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Quantum kinetic study of the electron-LO-phonon interaction in a semiconductor
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We present a full quantum-mechanical study of the early time kinetics of a coupled electron-LO-phonon
system in a semiconductor quantum wire. Schro¨dinger’s equation is directly solved to obtain the many-body
wave function for a conduction electron interacting with the complete spectrum of phonon modes. This
approach has the advantage of treating the electron and the phonons as well as their correlation on equal
footing and as interdependent entities. We show that the electron and phonon observables illustrate the non-
Markovian nature of the early time kinetics, namely, a retarded loss of the electron’s momentum and an initial
overshoot in it’s kinetic energy. These effects are shown to stem from the buildup of correlation between the
electron and the phonons and are mediated by virtual transitions. It is shown further that the continuous nature
of the electron-phonon interaction has important consequences in both the electron’s relaxation and transport
behavior, e.g., the suppression of scattering in strong longitudinal electric fields. The quantum kinetic results
are compared to those obtained from a traditional semiclassical treatment.@S0163-1829~97!00712-1#
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I. INTRODUCTION

The electron-LO-phonon interaction is one of the m
fundamental interactions in semiconductor carrier kinetics
is the central mechanism that governs carrier relaxation
semiconductor transport. For the semiclassical regime,
the long time limit, the role of LO-phonon emission in sem
conductor carrier kinetics is well understood.1 Kinetic theo-
ries for the long time limit are based on the semiclass
Boltzmann equation which contains scattering integrals
describe the interaction between the electrons and
lattice.2–5 In semiclassical kinetics the Boltzmann scatteri
integrals are derived under the assumptions that~i! an
electron-phonon scattering event is instantaneous or at
is completed on a time scale much faster than the temp
spacing between successive collisions, and~ii ! the electron is
essentially a free particle between collisions. It follows th
collisions are independent events and individually conse
energy. The temporal spacing between successive collis
is set by the probability for an electron to scatter ‘‘into’’ an
‘‘out of’’ a momentum statek. These in- and out-scatterin
rates are determined from Fermi’s golden rule. For L
phonon emission in GaAs the inverse scattering rate
tLO; 100 fs.1,6 For timest.tLO , this coarse-grain descrip
tion for the collisions works well and the semiclassical Bo
zmann equation in this case is regarded as an essentia
for predicting carrier kinetics in semiconductors.3,5,7

The growing trend towards nanometer length scales
semiconductor devices leads to very large electric fields
the active region. This in turn leads to a quantum transp
regime in which the characteristic times imposed by the h
fields approach time scales defined by the time-energy
certainty. It is well known that large electric field strengths
semiconductors can cause appreciable changes in the c
distribution for timest&tLO . Similarly, in semiconductor
optics, ultrashort laser pulses can create carriers over a
interval as small as 6 fs.8–10 In both of these cases the carri
kinetics are governed, to a large extent, by quantum mec
ics rendering the semiclassical energy conserving p
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scattering description invalid because a coarse-grain c
sion description fails to capture the underlying physics of
interaction. For early times (t&tLO), one cannot ignore tha
the electron-phonon interaction is acontinuousprocess and
that the electron is not in a well-defined state. Further,
high electric fields, the electron will accelerate apprecia
during the interaction process, requiring that the electr
phonon scattering and the acceleration in the electric fi
cannot be treated as separate entities.

Extensions of the semiclassical Boltzmann equation h
been proposed and applied to semiconductor systems w
incorporate the so-called collision duration, collision
broadening, and intracollisional field effect on an appro
mate level to account for the quantum effects mention
above.11–14 However, proper inclusion of these effects in
semiclassical kinetic theory is nontrivial. As an example,
improper inclusion of collisional broadening leads to a v
lation of the conservation laws.

The short time-scale effects of the electron-phonon in
action are naturally accounted for in a quantum kine
theory. In recent years, quantum kinetic equations have b
derived using reduced density matrices15–17and the Keldysh
nonequilibrium Green’s functions.18–21However, to obtain a
closed set of kinetic equations for the one-particle expe
tion values, additional approximations are required. In
case of the reduced density matrices, one has to break
hierarchy of equations of motion and retain only the coupl
to the next order correlation in some phenomenologi
~Markovian! manner.17 In the case of nonequilibrium
Green’s functions, one has to choose an approximation
the self-energy and further use the generalized Kadan
Baym anzatz to reduce the two-timed, kinetic nonequil
rium Green’s function to the one-timed density matrices.19,22

The simplifying approximations in both of these approach
leads to some loss in correlation, the implications of wh
are not well understood.

The many-particle Schro¨dinger equation, although limited
to simple model systems in condensed matter, provides
alternative and perhaps most intuitive approach to quan
7809 © 1997 The American Physical Society
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7810 55J. A. KENROW
kinetics sinceall the quantum mechanics of the system,
particular, the correlations, are contained in the many-b
wave function. Recently we introduced a wave function a
proach for the quantum kinetics of a model coupled electr
LO-phonon system in a semiconductor.23 Contrary to the
common belief in condensed matter many-body theory,
showed that direct computation of the many-body wa
function is feasible in the early time kinetic regime. In th
paper we apply this method to investigate the microsco
details of the electron-LO-phonon interaction and the con
quences it has on the kinetics of a single conduction b
electron with and without the presence of an external lon
tudinal electric field. We expand the theory in Ref. 23
include a longitudinal electric field. Our investigation of th
interacting system is illustrated through the dynamics of
electron, the phonons, and the electron-phonon correla
Unlike many kinetic studies in semiconductors, the phon
here are treated as a dynamic entity. To our knowledge
is the first investigation of kinetics in which the electro
phonons, and their correlation are treated on an equal foo
andas interdependent entities. As a basis for comparison
quantum kinetic results are compared to those obtained f
the semiclassical Boltzmann equation.

The paper is organized as follows: In Sec. II the coup
electron-LO-phonon system is described and the formal
tion of the full many-body wave function is presented.
brief presentation of the semiclassical Boltzmann equa
used in the comparison with the quantum kinetic mode
given in Sec. III. In Sec. IV numerical results of the electr
and phonon observables from the quantum kinetic theory
presented and compared to the corresponding semiclas
results. Discussions are included. Concluding remarks
made in Sec. V. An example calculation demonstrating
time evolution of the phonon distribution is presented in A
pendix A. Lastly, an analytical calculation of the electro
LO-phonon correlation energy for the very early times
presented in Appendix B.

II. QUANTUM KINETIC MODEL

Our model system consists of a single quasi-o
dimensional conduction band electron coupled to the co
plete spectrum of one dimensional~1D! LO-phonon modes
in a semiconductor quantum wire. The wire cross sect
( l x3 l y) lies in thex,y plane and the wire length along th
z coordinate. We restrict our study to intrasubband tran
tions and thus assume that the electron remains in the lo
transversal subband eigenstate of the wire. We are then
with an effective 1D problem where the coupled electro
LO-phonon system is represented by the longitudinal w
function, uc(z,t)&, where theketdenotes the phonon at tim
t given that the electron is at positionz.

The many-body wave function,uc(z,t)&, is time evolved
within the effective mass approximation according to Sch¨-
dinger’s equation,

i\
]uc&
]t

5Ĥ totuc&5~Ĥe1Ĥph1Ĥe2ph!uc&, ~2.1!

whereĤe andĤph are the respective noninteracting electr
and phonon Hamiltonian operators andĤe2ph is the effec-
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tive 1D Fröhlich electron-phonon interaction Hamiltonia
operator for a rectangular quantum wire,6,24,25all given, re-
spectively, by

Ĥe~z!52
\2

2m

]2

]z2
1VF~z!, ~2.2!

Ĥph5\v(
l

N

~aql
† aql11/2!, ~2.3!

and

Ĥe2ph~z!5S(
l

1

Ql
@aqle

iqlz2aql
† e2 iqlz#, ~2.4!

where

Ql5Fql21S p

l x
D 21S p

l y
D 2G1/2, ~2.5!

andS is the effective 1D coupling constant defined by

S52i Fe2\v

2e0V
S 1e`

2
1

es
D G1/2, ~2.6!

~note thatS is defined imaginary!. In Eqs. ~2.2!–~2.6!, N
denotes the number of phonon modes,m is the electron ef-
fective mass, the longitudinal potential is given b
VF52ezF, whereF is the corresponding dc electric field
V is the normalization volume,es ande` are, respectively,
the static and optical relative dielectric constants, a
aql
† (aql) denote the creation~annihilation! operators for the

LO phonons. The phonons are assumed to be dispersion
with a fixed energy of \v. We define ql as the
z-component phonon wave number of thel th phonon mode
corresponding to thez coordinate along the wire (k is the
correspondingz-component wave number of the electron!.
We assume an uncorrelated initial state for the electr
phonon system which implies weak coupling. Att50, the
electron description is given by a Gaussian wave pac
along z with a specified wave numberki . The lattice at
t50 is taken as the vacuum state for the LO phonons.

We point out that Eq.~2.1! is not the single-electron
Schrödinger equation, but rather represents the time evo
tion of themany-bodystate vector,uc(z,t)&, of one electron
and many phonons. In an interacting system,uc(z,t)& is not
separable in the electron and phonon coordinates and it
tainsall the correlations~phase relations! between the elec-
tron and phonons.

The many-body wave function in Eq.~2.1! can be written
as a linear superposition over the orthonormal basis of L
phonon number states,23

uc~z,t !&5a~z,t !u0&1(
l

N

b l~z,t !e
2 ivtu1& l

1 (
l , m> l

N

g lm~z,t !e2 i2vtu2& lm1•••, ~2.7!

where u0& represents the lattice vacuum state,u1& l and
u2& lm represent, respectively, the first- and second-or
number states. All the electronic information is contained
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55 7811QUANTUM KINETIC STUDY OF THE ELECTRON-LO- . . .
the coefficientsa, b l , andg lm . The ordering of the phonon
mode occupancies in the various number states is illustr
through the number state symbols, i.e.,u1& l represents the
distinct first-order number state with an occupancy of1 in
the l th LO-phonon mode. All the possible second-order nu
ber states,u2& lm , span thel3m matrix which for l5m,
u2& l l represents the lattice state with an occupancy of2 in the
l th LO-phonon mode and forlÞm, u2& lm represents the lat
tice state with an occupancy of1 in both the l th andmth
LO-phonon modes. To avoid duplicate counting and to
sure distinct second-order states, it is required thatm> l . It
follows that for a system ofN phonon modes, there areN
distinct combinations of first-order number states,u1& l , and
N(N11)/2 distinct combinations of second-order numb
states,u2& lm .

The final set of coupled kinetic equations f
a(z,t), b l(z,t), andg lm(z,t) are obtained by applying th
Hamiltonian operators defined by Eqs.~2.2!–~2.4! on
uc(z,t)&, and then projecting them onto each unique num
state:

]a

]t
5

1

i\ F2
\2

2m

]2

]z2
1VFGa1

Se2 ivt

i\ (
l

eiqlz

Ql
b l , ~2.8!

]b l

]t
5
1

i\ F2
\2

2m

]2

]z2
1VFGb l2

Sei ~vt2qlz!

i\Ql
a1

Se2 ivt

i\

3FeiqlzQl
A2g l l1S (

m
m, l

N

gml1 (
m

m. l

N

g lmD eiqmzQm G , ~2.9!

]g lm

]t
5
1

i\ F2
\2

2m

]2

]z2
1VFGg lm2

A2Sei ~vt2qlz!

i\Ql
b ld lm

2
Seivt

i\ Fe2 iqlz

Ql
bm1

e2 iqmz

Qm
b l G d̄ lm1•••, ~2.10!

where d lm is the Kroneckerd function and we define
d̄ lm[1, for lÞm, as the ‘‘anti-’’ Kroneckerd function. In
obtaining Eqs.~2.8!–~2.10!, the following Boson creation
and annihilation operator relations were used:

aqlu0&50,

aql
† u0&5u1& l ,

aqlu1& l 85d l l 8u0&,

aql
† u1& l 85H u2& l l 8 for l 8. l

A2 u2& l l for l5 l 8

u2& l 8 l for l 8, l ,

aqlu2& l 8m85d l 8m8@A2d l l 8u1& l 8]

1 d̄ l 8m8@d l l 8u1&m81d lm8u1& l 8].

Equations~2.8!–~2.10! have complete time reversal sym
metry. In contrast to Boltzmann kinetics, where all pha
coherence is destroyed after one single scattering event
ed

-

-

r

r

e
the

phase coherence here isnever lost but instead distributed
over a large number of phonon modes.

It was shown in Ref. 23 that coupling to the next high
order number state in Eqs.~2.8!–~2.10! is retarded by a time
t;(S/\Ql)

21uql50. In the case considered here, this retard
tion time is 400 fs. It then follows that for small couplin
strengths and small times the trajectory of the full man
body system is confined to the subspace of0, 1, and2 pho-
non number states. Making use of this fact, the full Ham
tonian in Eq.~2.1! can be replaced by its projection onto th
subspace of 0, 1, and 2 phonon number states
Ĥ tot→PĤtotP, whereP is the projection operator defined b

Pu0&5u0&; Pu1& l5u1& l ; Pu2& lm5u2& lm

and

Pun&50 for n>3.

In this subspace the problem is exactly solvable. We n
that this projection onto a finite number of degrees of fre
dom leads to a closed system where the kinetics can n
truly be dissipative. On very short times, however, the kin
ics of this closed system are indistinguishable from true d
sipative kinetics with infinite degrees of freedom.

The spontaneous emission and absorption of LO phon
and the external electric field are all strongly coupled p
cesses in Eqs.~2.8!–~2.10!. In the wave function approach i
is impossible to decouple the two types of scattering p
cesses as well as the effects from an external electric fi
because the effects of an interaction Hamiltonian on
wave function are described as a single entity and canno
dissected into parts, as it is done in semiclassical kinet
This dissection of the interaction is the reason for the intr
sic difficulty of proper descriptions of the intracollisiona
field effect, collisional broadening, and collision duration
semiclassical kinetic theories.

Equations ~2.8!–~2.10! are solved to obtain the wav
function uc(z,t)& of the coupled electron-phonon system a
hence the density operatorr̂(z,t)5uc(z,t)&^c(z,t)u. The
electronic probability density is then formed by taking a p
tial trace over the lattice coordinates,

re~z,t !5 TrL@ r̂~z,t !#5ua~z,t !u21(
l

N

ub l~z,t !u2

1 (
l , m> l

N

ug lm~z,t !u2. ~2.11!

Similarly, re(k,t) is obtained fromr̂(z,t) by taking the Fou-
rier transform,uc(k,t)&5F @ uc(z,t)&]. Fromre(k,t) the av-
erage electron wave number^k&, and average electron ki
netic energyeel5^ek&5^\2k2/2m&, are readily calculated a
functions of time. We demonstrate the calculation for t
time evolved phonon probability distribution,rph(k,t), in a
simple example given in Appendix A.

The presented quantum kinetic theory ensures ene
conservation of the coupled electron-phonon system. In
absence of an external electric field, the total energy of
system is given by the initial electron energy,Ei , such that
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Etot5Ei5eel1eph1ec , ~2.12!

with

eel5^cuĤeuc&5(
k

ekre~k,t !, ~2.13!

eph5^cuĤphuc&5(
k

F\v(
l

N

ub l~k,t !u2

12\v (
l , m> l

N

ug lm~k,t !u2G , ~2.14!

ec5^cuĤe2phuc&, ~2.15!

whereeel , eph, andec are, respectively, the electron kinet
energy, the ‘‘free’’ phonon energy and the interaction~cor-
relation! energy between the electron and the LO phono
An analytical expression for the early time perturbative e
pansion ofec is given in Appendix B.

III. SEMICLASSICAL KINETIC MODEL

For a basis of comparison we solve the semiclass
Boltzmann equation for the model single-band electron-L
phonon system presented in Sec. II. For the sake of simp
ity we neglect here the dynamics of the phonon system
the presence of an external dc electric field along the w
and forT50 K the Boltzmann equation for the electron
given as

F ]

]t
2
eF

\
¹kG f k52p

\ (
k8

g2~ uk2k8u!

3@d~ek2ek81\v!~12 f k! f k8

2d~ek2ek82\v! f k~12 f k8!#, ~3.1!

where f k is the electron distribution function,F is the exter-
nal dc electric field, andg is the electron-LO-phonon cou
pling for the rectangular quantum wire given by6

g2~ uk2k8u!5

8S 8

3p D 4e2\v

Ll xl ye0
S 1e`

2
1

es
D

3F 1

~ uk2k8u!21S p

l x
D 21S p

l y
D 2G . ~3.2!

We rewrite Eq. ~3.1! by letting (k8→L/2p*2`
` dk8 and

evaluating the energy conservingd functions,

F ]

]t
2
eF

\
¹kG f k5Am

2

L

\2 $@g2~ uk2k1u!~12 f k! f k1

1g2~ uk1k1u!~1

2 f k! f2k1#D~ek1!Q~k1!

2@g2~ uk2k2u! f k~12 f k2!

1g2~ uk1k2u!

3 f k~12 f2k2!#D~ek2!Q~k2!%, ~3.3!
s.
-

al
-
c-
In
e

whereL is the normalizing wire length,k65Ak262mv/\
andek65(\k6)2/2m are the respective momenta and en
gies of the phonon replicas of a givenk state, and
D(e)5(e)21/2 is the 1D density of states. We incorporate
broadening term, similar to Briggset al.,26 to overcome the
singularity located at the LO-phonon threshold,eel5\v, in
the 1D density of final states,D(ek2). Equation ~3.3! is
solved using a moving frame27 through the coordinate trans
formation t̃5t, where k̃5k1(e/\)Ft is the corresponding
quasimomentum which obeys the so-called accelera
theorem, (]/]t) k̃5(e/\)F.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results for the el
tron and phonon observables with and without an exter
longitudinal dc electric field along the wire. From the qua
tum kinetic theory~QK!, the average electron wave numb
^k&, the average electron kinetic energyeel , as well as the
electron and phonon probability densities,re and rph, are
extracted from the many-body wave function which is co
puted by numerical integration of Eqs.~2.8!–~2.10!. The cor-
responding results from the semiclassical kinetic theory~SC!
are obtained from the electron distribution functio
f k5 f (k,t), by numerical integration of Eq.~3.3!. For the
GaAs wire we used material parameters (m 5 0.067me ,
\v 5 36.2 meV,es513.1, e`510.9, andl x5 l y 5 60 Å!.
The constraint of the initial lattice vacuum state gives rise
b l(z,0)5g lm(z,0)50 for all m and l such that

uc~z,0!&5a~z,0! u0&5exp$20.5@~z2z0!/Dzi #
21 ik iz% u0&

~4.1!

is just the initial Gaussian centered atz5z0 with spread
Dzi and initial wave numberki ~corresponding to initial elec-
tron energyEi5\2ki

2/2m). The initial condition for the elec-
tron distribution in Eq.~3.3! is f (k,0)5ua(k,0)u2. In the fol-
lowing numerical studies, the energy and wave num
results have been scaled, respectively, byE0[\v536.2
meV anda0[\/A2mE053.975 nm.

A. Zero electric field: Study of spontaneous
LO-phonon emission

In Fig. 1 the average electron wave number^k& is shown
as a function of time for initial electron energiesEi5 0.05,
0.075, 0.10, and 0.15 eV, where~a! gives the QK results and
~b! gives the SC results. The corresponding QK and SC
erage electron kinetic energyeel curves are shown in Fig. 2
The initial Gaussian spread was chosen to beDkia050.2.
The non-Markovian behavior of the kinetics can be eas
seen in both QK sets of figures from the following feature
In Fig. 1~a!, the dissipative behavior of the electron wa
number clearly deviates from the~nearly! exponential decay
seen in the semiclassical results in~b!. In fact, for the first
few femtoseconds there is virtually no dissipation, the el
tron ‘‘appears’’ to propagate freely along the wire und
turbed by the lattice. Only untilt;1/v ~inverse phonon fre-
quency!, does the electron begin to ‘‘feel’’ the lattice an
dissipate through phonon emission. Another feature is ill
trated in Fig. 2~a! where in the first few femtoseconds, th
electron exhibits a slight increase in energy before diss



tl

io
-
e

n
h
el
su

o
in
s
la
is
e
th
re

O
nd
vo

of
in
a-
n

an

s
nt in

n-
he
in
n

ui-
a-
cle

55 7813QUANTUM KINETIC STUDY OF THE ELECTRON-LO- . . .
tion begins. This seemingly unphysical behavior is direc
attributed to the time-energy uncertainty,DtDe;\.17,23

Classically, the final electron state,ek2q , is determined by
selection rules governed by the energy conserving relat
uek2ek2q6\vu50. However, for small finite times, an en
ergy uncertaintyDe exists, allowing virtual transitions to th
final state for timesDt5\/De governed by the relation
uek2ek2q6\vu5De. These virtual transitions produce a
essentially symmetrically broadened final electron state. T
energy spread becomes so large at early times that the
tron has an almost equal probability of gaining energy ver
losing energy, causingeel to increase but leavinĝk& un-
changed. Only untilt;1/v doesDe become small enough t
favor transitions with an energy loss. The initial overshoot
the electron’s kinetic energy can also be thought of a
decrease in it’s potential energy or as a buildup of corre
tion. Just after t50, the electron-phonon interaction
switched on, leading to a deformation of the lattice. In oth
words, the electron and the phonon form a quasiparticle,
polaron. This deformation can be described by a cohe
superposition of all the ‘‘resonant’’ and ‘‘nonresonant’’~vir-
tual! transitions to the final electron state.

The quantum-mechanical features of the electron-L
phonon interaction discussed above are perhaps better u
stood from the dynamics of the correlation energy. The e

FIG. 1. Zero field case:~a! The QK and~b! the SC average
electron wave number̂k&, as a function of time for initial electron
energiesEi50.05, 0.075, 0.10, and 0.15 eV.

FIG. 2. Zero field case:~a! The QK and~b! the SC average
electron kinetic energyeel , as a function of time for initial electron
energiesEi50.05, 0.075, 0.10, and 0.15 eV.
y

n,

is
ec-
s

a
-

r
e
nt

-
er-
-

lution of eel and eph is shown in Fig. 3~a! for the case of
Ei5 0.10 eV. The corresponding correlation energyec , de-
fined by Eq.~2.15! and by the energy conserving relation
Eq. ~2.13!, is plotted on a higher-energy resolution scale
Fig. 3~b!. It is instructive to compare the simulated correl
tion energy,ec , with the early time perturbative expansio
of the correlation energy of Eq.~2.15! ~see Appendix B for
derivation!,

ec
p522(

l
S S

Ql
D 2uA0u2F12cos@~eki2ql

2eki1\v!t/\#

eki2ql
2eki1\v G ,

~4.2!

which is plotted in the inset of Fig. 3~b!. At t50 the system
is completely uncoupled (ec50). As time evolves, bothec
and ec

p exhibit characteristic oscillations which decay to
asymptotic value. Examining Eq.~4.2! for small t, the con-
tributions from each phonon mode,ql , add coherently to the
correlation giving rise to the negative behavior in Fig. 3~b!.
At later times, the contributions from the virtual transition
become randomized due to the nonzero cosine argume
Eq. ~4.2!. This leads to~i! effective oscillations given by the
frequency, (eki /\2v) and ~ii ! a diminishing amplitude in
the oscillations. Therefore, the larger the initial electron e
ergy Ei5eki, the quicker the randomization and hence t
faster the buildup of correlation. This behavior is reflected
Figs. 1~a! and 2~a! where the retardation of the relaxatio
decreases for largerEi . In Ref. 14, Lipavsky´ et al. investi-
gated the validity of the quasiparticle approximation in eq
librium using a Green’s function formalism. Their investig
tion led them to an analytic estimate of a quasiparti
formation time, tqp52p\/(ek2\v), which agrees well
with the correlation buildup time presented here.

FIG. 3. ~a! Comparison of the electron kinetic energyeel , with
the free phonon energyeph, as a function of time forEi50.10 eV
and ~b! the corresponding electron-phonon correlation energyec .
The inset illustrates the perturbative expansion result,ec

p , derived
in Appendix B.
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In the early time regime,t,20 fs;1/v, both ec andec
p

agree comparatively well. For larger times, however, diff
ences occur in both the frequency and amplitude of the
cillations as well as in the magnitude of the asymptotic lim
These differences stem from the limitations imposed on
correlation energy when undertaking a perturbative exp
sion. We note that in the derivation of Eq.~4.2!, the initial
electron state,ua(k,0)u2, was taken as ad function and that
the degrees of freedom in the system were limited to fi
order number states. Accounting for an initial Gaussian s
which further spreads out in time would lead to a faster r
domizing of the transitions and a faster decay of the osc
tions, as is evident inec as shown in Fig. 3~b!. As time
evolves further, the inclusion of higher order number sta
is necessary for the correlation energy to approach it’s
asymptotic long time limit. Observation ofec indicates that
the oscillations begin to die out at a timet; 100 fs. This
suggests that forEi 5 0.10 eV the buildup in the electron
LO-phonon correlation takes roughly 100 fs (;tqp).

We point out that in the long time limit the sign ofec
p in

Eq. ~4.2! is given by the sign of (Ei2\v). This means that
ec
p is negative when the initial electron energyEi is below
the phonon threshold andec

p is positive whenEi is above it.
28

Comparing the QK and SC electron energy curves in F
2 we note that the energy relaxation is much less pronoun
in the QK case. For example, an electron initially wi
Ei52.77\v loses only 0.57\v after 150 fs in the QK case
whereas it loses 1.57\v in the SC case. This large differenc
can be explained by comparing the corresponding QK
SC electron probability distributions, shown in Fig. 4. In~a!,
the QK curve fort550 fs illustrates a large, nearly structur
less spread, in the distribution of final electron states~due to

FIG. 4. Zero field case:~a! The QK electron probability distri-
bution, re(k,t), and ~b! the SC electron distribution function
f (k,t), as a function of wave numberk for Ei50.10 eV at times
t50, 50, 100, and 150 fs. The arrows mark the center position
the first and second forward scattering and backscattering pho
replicas.
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the time-energy uncertainty as discussed previously!. Only
until later times (t; 100 fs! does a reshaping occur at th
first phonon replica atka0561.33. And further, transitions
into the second phonon replica at (ka0560.83) do not ap-
pear until timest; 150 fs. Even after 150 fs the distributio
of final electron states remains wide and structureless ac
the LO-phonon emission spectrum. In sharp contrast the
curves in Fig. 4~b! illustrate an almost immediate appearan
of the well-defined first and second phonon replicas. In
dition, the transitions into the first replica are short lived a
are quickly transferred to the second replica. Furthermore
the QK simulation, even after 150 fs the electron still ha
significant probability of remaining in it’s initial state, while
in the SC simulation this probability is much smaller. Th
sharp discontinuities in Fig. 4~b! reflect the LO-phonon
threshold atka051, whereas the wave nature of the electr
which is naturally accounted for in the QK model complete
smooths out this singularity. This nicely demonstrates tha
the QK treatment the electron is never in a well-defined st
The initial wave packet broadens further due to collisio
However, the electron remains in a continuously changi
but still coherent, superposition of states.

A similar statement holds for the phonon system wh
the electron always interacts with many phonon states
the phonon system itself is also in a coherent superposi
of many states. The evolution of the phonon probability d
tribution also illustrates this slow transition to the first a
second phonon replicas. The probability for finding phon
occupancies of1 and 2 in the kth mode, denoted, respec
tively, by rph1(k,t) andrph2(k,t), are shown in Fig. 5. The
phonon distribution exhibits the similar narrowing~in time!
into peaked structures about thek states associated with th
phonon replicas seen in Fig. 4~a!. Furthermore, the contribu
tion of having two phonons in the same state is very small
these short time scales, as seen in the inset in Fig. 5.

B. External dc electric field: Intracollisional field effect

We now consider an external dc electric field,F, applied
along the wire length. In Fig. 6 the QK~a! and SC~b! time

of
on

FIG. 5. Zero field case: The QK phonon probability distributio
rph1

(k,t), with an occupancy of1 in the qth mode for the case
Ei50.10 eV. The inset shows the contribution,rph2

(k,t), for an
occupancy of2 in theqth mode.
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evolution of^k& is shown for different field strengths for a
electron initially at rest. In both~a! and ~b!, early on the
electron linearly accelerates with the field. However, strik
differences between the QK and SC simulations occur as
electron approaches the phonon threshold. For the SC ca
distinct ‘‘kink’’ occurs below the phonon threshold, wher
the larger the field, the shorter the lifetime of the kink. T
onset of the kink occurs when the high-energy edge of
electron distributionf (k,t) is accelerated past the phono
threshold and the kink vanishes when the low-energy edg
f (k,t) has passed the threshold. On the other hand, for
QK case the effect of the interaction produces a much m
broadened kink that extends both later in time and for w
numbersabovethe phonon threshold. This is a direct cons
quence of the continuous and simultaneous nature of
electron’s acceleration in the electric field and the electr
phonon interaction. A comparison of~a! and ~b! clearly in-
dicates the presence of the intracollisional field eff
~ICFE!, especially for the strongest field case,F550 kV/cm.
The independent treatment of electron acceleration and e
tron scattering in semiclassical kinetics causes a much st
ger scattering effect~suppression of transport!, while the QK
curve resembles nearly ballistic behavior. In this case
interaction is unable to build up in the short time scale set
the large electric field, causing the electron to quickly ru
away with the field.

The importance of the ICFE is also seen for the mo
transport problem where the carrier is injected in the w
with a finite energy. Figure 7 shows the QK~a! and SC~b!
^k& curves for different initial energies,Ei , in the presence
of a 12.5 kV/cm electric field. Again, in the QK simulation
direct transition from the interaction buildup phase to t
runaway phase can be observed which favors ballistic tra
port.

V. CONCLUSION

We presented a quantum kinetic theory, based on
many-body Schro¨dinger equation, for the early time kinetic
of an electron in a quantum wire that is coupled to the sp
trum of LO-phonon modes. We demonstrated that the co
putation of the many-body wave function is feasible for ea
times. This direct approach has the advantage of includ

FIG. 6. External field case:~a! The QK and~b! the SC average
electron wave number̂k&, as a function of time forEi 5 0 and
electric field strengthsF512.5, 25, 37.5, and 50 kV/cm.
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all correlations between the electron and the phonons. It
shown that some of the special features of early time kine
are directly caused by the buildup of these correlatio
These features were~i! a delayed loss of the average electr
momentum and~ii ! initial overshoots of the average electro
kinetic energy. We showed that these effects are media
mainly by the emission and absorption ofvirtual phonons.
On the other hand, the semiclassical Boltzmann equation
glects virtual transitions and treats phonon emission and
sorption as independent processes. This is in clear contra
quantum kinetics, where real and virtual transitions can
be treated separately since scattering and energy renor
ization are different aspects of the same interaction proc
Emission and absorption of phonons are also interdepen
processes because in a virtual process a phonon emissio
to be ‘‘undone’’ by it’s inverse absorption and visa versa

In our study we assumed an initially uncoupled electro
phonon system. Thus we where able to monitor the corr
tion buildup, which is nothing but the transformation of
free particle into a quasiparticle, the polaron. The quant
kinetic treatment shows that on a microscopic level the
teraction process is continuous. Once the correlations
built up the electron and the phonons stay correlated. T
again is in contrast to the semiclassical picture of the in
action process which is assumed to be a chain of individ
events: A free electron enters an ‘‘interaction zone’’ and b
comes correlated with the lattice, which eventually leads
the emission or absorption of a phonon. Then all correlati
vanish and the electron leaves the zone as a free particle
the process starts all over again. In the derivation of
Boltzmann scattering integrals it is crucial to assume that
time the electron spends in the interaction zone~the collision
duration time! is much smaller than the time between su
cessive scattering events~the inverse scattering rate!. This
crucial difference between quantum kinetics and the se
classical kinetic picture explains why it is so difficult, if no
impossible, to find a direct quantum kinetic definition of th
collision duration time. Lipavsky´ el al.14 suggested that the
quasiparticle formation time should be regarded as the qu
tum kinetic analogy of the semiclassical collision durati
time. Using this definition, we find that the collision duratio
time and the inverse scattering rate are actually of sim

FIG. 7. External field case:~a! The QK and~b! the SC average
electron wave number̂k&, as a function of time for initial electron
energiesEi50.05, 0.075, 0.10, and 0.15 eV and an electric fie
strength ofF512.5 kV/cm.
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7816 55J. A. KENROW
magnitude, showing again the importance of virtual tran
tions leading to~in the language of semiclassical kinet
theory! energy-renormalization and multiple phonon scatt
ing effects.

It was further shown that the continuous nature of
interaction also has strong implications on the behavior
the electron in a longitudinal electric field. If the field
strong enough to accelerate the electron considerably,
time scale set by the quasiparticle formation time, phon
scattering becomes ineffective. Semiclassical theory negl
this intracollisional field effect and thus overestimates
effects of phonon scattering in the presence of a strong fi
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APPENDIX A: PHONON MODE PROBABILITY
DISTRIBUTION

We illustrate the calculation of the phonon distributio
with a simple example. Consider the many-body wave fu
tion for a system with a total number ofN53 phonon modes
according to Eq.~2.7!, truncated to second-order lattice num
ber states,

uc~z,t !&5a~z,t !u000&1b1~z,t !u100&1b2~z,t !u010&

1b3~z,t !u001&1g1~z,t !u110&1g2~z,t !u101&

1g3~z,t !u011&1g4~z,t !u200&1g5~z,t !u020&

1g6~z,t !u002&.

In general,rphi(qj ,t) is defined as the probability of findin

phonon modeqj with an occupancyi at time t. Thus as an
example, the probability of finding phonon modeq1 with an
occupancy of0 as a function of time is given as

rph0~q1 ,t !5E dz@ ua~z,t !u21ub2~z,t !u21ub3~z,t !u2

1ug3~z,t !u21ug5~z,t !u21ug6~z,t !u2#. ~A1!

The time evolution of the phonon probability distribution
formed by taking the spectrum of probabilitiesrphi, for a
particular mode occupancy, and plotting them versus
wave numberk.

APPENDIX B: PERTURBATIVE EXPANSION
OF THE CORRELATION ENERGY

The analytical calculation for the correlation energy of t
electron-LO-phonon interaction,ec , is presented for the cas
i-

-

e
f

a
n
ts
e
d.

K.
s.
f-
-

-

e

of early time kinetics. The correlation energy is defined a

ec5^c~z,t !uĤe2phuc~z,t !&, ~B1!

where uc(z,t)& and Ĥe2ph are given, respectively, by Eqs
~2.4! and ~2.7!. Performing the necessary Boson operatio
defined in Sec. II, we obtain

ec~ t !5SE dzH ie2 ivt(
l

eiqlz

Ql
Fa* ~z,t !b l~z,t !

1A2b l* ~z,t !g l l ~z,t !1 (
m. l

bm* ~z,t !g lm~z,t !

1 (
m, l

bm* ~z,t !gml~z,t !G1c.c.J , ~B2!

where c.c. denotes the complex conjugate. Our goal is
obtain an analytic expression forec for the early times.
Therefore we ignore all contributions from second-ord
transitions in Eq.~B2! by neglecting all terms with the coef
ficient g. Taking the Fourier transform of this truncatio
yields,

ec~ t !5SF ie2 ivt(
l

1

Ql
(
k

a* ~k1ql ,t !b l~k,t !

2 ieivt(
l

1

Ql
(
k

b l* ~k1ql ,t !a~k,t !G . ~B3!

In order to obtain our goal, we solve Eq.~B3! perturbatively.
The zeroth-order solution toa(k,t) is Akexp@2iekt/\#, with
Ak5a(k,0)5exp@(k2ki)

2/2(Dk)2#, see Eq.~4.1!. The first-
order solution tob l(k,t) is obtained by integrating

]b l~k,t !

]t
5

ek
i\

b l~k,t !2
Seivt

\Ql
a~k1ql ,t !,

which is just the Fourier transform of Eq.~2.9!, where only
up through the first-order interaction terms have been
tained and whereVz50. Simple integration leads to

b l~k,t !52
SAk1ql

iQl

e2 i ~ek1ql
2\v!t/\2e2 i ekt/\

ek2ek1ql
1\v

. ~B4!

Before proceeding we simplify the calculation by further a
suming that the initial electron state is represented byd
function,

uAk1ql
u2;uA0u2L dk1ql ,ki

.

Inserting Eq.~B4! into Eq.~B3! and using the above assum
tion yields the analytic expression for the correlation ene
for the early times, given in Eq.~4.2!.
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