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Structural instabilities of excited phases
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The structural stability of various elemental metals~Ti, Sc, Al, Mo, and Nb!, ordered compounds~PtTi and
PtV!, and disordered Ni-Cr alloys along distortion paths linking high-symmetry structures are investigated. A
number of high-symmetry nonequilibrium structures are found to be mechanically unstable for these deforma-
tion paths, even for structures that occur at high temperature. For Ti, the electronic entropy is found to stabilize
of the bcc phase at high temperatures, but without vibrational effects the hcp↔bcc transition would occur at
much higher temperatures than observed. To treat disordered alloys along the Bain distortion path, the cluster
expansion method is applied to the body-centered-tetragonal lattice, with particular choices of clusters in order
to guarantee that the effective cluster interactions comply with the symmetry conditions of the cubic lattices.
For disordered Ni-Cr alloys, the range of composition where the bcc and fcc phases are mechanically stable is
determined.@S0163-1829~97!00102-1#
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I. INTRODUCTION

The energies and entropies of both equilibrium and n
equilibrium phases are important to the phase diagram
havior of metals and alloys. Besides the issue of what are
low-temperature equilibrium phases, there are cases of s
tural phase transitions at elevated temperatures. In addi
excited phases of some composition can have conseque
for the alloying at another composition. Many such pha
can be related to another by lattice distortions: perhaps
most famous example of these is the Bain distortion wh
takes a bcc lattice into~or from! an fcc lattice via a tetragona
distortion. It has been generally presumed that excited st
tural phases, particularly if they are observed hig
temperature phases, are metastable. Previously we
shown1,2 that large classes of these phases are, in fact,
metastable but instead are locally unstable, i.e., are uns
to lattice distortions. These instabilities can be seen i
number of previous calculations3–6 and have implications for
phase diagram constructs.7–9

The objectives of the present paper are threefold: Firs
demonstrate that the mechanical instabilities found pre
ously are, in fact, ubiquitous; secondly, to show that th
effects are not limited to ordered systems, but may also oc
in disordered alloys; and thirdly, to show that these types
instabilities may be present in systems that are stabilized
entropy at high temperatures. Although these issues rel
to phase~in!stability seem at first glance independent of ea
other, they all need to be considered if one is to gain a be
understanding of phase diagrams from a microscopic~elec-
tronic structure! point of view.

Previously1 a condition regarding the topology of the e
ergy surface along certain distortions was derived indica
when the energy must be an extremum along the path
examples were given for systems connected by Bain dis
tions. The present paper will consider several other case
the Bain distortion and will also inspect deformation pa
550163-1829/97/55~2!/787~11!/$10.00
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connecting the bcc↔hcp, AuCd↔CsCl, and AuCd
↔CuAu-I structures. The latter two are appropriate to t
Martensitic transformations from the low-temperature Au
phases of PtTi and PtV, respectively; in one case the h
temperature phase is metastable along the distortion
considered, while the other is locally unstable. In additio
disordered Ni-Cr alloys along the Bain distortion path a
the mechanical stability of the cubic alloy phases as a fu
tion of composition will also be considered. The Ni-Cr sy
tem was chosen since the instability of the Cr fcc phase
severe1 and Ni-Cr has both a fcc stable~Ni-rich side of the
phase diagram! and a bcc stable~Cr-rich! region.10

The extremal condition arises when a lattice distortion
some given symmetry, for example tetragonal or orthorho
bic, passes through a structure of higher symmetry. If
distortion path is described in terms of a parameter c
strained to satisfy certain conditions, the derivative of t
energy with respect to the distortion parameter will be,
symmetry, zero valued upon passing through structures
higher symmetry. Thus, the energy will be a minimum,
maximum, or an inflection point for such structures. In t
case of the tetragonal Bain distortion path for an eleme
solid or a disordered alloy, the condition requires that
energies of the fcc and bcc phases must be extrema. F
binary ordered compound along a distortion path pass
through the CsCl and the CuAu-I structures, however,
condition applies to the cubic bcc-like CsCl phase, but no
the fcc-like CuAu-I. Even though the latter is on an fcc la
tice, the atomic packing makes the intrinsic symmetry tetr
onal and hence the same as the distortion. Of course, t
may well be an extremum near the CuAu-I structure, but
c/a value will not be dictated by symmetry.~Experimentally,
most compounds that form in the CuAu-I structure ha
c/a values deviating from the ideal fcc value.! While the
Bain distortion is the best known case, distortion paths w
symmetry-dictated extrema can be derived for other ca
also; for example, the bcc↔hcp path is discussed in Appen
787 © 1997 The American Physical Society
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788 55CRAIEVICH, SANCHEZ, WATSON, AND WEINERT
dix A. It is important to note that not all paths connectin
two high-symmetry phases will have symmetry-dictated
trema and even small deviations from the path may des
the extremal properties.

The present investigations use first-principles meth
utilizing the local-density approximation~LDA ! for ex-
change and correlation. The utility of this class of calcu
tions for elemental solids and their compounds has been
object of study for some years. As a rule, the observed l
temperature phase has a computed total energy which is
bler than that of other phases at the same composition
for compounds, more stable than the two-phase mixture
phases at different composition, i.e., the observed phase
correctly predicted. Calculated enthalpies of formation
generally in accord with experiment for those phases
which there are experimental data; even the calculated
thalpies of transformation, e.g., the Ti hcp↔bcc transition,
are in agreement although the high-temperature phase i
cally unstable. This latter observation would suggest t
LDA is as accurate for nonequilibrium as it is for equilib
rium phases. There are, however, significant long stand
discrepancies between LDA predictions and certain succ
ful constructs of phase diagrams. In particular, in the 196
Kaufman and Bernstein7 developed empirical models that a
widely used to fit equilibrium phase diagrams of binary a
multicomponent systems. In their scheme the energy dif
ences between equilibrium and nonequilibrium structures
the pure elements play a key role. Although there is agr
ment between the LDA and the empirical modeling in ma
cases, there have been two important areas of disagree
concerning the structural energy differences. First, the s
of the energy differences between the bcc and the clo
packed fcc and hcp phases for metals in the middle of
transition metal row deviate significantly. In a number
cases, these discrepancies are outside the LDA errors
countered when calculated heats of formation or struct
energy differences may be compared with experiment. T
issue remains unresolved between the two communitie
practitioners. Secondly, the empirical construct requires
for the bcc metals of the V and Cr columns of the perio
table, the excited hcp structure be more bound than the
LDA calculations to date have universally placed the
lower in energy, although the impact of thec/a ratio on the
energies of the hcp lattices was not investigated sufficien

The bcc↔hcp distortion path will be considered for N
and Mo, along with the hcp–fcc energy differences as
function of the hcpc/a ratios. Nb—butnotMo ~nor Ta and
W for which results have been previously obtained11!—will
be seen to have the hcp phase lower in energy, consis
with the demands of Kaufman’s empirical construct and c
trary to general LDA experience. It should be noted that s
phase diagram constructs strongly depend on the nonequ
rium structures being metastable and, as observed above
is generally not the case. This issue has been discu
recently1,8,12 and there is a growing consensus that in tho
cases where the excited phases are locally unstable, the s
tural energy differences of the empirical constructs are ef
tive rather than true thermodynamic quantities. Finally,
question of the extent to which the electronic entropy m
act to stabilize the high-temperature bcc phase of Ti whic
locally unstable at zero temperature relative to the lo
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temperature hcp phase will be considered.

II. CALCULATIONS

A. Ordered systems

The calculations for all the systems but Ni-Cr and t
results in Appendix B employ the full-potential linearize
augmented Slater-type orbital method13 ~FLASTO!. In this
method, Slater-type orbitals are used to construct wave fu
tions in the interstitial region, augmented by explicit sol
tions of radial wave equations within nonoverlapping atom
spheres at each atomic site for orbital momenta up
l 58. Aspherical electron density and potential terms
kept throughout space and the core electrons are treated
consistently and fully relativistically. Spin-orbit effects we
neglected in the self-consistent treatment of the vale
shells, although they were turned on in a final iteration
most cases. When dealing with systems involving transit
metals, FLASTO may be considered superior to compu
tional schemes neglecting aspherical terms and compar
to or superior to other schemes employed to estimate dif
ences in energies between systems with the exception o
full-potential linearized augmented plane-wave metho14

which utilizes a more complete basis set in the intersti
region. The Hedin-Lundqvist formalism for the local-dens
exchange and correlation potential was adopted.

Sets of specialk points were used and were increased
size until details such as the behavior of the energy in
vicinity of an extremum were accurately established. For
ample, calculations following a Bain distortion employe
sets of 40, 126, 405, and 550k points and the latter two set
were in agreement for the systems reported here.~This was
not the case for Li~Ref. 15! which very likely has the same
instability to local distortions as will be seen here!. Slater-
type orbital basis sets of varying size were employed w
the largest involving 2s-, 2 p-, 3 d-, 1 f -, and 1g-like
orbital for a transition metal and 2s-, 2 p-, a d-, and an
f -like set for Al.
The remaining total-energy calculations used the line

ized muffin-tin orbital in the atomic-sphere approximatio
~LMTO-ASA!.16 This method allows, in a reasonab
amount of time, the calculation, of the large number of str
tures usually required by the cluster expansion method
cussed below. The calculations using the LMTO-AS
method were carried out self-consistently, including sca
relativistic effects, but disregarding magnetic effects. T
calculations used a basis set involvings, p, andd orbitals,
and the Barth-Hedin formalism was used for the exchan
correlation potential. The calculations used a number ok
points such that the total energy of the structures chan
less;0.1 mRy/atom. Depending on the number of atoms
the structure’s basis, the number ofk points in the calcula-
tion ranged from 288 to 1000 points in an irreducible wed
of the Brillouin zone. The number ofk points were then kep
constant for each structure throughout the Bain distort
path.

B. Cluster expansion

To calculate the energy of the Ni-Cr disordered pha
deformed through the Bain distortion path, the cluster exp
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55 789STRUCTURAL INSTABILITIES OF EXCITED PHASES
sion method17,18 was used. In this method, a spinlike occ
pation numbers i is assigned to each lattice pointi
in the crystal. The set ofN occupation numbers
sW 5$s1 , . . . ,sN%, whereN is the number of sites in the
crystal, fully specify the configuration of the system. In t
cluster expansion method, the energy~or any function of a
configurationsW ) is written as a weighted sum of the multisi
cluster functionsFn(sW ):

E~sW !5(
n

VnFn~sW !. ~1!

The cluster functions form a complete basis in configu
tional space and the expansion coefficientsVn are called ef-
fective clusters interactions~ECI’s!. In general, the ECI’s are
of short range, which allows the expansion to be truncate
a reasonably small number of clusters. It may be shown
the ECI’s have the symmetry of the lattice. This requirem
allows one to groupFn(sW ) in sets of equivalent clusters. Th
average over the set of all clusters functions related by
symmetry of the lattice is called a correlation function, and
multiplied by the degeneracy of the ECI, can be used for
expansion.

Since for the Ni-Cr system we are interested in the B
deformation path, the body-centered-tetragonal lattice is u
for the cluster expansion.19,20 The ECI’s can be determine
by matrix inversion or by a least-square fit using the cal
lated energies of selected structures at various volumes
c/a ratios, and their correlation functions.21 These ECI’s will
then have a volume andc/a ratio dependence, and the e
ergy for any ordered or disordered structure in the tetrago
lattice can be calculated. It is noted that atc/a51 and
c/a5A2 the lattice is cubic so the ECI’s at thesec/a ratios
must have the symmetry of the cubic lattice.

In order to determine the ECI’s as a function ofc/a ratio,
we first consider the points of cubic symmetry of the lattic
At c/a51 andc/a5A2 the ECI’s were fitted to the calcu
lated formation energies of the ordered structures at a c
stant volume using a cluster expansion in a cubic latt
Except for the empty and the point clusters, the clusters u
for the expansion in the bcc and fcc lattice are drawn w
full line in Fig. 1. The bcc cluster expansion included,
addition to the empty and point clusters, pairs up to
fourth neighbor, three three-body clusters, and two four-b
clusters. The fcc cluster expansion included the empty
the point clusters, pairs up to third neighbor, three three-b
clusters, and two four-body clusters. In Fig. 1 the lines c
necting the bcc and fcc clusters show the relation betw
the clusters in the two cubic lattices when deformed throu
a Bain distortion path. As thec/a ratio changes from the
points of cubic symmetry, the sets of equivalent clusters m
split into two or more sets of clusters in the body-center
tetragonal~bct! lattice. Note that due to the truncation of th
cluster expansion, some of these clusters in the tetrag
lattice do not form a complete set when thec/a ratio reaches
the opposite point of cubic symmetry. These incompl
clusters are shown in dashed lines in Fig. 1, and were c
strained to be zero so that the truncation in the tetrago
lattice was in agreement with the one adopted in the cu
lattices.
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To determine the ECI’s forc/a ratios other than 1 or
A2, we chose to fit the expansion parameters by minimizin
the error in the energy differences of the structures relative
its energies in the cubic lattice. The formation energy ECI
were then determined by adding the ECI’s calculated in th
respective cubic lattices. Forc/a ratios<1.2 we minimized
the error in the energy differences relative to the structures
the bcc lattice, while forc/a ratios.1.2 the energy differ-
ence relative to the structure in the fcc lattice was used. Th
fitting procedure guarantees that, atc/a51 and c/a5A2,
the values of the ECI’s comply with the symmetry require
ments of the cubic lattice. A sixth-degree polynomial func
tion was used for thec/a dependence of the formation en-
ergy ECI’s. This polynomial function provides a satisfactory
fit to the energy curves for the pure transition metals de
formed through the Bain path calculated in Ref. 1. For a
symmetrically equivalent clusters, the slope of the ECI’
functions relative to thec/a ratio were constrained to add to
zero at the points of cubic symmetry. This requirement wa
previously shown20 to be also symmetry dictated and guar
antees that all cubic structures, ordered or disordered, w
display an energy extrema when deformed though a Ba
distortion. Conversely, no particular functional form was as
sumed for the volume dependence. Each least-square fit w
carried out at a constant volume of the bct lattice, and it wa
repeated for a range of volumes between the equilibriu

FIG. 1. ~a! Pair, ~b! three-body,~c! and four-body clusters
of lattice points used in the cluster expansion. Clusters drawn wi
continuous lines are used for the expansions of the cubic lattice
the clusters drawn with broken lines are used for the expansi
of the tetragonal lattices but are incomplete at points of cub
symmetry.
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790 55CRAIEVICH, SANCHEZ, WATSON, AND WEINERT
volume of Ni and the equilibrium volume of Cr. The volum
used for each fitting was determined by the weighted aver
of volumes of the pure components~Vegard’s law! with an
interval of composition of 0.05. Having the functions d
scribing thec/a dependence of the ECI’s in a range of vo
umes between pure Ni and pure Cr, one can calculate
Eq. ~1! the energy of the disordered bcc and fcc phases
formed through the Bain distortion path.

III. RESULTS

A. Bain distortion: Ordered systems

The Bain distortion for the transition metals series h
been discussed previously.1,12 Along this path, the crysta
volume is constrained to be constant; implications associ
with this are discussed in Appendix B. In Fig. 2, seve
examples demonstrating different aspects of the distor
energetics are shown.

First consider Ti whose high-temperature phase is b
The calculations for Ti giveT50 K volumes that are
roughly 90% of the observed hcp volume. Such contracti
are characteristic of LDA predictions, although they a
much more severe for the 3d transition-metal elements an
their compounds than they are for their 4d and 5d counter-
parts. There are extrema at both the bcc (c/a51) and fcc
(c/a5A2) structures. As a function of volume, the bcc e
tremum evolves from a maximum at large volumes to a sh
low minimum at a volume of;0.9Vobs. This minimum by
itself, however, is not enough to explain the stability of t
high-temperature bcc phase: The well depth is comparab
or smaller than thermal vibrational energies and, more
portantly, the thermal expansion of the lattice at the tran
tion temperature (;3%! will cause the bcc phase to be
local maximum.

The distortion path has the general features that the
ergy must grow for both small and large values ofc/a and

FIG. 2. Energies of Ti, Sc, Al, and AuV along the Bain disto
tion for the calculated fcc volume. For Ti and Sc, the energ
(L) for the observed volumesVobs are also shown. Note that th
curves have been displaced vertically for clarity.
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there must be one more minimum than maximum. Hence
either the bcc or fcc structure is a maximum, another m
mum must exist, but its position is not determined by sy
metry. For Ti, this minimum occurs atc/a;0.85. Elements
do form in this compressed body-centered-tetragonal st
ture, the prototypes being Sn under pressure and pro
tinium.

Like Ti, Sc has its volume minimum at;0.9Vobs. How-
ever, in contrast to most of the transition metals, Sc~Fig. 2!
has an inflection point at the bcc structure. Thus, bcc S
locally unstable without having a local maximum.~Sc re-
mains hcp up to its melting point, in part because its melt
temperature is lower than Ti and the bcc–fcc/hcp ene
difference is larger.! From these and previous results, w
have examples of transition metals which illustrate each
the various possibilities of maxima, minima, or inflectio
points at the high-energy phase, although maxima are
rule rather than the exception.

The cases considered up to now have involved transi
metals. While there is no reason to expect that main gr
elements should behave differently, it is still desirable to s
whether the high-energy phases are metastable or not.
the fcc and bcc phases of Al have their energy minima
;0.96Vobsand the distortion path has been taken at this v
ume. As seen in Fig. 2, the bcc has a local maximum with
accompanying minimum, while the low-temperature f
phase is a minimum; the bcc–fcc energy difference is e
larger than those of Ti and Sc. The overall behavior of Al
similar to the transition metals; in all cases where a distort
path has been followed through a low-temperature phase
energy minimum has been observed.

AuV was chosen as an example of a compound wh
should have ac/a ratio close to the ideal fcc value since th
system forms as a disordered fcc alloy at this compositi
The results in Fig. 2 show a local maximum for the Cs
(c/a51) structure, which being cubic must have an ext
mum. No such condition holds for the ideal fcc-like CuAu
(c/a5A2) whose atomic packing makes it intrinsically t
tragonal; in fact, the minimum occurs at a slightly larger th
idealc/a value. A small break in smoothness of the plot c
be seen in the vicinity of this minimum. It is not an accide
of the plotting or of the fitting scheme which lay a curv
through the point. Instead it arises from an interplay of t
reciprocal-lattice cutoff, the finite LASTO basis andk-point
sets, and the varyingc/a. An improvement in basis and
k-point sets for this system would remove this feature.

B. hcp to bcc path

To describe the hcp to bcc transition, we consider a d
ferent path. Both the bcc and hcp structures can be descr
by a based-centered orthorhombic two-atom unit cell
scribed by the lattice constantsa, b, andc. The atoms are a
~0,0,0! and (ja,0,c/2!. The relationship between the ortho
rhombic parameters and the conventional cells are: bcc st
ture, a5c5A2abcc, b5abcc, and j51/2; hcp structure,
a5A3ahcp, b5ahcp, c5chcp, andj51/3. The nearest and
next-nearest neighbors in- (d1, d2, respectively! and out-
(d3, d4, respectively! of plane are (a.b)

s
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d1
25

a2

4
1
b2

4
, ~2a!

d2
25b2, ~2b!

d3
25a2S j2

1

2D
2

1
b2

4
1
c2

4
, ~2c!

d4
25a2j21

c2

4
. ~2d!

Let d15d3 andd25d4, i.e., ~second! nearest-neighbor dis
tances in and out of the plane be equal. If, in addition,
volumeV5(1/2)abc remains constant, we obtain the fo
lowing relationships:

c2

a2
54j~12j!, ~3a!

b2

a2
5j, ~3b!

a35
V

j~12j!1/2
. ~3c!

All the orthorhombic parameters are now given in terms
the single parameterj corresponding to the in-plane positio
of the second atom in the basis. Moreover, atj51/3 corre-
sponding to hexagonal in-plane ordering,

S caD
2

5
8

9
5
1

3 S caD
hcp

2

, ~4!

i.e., the ideal hcpc/a. Likewise, forj51/2, Eqs.~3! give the
correct bcc relationships. Thus the path from bcc to ideal
defined by Eqs.~3! maintains bond lengths while bon
angles change. This path is a particular combination of a
N-point T1 phonon~corresponding to changes inj from the
bcc position! and a long-wavelength shear.

The transition metals which form in the hcp structu
havec/a ratios which are measurably smaller than the id
value ofA8/3. The bcc metals, however, have their ene
minima for the hcp atc/a which are larger, as seen for M
and Nb in Fig. 3. While hcp Nb is lower in energy than f
Nb, consistent with Kaufman’s7 assumptions, Mo has@as do
W and Ta~Ref. 11!# the fcc structure lying lower. This re
versal of the hcp–fcc energy differences has adverse co
quences for those types7 of phase diagram constructs.

In Fig. 4 the energies along the bcc–hcp path are sho
for Mo and Nb. The total energies have extrema at both
bcc and hcp positions. However, as seen in Fig. 3, nei
hcp Mo nor hcp Nb havec/a ratios close to ideal. For non
ideal hcpc/a values, the relationships given in Eqs.~3! no
longer hold and must be modified. There are many poss
ways to alter the path~corresponding to different mixtures o
theT1 phonon and the shear! between the hcp and bcc stru
tures, but not all will have extrema in the energy at the e
points. As discussed in Appendix A, there are cert
symmetry-dictated conditions that will guarantee that th
will be extrema; the idealc/a path satisfies these condition
and the modification for nonidealc/a given in Eq.~A9! also
e

f
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cc
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er

le

-
n
e

does. If, however, the path is modified slightly so that t
conditions are no longer satisfied, the energy will not have
extremum~PathB of the inset to Fig. 4!, pointing out the
obvious point that the energy at the nonequilibrium phas
a saddle point.

C. PtTi and PtV

PtTi and PtV form in the orthorhombic AuCd structure
low temperatures and undergo Martensitic transitions
;1300 and 1773 K to the CsCl and CuAu-I structures,

FIG. 3. Calculated total energy difference between the hcp
fcc structures as a function ofc/a for Mo and Nb. The idealc/a
value ofA8/3 is given for comparison.

FIG. 4. Total energy along the bcc to hcp path for Mo and N
For idealc/a ratio, the path is defined by Eq.~3!. For the calculated
hcpc/a ratio, PathA, described in Appendix A, is followed. In the
inset, the region around the hcp structure for Mo is shown, incl
ing a path ~Path B) similar to PathA that does not satisfy
dc/dxux5150 (x5326j).
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792 55CRAIEVICH, SANCHEZ, WATSON, AND WEINERT
spectively. The reported22 crystallographic data for the CsC
structure indicates a larger volume per molecular unit th
for the low-temperature phase as is to be expected. The
verse is reported for PtV CuAu-I, which seems unlike
Nevertheless, the reportedc/a for the CuAu-I structure and
the reportedc/a andb/a for the AuCd were employed an
lattice volumes were varied to determine the LDA ener
minima. ~This choice was made because LDA calculatio
usually yield c/a close to experiment with total energie
close to those calculated for the observedc/a and not search-
ing for these ratios represented significant savings in c
puter time.! The T50 volumes of the high- and low
temperature phases were found to be almost identical
corresponded to 0.986Vobs~AuCd! for PtTi and 0.955
Vobs~AuCd! for PtV. The AuCd structure has an internal p
rameter corresponding to adjacent lines of atoms paralle
the c axis sliding with respect to each other. With the po
tion of one line defined by the fractionx of the unit cell’s
c value, x50.25 corresponds to the regular spacing of
CsCl and CuAu-I structures. The internal coordinates of
AuCd structure were not reported in the crystallographic d
for either PtTi or PtV; the calculated values for these co
pounds are 0.19 and 0.176, respectively. Given the lat
parameters a simple distortion path interpolating between
phases was chosen:

a5a~LT!2D@a~LT!2a~HT!#, ~5a!

b5b~LT!2D@b~LT!2b~HT!#, ~5b!

c5c~LT!2D@c~LT!2c~HT!#, ~5c!

x50.252D@0.252x~HT!#, ~5d!

wherea, b, andc are the lattice constants of the low,LT,
and high,HT, temperature phases. The energies, as a fu
tion of D, appear in Fig. 5.~For PtV, results for one inter
mediate value ofD is shown to indicate the height of th
barrier between the two phases.! The high-temperature
phases are seen to have energy extrema for the chosen
tortion path: PtTi is a local maximum, as has usually be
the case, while PtV is a minimum which is unusual a
likely is associated with the calculated near degeneracy
the two phases. The AuCd phases show minima whose
sitions are not controlled by symmetry considerations. T
chosen distortion path, Eqs.~5!, constrains theb/a andc/a
to particular combinations and they are such that the ca
lated minimum occurs at aD somewhat larger than one fo
PtTi. ~These paths do not have symmetry-dictated extrem
D50 or 1.! For PtV, the high-temperature phase is calc
lated to have a slightly lower energy than the lo
temperature AuCd structure. Suffice it to say, the import
feature of these results is that a compound having a h
temperature Martensitic phase is calculated to be unstab
local distortions, while another compound is found to be
cally stable.

D. Ni-Cr system

As described in Sec. II, the energy of the disordered Ni
alloys was determined using the cluster expansion meth
The three first pair interactions in the tetragonal lattice~out
n
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of seven used in the expansion! are plotted as a function o
c/a ratio in Fig. 6. The pair interactions are plotted for
fixed volume given by Vegard’s law, at a composition of 0
Cr. Figure 6 shows that the first-neighbor ECI changes s
when thec/a ratio changes from 1 toA2. The negative value
of the ECI in the bcc lattice suggests that the system in
lattice will tend to segregate, while the positive value in t
fcc lattice suggests that in this lattice, the system will tend
order. This change in the sign of the ECI is reflected in
NiCr phase diagram. In the Cr-rich side of the phase d
gram, where the bcc lattice is more stable, there is a tende

FIG. 5. Total energies, relative to the low-temperature Au
phases, for PtTi and PtV along the distortion paths defined by
~5!.

FIG. 6. First (V1) to third (V3) pairs ECI’s plotted as a function
of c/a ratio for the Ni-Cr system. The ECI’s are plotted at consta
volume for a composition of 50% Cr.
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55 793STRUCTURAL INSTABILITIES OF EXCITED PHASES
for segregation. Conversely, in the Ni-rich side, where
fcc lattice is more stable, the Ni-Cr system orders in
MoPt2 prototype structure.10

In addition to showing the change in sign of the firs
neighbor ECI, Fig. 6 exemplifies the splitting of some clu
ters when the symmetry of the lattice is broken. Atc/a51
the set of first-neighbor pairs in the tetragonal lattice is a
the set of first-neighbor pairs in the bcc lattice and do
split as thec/a ratio deviates from 1. Atc/a5A2, the set of
first-neighbor pairs in the bct lattice comprise eight of t
fcc’s first neighbors. The remaining first neighbors in the
lattice come from the set of second-neighbor pairs in the
lattice. A similar splitting of sets of clusters occurs with th
second pair in the bcc lattice, also shown in Fig. 6. Wh
passing from a cubic to a tetragonal lattice, the splitting
sets of clusters will occur every time one set in the bcc lat
is related by the distortion to more than one set in the
lattice or vice versa. Figure 1 gives the relation between
clusters used in the bcc and fcc lattices.

The energy of the disordered Ni12xCrx alloy deformed
through a Bain distortion is plotted in Fig. 7 for a range
compositionx50.3 to 0.7. Each curve is drawn at consta
volume determined by Vegard’s law. Figure 7 shows
transition in mechanical stability of the bcc and fcc phas
At 30% Cr, the fcc phase lies in a local minimum in energ
while the bcc phase has a local maximum, similar to pure
As the concentration of Cr increases, there is a composi
range where both the bcc and fcc phases are at a l
minima in energy, thus being mechanically stable to this
formation mode. As the concentration of Cr increases f
ther, the bcc phase remains at a minimum but the fcc ph
becomes unstable, similar to the behavior of pure Cr.

A quantitative analysis of the mechanical stability of t
disordered bcc and fcc structures can be obtained from
calculation of the elastic constantsC85(c112c12)/2. For the
Bain distortion path at constant volume, the curvature of
energy function atc/a51 and atc/a5A2 are proportional
to theC8 shear constants of the bcc and fcc phases. Th
elastic constants are plotted in Fig. 8. The region of mech
cal stability of each phase is given by the sign of the sh
constant. Figure 8 shows that at 0 K only the fcc phase is

FIG. 7. Formation energy of disordered Ni-Cr alloys along
constant volume Bain distortion path for various concentrations
Cr.
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stable for concentrations lower than 41% Cr. As the conc
tration of Cr increases, the bcc phase becomes mechani
stable. Both phases are stable up to a concentration of
Cr. For concentrations higher than 65% Cr, the bcc phas
mechanically stable to this deformation mode, while the
phase is unstable. As discussed in the Introduction, so
semiempirical methods to construct phase diagrams imp
itly assume that the nonequilibrium phase is metasta
which guarantees that the free energy of the phase is defi
throughout the whole composition range. Clearly the
sumption of metastability for the nonequilibrium phases
not fulfilled for the whole composition range.

A further result that can be obtained from our calculati
is the relationship between energy difference of the cu
phases and theC8 shear constants. Willset al.3 observed that
for the pure elements in the 3d transition-metal series, the
C8 shear constant of the lower energy phase is appr
mately proportional to the energy difference between the
and fcc phases. Although this observation may apply to
pure elements, our results show that it does not apply
disordered compounds in the Ni-Cr system. At a concen
tion of ;57% Cr, the fcc and bcc phases have the sa
energy. According to the assumption of Willset al., at this
concentration the second derivative of the energy with
spect toc/a ratio of either phases should be zero. Figure
shows that at 57% Cr, both structures have aC8 shear con-
stant different from zero.

A better correlation between theC8 and the energy dif-
ference between the bcc and fcc phases can be determ
from the symmetry-dictated conditions on the topology
the energy curve of a disordered system. For the Bain dis
tion path at a constant volume, the first derivative of t
energy relative toc/a must vanish atc/a51 andc/a5A2.
Assuming a fourth degree polynomial for thec/a ratio de-
pendence of the energy, the zero slope constrain implies
Efcc2Ebcc}1/2Cfcc8 2Cbcc8 . Although this relation is not valid
for higher-order polynomials, it suggests that the energy
ference between the cubic phases can be correlated to a
ference in theC8 shear constants of the bcc and fcc phas
The difference in theC8 shear constant plotted as a functio
of the energy difference between the bcc and fcc phase

f FIG. 8. Shear constantsC85(c112c12)/2 plotted as a function
of composition for the fcc and bcc phases in the Ni-Cr system.
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794 55CRAIEVICH, SANCHEZ, WATSON, AND WEINERT
shown in Fig. 9. The plot is shown for the whole range
composition with an increment of 0.05 between each po
As shown in the plot, a good correlation is found betwe
the two quantities. Also plotted in Fig. 9 is a linear fit to th
C8 shear constant difference as a function of the energy
ference between the cubic phases.

IV. FINITE-TEMPERATURE EFFECTS

As discussed briefly previously, a number of elements
compounds are experimentally found to have a struct
phase transition at high temperature, even though the h
temperature phase is mechanically unstable atT50. Al-
though the expansion of the lattice with temperature w
affect the energies, the local stability of these hig
temperature phases still must be due in large part to ent
contributions, both electronic and vibrational, to the fr
energy.1 While vibrational contributions are generally co
sidered to be more important,23,24 differences in the elec
tronic contributions between different phases have b
shown25 to be of the same magnitude as the entropy chan
inferred from experiments. Conceptually, the simplest mo
of these phase transitions is the soft-mode picture. For
however, there is strong experimental evidence26 that this
simple picture is not applicable, even though there are lo
energy phonons in the high-temperature bcc phase. Ano
class of models, which does not require soft modes,
tributes these Martensitic transformations to fluctuations
lated to anharmonicities.27–30

Recently a number of different approaches have coup
first-principles electronic structure calculations with oth
models such as anharmonic phonon perturbation theo31

and Landau-Ginzburg models32 to investigate these phas
transitions. In addition, direct calculation of the entropy co
tributions to the free energy has also been attempted.9 While
progress has been made, none of these models are yet a
predict the transition temperatures from first principles. T
major difficulty in all these studies is in determining th

FIG. 9. Correlation between the difference in bcc and fcc sh
constants,Cfcc8 2Cbcc8 and energy differences,Efcc2Ebcc, for the
disordered Ni-Cr system at different concentrations.
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contribution of the vibrational entropy to the free energ
especially when phases are mechanically unstable.

In this section, we will present results for Ti along th
hcp–bcc distortion path at finiteelectronictemperature, thus
including the electronic entropy, but ignoring the vibration
entropy. Even in this drastic approximation there are nota
effects with temperature. A simple example is the lattice
pansion ~because of the filling of more antibondinglik
states!: the lattice expands, but the coefficient of linear the
mal expansion is about an order of magnitude smaller t
the experimentally observed one, as one would expect. M
important for this paper and questions of mechanical stab
are how the energy differences between different pha
change.

The results of the electronic entropy for Ti at vario
temperatures are shown in Fig. 10. As the temperatur
increased, the difference between the bcc and hcp ph
decreases, i.e., the electronic entropy stabilizes the
phase. At an electron temperature of;2525 K, the hcp
phase is no longer a local minimum, andboth the bcc and
hcp phases are mechanically unstable. Not until temperat
of around 3350 K does the bcc phase become lower in
ergy than the hcp, but the minimum occurs for ad between
the hcp and bcc structures. Finally, at an electron temp
ture of around 4000 K the bcc phase becomes both mech
cally stable and lowest in energy. Thus, for Ti at least, th
mal electronic excitations are enough to cause a ph
transition, albeit at extremely high~above the melting point!
temperatures.

Our value of 3350 K for the electron temperature whe
the bcc is lower in energy than the hcp phase is significa
larger than found~2050 K! by Moroniet al.9 This difference,
however, is simply related to the fact that we find a larg
hcp–bcc energy difference~99 meV/atom versus 62
meV/atom9!; almost perfect agreement is obtained by simp
scaling the temperatures by the hcp–bcc energy differen
The discrepancy between the calculations most likely res
from Moroniet al.’s use of the atomic-sphere approximatio

r FIG. 10. Gibbs energyDG(P50), including electronic entropy
contributions, for Ti along the hcp-bcc path at various temperatu
Energies are given relative to the hcp phase at each temperatu
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55 795STRUCTURAL INSTABILITIES OF EXCITED PHASES
instead of a full potential method such as used here.~Full-
potential LMTO calculations33 give 0.09 eV/atom, in reason
ably good agreement with our results.!

The phase transition is experimentally determined to
cur at 1153 K, rather than the 4000 K expected if only el
tronic effects are considered. Thus, vibrational, particula
anharmonic, contributions to the free energy must be sign
cant. While a detailed modeling of the hcp–bcc transition
beyond the scope of this paper, several observations ca
made:~i! The scale of the energies shown in Fig. 10 is t
same askBT at the transition temperature.~ii ! At the ob-
served transition temperature, the bcc phase is still mech
cally unstable, but both the hcp–bcc energy difference
smaller and (\v)2 of the unstable bccN-point T1 phonon
decreases in magnitude by;20%. ~iii ! The electronic con-
tributions to the entropy are important, but only provi
about 1/3 of the entropy required at the experimental tra
tion temperature, consistent with the estimate of 70% for
vibrational contributions inferred from experiment26 and es-
timates made previously.25 This observation, however, i
contrary to that of Moroniet al.9 who conclude from their
approximate calculations of the vibrational entropy that
electronic energies are the major driving force of the hc
bcc transition. Note that combining their estimates
DGvib with the more accurate full-potential hcp–bcc ener
differences implies a calculated transition temperature fo
that is far too large~by a factor of 2–3!. This discrepancy
requires further investigation, particularly whether importa
contributions to the vibrational entropy have been neglec
~iv! As is obvious from Fig. 10, the potential describing Ti
temperature dependent on a scale comparable to the tem
ture itself. The models28,30 used to describe entropy-drive
phase transitions will need to be extended to include
temperature dependence also.

V. CONCLUSIONS

Although perhaps surprising, structural instabilities of e
cited ~nonequilibrium! phases appear to be ubiquitous. A
discussed previously,1 these instabilities have important co
sequences for the modeling of phase diagrams and the i
pretation of the parameters in those constructs. In this pa
we have extended the previous study1 both to different sys-
tems and to different distortion paths. As for the Bain dist
tion, symmetry-dictated extrema of the energy exist for pr
erly chosen paths connecting different high-symme
structures. The systems considered in this paper illustrate
different behaviors possible and clarify the nature of
symmetry arguments.

An important advance has been made in determining
elastic constants~mechanical stability! of disordered alloys
by using a cluster expansion appropriate to the tetrago
lattice. TheC8 elastic constants were calculated for both t
bcc and fcc phases along the Bain path for the disorde
Ni-Cr system. Our results show there are concentra
ranges where the cubic phases are mechanically unstable
the free energy at 0 K is notdefined. As in the case of Ti, o
PtTi in the CsCl structure, entropy will play an importa
role in mechanically stabilizing a phase in the alloy;
higher temperatures, the range of mechanical instability
culated may change when vibrational modes are include
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In this paper, we have addressed a number of appare
independent issues, but which are all related to the ques
of the mechanical stability of excited phases. Although n
every system will show such instabilities, the possibil
should not be excluded. While we have presented argum
of where instabilities might occur and given specific e
amples, the stability of an excited phase ultimately depe
on the specifics of the system. Furthermore, the experime
observation of, for example, a high-temperature phase
disordered alloy at some concentration, does not mean
these systems are mechanically stable at different temp
tures or compositions. Models of phase diagrams that ign
these issues may well generate good interpolation sche
but the underlying microscopic basis will need to be reexa
ined. Finally, the results presented in this paper demonst
that microscopic electronic structure calculations can dire
address macroscopic questions such as the mechanical s
ity of alloy phases.
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APPENDIX A: SYMMETRY-DICTATED EXTREMA

As in the case of the fcc to bcc Bain distortion, the bcc
hcp path will have symmetry-dictated zero derivatives~ex-
trema! in the total energy if certain conditions are met. L
x5326j be a measure of the distortion along the b
(x50) to hcp (x51) path. As defined in Sec. III B,j is a
measure of the atomic position along thea axis of one of the
two atoms in the base-centered-orthorhombic cell. If the d
tortion is at constant volume, then

da

a
1

db

b
1

dc

c
50. ~A1!

The single independent parameter defining the path~and the
lattice parametersa, b, andc) is x. For the energy, or similar
type function, given byU5U(a,b,c;x), the change in en-
ergy due to variations in the parameters is

dU5S dU

da

da

dx
1

dU

db

db

dx
1

dU

dc

dc

dxD dx. ~A2!

Using Eq.~A1! to eliminatedb results in

dU

dx
5S dU

da
2
b

a

dU

db D da

dx
1S dU

dc
2
b

c

dU

db D dc

dx
. ~A3!

For the bcc structure, we havea5c and a5A2b. These
relationships, and the related ones among the derivati
e.g., dU/da5dU/(A2b), cause the terms in both sets
parentheses to vanish; hence,
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dU

dx U
x50

50 ~A4!

and the energy will be an extremum along this path.
Around the hcp structure,x51, a andb are related by

dU

db
5A3

dU

da
. ~A5!

Combining these results, we have that Eq.~A3! becomes

dU

dx U
x51

5
dU

da S 11A3
db

daD da

dx
1

dU

dc

dc

dx
. ~A6!

In general, there is no simple relationship betweendU/dc
anddU/da. To ensure an extremum, werequire

dc

dx U
x51

50. ~A7!

This condition plus volume conservation, Eq.~A1!, gives

db

da U
x51

52
b

a
52

1

A3
. ~A8!

Combining these results yieldsdU/dxux5150. Thus, the
conditions necessary to guarantee an extremum at the
structure are Eq.~A1! ~volume conservation! and Eq.~A7!
~first-order variations inc with respect tox to vanish!.

The path between the bcc and ideal hcp structures defi
by Eqs. ~3! satisfies these conditions, thus explaining t
extremal behavior observed in Fig. 4 for idealc/a. For non-
ideal (c/a)hcp, a simple modification of Eq.~3a! that satis-
fies these conditions aroundx51 is

S caD
2

5
3

8 S caD
hcp

2 S 12
x2

9 D . ~A9!

While this form cannot be used over the whole path sinc
does not include the bcc structure, a path that~for example,
quadratically! interpolates between Eqs.~3a! and ~A9! will
satisfy the conditions at both endpoints. The solid curves
Fig. 4 follow this path around the hcp structure while Pa
B in the figure for Mo shows the effect when a sm
dc/dxÞ0 contribution exists, thereby violating the symm
try conditions described above.

APPENDIX B: GIBBS vs HELMHOLTZ FREE ENERGIES

At a phase transition, it is normally Gibbs free energ
G that must be compared. Most of the results in this pap
on the other hand, have presented the internal energyE at
constant volume. AtT50, E is equivalent to the Helmholtz
free energy and is related to the Gibbs energy by

G5E1PV, ~B1!

whereP is the pressure andV is the volume. A naive—and
unfortunately rather common—interpretation of Eq.~B1!
suggests that that an additional termPV should be added to
the internal energy if the volume changes along the p
These effects are not small: For Ir, the difference betw
the fcc and bcc volumes is;3.5% and the pressure need
cp

ed
e

it

f

s
r,

h.
n

to compress the bcc phase to the fcc volume is;100 kbars,
implying PV'1 eV/atom. Such an enormous additional e
ergy term would significantly alter conclusions regarding t
relative stability of different phases.

The resolution of this apparent problem is straightfo
ward. In thermodynamics the independent variables de
mine which potential to consider: While the Gibbs energy
the correct thermodynmaical potential atconstant pressure,
the Helmholtz free energy~which is simply E at T50)
should be used at constant volume.34 While E(V)1PV at
constantvolumelooks like a Gibbs energy, the independe
variable isV, not P, and thus isnot thermodynamically
meaningful.

ClearlyG(P) andE(V) do differ sinceV may vary for
different values ofc/a along the Bain path. As an exampl
the calculated values35 of DG(P) for Ir at P50 and 300
kbars are given in Fig. 11, along with the energy at const
volume. The relative difference in energy between the He
holtz energy atVfcc and the Gibbs energy atP50 is ;0.02
eV/atom. Even for large pressures, the overall shape
magnitude are quite similar.

These results are easy to understand: For a given ph
let V be the reference volume,V0 the volume atP50, and
B the bulk modulus. Then, within harmonic theory,

G~P!5E~V!1PV2
1

2
BVS V

V0
D FV0

V S 12
P

BD21G2.
~B2!

Although thePV term may be large, it is a constant for an
P. Differences between the last term of Eq.~B2! for different
phases are typically;0.01–0.10 eV/atom, depending onP.
~For systems in which the overall energy scale is smal
this contribution is also proportionally smaller.! Relative
changes between phases~e.g., fcc and bcc! with respect to
P are due to variations inB and/orV0. As shown in Fig. 11,
this simple harmonic theory reproduces the results of the
calculations quite well. Thus, the differences betwe
G(P) andE(V), while formally important when considering
constantP phase transitions, are relatively small in magn
tude and will not alter the general trends.

FIG. 11. Gibbs energyG(P), P50, 0.3 Mbar, andE(Vfcc)
~relative to the fcc values! for Ir along the Bain distortion calculated
using the LMTO-ASA.
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