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We present a full quantum-mechanical study of the early time kinetics of a coupled electron-LO-phonon
system in a semiconductor quantum wire. Sdmger’s equation is directly solved to obtain the many-body
wave function for a conduction electron interacting with the complete spectrum of phonon modes. This
approach has the advantage of treating the electron and the phonons as well as their correlation on equal
footing and as interdependent entities. We show that the electron and phonon observables illustrate the non-
Markovian nature of the early time kinetics, namely, a retarded loss of the electron’s momentum and an initial
overshoot in it's kinetic energy. These effects are shown to stem from the buildup of correlation between the
electron and the phonons and are mediated by virtual transitions. It is shown further that the continuous nature
of the electron-phonon interaction has important consequences in both the electron’s relaxation and transport
behavior, e.g., the suppression of scattering in strong longitudinal electric fields. The quantum kinetic results
are compared to those obtained from a traditional semiclassical trea{t86063-18207)00712-1

[. INTRODUCTION scattering description invalid because a coarse-grain colli-
sion description fails to capture the underlying physics of the
The electron-LO-phonon interaction is one of the mostinteraction. For early timest£ 7 o), one cannot ignore that
fundamental interactions in semiconductor carrier kinetics. Ithe electron-phonon interaction iscantinuousprocess and
is the central mechanism that governs carrier relaxation ihat the electron is not in a well-defined state. Further, in
semiconductor transport. For the semiclassical regime, i.ehigh electric fields, the electron will accelerate appreciably
the long time limit, the role of LO-phonon emission in semi- during the interaction process, requiring that the electron-
conductor carrier kinetics is well understob&inetic theo-  phonon scattering and the acceleration in the electric field
ries for the long time limit are based on the semiclassicatannot be treated as separate entities.
Boltzmann equation which contains scattering integrals to Extensions of the semiclassical Boltzmann equation have
describe the interaction between the electrons and theeen proposed and applied to semiconductor systems which
lattice®~ In semiclassical kinetics the Boltzmann scatteringincorporate the so-called collision duration, collisional
integrals are derived under the assumptions ttiaptan  broadening, and intracollisional field effect on an approxi-
electron-phonon scattering event is instantaneous or at leastate level to account for the quantum effects mentioned
is completed on a time scale much faster than the temporalbove!'~1* However, proper inclusion of these effects in a
spacing between successive collisions, @ndhe electron is  semiclassical kinetic theory is nontrivial. As an example, the
essentially a free particle between collisions. It follows thatimproper inclusion of collisional broadening leads to a vio-
collisions are independent events and individually conservéation of the conservation laws.
energy. The temporal spacing between successive collisions The short time-scale effects of the electron-phonon inter-
is set by the probability for an electron to scatter “into” and action are naturally accounted for in a quantum Kkinetic
“out of” a momentum statek. These in- and out-scattering theory. In recent years, quantum kinetic equations have been
rates are determined from Fermi’s golden rule. For LO-derived using reduced density matrites’ and the Keldysh
phonon emission in GaAs the inverse scattering rate ismonequilibrium Green’s function$-?' However, to obtain a
TL.o~ 100 fs® For timest> 7, this coarse-grain descrip- closed set of kinetic equations for the one-particle expecta-
tion for the collisions works well and the semiclassical Bolt-tion values, additional approximations are required. In the
zmann equation in this case is regarded as an essential tozdse of the reduced density matrices, one has to break the
for predicting carrier kinetics in semiconductdrs’ hierarchy of equations of motion and retain only the coupling
The growing trend towards nanometer length scales iio the next order correlation in some phenomenological
semiconductor devices leads to very large electric fields ifMarkovian mannert’ In the case of nonequilibrium
the active region. This in turn leads to a quantum transporGreen’s functions, one has to choose an approximation for
regime in which the characteristic times imposed by the higtlthe self-energy and further use the generalized Kadanoff-
fields approach time scales defined by the time-energy urBaym anzatz to reduce the two-timed, kinetic nonequilib-
certainty. It is well known that large electric field strengths in rium Green’s function to the one-timed density matrite.
semiconductors can cause appreciable changes in the carriene simplifying approximations in both of these approaches
distribution for timest<r 5. Similarly, in semiconductor leads to some loss in correlation, the implications of which
optics, ultrashort laser pulses can create carriers over a timrae not well understood.
interval as small as 6 f§:1°In both of these cases the carrier ~ The many-particle Schdinger equation, although limited
kinetics are governed, to a large extent, by quantum mechare simple model systems in condensed matter, provides an
ics rendering the semiclassical energy conserving pairalternative and perhaps most intuitive approach to quantum
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kinetics sinceall the quantum mechanics of the system, intive 1D Frdlich electron-phonon interaction Hamiltonian
particular, the correlations, are contained in the many-bodyperator for a rectangular quantum wiré:?*all given, re-
wave function. Recently we introduced a wave function ap-spectively, by
proach for the quantum kinetics of a model coupled electron- s
LO-phonon system in a semiconductdrContrary to the i __h_(9_+v 29
common belief in condensed matter many-body theory, we o(2)= 2m 972 F(2), 22
showed that direct computation of the many-body wave
function is feasible in the early time kinetic regime. In this . N
paper we apply this method to investigate the microscopic th=hw2l (ag,aq|+1/2), 2.3
details of the electron-LO-phonon interaction and the conse-
quences it has on the kinetics of a single conduction bandnd
electron with and without the presence of an external longi-
tudinal electric field. We expand the theory in Ref. 23 to
include a longitudinal electric field. Our investigation of the
interacting system is illustrated through the dynamics of the
electron, the phonons, and the electron-phonon correlationvhere
Unlike many kinetic studies in semiconductors, the phonons 12
here are treated as a dynamic entity. To our knowledge this Q= — , (2.5
is the first investigation of kinetics in which the electron, ly
phonons, and their correlation are treated on an equal footingnd S is the effective 1D coupling constant defined by
andas interdependent entities. As a basis for comparison, the
guantum kinetic results are compared to those obtained from
the semiclassical Boltzmann equation.

The paper is organized as follows: In Sec. Il the coupled
electron-LO-phonon system is described and the formalizahote thatS is defined imaginary In Egs. (2.2-(2.6), N
tion of the full many-body wave function is presented. A denotes the number of phonon modesis the electron ef-
brief presentation of the semiclassical Boltzmann equatiofeéctive mass, the longitudinal potential is given by
used in the comparison with the quantum kinetic model isVe= —€zF, whereF is the corresponding dc electric field,
given in Sec. IlI. In Sec. IV numerical results of the electron{? is the normalization volumess and .. are, respectively,
and phonon observables from the quantum kinetic theory arhe static and optical relative dielectric constants, and
presented and compared to the corresponding semiclassia@j]I (ag,) denote the creatiotannihilation) operators for the
results. Discussions are included. Concluding remarks are0 phonons. The phonons are assumed to be dispersionless
made in Sec. V. An example calculation demonstrating thgyvith a fixed energy ofZw. We define g, as the
time evolution of the phonon distribution is presented in Ap-z_component phonon wave number of thb phonon mode
pendix A. LaStly, an analytical calculation of the electron- Corresponding to the coordinate a|ong the Wirek(is the
LO-phonon correlation energy for the very early times iscorrespondingz-component wave number of the electron
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presented in Appendix B. We assume an uncorrelated initial state for the electron-
phonon system which implies weak coupling. &0, the
Il. QUANTUM KINETIC MODEL electron description is given by a Gaussian wave packet

along z with a specified wave numbek;. The lattice at

_Our model system consists of a single quasi-Onei_ s taken as the vacuum state for the LO phonons.
dimensional conduction band electron coupled to the com- yo point out that Eq.2.1) is not the single-electron

plete spectrum of one dimensiondD) LO-phonon modes  genrgiinger equation, but rather represents the time evolu-

in a semiconductor quantum wire. The wire cross sectionjyp, of the many-bodystate vector|¢(z,t)), of one electron

(IxXx1y) lies in thex,y plane and the wire length along the_and many phonons. In an interacting systé#(z,t)) is not

z coordinate. We restrict our study to intrasubband tranSigenaraple in the electron and phonon coordinates and it con-
tions and thus assume that the electron remains in the lowe

) . insall the correlationgphase relatiorsbetween the elec-
transversal subband eigenstate of the wire. We are then |

X ) n and phonons.
with an effective 1D problem where the coupled electron- 11 many-body wave function in E¢R.1) can be written

LO-phonon system is represented by the longitudinal waveg 5 jinear superposition over the orthonormal basis of LO-
function, | #(z,t)), where theketdenotes the phonon at time phonon number statéd

t given that the electron is at positian

The many-body wave functiofy(z,t)), is time evolved N ‘
within the effective mass approximation according to Sehro ly(z,t))=a(z,)|0)+ >, Bi(z,t)e  l|1),
dinger's equation, !

) e s n
it —= =Rl )= (Aet Aot Ae_pnll9), (2.1

N
+ %;. Yim(zD)e 1 29Y2) -1, (2.7

. . . . _ where |0) represents the lattice vacuum staté), and
whereH. andH, are the respective noninteracting electron|2), - represent, respectively, the first- and second-order
and phonon Hamiltonian operators aht}_, is the effec- number states. All the electronic information is contained in
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the coefficientsy, B,, andy,,. The ordering of the phonon Pphase coherence here nigver lost but instead distributed
mode occupancies in the various number states is illustrate@ver a large number of phonon modes.
through the number state symbols, i), represents the It was shown in Ref. 23 that coupling to the next higher
distinct first-order number state with an occupancylgh  order number state in Eq&.8)—(2.10 is retarded by a time
thelth LO-phonon mode. All the possible second-order numt~(S/%Q;) *|q =o. In the case considered here, this retarda-
ber states|2),,, span thel Xxm matrix which for I=m, tion time is 400 fs. It then follows that for small coupling
|2), represents the lattice state with an occupanc¥iofthe  strengths and small times the trajectory of the full many-
Ith LO-phonon mode and fdr= m, |2),,, represents the lat- body system is confined to the subspacé®,of, and2 pho-
tice state with an occupancy df in both thelth andmth ~ non number states. Making use of this fact, the full Hamil-
LO-phonon modes. To avoid duplicate counting and to entonian in Eq.(2.1) can be replaced by its projection onto the
sure distinct second-order states, it is required thatl. It  subspace of 0, 1, and 2 phonon number states,
follows that for a system oN phonon modes, there af¢ R, PH,,P, whereP is the projection operator defined by
distinct combinations of first-order number statds, , and
N(N+1)/2 distinct combinations of second-order number PI0)=10); P|1)=]1); Pl24m=]2)im
states|2), -

The final set of coupled kinetic equations for and
a(z,t), Bi(z,t), andvy,(z,t) are obtained by applying the

Hamiltonian operators defined by EQq$2.2—(2.4) on Pln)=0  for n=3.
|#4(z,t)), and then projecting them onto each unique number
state: In this subspace the problem is exactly solvable. We note
_ _ that this projection onto a finite number of degrees of free-
da  1[ Hh% #? Se 'l €97 dom leads to a closed system where the kinetics can never
St inl T amaz TVEleT 7 El E'B' , (2.8 truly be dissipative. On very short times, however, the kinet-
ics of this closed system are indistinguishable from true dis-
g 1 72 g2 Sd(et-a2) Se ot sipative kinetics with infi_nit_e degrees of fre_edom.
—=—|—z=—=+Ve|B— — at+ — The spontaneous emission and absorption of LO phonons
gt ik 2m iz 1hQ i and the external electric field are all strongly coupled pro-

_ . cesses in Eq$2.8—(2.10. In the wave function approach it
e'az N N g'dm? is impossible to decouple the two types of scattering pro-
E\EYH + Em: Ymi+ %: Yim ok (29 cesses as well as the effects from an external electric field

m< [ because the effects of an interaction Hamiltonian on the
_ wave function are described as a single entity and cannot be
Ivm 1[ #% & J2sdlet-a) dissected into parts, as it is done in semiclassical kinetics.
ot k| 2ma2 T VE|Ym™ inQ P1im This dissection of the interaction is the reason for the intrin-
. sic difficulty of proper descriptions of the intracollisional
B Se (2.10 field effect, collisional broadening, and collision duration in
i% ' semiclassical kinetic theories.

Equations (2.8—(2.10 are solved to obtain the wave
function|(z,t)) of the coupled electron-phonon system and
hence the density operatgr(z,t)=|¢(z.t))(4(z1t)|. The
electronic probability density is then formed by taking a par-
tial trace over the lattice coordinates,

| m>

e—iq|z e—iqmz
Bmt
QI " Qm

where &, is the Kroneckerd function and we define
om=1, for |#m, as the “anti-” Kroneckers function. In
obtaining Eqgs.(2.8—(2.10, the following Boson creation
and annihilation operator relations were used:

pr.

Bi

aq|0)=0, N
z,t)= Tr[p(z,t)]=|a(z,t)|?+ z,t)|?
a1 0)= 1), pe(z.)= Trlp(z0)]=a(z )+ 2 |5i(2,0)
N
aq|1)1=du]0), + 2 lymz b2 (2.1
I, m=|
[2), for "> o . ) R )
‘ , Similarly, po(k,t) is obtained fronp(z,t) by taking the Fou-
ag |1 = V2 [2)  for 1=I rier transform] y(k,t))=F [|#(z,t))]. From ps(k,t) the av-
[2),, for I'<l, erage electron wave numbé¢k), and average electron ki-
netic energyeq=( €,) =(%%k?/2m), are readily calculated as
aq||2>|,m,:5|,m,[\/§5”,|1>|,] fynctions of time. We demop;stratg t'he 'caIcuIation'for the
o time evolved phonon probability distributiop,(k,t), in a
+ 81 rme[ 81| L) + Simr | 1)10]. simple example given in Appendix A.

The presented quantum Kkinetic theory ensures energy

Equations(2.8)—(2.10 have complete time reversal sym- conservation of the coupled electron-phonon system. In the

metry. In contrast to Boltzmann kinetics, where all phaseabsence of an external electric field, the total energy of the
coherence is destroyed after one single scattering event, tlsystem is given by the initial electron enerdy,, such that
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Etor=Ei= €t €pnt €, (2.12  wherelL is the normalizing wire lengthy™ = Vk?= 2mw/#
ande,+= (A «™)%/2m are the respective momenta and ener-
gies of the phonon replicas of a givek state, and

(2.13 D(€)=(€) Y?is the 1D density of states. We incorporate a

' broadening term, similar to Briggat al,?® to overcome the

with

o= (Y|F ¢>=§ ek ),

N singularity located at the LO-phonon thresholg=7% w, in

5 the 1D density of final stated)(e.-). Equation (3.3 is
th |81k, 1)] solved using a moving framéthrough the coordinate trans-
formationt=t, wherek=k+ (e/%)Ft is the corresponding

Eph:<¢| th| )= ;

N . . .
oh 2 | K2 (2.14 quasimomentum which obeys the so-called acceleration
" w|, m=| Vim(K, ' : theorem, ¢/dt)k=(el#)F.
o= (|He—pnl ¥, (2.19 IV. NUMERICAL RESULTS AND DISCUSSION

whereee, €y, ande. are, respectively, the electron kinetic  |n this section, we present numerical results for the elec-
energy, the “free” phonon energy and the interacti@or-  tron and phonon observables with and without an external
relation energy between the electron and the LO phononsjongitudinal dc electric field along the wire. From the quan-
An analytical expression for the early time perturbative ex-tum kinetic theory(QK), the average electron wave number

pansion ofe. is given in Appendix B. (k), the average electron kinetic energy, as well as the
electron and phonon probability densitigg, and py,, are
ll. SEMICLASSICAL KINETIC MODEL extracted from the many-body wave function which is com-

For a basis of comparison we solve the semiclassic uted by numerical integration of E¢2.8)~(2.10. The cor-

. ; esponding results from the semiclassical kinetic th¢8i®)
Br?ltzmann ?quatlon forttze_ mSOdeIIT"ngle'tEand Elec?on'l‘?'are obtained from the electron distribution function,
phonon system presented in Sec. 1. -or the Sake o SImpIC1"k=f(k,t), by numerical integration of Eq3.3). For the

ity we neglect here the dynamics of the phonon system. “baAs wire we used material parameters & 0.067n
the presence of an external dc electric field along the wir%w — 362 meV e.—13.1 €.=109. andl.—I - 60 Ae)’
- . 1 Es™ b | oo N X y - .

and for T=0 K the Boltzmann equation for the electron is The constraint of the initial lattice vacuum state gives rise to

given as B,(2,0)=7,(2,0)=0 for all m and| such that
Jd eF 2 :
= =27 g2(lk—K' 2,0))=a(z,0) |0y=exp{— 0.5 (z—2y)/Az]*+ik;z} |0
s Vk}fk - kE g?(|k—k']) |#4(2,0)) = (2,0) [0) =exp{ —0.5(z—29)/Az;]*+ik; }(4|1,1>)
X[ 8(ex— € +hw)(1—Ff)f is just the initial Gaussian centered &t z, with spread

Az; and initial wave numbek; (corresponding to initial elec-
—dle— e —ho)f(1-fi)], BD  gon energyE; =#2k?/2m). The initial condition for the elec-
wheref, is the electron distribution functiof, is the exter-  tron distribution in Eq(3.3) is f(k,0)=|a(k,0)|?. In the fol-
nal dc electric field, andj is the electron-LO-phonon cou- lowing numerical studies, the energy and wave number

pling for the rectangular quantum wire given®by results have been scaled, respectively, By=fw=236.2
meV andag=#/2mEy=3.975 nm.

8 4
8(— ehw e
5 o 3 1 1 A. Zero electric field: Study of spontaneous
g°(|k=k'|)= Lidyeo P LO-phonon emission
1 In Fig. 1 the average electron wave numblkey is shown
% - 51 (3.2 as a function of time for initial electron energi€s= 0.05,
([k—K'|)2+ KR I 0.075, 0.10, and 0.15 eV, whef® gives the QK results and
I ly (b) gives the SC results. The corresponding QK and SC av-

erage electron kinetic energy, curves are shown in Fig. 2.
The initial Gaussian spread was chosen toAdga,=0.2.
The non-Markovian behavior of the kinetics can be easily

We rewrite Eq.(3.1) by letting =, —L/2#[” .dk’ and
evaluating the energy conservidjfunctions,

J eF mL seen in both QK sets of figures from the following features.
- 7Vk}fk: \/;F{[QZ(“(_K+|)(1_fk)fK+ In Fig. Xa), the dissipative behavior of the electron wave
number clearly deviates from tiaearly) exponential decay
20k+ et seen in the semiclassical results(ly). In fact, for the first
+g%(k+x"(1 ; fes act, 1o
few femtoseconds there is virtually no dissipation, the elec-
—f)f_+1D(€,+)O(k™) tron “appears” to propagate freely along the wire undis-
) B turbed by the lattice. Only until~ 1/w (inverse phonon fre-
—[g*(Jk—x " fe(1—1,-) quency, does the electron begin to “feel” the lattice and
+g2(|k+ x| dissipate through phonon emission. Another feature is illus-

trated in Fig. Za) where in the first few femtoseconds, the
Xf(1—f_,-)]D(e,~)O(x7)}, (3.3  electron exhibits a slight increase in energy before dissipa-



25— 2.5 ———
(@ QK .050eV — (b) SC
0756V~
120K

o\

Wave number (1/ag)

105¢

50 100
Time (fs)

S — 0
50 100 0
Time (fs)

0 150 150

FIG. 1. Zero field case(a) The QK and(b) the SC average
electron wave numbsgik), as a function of time for initial electron
energiesE;=0.05, 0.075, 0.10, and 0.15 eV.

tion begins. This seemingly unphysical behavior is directly

attributed to the time-energy uncertaintptAe~7#.1"23
Classically, the final electron state,_, is determined by

selection rules governed by the energy conserving relation

|ex— ex—q = w|=0. However, for small finite times, an en-
ergy uncertaintyA e exists, allowing virtual transitions to the
final state for timesAt=7%/Ae governed by the relation
|ex— ex—q*hw|=Ae. These virtual transitions produce an
essentially symmetrically broadened final electron state. Thi
energy spread becomes so large at early times that the el
tron has an almost equal probability of gaining energy versu
losing energy, causing, to increase but leavingk) un-
changed. Only untii~ 1/w doesA e become small enough to

favor transitions with an energy loss. The initial overshoot in

the electron’s kinetic energy can also be thought of as

decrease in it's potential energy or as a buildup of correla

tion. Just aftert=0, the electron-phonon interaction is

switched on, leading to a deformation of the lattice. In other
words, the electron and the phonon form a quasiparticle, the
polaron. This deformation can be described by a coherent,

superposition of all the “resonant” and “nonresonan(/ir-
tual) transitions to the final electron state.

The quantum-mechanical features of the electron-LO
phonon interaction discussed above are perhaps better und
stood from the dynamics of the correlation energy. The evo

5 — 5 : —
(a) QK ®)SC  .050eV —
075eV -
™ I .100eV
4 oT— o B 150eV e
3L .

Kinetic Energy (Eq)

50 100
Time (fs)

v 0
50 100 0
Time (fs)

0
0

150 150

FIG. 2. Zero field case(a) The QK and(b) the SC average
electron kinetic energy,, as a function of time for initial electron
energieskE;=0.05, 0.075, 0.10, and 0.15 eV.
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" FIG. 3. (8) Comparison of the electron kinetic energy, with
the free phonon energy,,, as a function of time foE;=0.10 eV
and (b) the corresponding electron-phonon correlation enesgy
The inset illustrates the perturbative expansion regdllf, derived

in Appendix B.
S

8tion of € and ey, is shown in Fig. 8) for the case of

%i= 0.10 eV. The corresponding correlation eneegy de-
fined by Eq.(2.19 and by the energy conserving relation of
Eq. (2.13, is plotted on a higher-energy resolution scale in
Fig. 3(b). It is instructive to compare the simulated correla-
ion energy,e., with the early time perturbative expansion
of the correlation energy of Eq2.15 (see Appendix B for

derivation,
2
) |AO|2[
4.2

g\fbich is plotted in the inset of Fig.(B). At t=0 the system

IS completely uncouplede(=0). As time evolves, botle.
and e? exhibit characteristic oscillations which decay to an
asymptotic value. Examining Eg4.2) for smallt, the con-
tributions from each phonon modg,, add coherently to the
correlation giving rise to the negative behavior in Figh)3

At later times, the contributions from the virtual transitions
become randomized due to the nonzero cosine argument in
Eq. (4.2). This leads tdi) effective oscillations given by the
frequency, € /fi— ) and (i) a diminishing amplitude in
the oscillations. Therefore, the larger the initial electron en-
ergy E;= ¢, the quicker the randomization and hence the

faster the buildup of correlation. This behavior is reflected in
Figs. @ and Za) where the retardation of the relaxation
decreases for large; . In Ref. 14, Lipavskyet al. investi-
gated the validity of the quasiparticle approximation in equi-
librium using a Green’s function formalism. Their investiga-
tion led them to an analytic estimate of a quasiparticle
formation time, 7,,=27%/(e,—fw), which agrees well
with the correlation buildup time presented here.

S

Q

1—co§ (€ _q — € +hw)t/f]

f=—22, (

Eki_ql_Eki+ﬁw
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FIG. 5. Zero field case: The QK phonon probability distribution
pphl(k,t), with an occupancy ofl in the gth mode for the case
E;=0.10 eV. The inset shows the contributiqvb,b(k,t), for an
occupancy oR in the gth mode.

Electron Distribution

Wave number (1/ag)

the time-energy uncertainty as discussed previgusdnly
until later times {~ 100 f9 does a reshaping occur at the
first phonon replica akay= *=1.33. And further, transitions

FIG. 4. Zero field case(a) The QK electron probability distri-
bution, p¢(k,t), and (b) the SC electron distribution function,

f(k,t), as a function of wave numbér for E;=0.10 eV at times . ; -+ _
t=0, 50, 100, and 150 fs. The arrows mark the center positions oﬂtgrtzitﬁ?ﬁgggfhfgg ?SreEri/Ig:r? ;ﬁ 15_001;;3 ?r)] ed(ctl)i ;ﬁ;ﬁg on
the .ﬁrSt and second forward scattering and backscattering phon Of final electron states re.mains wide and structureless across
replicas. the LO-phonon emission spectrum. In sharp contrast the SC
] ) curves in Fig. 4b) illustrate an almost immediate appearance
In the early time regime{<20 fs ~1/w, bothe; ande;  of the well-defined first and second phonon replicas. In ad-
agree comparatively well. For larger times, however, differ-gition, the transitions into the first replica are short lived and
ences occur in both the frequency and amplitude of the 0syre quickly transferred to the second replica. Furthermore, in
cillations as well as in the magnitude of the asymptotic limit.the QK simulation, even after 150 fs the electron still has a
These differences stem from the limitations imposed on thgjgnificant probability of remaining in it's initial state, while
correlation energy when undertaking a perturbative expanp the SC simulation this probability is much smaller. The
sion. We note that in the derivation of E@l.2), the initial sharp discontinuities in Fig. (8) reflect the LO-phonon
electron state|a(k,0)|?, was taken as @ function and that  threshold aka,=1, whereas the wave nature of the electron
the degrees of freedom in the system were limited to firstyyhich is naturally accounted for in the QK model completely
order number states. Accounting for an initial Gaussian statgmooths out this singularity. This nicely demonstrates that in
which further spreads out in time would lead to a faster ranthe QK treatment the electron is never in a well-defined state.
domizing of the transitions and a faster decay of the oscillaThe initial wave packet broadens further due to collisions.
tions, as is evident ire; as shown in Fig. @). As time  However, the electron remains in a continuously changing,
evolves further, the inclusion of higher order number stategt still coherent, superposition of states.
is necessary for the correlation energy to approach it's true A similar statement holds for the phonon system where
asymptotic long time limit. Observation e, indicates that the electron always interacts with many phonon states and
the oscillations begin to die out at a time- 100 fs. This  the phonon system itself is also in a coherent superposition
suggests that foE; = 0.10 eV the buildup in the electron- of many states. The evolution of the phonon probability dis-
LO-phonon correlation takes roughly 100 fs ). tribution also illustrates this slow transition to the first and
We point out that in the long time limit the sign ef i second phonon replicas. The probability for finding phonon
Eq. (4.2 is given by the sign of £;—7% w). This means that occupancies ofl and 2 in the kth mode, denoted, respec-
€? is negative when the initial electron enerBy is below tively, by ppn, (K,t) andppp, (k,t), are shown in Fig. 5. The

the phonon threshold and is positive wherE; is above it phonon distribution exhibits the similar narrowifiig time)
Comparing the QK and SC electron energy curves in Figinto peaked structures about tkestates associated with the

2 we note that the energy relaxation is much less pronounceshonon replicas seen in Fig(a}. Furthermore, the contribu-

in the QK case. For example, an electron initially with tion of having two phonons in the same state is very small on

Ei=2.77w loses only 0.5% » after 150 fs in the QK case these short time scales, as seen in the inset in Fig. 5.

whereas it loses 1.%# in the SC case. This large difference

can be explained by comparing the corresponding QK and
SC electron probability distributions, shown in Fig. 4.(&),

the QK curve foit=>50 fs illustrates a large, nearly structure-  We now consider an external dc electric fiehd, applied
less spread, in the distribution of final electron stdthge to  along the wire length. In Fig. 6 the Q&) and SC(b) time

B. External dc electric field: Intracollisional field effect
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FIG. 6. External field casda) The QK and(b) the SC average FIG. 7. External field casda) The QK and(b) the SC average

electron wave numbefk), as a function of time foE; = 0 and electron wave numbeik), as a function of time for initial electron
electric field strength& = 12.5, 25, 37.5, and 50 kV/cm. energiesk;=0.05, 0.075, 0.10, and 0.15 eV and an electric field

strength ofF =12.5 kV/cm.

evolution of (k) is shown for different field strengths for an
electron initially at rest. In botl{a) and (b), early on the all correlations between the electron and the phonons. It was
electron linearly accelerates with the field. However, strikingshown that some of the special features of early time kinetics
differences between the QK and SC simulations occur as thare directly caused by the buildup of these correlations.
electron approaches the phonon threshold. For the SC caseThese features wefe) a delayed loss of the average electron
distinct “kink” occurs below the phonon threshold, where momentum andii) initial overshoots of the average electron
the larger the field, the shorter the lifetime of the kink. Thekinetic energy. We showed that these effects are mediated
onset of the kink occurs when the high-energy edge of thénainly by the emission and absorption wftual phonons.
electron distributionf (k,t) is accelerated past the phonon On the other hand, the semiclassical Boltzmann equation ne-
threshold and the kink vanishes when the low-energy edge d@flects virtual transitions and treats phonon emission and ab-
f(k,t) has passed the threshold. On the other hand, for thgorption as independent processes. This is in clear contrast to
QK case the effect of the interaction produces a much morguantum kinetics, where real and virtual transitions cannot
broadened kink that extends both later in time and for wavée treated separately since scattering and energy renormal-
numbersabovethe phonon threshold. This is a direct conse-ization are different aspects of the same interaction process.
quence of the continuous and simultaneous nature of thEmission and absorption of phonons are also interdependent
electron’s acceleration in the electric field and the electronprocesses because in a virtual process a phonon emission has
phonon interaction. A comparison &) and (b) clearly in-  to be “undone” by it's inverse absorption and visa versa.
dicates the presence of the intracollisional field effect In our study we assumed an initially uncoupled electron-
(ICFE), especially for the strongest field cafe= 50 kV/cm.  phonon system. Thus we where able to monitor the correla-
The independent treatment of electron acceleration and ele§on buildup, which is nothing but the transformation of a
tron scattering in semiclassical kinetics causes a much stroffitee particle into a quasiparticle, the polaron. The quantum
ger scattering effedsuppression of transporwhile the QK Kinetic treatment shows that on a microscopic level the in-
curve resembles nearly ballistic behavior. In this case théeraction process is continuous. Once the correlations are
interaction is unable to build up in the short time scale set byouilt up the electron and the phonons stay correlated. This
the large electric field, causing the electron to quickly run-again is in contrast to the semiclassical picture of the inter-
away with the field. action process which is assumed to be a chain of individual
The importance of the ICFE is also seen for the modekvents: A free electron enters an “interaction zone” and be-
transport problem where the carrier is injected in the wirecomes correlated with the lattice, which eventually leads to
with a finite energy. Figure 7 shows the QK) and SC(b)  the emission or absorption of a phonon. Then all correlations
(k) curves for different initial energie€;, in the presence vanish and the electron leaves the zone as a free particle and
of a 12.5 kV/cm electric field. Again, in the QK simulation a the process starts all over again. In the derivation of the
direct transition from the interaction buildup phase to theBoltzmann scattering integrals it is crucial to assume that the

runaway phase can be observed which favors ballistic trandime the electron spends in the interaction z¢he collision
port. duration time is much smaller than the time between suc-

cessive scattering evenfthe inverse scattering rateThis
crucial difference between quantum kinetics and the semi-
classical kinetic picture explains why it is so difficult, if not
We presented a quantum kinetic theory, based on thanpossible, to find a direct quantum kinetic definition of the
many-body Schidinger equation, for the early time kinetics collision duration time. Lipavskel al.'* suggested that the
of an electron in a quantum wire that is coupled to the speceguasiparticle formation time should be regarded as the quan-
trum of LO-phonon modes. We demonstrated that the comtum kinetic analogy of the semiclassical collision duration
putation of the many-body wave function is feasible for earlytime. Using this definition, we find that the collision duration
times. This direct approach has the advantage of includingjme and the inverse scattering rate are actually of similar

V. CONCLUSION
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magnitude, showing again the importance of virtual transi-of early time kinetics. The correlation energy is defined as
tions leading to(in the language of semiclassical kinetic
iIESoerf)?e((a:?&;ergy—renormal|zat|on and multiple phonon scatter- €c={P(Z,1)[He—pl ¥(2,1)), (B1)

It was further shown that the continuous nature of the\NhereW(z,t)) and Hefph are given, respectively, by Egs.

interaction also has strong implications on the behavior 0{2 4) and (2.7). Performing the necessary Boson operations
the electron in a longitudinal electric field. If the field is {efined in Sec. I, we obtain

strong enough to accelerate the electron considerably, on a

time scale set by the quasiparticle formation time, phonon

scattering becomes ineffective. Semiclassical theory neglects ec(t)zsf dz[ ie*i‘”‘z
this intracollisional field effect and thus overestimates the !
effects of phonon scattering in the presence of a strong field.

eiq|z

Q

CY* (th)ﬁl(zvt)

+\2BF () mi(z ) + 2| B (Z,) Yim(Z,1)
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ER45462. Therefore we ignore all contributions from second-order
transitions in Eq(B2) by neglecting all terms with the coef-
APPENDIX A: PHONON MODE PROBABILITY ficient y. Taking the Fourier transform of this truncation
DISTRIBUTION yields,

We illustrate the calculation of the phonon distribution _ 1
with a simple example. Consider the many-body wave func- e()=Sie > 52 a*(k+q;,t)Bi(k,t)
tion for a system with a total number bf=3 phonon modes ok
according to Eq(2.7), truncated to second-order lattice num-

) 1
ber states, —ie""il: a;k: Bl (k+q;,t)a(kt)]|. (B3
|4(2,1)) = (2,1)|000) + B1(2,1)| 100 + B(2,1)|010)

In order to obtain our goal, we solve E@®3) perturbatively.
+ B3(z,t)|00D) + y4(z,t)|110) + y,(z,t)|10D) The zeroth-order solution ta(k,t) is Aexd —igt/f], with
A= a(k,0)=exd (k—k)%2(Ak)?], see Eq.4.1). The first-
+73(2,1)|01D + y4(2,1)[200) + y5(2,1)[020) order solution toB,(k,t) is obtained by integrating
+ .
76(Z,t)-|002). . .. api(k,t) e Sd!
In general,pph(qj 1) is defined as the probability of finding T:ﬁﬁ'(k’t)_ ﬁ_Q|a(k+ q,t),

phonon modey; with an occupancy at timet. Thus as an

example, the probability of finding phonon modewith an which is just the Fourier transform of E¢R.9), where only
occupancy oD as a function of time is given as up through the first-order interaction terms have been re-
tained and wher&/,=0. Simple integration leads to

ppho(qlvt): f dZ[|a(Z,t)|2+ |ﬂ2(Z,t)|2+|,83(Z,t)|2

SAkJrql g i(ekiq—holtlh _ g—igdlh
@02+ sz 0+ ez 02 (A1) A e T e awg ho

The time evolution of the phonon probability distribution is . o ]

formed by taking the spectrum of probabilitigsy,, for a Before proceeding we simplify the calculation by further as-

particular mode occupancy, and plotting them versus th uming that the initial electron state is represented hy a
wave numbek. unction,

(B4)

| At g >~ A0l L Siiq k-

APPENDIX B: PERTURBATIVE EXPANSION

OF THE CORRELATION ENERGY . . .
Inserting Eq(B4) into Eq.(B3) and using the above assump-

The analytical calculation for the correlation energy of thetion yields the analytic expression for the correlation energy
electron-LO-phonon interactiom, , is presented for the case for the early times, given in Ed4.2).
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