain path for the disordered
Ni-Cr system. Our results show there are concentration U _[dU _baujda ﬂ_gﬂ)ﬁ (A3)
ranges where the cubic phases are mechanically unstable and X da a b/ 6x 6c ¢ 8b/ox’

the free energyte0 K is notdefined. As in the case of Ti, or

PtTi in the CsCl structure, entropy will play an important For the bce structure, we hawe=c and a=+/2b. These
role in mechanically stabilizing a phase in the alloy; atrelationships, and the related ones among the derivatives,
higher temperatures, the range of mechanical instability cale.g., sU/Sa= SU/(\/2b), cause the terms in both sets of
culated may change when vibrational modes are included. parentheses to vanish; hence,
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ouU

2 x=0

(Ad)

and the energy will be an extremum along this path.
Around the hcp structures=1, a andb are related by

U sU
o Ve (#5)
Combining these results, we have that E43) becomes
U _6U Sb)\ da N 8U ésc A6
Sx| _, da sa)ox P ac o A9

In general, there is no simple relationship betwess 5c
and 6U/éa. To ensure an extremum, wequire

oC

X 0.

(A7)

x=1

This condition plus volume conservation, E41), gives

b
da

b 1

a

(A8)

x=1

Combining these results yield§U/6x|,—,=0. Thus, the

conditions necessary to guarantee an extremum at the hepo

structure are Eq(Al) (volume conservationand Eq.(A7)
(first-order variations irc with respect tax to vanish.
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(relative to the fcc valugdor Ir along the Bain distortion calculated
using the LMTO-ASA.

to compress the bcc phase to the fcc volume 00 kbars,
implying PV~1 eV/atom. Such an enormous additional en-
ergy term would significantly alter conclusions regarding the
relative stability of different phases.

The resolution of this apparent problem is straightfor-
In thermodynamics the independent variables deter-
mine which potential to consider: While the Gibbs energy is
the correct thermodynmaical potential @instant pressure

The path between the bce and ideal hep structures defingfle Helmholiz free energywhich is simply E at T=0)
by Egs. (3) satisfies these conditions, thus explaining theghould be used at constant voluRdawhile E(V)+PV at

extremal behavior observed in Fig. 4 for ideah. For non-
ideal (c/a)nep, @ simple modification of Eq(3d) that satis-
fies these conditions around=1 is

[=5

While this form cannot be used over the whole path since i
does not include the bcc structure, a path liat example,
guadratically interpolates between Eq&a and (A9) will

2 X2

9

c

a

2_3
)

C

a (A9)

hc

satisfy the conditions at both endpoints. The solid curves o
Fig. 4 follow this path around the hcp structure while Path

B in the figure for Mo shows the effect when a small
écl 6x+#0 contribution exists, thereby violating the symme-
try conditions described above.

APPENDIX B: GIBBS vs HELMHOLTZ FREE ENERGIES

At a phase transition, it is normally Gibbs free energies

constantvolumelooks like a Gibbs energy, the independent
variable isV, not P, and thus isnot thermodynamically
meaningful.

Clearly G(P) andE(V) do differ sinceV may vary for
different values oft/a along the Bain path. As an example,
the calculated valués of AG(P) for Ir at P=0 and 300
kbars are given in Fig. 11, along with the energy at constant
volume. The relative difference in energy between the Helm-
holtz energy aV;.. and the Gibbs energy &=0 is ~0.02
?V/atom. Even for large pressures, the overall shape and
magnitude are quite similar.

These results are easy to understand: For a given phase,
let Q) be the reference volum&/, the volume atP=0, and
B the bulk modulus. Then, within harmonic theory,

vl ol gl

Vo
(B2)

P

B

Vo

1
G(P)=E(Q)+PQ—§BQ( Q

G that must be compared. Most of the results in this paperAIthough thePQ term may be large, it is a constant for any

on the other hand, have presented the internal enErgy
constant volume. AT =0, E is equivalent to the Helmholtz
free energy and is related to the Gibbs energy by

G=E+PV, (B1)

whereP is the pressure and is the volume. A naive—and
unfortunately rather common—interpretation of E®1)
suggests that that an additional teRWv should be added to

P. Differences between the last term of EB2) for different
phases are typically-0.01-0.10 eV/atom, depending &h
(For systems in which the overall energy scale is smaller,
this contribution is also proportionally smallerRelative
changes between phasgsg., fcc and bocwith respect to

P are due to variations iB and/orV,. As shown in Fig. 11,
this simple harmonic theory reproduces the results of the full
calculations quite well. Thus, the differences between

the internal energy if the volume changes along the pathG(P) andE(V), while formally important when considering
These effects are not small: For Ir, the difference betweeonstantP phase transitions, are relatively small in magni-
the fcc and bcc volumes is 3.5% and the pressure neededtude and will not alter the general trends.
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